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Abstract
Accurately reconstructing the global ocean de-
oxygenation over a century is crucial for assess-
ing and protecting marine ecosystem. Existing
expert-dominated numerical simulations fail to
catch up with the dynamic variation caused by
global warming and human activities. Besides,
due to the high-cost data collection, the historical
observations are severely sparse, leading to big
challenge for precise reconstruction. In this work,
we propose OXYGENERATOR, the first deep learn-
ing based model, to reconstruct the global ocean
deoxygenation from 1920 to 2023. Specifically,
to address the heterogeneity across large tempo-
ral and spatial scales, we propose zoning-varying
graph message-passing to capture the complex
oceanographic correlations between missing val-
ues and sparse observations. Additionally, to fur-
ther calibrate the uncertainty, we incorporate in-
ductive bias from dissolved oxygen (DO) varia-
tions and chemical effects. Compared with in-situ
DO observations, OXYGENERATOR significantly
outperforms CMIP6 numerical simulations, reduc-
ing MAPE by 38.77%, demonstrating a promising
potential to understand the “breathless ocean” in
data-driven manner.

1. Introduction
Oxygen is fundamentally essential for all life. Unfortunately,
recent research (Schmidtko et al., 2017) has shown that the
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concentration of dissolved oxygen (DO) in the ocean has
been steadily decreasing over the past 50 years, indicating
the acceleration of global ocean deoxygenation. “Breathless
ocean” has led to large-scale death of fish, seriously affect-
ing the marine ecosystem (Cheung et al., 2013; Breitburg
et al., 2018). Moreover, global warming and human activ-
ities further intensify the expansion of oxygen minimum
zones in the ocean. What is the evolution of global ocean
deoxygenation? Oceanographers eagerly seek a precise
understanding of its changes and underlying patterns.

In recent years, due to the advancement of ocean observation
technologies and international ocean discovery programs, a
lot of in-situ observation data has been accumulated. Some
data-driven studies have analyzed the occurrence of ocean
deoxygenation in regions such as Atlantic Canada (Hus-
sain et al., 2021), Southern Ocean (Giglio et al., 2018), and
Ganga River (Pant et al., 2023). However, these studies are
confined to a local region with short-term observations, typi-
cally spanning only several decades. The lack of research on
long-term global ocean deoxygenation lies in the severely
sparse historical observations of DO due to the high-cost
and high-risk marine scientific expeditions. For example,
the World Ocean Database (WOD) (Boyer et al., 2018) is
world’s largest and widely-used collection of publicly avail-
able ocean profile data2, and we are extremely surprised to
find that more than 96.265% dissolved oxygen observation
data are missing in the past 100 years, largely higher than
the missing rate of existing data imputation studies (Miao
et al., 2023; Adhikari et al., 2023).

Prior Works. To quantitatively understand and predict
the long-term trend of global ocean deoxygenation from
sparse observations, existing works are mainly categorized
into two ways: (1) Numerical Simulation Models. These
methods simulate the DO concentration based on climate
models without utilizing in-situ DO observations. Coupled
Model Intercomparison Project Phase 6 (CMIP6) (Eyring
et al., 2016), a world-wide simulation compasrion project,
includes different expert-dominated DO simulation over a

2We follow the same method of data gridding in (He et al.,
2019) with 1◦ × 1◦ spatial resolution, 1-year temporal resolution
and 0-5500 meters (33 depth levels) of the global ocean.
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Figure 1: Global ocean deoxygenation reconstruction via OXYGENERATOR from 1920 to 2023 based on sparse observation.
Above: The proportion of ocean data observed in four-dimensional coordinates ρ(#.Obs). Overall, dissolved oxygen (DO)
observation are very sparse in each interval, and many areas have no observations. Below: Minimum DO reconstructed by
OXYGENERATOR. The yellow line envelopes the oxygen minimum zone (OMZ) where DOmin ≤ 30µmol/kg. ρ(OMZ30)
indicates the proportion of OMZ30 regions to global oceans, which clearly shows a significant increase over a century.

century. Many oceanography studies (Long et al., 2021;
Koelling et al., 2023; Huang et al., 2023) often directly
leverage these simulation data for long-term analysis or
comparisons. However, these models are unable to adjust
for DO simulation biases caused by global warming and
human activities, leading to error propagation and show-
ing large discrepancies with in-situ observations. (2) Spa-
tial Interpolation Methods. Apart from spatio-temporal
numerical simulations, oceanographers utilize spatial regres-
sion to interpolate unobserved points based on distance for
global analysis. Schmidtko et al. (2017) adopt distance
based weighted average and first quantitatively calculate
that oxygen in the ocean has decreased by about 2% since
1960. Zhou et al. (2022) further analyze the expanding
oceanic oxygen minimum zones with geostatistical regres-
sion. However, these methods only conduct the smoothing
of observations through spatial distance, without consid-
ering the impact of temporal information and associated
factors. Therefore, this suggests the following

Question: Can deep learning methods more accurately re-
construct global ocean deoxygenation over a century under
sparse dissolved oxygen observations?

Challenges. This research question drives the design of
specific deep learning methods for reconstructing global
ocean deoxygenation. Fortunately, despite the severe
sparse observations, the missing values contains implicit
spatio-temporal correlations with neighboring observations.
Meanwhile, multiple physical-biogeochemical factors show
strong connections with dissolved oxygen. However, as
a double-edged sword, accurately characterizing the com-
plex correlations between missing values and sparse ob-
servations involves two main challenges: (1) Irregular 4D
spatio-temporal heterogeneity. Dynamic ocean is a four-

dimensional irregular spatio-temporal area that includes
longitude, latitude, depth, and time. Constrained by both
tectonic plates and seafloor topography, the ocean is not a
regular cube for gridding. In addition, the spatio-temporal
correlations in various regions are different due to the influ-
ence of ocean circulations and climate changes. (2) Coupled
physical-biogeochemical properties. The concentration of
oceanic dissolved oxygen is influenced by a variety of fac-
tors. For one thing, the solubility of oxygen in the water is
affected by physical factors, including temperature, salin-
ity and pressure. For another, biological processes, such
as photosynthesis and respiration, and organic matter de-
composition play a significant role in regulating dissolved
oxygen concentrations.

Our Work. To address the aforementioned challenges, we
propose OXYGENERATOR to perform regression prediction
on each 4D coordinate, reconstructing global ocean deoxy-
genation from 1920 to 2023. Besides, we collect more than
6 billion multi-variable oceanic observation records from
multiple databases. Specifically, we first propose graph-
based modeling to connect both local and remote obser-
vations in irregular four-dimension space. To capture the
spatio-temporal heterogeneity in different regions, inspired
by the zoning strategy in oceanography, we propose zoning-
varying graph message-passing via hypernetwork. More-
over, to fuse the knowledge of physical-biogeochemical
properties, we integrate multiple environmental factors and
geographical coordinates for nonlinear feature extraction.
Especially for the chemical effects in ocean deoxygena-
tion, we leverage the thermodynamic equilibrium among
dissolved oxygen (O), nitrogen (N) and phosphorus (P) to
calibrate the uncertainty of reconstruction. To summarize,
the main contributions of our work are as follows:
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• To the best of our knowledge, OXYGENERATOR is the
first deep learning based work to reconstruct global
ocean deoxygenation over a century from real-world ob-
servations, which significantly outperforms the expert-
dominated numerical simulation results with a mean ab-
solute percentage error (MAPE) reduction of 38.77%.

• We propose zoning-varying message-passing via graph
hypernetwork to obtain consistent 4D spatio-temporal
reconstruction, achieving adaptive ocean zoning.

• We propose the chemistry-informed gradient variance reg-
ularization to calibrate the uncertainty of reconstruction,
which combines the inductive bias between dissolved oxy-
gen variation and other nutrients (nitrogen, phosphorus)
in chemical equations.

Through our work, we quantitatively calculate that the pro-
portion of oxygen minimum zone where the DO concen-
tration below 30µmol/kg (OMZ30) enlarges from 3.54%
in the 1920s to 10.67% today (Figure 1), alerting us the
increasingly urgent issue of global ocean deoxygenation.

2. Related Work
In this section, we briefly review the related research lines to
our work. A more comprehensive analysis of related work
please refer to Appendix D.

Ocean Deoxygenation. Global warming and excessive
nutrient inputs caused by human activities have led to
significant ocean deoxygenation in recent years. To bet-
ter understand the oxygen cycling mechanism and assess
the overall impact of human activities on the marine sys-
tem since the 20th century, a comprehensive global analy-
sis of ocean deoxygenation is particularly important. Ex-
isting research has made two ways of positive attempts,
but still leaves some limitations: (1) Numerical Simula-
tion Models. Existing expert-dominated studies utilize nu-
merical simulations based on climate models to probe the
drivers and predict oxygen loss (Gong et al., 2021; Bopp
et al., 2017). For example, Coupled Model Intercomparison
Project Phase 6 (CMIP6) (Eyring et al., 2016) includes three
experiments (CESM2-omip1, CESM2-omip2 and GFDL-
ESM4-historical) on dissolved oxygen simulation. Never-
theless, most simulations entirely rely on knowledge of the
climate system and fail to leverage observations for correc-
tion, thereby showing inferior performance (Frölicher et al.,
2016; Bopp et al., 2013). (2) Spatial Interpolation Methods.
Due to the severe sparse DO observations, another aspect of
studies attempt data reconstruction through distance based
weighted average (Schmidtko et al., 2017) and geostatisti-
cal regression (Zhou et al., 2022) for spatial interpolation.
However, these methods are only smoothing of the existing
DO observation data and yield inaccurate results for areas
that lack observation data. They ignore the spatio-temporal

heterogeneity of different regions and fail to make full use
of auxiliary variables for reconstruction. In this paper, to
the best of our knowledge, we are the first to propose a deep
learning method to reconstruct global ocean deoxygenation
over a century, considering the spatio-temporal hetegeneity
in different regions (Section 4.2) and chemical properties
across dissovled oxygen and nutrients (Section 4.3).

Data-Driven Earth System. Existing superior earth system
methods are mostly expert-dominated numerical models,
which rely on complicated physics processes, sensitive ini-
tial conditions and suitable forcing. Moreover, many nu-
merical models are computationally intensive and costly for
fine-grained spatio-temporal resolution or long-range sim-
ulation. With the rapid growth of artificial intelligence, AI
for Science, or more specifically data-driven Earth system,
has become a hot topic in both Computer Science and Earth
Geoscience (Bergen et al., 2019; Reichstein et al., 2019).
Given the accumulation of scientific data, data-driven deep
learning models are attempting to learn complex and non-
linear correlations in the Earth system, while reducing com-
putational and application costs. Especially in the field of
numerical weather prediction (NWP), deep learning tech-
niques are particularly suitable for improving its prediction
performance due to their large amount of data, e.g. recent
state-of-the-art methods Pangu-Weather (Bi et al., 2023),
GraphCast (Lam et al., 2023). For another, Nguyen et al.
propose a foundation model for weather and climate model-
ing called ClimaX, which extends Transformer architecture
for more general weather and climate tasks. Overall, the
data-driven Earth system is still in its early stages, and more
scenarios and technologies are worth further exploration.

3. Preliminary
In this section, we first present the problem formulation
of reconstructing global ocean deoxygenation, and then
introduce the data collection and quality control procedures.
Finally, we briefly review the chemical process in ocean
deoxygenation. Table 3 in Appendix A lists main symbols
and notations used throughout this paper.

3.1. Problem Formulation

Reconstruction of global ocean deoxygenation aims to esti-
mate and fill in the missing values within sparse dissolved
oxygen observations over the last century. Here we con-
sider the four dimensional coordinate to represent oceanic
observation, i.e., longitude, latitude, depth, and time. Let
Ω = (ωi,j,d,t)i,j,d,t ∈ {0, 1}L×G×D×T be a binary indica-
tor representing observed entries, i.e. ωi,j,d,t = 1 iff the
entry (i, j, d, t) is observed, otherwise it is missing. We
denote the incomplete data matrix X as follows:

X = X(obs) ⊙Ω+ NA⊙ (1L×G×D×T −Ω),
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Figure 2: The framework of ocean deoxygenation reconstruction via our proposed OXYGENERATOR.

where X(obs) ∈ RL×G×D×T contains the observed entries,
NA denotes the indicator of not available data observation,
⊙ is the element-wise product and 1L×G×D×T is an L ×
G×D × T matrix filled with ones. Given the data matrix
X, our goal is to construct an estimate X̂ filling the missing
entries of X, which can be written as

X̂ = X(obs) ⊙Ω+ X̂
(imp)

⊙ (1L×G×D×T −Ω),

where X̂
(imp)

contains the imputed values. It should be
pointed that classical data imputation works (please refer
to Section D in Appendix) involve manually masking ap-
proximately 20% -80% of the data to create missing values,
and then comparing the imputation results with complete
data for performance validation. However, due to the high
scarcity and unavailability of historical dissolved oxygen
records (only 3.735% of data are observed), we directly
conduct regression prediction in each time frame and com-
pare it with the observed DO. Specifically, we use past T
timesteps DO observation Xt−T :t−1, future T timesteps
DO observation Xt+1:t+T , and some auxiliary variables D
to reconstruct the dissolved oxygen observations at time
t. Then, we compare them with the actual observations at
time t to achieve performance comparison. In other words,
we define the following loss function Lr of our model to
minimize the reconstruction error:

Lr =
∑
t

L(M(Xt−T :t−1, Xt+1:t+T ,D)⊙Ωt, X
(obs)
t ⊙Ωt),

(1)
whereM is our proposed OXYGENERATOR parameterized
with θ and ϕ, L is the mean squared error loss.

3.2. Data Collection and Quality Control

We collect over 6 billion historical observation records
from 1920 to 2023 of dissolved oxygen and relevant en-
vironmental factors, including temperature, salinity, nitrates,
phosphates, silicates, and chlorophyll, from multiple public
databases (Table 4 and Figure 9 in Appendix). We fol-
low the data preprocessing in existing works (Schmidtko

et al., 2017) and conduct formatting standardization and
spatio-temporal tagging correction for all data. Besides,
we establish unified quality control standards to ensure the
availability and reliability of observations (Please refer to
Appendix C.1 for more information about data quality con-
trol). Hereby, we obtain data matrix of dissolved oxygen X,
environmental factors FEnv and geographical coordinates
FGeo. In our work, we follow the spatial and temporal res-
olution setting in (Garcia et al., 2010; Eyring et al., 2016),
defined as the annual average temporal resolution from 1920
to 2023, spatial resolution of 1◦×1◦, and a total of 33 depth
levels from 0 to 5500 meters. Hence, the dimension range
of the data is L = 360, G = 180, D = 33 and T = 104.

3.3. Chemical Effect in Ocean Deoxygenation

Global ocean deoxygenation attributes to complicated fac-
tors, among which the chemical effect of oxygen cycling
largely impact the dissolved oxygen dynamics. Specifically,
the decomposition of organic matter containing nitrogen
(N) and phosphorus (P), and the regeneration of inorganic
nutrients hold quantitative relationships with dissolved oxy-
gen variations. Redfield et al.(1963) first infer the chemical
composition transformation relationship among O, N and P
at thermodynamic equilibrium through theoretical analysis
as shown in Equation 2, which is further named Redfield
ratio. Afterwards, Ishizu & Richards (2013) confirm the
linear correlation of N-O and P-O among above elements
through in-situ observation data, which further demonstrates
the internal connections of dissolved oxygen variation and
chemical effect.

(CH2O)106(NH3)16H3PO4︸ ︷︷ ︸
Organic Matter

+138O2︸ ︷︷ ︸
DO

→

106CO2 + 122H2O + 16HNO3 + H3PO4︸ ︷︷ ︸
Inorganic Nutrients

(2)

In our work, we combine the domain knowledge in chem-
ical oceanography with our proposed method, leveraging
the dynamic equilibrium among environmental factors to
improve the reconstruction performance and eliminate ab-
normal fluctuations.
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4. Methodology
In this section, we formally introduce the methodology of
ocean deoxygenation reconstruction and detailed architec-
ture of our proposed OXYGENERATOR in Figure 2.

4.1. Four-Dimensional (4D) Graph Construction

Ocean observation has three-dimensional spatial coordinates
(longitude, latitude and depth), while constrained by land
plates and seabed topography, making the entire data obser-
vation an irregular cube. Meanwhile, due to the sparsity of
observations, when there is a lack of observation informa-
tion in adjacent receptive fields, localized convolution filters
cannot aggregate sufficient information. Therefore, instead
of CNN-based methods, we propose graph modeling to de-
fine two types of neighbors, i.e., proximity neighbor and
information hub, for each data grid. We consider 3D spatial
proximity under irregular boundaries. At the same time, we
connect a wider range of related nodes with respect to the
observation completeness, hereby improving the richness of
information.

Proximity Neighbor. The First Law of Geography (Tobler,
1970) states that ”everything is related to everything else,
but near things are more related than distant things.” Accord-
ing to that, we consider proximity neighbors as data grids
within the range of [−δ◦, δ◦] in the horizontal longitude and
latitude range, as well as ±dm depth layer in the vertical
direction. Regarding the irregular oceanic boundaries, we
adopt bedrock elevation data published by NOAA to ensure
the rationality.

Information Hub. Due to the insufficient observations in
proximity neighbors, we further expand the spatial proxim-
ity range and utilize observation completeness Cobs as an
indicator to measure the richness of information within a
time range from t− T to t+ T :

Cobs =
∥ωi,j,d,t−T :t+T ∥1

2T
=

∑
τ ∥ωi,j,d,τ∥

2T
.

When Cobs ≥ εC , we deem this data grid an information
hub and the neighbor of node vi,j,d,t, otherwise it is not.
Thanks to the flexibility of graph modeling, information hub
can effectively enlarge the receptive field, which is crucial
for reconstruction under sparse observations. We define
the adjacency matrix At and node set Vt at time t, and the
corresponding edge feature matrix Et as the difference of
attributes, including distance, density, pressure, etc.

4.2. Spatio-Temporal Graph HyperNetwork

Feature Extractor. The concentration changes of dissolved
oxygen are influenced by different factors. Thus, we first
want to construct a feature extractor f(θ) that can fully char-
acterize the attribute features of nodes. In order to capture
the temporal variation of dissolved oxygen, we adopt a bidi-
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Figure 3: Framework of zoning-varying message-passing.

rectional LSTM model fBi-LSTM to encode both historical
and future T timesteps DO observation as follows:

−−→
ZDO
τ = Bi-LSTM(Xτ ,

−−−→
ZDO
τ−1;
−→
θ Bi-LSTM),

←−−
ZDO
τ = Bi-LSTM(Xτ ,

←−−−
ZDO
τ−1;
←−
θ Bi-LSTM),

where Xτ denotes the DO observation at time τ ,
−−→
ZDO
τ

and
←−−
ZDO
τ denote the hidden states from two directions,

−→
θ Bi-LSTM and

←−
θ Bi-LSTM denote the Bi-LSTM parameters.

Correspondingly, the DO temporal feature at reconstruc-

tion time t is ZDO
t =

−−→
ZDO
t ∥
←−−
ZDO
t , thereby capturing the

temporal evolution of DO in two directions. In addition,
dissolved oxygen concentration is also related to a series
of geographical coordinates FGeo

t (including latitude, lon-
gitude, depth, time) and environmental factors F Env

t (in-
cluding temperature, salinity, nutrients, chlorophyll). In
order to comprehensively consider the coupling correla-
tions between these factors and dissolved oxygen, we lever-
age a multi-layer perceptron (MLP) to embed into a latent
space: ZF

t = MLP(FGeo
t ∥F Env

t ; θMLP ). To sum up, the
overall latent feature embedding is the composition of both
DO temporal feature ZDO

t and multi-factor feature ZF
t as

Zt = ZDO
t ∥ZF

t .

Zoning-Varying Message-Passing. The global ocean over
a century shows heterogeneous spatio-temporal correlations
in different historical periods and regions due to the varying
impacts of human activities and climate change. In oceano-
graphic research, many studies partition the global ocean
into different zones (Fay & McKinley, 2014; Reygondeau
et al., 2020; Sonnewald et al., 2020) in order to better inves-
tigate the complex oceanic processes. Inspired by zoning
strategy in oceanography, a naive method is to train multi-
ple models through pre-determined zones. However, there
have no theoretical basis for the partition of deoxygenation
areas, and training multiple models increase the computa-
tional costs. Therefore, we propose Spatio-Temporal Graph
HyperNetwork, which adaptively generate zoning-varying
parameters via hypernetwork (Ha et al., 2017) for graph
message-passing. We can obtain a dynamic partition more
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efficiently through a globally shared parameter generator
and the low dimensional context information of each node.

To simplify the explanation, we denote the m-th node in
the node set Vt = {vi,j,d,t}i,j,d,t at time t as vm. For each
node vm, we generate zoning-varying parameter Zm =
[Zα

m,Zβ
m] based on context information ξm which includes

geographical coordinates and physical elements:

Zα
m = MLPα(ξm;ϕα),Zβ

m = MLPβ(ξm;ϕβ),

where Zα
m ∈ Rdz×dz denotes rotation matrix, Zβ

m ∈ Rdz

denotes bias vector. Afterwards, compared to vanilla graph
neural networks (GNN), we perform non-shared feature
scaling on the latent feature embedding:

h̃(l)
m = h(l)

m ⊗Z ≜ Zα
m

T · h(l)
m + Zβ

m,

where h
(l)
m is the l-th layer GNN input of node vm, h̃(l)

m

is the node-wise adaptive latent feature of h(l)
m . Thus, the

nonlinear correlation between different geographic infor-
mation and physical elements will serve as a criterion for
dynamic partitioning. Nodes with similar zoning parameter
Z form the same zone. Unlike unsupervised clustering or
manually setting partition rules, for ocean deoxygenation
problems, hypernetworks can transform discrete partitions
into continuous ones. We further use graph neural networks
for message passing on adaptive latent features and consider
the edge features of different neighbors. Take node vn as an
example, the l + 1-th layer GNN output is denoted as:

h(l+1)
n =

1

|Ñn|

∑
m∈Ñn

γmnWh̃(l)
m ,

where z̃lm is the adaptive latent feature, W is the model
parameter of message-passing, and Ñn is the neighbor set
of node vn with self-loop. The edge weight γmn is derived
by nonlinear projection of edge feature by a multi-layer
perceptron: γmn = MLPγ(emn).

4.3. Chemistry-informed Regularization

The global ocean deoxygenation is a complex system that
couples physical and biochemical effects. The embedding
of domain knowledge can calibrate the uncertainty of neu-
ral networks and eliminate abnormal reconstruction. How-
ever, despite some research on physics-informed neural net-
works (Raissi et al., 2019; Podina et al., 2023; Zeng et al.,
2023), there is still little research on how to express chem-
ical dynamic equilibrium as shown in Equation 2. Here,
we consider the dynamic transition equilibrium between
dissolved oxygen and nitrate (phosphate), which means the
gradient between dissolved oxygen and nitrate (phosphate)
concentration is a constant. For example, for the observation
of nitrate FN

m (phosphate FP
m) at node vm (node vn), we

can calculate the corresponding gradient based on the recon-
structed dissolved oxygen x̂m (x̂n) which is approximately
a constant, i.e., ∂x̂m

∂FN
m

= const., ∂x̂n

∂FP
n

= const.

Therefore, we propose the chemistry-informed gradient vari-
ance regularization as one of the supervised signals. Specifi-
cally, in a batch of training data, we select nodes with nitrate
(phosphate) observations and calculate their corresponding
gradients. Since the dynamic equilibrium between nitrate
(phosphate) and dissolved oxygen is approximately consis-
tent, the norm of gradient variance should be small:

RN =

∥∥∥∥σ({
∂x̂m

∂FN
m

}
m

)∥∥∥∥2
2

, RP =

∥∥∥∥σ({
∂x̂n

∂FP
n

}
n

)∥∥∥∥2
2

,

(3)
where σ(·) denotes the calculation of the gradient variance.

4.4. Optimization Algorithm

Due to the memory burden of large scale graphs for global
ocean, we divide it into different training groups based on
World Ocean Database 2018 (Boyer et al., 2018) ocean divi-
sion. Since different groups show varying complexity, each
group is optimized using different iterations in one epoch of
training. We periodically evaluate the reconstruction perfor-
mance of different group using the validation dataset, and
then reset the iterations number for each group. During the
learning process, we integrate the reconstruction loss Lr in
Equation 1 and two chemical-informed gradient variance
regularization in Equation 3 as follows:

LOXYGENERATOR = Lr + λ(RN +RP ), (4)

where λ is the ratio coefficient of two losses. We conclude
the algorithm in Appendix E.2 Algorithm 1.

5. Experiment
In this section, we evaluate the effectiveness of our proposed
OXYGENERATOR in reconstructing global ocean deoxy-
genation from 1920 to 2023. More comprehensive in-depth
analysis are presented in detail with the aim of answering
the following four research questions:

• RQ1: Can the OXYGENERATOR reconstruct the global
deoxygenation trend? How does its performance compare
with expert-dominated numerical simulation methods?

• RQ2: What are the learning pattern and insights of OXY-
GENERATOR during training?

• RQ3: How effective are different parts of the model?
• RQ4: What are the shortcomings of deep learning based

model OXYGENERATOR and future directions?

Evaluation Methods. Due to the irreproducibility of histori-
cal ocean observations, only existing observations can be uti-
lized for evaluation. Meanwhile, due to the data scarcity, fur-
ther data partitioning for training/validation/testing would
render the interpolation and imputation algorithms inappli-
cable. Therefore, we treat the deoxygenation reconstruction
as a regression task independent of current-time observa-
tions and perform 4-fold cross testing of the collected data.
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Table 1: Comparison with simulation results from CMIP6. The best results are highlighted in bold, and the second best is
underlined. We calculate the performance improvement of OXYGENERATOR compared to the suboptimal one.

Benchmark k = 1 k = 2 k = 3 k = 4 Average Performance

MAPE MAPE MAPE MAPE MAPE R2 RMSE MAE

CESM2 omip1 23.63 23.15 23.67 22.87 23.32±0.38 0.7966±0.0064 37.37±0.34 25.98±0.31

CESM2 omip2 23.62 23.00 24.60 23.13 23.58±0.72 0.7947±0.0096 38.22±0.55 27.12±0.32

GFDL-ESM4 historical 26.13 24.01 26.68 24.33 25.28±1.31 0.8228±0.0051 35.45±0.65 23.69±0.38

OXYGENERATOR (Ours) 14.72 13.48 15.72 13.20 14.28±1.16 0.9026±0.0072 26.31±1.23 17.57±1.10

Improvement 37.67% 41.38% 33.59% 42.28% 38.77% 9.70% 25.78% 25.83%

(a) CESM2 omip1 (b) CESM2 omip2 (c) GFDL-ESM4 historical (d) OxyGenerator (Ours) MAPE

Figure 4: The spatial distribution of MAPE in global ocean deoxygenation reconstruction using different methods (The
darker the color, the greater the error). The reconstruction error of OXYGENERATOR in open sea is significantly reduced.
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Figure 5: Performance Comparison of MAPE over time.

For each fold, we randomly choose 25% observation data
as the test data and the rest as training and validation. We
report on the performance on each fold test data and the
average performance on 4 folds.

Evaluation Metrics. We employ four metrics for per-
formance evaluation, including Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), Mean
Absolute Error (MAE), and Coefficient of Determination
(R2). More details please refer to Appendix F.

Gold-standard Benchmark. As we are the first research
to use deep learning methods for global dissolved oxy-
gen reconstruction over a century, our method is bench-
marked against three advanced expert-dominated simulation
results from Coupled Model Inter-comparison Project Phase
6 (CMIP6): CESM2 omip1 (Danabasoglu et al., 2020),
CESM2 omip2 (Danabasoglu et al., 2020) and GFDL-
ESM4 historical (Dunne et al., 2020). The details of three
simulation experiment are introduced in Appendix C.2.

5.1. Experiment Results (RQ1)

In Table 1, we illustrate the comparison results of 4-fold
cross testing. Our OXYGENERATOR achieves the best per-
formance on all four metrics, with a 38.77% reduction in
MAPE compared to suboptimal numerical simulation meth-
ods. It proves that deep learning methods can more accu-
rately reconstruct ocean deoxygenation trends.

Horizontal Spatial Distribution of Reconstruction Er-
ror. Figure 4 depicts the average MAPE of four methods in
spatial distribution. Owing to the strength of capturing het-
erogeneous spatio-temporal correlations, OXYGENERATOR
provides more accurate reconstruction in the North Pacific,
Indian Ocean, Equatorial Atlantic and other regions.

Temporal Distribution of Reconstruction Error. We an-
alyze the variation of reconstruction error over time, as
shown in Figure 5. OXYGENERATOR shows the consistent
reconstruction performance among different years. Notably,
there exist an error peak in 1923-1928. This large estima-
tion error in three simulation models comes from a severe
underestimation of the Black Sea deoxygenation (Detailed
analysis on the Black Sea can be found in Appendix F.2).
OXYGENERATOR, based on the correction and correlation
learning of observations, effectively captures the changes in
extreme deoxygenation areas.

Vertical Depth Distribution of Reconstruction Error. We
compare variation of DO reconstruction within the depths
of 0-5500 meters for the five oceans (i.e., Pacific, Atlantic,
Indian, Antarctic and Arctic) in Appendix F.3.
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(a) 0 - 5 m (b) 87.5 - 112.5 m

(c) 450 - 550 m (d) 950 - 1050 m Zone

Figure 6: Adaptive zoning of 4 representative depth levels
in 2016. Different colors represent different zones.

Comparison with Other Deep Learning Models. In addi-
tion to expert-dominated numerical simulation, OXYGEN-
ERATOR outperforms other deep learning models such as
MLP, GNN, Transformer, etc., as shown in Appendix F.4.

5.2. Model Analysis (RQ2)

Effect of Adpative Zoning via Spatio-Temporal Hyper-
Network. We randomly select four representative depth
levels in 2016 and visualize the generated parameters Z
through T-SNE. As shown in Figure 6, OXYGENERATOR
can adaptively carry out spatial zoning, which is quanti-
fied into 10 zones. Moreover, compared with WOD zoning
strategy (Boyer et al., 2018), we observe that: (1) The adap-
tive zoning is closely related to latitude distribution and
presents a clear oceanic partitioning. Especially below 450
meters depth, we show similar zoning results with WOD
in the Indian Ocean, Atlantic Ocean, and Pacific Ocean.
(2) Compared to depth-independent zoning in WOD, our
method depicts a finer grained zoning that varies at different
depths and intra-ocean. Surface seawater is influenced more
by human activities and exhibits a more intricate zoning
pattern, whereas deep seawater is closely associated with
geographical location. More details refer to Appendix F.5.

Analysis of Chemistry-informed Gradient Variation
During Training. Figure 7 shows the variance changes
of two gradient during training, i.e. σP = σ(∂O∂P ) and
σN = σ( ∂O∂N ). According to the chemical equation 2,
the gradients of two element are equal to two constant of
− 1

138 and − 16
138 . The variance of two gradient gradually

approaches to zero during the training process, which ef-
fectively reflects the thermodynamic equilibrium among
dissolved oxygen (O), nitrogen (N) and phosphorus (P).

5.3. Ablation Study (RQ3)

To verify the effectiveness of our proposed OXYGENER-
ATOR, we conduct five degenerate variants for ablation

0 3000 6000 9000
Epochs

-5
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10
15
20
25
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Trend Line

0 3000 6000 9000
Epochs

0

10

20

30

40

σN
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Figure 7: The gradient changes of O−P and O−N during
the training process. Each point represents the average
gradient value and two lines are corresponding trend lines.

Table 2: Ablation Study of OXYGENERATOR.

Ablation Variants MAPE RMSE MAE
vanilla MLP 23.03±1.29 30.89±0.95 22.08±1.01

w/o Zoning-Varying 23.84±0.88 30.97±0.90 22.25±1.24

w/o Chem. Regularization 14.85±1.41 26.68±0.81 18.06±0.50

w/o Enviromental Factors 15.70±1.42 27.95±0.61 18.94±0.70

w/o Temporal DO Obs. 17.01±1.04 29.26±0.91 20.39±0.66

OXYGENERATOR (Ours) 14.28±1.16 26.31±1.23 17.57±1.10

study. As shown in Table 2, any variant exhibits perfor-
mance degradation, indicating the effectiveness of our pro-
posed method. Especially when we remove the zoning-
varying graph message-passing, the reconstruction error
significantly increase due to the failure of capturing spatio-
temporal heterogeneity over long-range time and space.

5.4. Limitations and Future Directions (RQ4)

Although OXYGENERATOR achieve promising perfor-
mance, we discover some limitations and future directions.
(1) Due to the scarcity of observational data, there is sig-
nificant uncertainty in evaluating the effectiveness of dif-
ferent methods. For example, the South Pacific accounts
for only 0.027% of complete observations in 1920-1950.
Therefore, discovering more data from databases or litera-
ture is an important proposition in the era of open science
data (Muller et al., 2019; Lu et al., 2023). (2) The recon-
struction performance requires validation according to the
laws of oceanography. Figure 8 shows the reconstruction
results of the tropical Pacific region under El Niño-Southern
Oscillation (ENSO) and neutral ENSO. In El Niño years,
with the increase of seawater temperature in the tropical
eastern Pacific, the concentration of dissolved oxygen will
decrease, which is clearly reflected in our reconstruction
results, but not in numerical simulation. However, the extent
and impact of the DO reduction require further analysis with
oceanographers.
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Figure 8: Comparison of reconstruction results in the surface
of the Tropical Pacific during ENSO and neutral ENSO.

6. Conclusion
In this paper, we propose OXYGENERATOR, a deep learn-
ing model that effectively reconstructs global ocean deoxy-
genation based on sparse observation data in 1920-2023.
OXYGENERATOR improves the accuracy of the reconstruc-
tion through zoning-varying graph message-passing and
chemistry-informed regularization, with a significant im-
provement compared to expert-dominated numerical simu-
lations. In the future, we will continue to collaborate with
oceanographers to further improve the compliance with
physical-biogeochemical mechanisms and investigate its
impacts for marine ecosystem.
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• Climate Change Awareness: Our research provides data
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A. Notations
In Table 3, we list the main symbols and notations used throughout the paper.

Table 3: Symbols and Notations.

Symbol Definition

X Data matrix of dissolved oxygen
X̂ Estimated Data matrix of dissolved oxygen

X(obs) Observed data matrix
X(imp) Imputed data matrix
Ω Binary mask representing observed entries

FGeo Matrix of geographical factor
FEnv Matrix of environmental factor
E Edge feature matrix

NA Indicator of not available data observation

Xt Dissolved oxygen (DO) observation at time t
Xt−T :t+T DO observation from time t− T to t+ T

FGeo
t Geographical coordinates at time t

F Env
t Environmental factors at time t
At Adjacency matrix at time t
Vt Node set at time t
Et Edge feature matrix at time t
Zt Latent embedding matrix of feature extractor at time t
f(θ) Feature extractor parameterized by θ
Aπ HyperNetwork for parameter α and β

L, G, D, T Number of longitude, latitude, depth and time interval
i, j, d, t Indices of graph nodes
Zα

m Rotation matrix in hypernetwork
Zβ

m Bias vector in hypernetwork
vi,j,d,t Node with spatial coordinate (i, j, t) at time t
vm The m-th node for simplification
em,n The edge between node vm and vn
γm,n The edge weight of the message-passing between node vm and vn
ξm The context information of node vm
Nm Neighbors of node vm
Ñm Neighbors of node vm with self-loop
⊙ Element-wise product
σ(·) Variance
∥ Feature concatenation

B. Background of Ocean Deoxygenation
Drivers and Impacts. Ocean deoxygenation is a complex environmental issue characterized by the significant reduction
in dissolved oxygen levels in the ocean. Several interconnected factors, especially the climate change and anthropogenic
activities, contribute to ocean deoxygenation. Rising temperatures impact oxygen circulation and diminish the capacity
of seawater to hold dissolved oxygen, resulting in decreased oceanic oxygen levels. Excessive nutrient input from human
activities, particularly from agriculture and industrial processes, lead to the proliferation of algae, creating algal blooms.
When these blooms eventually decompose, they consume large amounts of oxygen, creating localized areas with reduced
oxygen levels. In recent years, with the intensification of global warming and human influence, ocean deoxygenation
has presented an accelerating trend. The consequences of ocean deoxygenation are far-reaching. Reduced oxygen levels
can harm marine biodiversity, leading to disruptions in food webs and ecosystems. Fisheries, which rely on oxygen-rich
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environments to support commercially important species, may experience declines. Hence, there is an urgent need to
understand the mechanisms driving deoxygenation, assess its ecological consequences, and develop effective strategies for
sustainable development.

El Niño-Southern Oscillation (ENSO). Anomalous climate events influence the distribution and rates of ocean deoxy-
genation. Taking the El Niño-Southern Oscillation (ENSO) as an example, this climatic phenomenon greatly disturbs
oceanic dissolved oxygen levels. During El Niño years, the warming of the central and eastern equatorial Pacific reduces
the solubility of oxygen, leading to a decline in dissolved oxygen concentrations in affected areas. Understanding the
intricate relationship between ENSO and oceanic dissolved oxygen is crucial for comprehending the broader implications of
climate-related variations on marine ecosystems.

Oxygen Minimum Zones (OMZs). Oxygen Minimum Zones (OMZs), standing for low oxygen zones, plays a pivotal
role in characterizing the issue of oceanic oxygen deficiency. OMZs are emerging in various regions, posing challenges for
marine organisms adapted to higher oxygen concentrations. In various studies, OMZs are bounded by different thresholds
of dissolved oxygen levels. In our work, we select a 30 µmol/kg threshold to define OMZs, referred to as OMZ30. To be
specific, areas with dissolved oxygen concentrations below 30 µmol/kg at any depth are labeled as OMZ30. In Figure 1,
OMZ30 are highlighted by yellow lines and our work indicates the significant expansion of OMZ30 over the past century.
This observation signifies a clear trend of ocean deoxygenation, emphasizing the urgent need for in-depth investigations into
deoxygenation rates and driving factors.

C. Data Sources
C.1. Observation Data

In our work, we aggregate comprehensive observation datasets of global ocean from 5 publicly available database. The
circulation of dissolved oxygen in seawater is a complex biological, physical, and chemical effect. Therefore, besides global
dissolved oxygen (DO) measurements, we also combine more than 100-year observations of seawater temperature, salinity,
biogeochemical major elements (P, N, Si) and chlorophyll. In Table 4, we demonstrate the detailed information of different
data sources. Moreover, in our analysis, we also use bedrock elevation data (NOAA National Centers for Environmental
Information, 2022) to represent the changes in seabed depth in different regions.

Table 4: Detailed Information of Data sources for global ocean observations.

Database Time Institution Source Access Date Variables

World Ocean Database
(WOD 2018)

1900-2023
National Centers for
Environmental Information

https://www.ncei.noaa.gov/ 2023-05
temperature, salinity, dissolved
oxygen, biogeochemical major
elements (P, N, Si) and chlorophyll.

CLIVAR and Carbon
Hydrographic Database
(CCHDO)

1922-2023
CLIVAR and Carbon
Hydrographic Data Office

https://cchdo.ucsd.edu/ 2023-05
temperature, salinity, dissolved
oxygen, and biogeochemical major
elements (P, N, Si).

Argo 2001-2023
Argo Global Data
Assemby Center

https://argo.ucsd.edu/ 2023-05
temperature, salinity, dissolved
oxygen, biogeochemical major
elements (N) and chlorophyll.

Global Ocean Data Analysis
Project version2.2022
(GLODAPV2 2022)

1972-2021
NOAA’s National Centers
for Environmental
Information (NCEI)

https://glodap.info/ 2023-05
temperature, salinity, dissolved
oxygen, biogeochemical major
elements (P, N, Si) and chlorophyll.

Geotraces IDP 2007-2018
GEOTRACES International
Data Assembly Centre
(GDAC)

https://www.geotraces.org 2023-10
temperature, salinity, dissolved
oxygen, biogeochemical major
elements (P, N, Si) and chlorophyll.

In addition, to ensure the availability and accuracy of the analysis data from various sources, we have set unified quality
control standards. Quality control in oceanic research is a multifaceted process that involves careful attention to instrument
calibration, data validation, metadata documentation, and various other checks to ensure the reliability and accuracy of
collected data. ”FLAG” is a marker associated with a specific data point, which helps researchers, analysts, or automated
systems identify potential issues, outliers, or anomalies in the dataset. In our paper, we unify the flag system of multiple
databases and form the following quality control standards as shown in Table 5.
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Table 5: Flag system of multiple databases.

FLAG WOD CCHDO Argo GLODAPV2 2022 IDP 2021
0: good quality 0 2 1 2 1
1: unknown quality N/A 0,1,5,8 N/A N/A 0,5
2: questionable quality 1 3,6,7 2,3 0 2,3,6,7,8,A,B,Q
3: bad quality 2,3,4,5,6,7,8,9 4 4 N/A 4
4: not sampled N/A 9 0,5 9 9

Figure 9: The spatio-temporal distribution of dissolved oxygen observation data collected from multiple databases.
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C.2. Simulation Data

To demonstrate the effectiveness of our sparse observations reconstruction, we acquire three sets of experimental data from
the Coupled Model Inter-comparison Project Phase 6 (CMIP6). The primary goal of CMIP is to provide a framework for
comparing and evaluating climate models to better understand and predict future climate changes. CMIP6 is the latest phase
in a series of such projects and was designed to support the assessment reports of the Intergovernmental Panel on Climate
Change (IPCC). Under CMIP6, participating modeling centers simulate the Earth’s climate system using a standardized set
of protocols and scenarios. CMIP6 plays a crucial role in advancing our understanding of climate processes, improving
model performance, and providing policymakers with more reliable information about potential future climate scenarios.

In our work, we select experiments involve historical simulations of ocean dissolved oxygen distribution, accessed from
https://esgf-node.llnl.gov/search/cmip6/. We conduct performance evaluations for three sets of sim-
ulation data respectively and carry out comparative analyses with our reconstruction results. All three datasets include
four-dimensional spatio-temporal information, longitude, latitude, depth, and time. Besides, they provide simulation results
for dissolved oxygen concentration during historical periods. Particularly, these datasets are characterized by a spatial
resolution of 1◦×1◦, representing annual averages. And the depth level bounds are consistent with our data grids, facilitating
direct comparisons. The main information for these three experiments is provided in Table 6, with detailed descriptions as
follows:

• CESM2 omip1: The Community Earth System Model (CESM) is a climate/Earth system coupled model used to
simulate past, present, and future climates. The ocean component of CESM2 undergoes various physical model and
numerical computation improvements, while utilizing the Marine Biogeochemistry Library (MARBL) to represent
ocean biogeochemistry. The experiment, omip1, is driven by the CORE-II (Coordinated Ocean - ice Reference
Experiments) atmospheric data, and initialized with physical and biogeochemical ocean observations to conduct ocean
dissolved oxygen simulations.

• CESM2 omip2: Experiment omip2 shares the same model configuration as omip1 but is forced by the JRA-55
atmospheric data with higher spatial resolution than CORE-II.

• GFDL-ESM4 historical: The Earth System Model4 (ESM4) is the fourth-generation chemistry-carbon-climate
coupled climate model developed by the Geophysical Fluid Dynamics Laboratory (GFDL). Compared to previous
versions, this model more comprehensively represents chemical cycling and ecosystems. Particularly, the model
incorporates interactions between ocean ecology and biogeochemistry. The historical experiment utilizes rich climate
observational data from 1850 to the present, imposing environmental change conditions consistent with observations to
obtain historical simulations of ocean dissolved oxygen.

Table 6: Detailed Information of Simulation Data from CMIP6.

Model Experiment Institution Access Date

Community Earth System Model (CESM2)
(Danabasoglu et al., 2020)

omip1
National Center for Atmospheric Research
(NCAR)

2023-11

Community Earth System Model (CESM2)
(Danabasoglu et al., 2020)

omip2
National Center for Atmospheric Research
(NCAR)

2023-11

Geophysical Fluid Dynamics Laboratory
- Earth System Model(GFDL-ESM4)
(Dunne et al., 2020)

historical
NOAA’s Geophysical Fluid Dynamics Laboratory
(GFDL)

2023-11

C.3. Variables

In this subsection, we conclude the input variables in our experiments as shown in Table 7. We provide detailed variable
names, units, numerical ranges, and notes. With respect to the spatial coordinates, we convert the longitude and latitude into
spherical coordinates to achieve the continuity of spatial geoemtric relationships and distance measurement.
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Table 7: Description of variables in ocean deoxygenation reconstruction.

Variable Unit Numeric Range Notes

Longitude ° -180-180
Latitude ° -90-90
Depth m 0-5500
Time Year 1920-2023
Pressure dbar 0-5500 Calculated via International Equation of State of Seawater (TEOS-10)
Density kg/m3 1020-1040 Calculated via International Equation of State of Seawater (TEOS-10)
Bathymetry m -8000-5500 Refer to ETOPO Global Relief Model
Dissolved Oxygen µmol/kg 0-523
Temperature °C -3-35
Salinity unitless 0-44
Nitrate µmol/kg 0-500 WOD database does not differentiate between nitrate, nitrate+nitrite.4

Phosphate µmol/kg 0-5 Except for Mediterranean, Black Sea, Baltic Sea
Silicate µmol/kg 0-250 Except for Black Sea
Chlorophyll µg/L 0-50
Chlorophyll A µg/L 0-50

4 The content of nitrite in seawater is much lower than that of nitrate (He et al., 2019; Boyer et al., 2018).

D. Related Work
In this section, we conclude the related works to global ocean oxygenation reconstruction.

Ocean Deoxygenation. Global warming and excessive nutrient inputs caused by human activities have led to significant
ocean deoxygenation in recent years. The loss of oxygen progressively diminishes the ocean’s capacity to sustain high
productivity and diverse biological communities, impacting both its economic and ecological functions (Breitburg et al.,
2018). Detailed investigations into oxygen loss have been conducted in selected regions with abundant observational data
dating back to the 1930s, such as equatorial Pacific, eastern tropical Atlantic (Stramma et al., 2008), and coastal northwest
Atlantic (Claret et al., 2018).

Furthermore, to better understand the oxygen cycling mechanism and assess the overall impact of human activities on the
marine system since the 20th century, a comprehensive global analysis of ocean deoxygenation is essentially important.
The main challenge lies in accurately characterizing the correlations between missing values and sparse observations to
achieve global century-scale dissolved oxygen reconstruction. Existing research has made two types of positive attempts,
but still has some limitations: (1) Many studies utilize numerical simulations based on climate models to probe the drivers
and predict oxygen loss (Gong et al., 2021; Bopp et al., 2017). For example, Coupled Model Intercomparison Project Phase
6 (CMIP6) (Eyring et al., 2016) conduct three experiments (CESM2-omip1, CESM2-omip2 and GFDL-ESM4-historical)
on dissolved oxygen simulation. Nevertheless, most simulations entirely rely on knowledge of the climate system and fail to
leverage observations for correction, thereby showing inferior performance (Frölicher et al., 2016; Bopp et al., 2013). (2)
To further utilize oceanic observations, there only exists a few studies attempt data reconstruction through fast marching
algorithm (Schmidtko et al., 2017) and geostatistical regression (Zhou et al., 2022). Yet, these methods are unable to
characterize complex spatio-temporal correlations and deoxygenation mechanism, thus limiting their imputation resolution
and accuracy. In this paper, to the best of our knowledge, we are the first to propose a deep learning method to reconstruct
global ocean deoxygenation over a century, considering the spatio-temporal hetegeneity in different regions (Section 4.2)
and chemical properties across dissovled oxygen and nutrients (Section 4.3).

Data-Driven Earth System. Existing superior earth system methods are mostly physics-informed numerical models,
which relies on complicated physics process, sensitive initial condition and suitable forcing. Moreover, many such numerical
models are computationally intensive and costly for fine-grained spatio-temporal resolution or long-range simulation. With
the rapid growth of artificial intelligence, AI for Science, or more specifically data-driven Earth system, has become a hot
topic in both Computer Science and Earth Geoscience (Bergen et al., 2019; Reichstein et al., 2019; Ning et al., 2023; Yik
et al., 2023; Sun et al., 2023). Given the growth of scientific data, data-driven deep learning models are attempting to learn
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complex and nonlinear correlations in the Earth system, while reducing computational and application costs. Especially
in the field of numerical weather prediction (NWP), deep learning techniques are particularly suitable for improving its
prediction performance due to their large amount of data, e.g. recent state-of-the-art methods Pangu-Weather (Bi et al., 2023),
GraphCast (Lam et al., 2023). Pangu-Weather (Bi et al., 2023) designs a 3D Earth Specific Transformer architecture and for
the first time outperforms state-of-the-art numerical weather prediction (NWP) methods. Similarly, GraphCast (Lam et al.,
2023) combines Graph Neural Networks to predicts five Earth-surface variables and six atmospheric variables accurately.
On the other hand, Nguyen et al. propose a foundation model for weather and climate called ClimaX, which extends
Transformer architecture for more general weather and climate tasks. Overall, the data-driven Earth system is still in its
early stages, and more scenarios and technologies are worth further exploration.

Data Imputation for Spatio-temporal Data. Recently, spatio-temporal data mining has been widely studied in scenarios
such as urban traffic flow prediction, electricity consumption prediction, taxi demand forecasting (Lu et al., 2020; Pal et al.,
2021; Lu et al., 2022; Li et al., 2023). Data missing is prevailing in spatio-temporal data analysis, due to various reasons
such as uneven placement of data collector, equipment failure, signal interruptions, etc. Especially for ocean observation
data, due to the high cost and difficulty of ocean data collection, ocean observation data is highly sparse. Recently, several
latest survey papers on data imputation have emerged, providing comprehensive analysis from different perspectives such as
systematic experimental comparison (Miao et al., 2023), Internet of Things (IoT) applications (Adhikari et al., 2023), and
spatio-temporal graph neural network methods (Jin et al., 2023). Traditional data imputation methods are mainly based
on statistical methods, such as mean completion, matrix factorization, spline interpolation, etc. With the rise of a series of
deep learning methods, such as time series analysis, graph neural networks, etc., a series of superior methods (Cao et al.,
2018; Yoon et al., 2018; Cini et al., 2022; Wang et al., 2023) have been proposed to overcome the complex and nonlinear
correlation between missing data and observed data.

It should be pointed that classical data imputation works involve manually masking approximately 20% -80% of the data to
create missing values, and then comparing the imputation results with complete data for performance validation. However,
ocean observation data is highly sparse, for example, the global ocean deoxygenation observation data studied in this paper
is only 3.735%, so we cannot adopt the same experimental setup for deoxygenation reconstruction. Meanwhile, the latest
experimental survey on data imputation empirically verify that as the missing rate increases, the completion performance
will show a significant decrease.

”We can observe that, with the increase of missing rate, the imputation accuracy (in terms of ARMSE and AMAE)
descends consistently for each algorithm. When more and more values are missing, the observed information
becomes less, making imputation algorithms less effective.” (Miao et al., 2023)

”The continuous missing gap from 3% to 10% of the data in a variable is termed as a high missing gap. The
continuous missing gap higher than 10% of the data in a variable is a very high missing gap. · · · It is to be noted
that most of the existing research conducts experiments to impute missing data stating that simulated or real data
consists of 50% of the missing data. Such missing data are based on the missing rate or amount, lacking the
information about the missing gap.” (Adhikari et al., 2023)

Therefore, when reconstructing the concentration of DO at time t, we fully utilize the dissolved oxygen observation data
from t − 1 to t − T and from t + 1 to t + T timesteps, as well as auxiliary variables at time t. Then, we evaluate the
reconstruction performance using observations at time t.

E. More Details about OXYGENERATOR

E.1. Feature Extractor

In our OXYGENERATOR feature extractor, we integrate historical ocean dissolved oxygen observations and multivariate
oceanographic data. Figure 10 illustrates the schematic diagram of our feature extractor, where we employ bidirectional
LSTM to capture changes in historical and future ocean dissolved oxygen observations, achieving a ”look back and look
ahead” capability. For multiple physical and biogeochemical variables such as temperature, salinity, nitrate, phosphate,
chlorophyll, etc., we employ a multi-layer perceptron to capture their nonlinear interconnections. Ultimately, we concatenate
the features from the two components to form a unified representation, which is utilized for the subsequent zoning-varying
graph message-passing.
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Figure 10: The detailed architecture of feature extractor.

E.2. Algorithm

In this section, we provide a detailed introduction to the algorithm of our proposed OXYGENERATOR in Algorithm 1.

Algorithm 1 Optimization algorithm of OXYGENERATOR

Input: Observed data X, geographical factor FGeo, environmental factor FEnv

Output: OXYGENERATORM with parameter θ∗, ϕ∗

1: θ, ϕ← random initialization
2: Split training data Btrain into different batches via Narea areas. % For each batch of data, it has a corresponding area ID.
3: Initialize the iteration numbers per area Tarea = [1/Narea, · · · , 1/Narea]
4: while not converged or max. epochs not reached do
5: for a batch of training data Bi from Btrain do
6: Determine the area ID n of Bi and corresponding iteration number Tn = Tarea[n].
7: for iteration number Tn do
8: Calculate loss L(train)

OXYGENERATOR via Equation 4.
9: Update the model parameter θ, ϕ.

10: end for
11: end for
12: Update the iteration numbers per area via average validation loss on different areas, i.e. Tarea =

softmax
[
L(val)

OXYGENERATOR

]
.

13: end while
14: Return the optimized model parameter θ∗, ϕ∗.

F. Experiment Details
F.1. Evaluation Metrics

In our experiments, we employed four metrics for performance evaluation, namely Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Coefficient of Determination (R2).

• Root Mean Square Error (RMSE): RMSE calculates the square root of the average of the squared differences
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between predicted and actual values, which is calculated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(X
(obs)
i − X̂i)2.

• Mean Absolute Percentage Error (MAPE): MAPE calculates the percentage difference between predicted and actual
values, averaging these differences across all data points. The formula for calculating MAPE is as follows:

MAPE =
1

n

n∑
i=1

∣∣∣∣∣X(obs)
i − X̂i

X
(obs)
i

∣∣∣∣∣× 100%.

• Mean Absolute Error (MAE): MAE measures the average absolute differences between predicted and actual values.
The formula for calculating MAE is as follows:

MAE =
1

n

n∑
i=1

|X(obs)
i − X̂i|.

• Coefficient of Determination (R2): R2 is a statistical measure that represents the proportion of the variance in the
dependent variable that is explained by the independent variables in a regression model. It is often used in the context
of linear regression analysis.

R2 = 1−
∑n

i=1(X
(obs)
i − X̂i)

2∑n
i=1(X

(obs)
i − X̄(obs))2

F.2. Analysis on the Reconstruction of Deoxygenation in the Black Sea

When we examine the performance of various methods over time for reconstructing ocean deoxygenation, we observe a
significant discrepancy among three numerical simulation methods during the period from 1923 to 1928. Furthermore, we
identify that the major source of this substantial reconstruction error is the occurrence of highly inaccurate estimates in the
Black Sea region, leading to a severe underestimation of the dissolved oxygen concentration in the Black Sea. Figure 12
illustrates a scatter plot depicting the relationship between observed values and reconstructed values from different methods.
It can be observed that many data points with low dissolved oxygen concentrations in the observational data are estimated as
relatively high dissolved oxygen concentrations in the modeled data.

Figure 11: Map of the Black Sea.5

Further discussions with oceanographers reveal that the Black Sea was
once the largest natural dead zone (low-oxygen area). Oxygenated water
is only found in the upper portion of the sea, where the Black Sea’s waters
mix with the Mediterranean Sea that flows through the shallow Bosporus
strait. The north-west shelf of the Black Sea has suffered well-documented
declines in biodiversity since the 1960s, and by the 1990s was considered a
dead zone with virtually no sign of macroscopic epibenthic life. Therefore,
numerical simulations based on the global climate system are unable to
accurately depict the extreme deoxygenation in the Black Sea. Data-driven
methods, on the other hand, prove effective in estimating extreme conditions
by learning from historical observations and employing zoning-varying
message passing.

F.3. Comparison of Reconstruction Performance with Vertical Depth

Figure 13 depicts the variation of reconstruction performance as the ocean depth changes. We visualize the observed values
of dissolved oxygen, OXYGENERATOR reconstruction values, and GFDL-ESM4 historical numerical simulation results
by partitioning them across the five oceans. The dissolved oxygen concentration in seawater generally exhibits a pattern

5Image source: iStock, Image ID: 802538470, Credit: PeterHermesFurian. Access from: https://www.istockphoto.com/vector/black-
sea-and-sea-of-azov-region-political-map-gm802538470-130198625
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Figure 12: Performance Comparison of deoxygenation reconstruction of different numerical simulation methods and
OXYGENERATOR in the Black Sea.
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Figure 13: We divide the global ocean into five oceans and plot the changes of reconstruction results of our OXYGENERATOR,
GFDL-ESM4 historical, and actual observations at different depths.

of initially decreasing followed by an increase. We observe a high concordance between the reconstruction results of our
method and the observed values, demonstrating consistency with the corresponding patterns. In contrast, the results based on
the GFDL-ESM4 historical numerical simulation method exhibit significant fluctuations across different oceans, indicating a
relatively high variability. This suggests that the modeling of simulation method in vertical depth layers lacks comprehensive
consideration.

F.4. Reconstruction Performance of Different Deep Learning Models

To further compare and validate the effectiveness of our proposed method, we conduct comparisons with a series of deep
learning models as follows:

• MLP (all): We use a multi-layer perceptron model for regression, taking all variables as input, including historical and
future dissolved oxygen observation time sequences, geographical coordinates and environmental factors.

• MLP (time series): Excluding environmental factors, we employ the time series of dissolved oxygen and geographical
coordinates as inputs for the multi-layer perceptron.

• MLP (environment): Excluding DO time series, we employ the environmental factors and geographical coordinates
as inputs for the multi-layer perceptron.

• GCN: Graph Convolutional Network(GCN) (Kipf & Welling, 2017) is a deep learning framework that leverages graph
structure, utilizing graph-based convolutions to capture relations between nodes.
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Table 8: Performance comparison with various machine learning methods.

Benchmark k = 1 k = 2 k = 3 k = 4 Average Performance

MAPE MAPE MAPE MAPE MAPE R2 RMSE MAE

MLP (all) 22.14 24.87 22.98 22.12 23.03±1.29 0.8641±0.0135 30.89±0.95 22.08±1.01

MLP (time series) 31.28 29.69 34.43 24.81 30.05±4.01 0.8127±0.0065 36.52±1.17 26.90±0.73

MLP (environment) 24.40 23.19 25.90 20.85 23.59±2.13 0.8524±0.0127 32.39±0.99 23.69±1.04

GCN 47.04 51.24 42.73 29.08 42.70±9.27 0.6085±0.0282 49.30±2.24 37.04±2.13

GAT 40.69 44.57 43.94 29.80 39.75±6.84 0.6930±0.0333 46.68±1.45 35.32±1.54

GraphSAGE 42.96 45.49 48.91 32.76 42.53±6.95 0.6750±0.0304 48.09±2.61 36.33±2.17

MLP + GCN 31.00 32.74 27.62 31.73 30.63±2.15 0.7772±0.0301 39.76±2.72 29.31±2.84

MLP + GAT 28.39 27.64 26.49 27.80 27.58±0.79 0.8029±0.0054 37.47±0.90 27.74±0.69

MLP + GraphSAGE 25.74 28.43 26.39 20.51 25.27±3.37 0.8382±0.0082 33.95±1.54 24.92±1.47

BiLSTM 22.88 21.27 23.58 21.19 22.37±1.19 0.8724±0.0017 30.14±0.58 21.58±0.53

Transformer 24.07 25.83 27.38 19.09 24.25±3.61 0.8607±0.0091 31.49±1.66 22.59±1.20

OXYGENERATOR (Ours) 14.72 13.48 15.72 13.20 14.28±1.16 0.9026±0.0072 26.31±1.23 17.57±1.10

• GAT: Graph Attention Network (GAT) (Velickovic et al., 2018) is a type of neural network designed for processing
graph-structured data. GAT leverages attention mechanisms to dynamically weight the importance of neighboring
nodes, allowing it to effectively capture complex relationships and dependencies within graph-structured data.

• GraphSAGE: GraphSAGE (Hamilton et al., 2017) is a graph neural network framework designed for scalable and
inductive learning on large-scale graph-structured data, where it leverages neighborhood sampling and aggregation
strategies to generate informative node embeddings.

• MLP + GCN: We use a combination of MLP and GCN for regression, using MLP as the feature extractor, taking all
variables as input, including dissolved oxygen observation time sequences, geographical coordinates and environmental
factors. Then the extracted features are passed through GCN for message passing and aggregation.

• MLP + GAT: The experimental setting is similar to LSTM + GCN, but replacing the graph neural network with Graph
Attention Network.

• MLP + GraphSAGE: The experimental setting is similar to LSTM + GCN, but replacing the graph neural network
with GraphSAGE.

• BiLSTM: Bidirectional Long Short-Term Memory Network (BiLSTM) is a type of recurrent neural network (RNN)
architecture designed to effectively capture and remember long-range dependencies in sequential data for time series
analysis. Therefore, we use Bidirectional Long Short-Term Memory Network as the feature extractor of dissolved
oxygen time series, and the other factors are still feature extracted using multi-layer perceptron model, then concatenate
the two outputs for regression.

• Transformer: Transformer is an attention-based method that efficiently capture contextual information from input
sequences, leading to superior performance in tasks such as machine translation and language understanding. The
experimental setting is similar to BiLSTM, except that the feature extractor of time series is changed to Transformer.

Table 8 records the performance of different methods in a 4-fold cross-testing and the average performance across all folds.
The results show that OXYGENERATOR outperforms all baseline deep learning models, with a performance improvement of
about 36.16% in MAPE metric. Meanwhile, the experiments show that MLP can achieve similar performance to CMIP6,
and the addition of time series and environmental variables will further improve the performance. Graph neural network
such as GAT and GraphSAGE performs poorly, which due to the incapability of classical GNN models to deal with the
spatio-temporal heterogeneity. In addition, in terms of selecting the feature extractor for the time series, the best performance
was achieved using BiLSTM, which outperformed MLP and Transformer in terms of feature capture for the time series. The
reason for the poor performance of Transformer is that Attention mechanism struggles to deal a large number of missing
values in time series.
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F.5. Comparison of OXYGENERATOR’s Adaptive Zoning with World Ocean Database 2018.

Figure 14: Geographic boundaries of ocean basin definitions
in WOD18.

Table 9: Detailed list of zoning in WOD18

id area id area

1. Climatology Range 16. Equatorial Indian
2. North Atlantic 17. Coastal Eq Indian
3. Coastal N Atlantic 18. South Indian
4. Equatorial Atlant 19. Coastal S Indian
5. Coastal Eq Atlant 20. Antarctic
6. South Atlantic 21. Arctic
7. Coastal S Atlantic 22. Mediterranean
8. North Pacific 23. Black Sea
9. Coastal N Pac 24. Baltic Sea
10. Equatorial Pac 25. Persian Gulf
11. Coastal Eq Pac 26. Red Sea
12. South Pacific 27. Sulu Sea
13. Coastal S Pac
14. North Indian
15. Coastal N Indian

Introduction to the WOD18 zoning strategy. In oceanographic studies, many studies divide the global ocean into different
zones (Fay & McKinley, 2014; Reygondeau et al., 2020; Sonnewald et al., 2020) for deeper study of complex ocean
processes. Among them, the World Ocean Database 2018 (WOD18) (Boyer et al., 2018) zoning is the most popular and
broadly used. The WOD18 divides the world’s oceans into 27 different zones based on hand-crafted rules, as shown in
Figure 14 and Table 9. The zoning strategy for WOD mainly relies on ocean basins. Ocean basins are the basic geographic
units of the global oceans, which indicate large bodies of water consisting of oceanic ridges, continental slopes and ocean
basins. Ocean basin zoning aims to divide the global ocean into major regions according to different geographic, geological,
and oceanographic features.

Effect of Adpative Zoning via Spatio-Temporal HyperNetwork. We compare the zoning result of hypernetwork in Figure
6 with WOD18. We find that the result both maintains consistency with WOD18 and reflects a finer-grained ocean zoning.

• The adaptive zoning result shows consistent with WOD18 in many regions. OXYGENERATOR’s zoning of
the oceans is closely related to latitudinal distribution, which is similar to the WOD18 and consistent with the
spatial and temporal distribution characteristic of dissolved oxygen. Meanwhile, even without the hand-craft rules,
OXYGENERATOR achieves a clear partition among different oceans. Especially below 450 meters depth, our zoning
result is highly consistent with WOD18. More specifically, our method divides the Indian Ocean into two zones colored
in light blue and blue, similarly corresponding to Equatorial Indian and South Indian in WOD18. The Atlantic Ocean is
divided into three zones colored in light green, pink and orange, corresponding to North Altantic, Equratorial Atlantic
and South Altantic in the WOD18.

• The adaptive zoning result shows finer-grained ocean zoning. Our method depicts a finer grained zoning that
varies at different depths. Rather than depth-independent zoning strategy in WOD, OXYGENERATOR is capable of
performing adaptive zoning over different depth levels. Specifically, surface seawater above 100m are more affected by
human activities and the DO distribution pattern becomes more complex. Therefore, OXYGENERATOR presents a
more intricate zoning pattern in Figure 6(a-b), which is especially obvious in the Pacific and Atlantic Oceans. The deep
seawater is more affected by ocean circulation in different geographic locations, hereby our OXYGENERATOR shows
the adaptive zoning associated with oceanic boundaries.

G. Ocean Deoxygenation Reconstruction via OXYGENERATOR

In this section, we show the reconstruction results carried out by our proposed OXYGENERATOR. Figure 15 illustrates
the minimum oxygen concentration every five years from 1920 to 2023. The yellow contour lines depict the oxygen
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minimization zones (OMZs) where the dissolved oxygen concentration is less than 30 µmol/kg, which we can further
denoted as OMZ30. We clearly observe a continuous increase in the proportion of OMZ30 with the passage of years,
indicating a growing impact of oceanic deoxygenation over time.

(a) 1920 - 1924 (b) 1925 - 1929 (c) 1930 - 1934 (d) 1935 - 1939

(e) 1940 - 1944 (f) 1945 - 1949 (g) 1950 - 1954 (h) 1955 - 1959

(i) 1960 - 1964 (j) 1965 - 1969 (k) 1970 - 1974 (l) 1975 - 1979

(m) 1980 - 1984 (n) 1985 - 1989 (o) 1990 - 1994 (p) 1995 - 1999

(q) 2000 - 2004 (r) 2005 - 2009 (s) 2010 - 2014 (t) 2015 - 2019

(u) 2020 - 2023

(OMZ30  ) = 2.89 % (OMZ  30  ) = 4.24 % (OMZ30  ) = 3.74 % (OMZ30  ) = 3.00 %

(OMZ30  ) = 2.82 % (OMZ  30  ) = 2.27 % (OMZ30  ) = 3.47 % (OMZ30  ) = 5.32 %

(OMZ30  ) = 5.93 % (OMZ  30  ) = 5.60 % (OMZ30  ) = 5.30 % (OMZ30  ) = 5.14 %

(OMZ30  ) = 4.87 % (OMZ  30  ) = 4.78 % (OMZ30  ) = 4.88 % (OMZ30  ) = 4.47 %

(OMZ30  ) = 5.87 % (OMZ  30) = 10.23 % (OMZ30) = 10.43 % (OMZ30  ) = 10.76 %

(OMZ30  ) = 9.60 %
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Figure 15: Global Minimum DO reconstructed via OXYGENERATOR from 1920 to 2023.
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