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Abstract
Off-policy reinforcement learning (RL) has
achieved notable success in tackling many com-
plex real-world tasks, by leveraging previously
collected data for policy learning. However,
most existing off-policy RL algorithms fail to
maximally exploit the information in the replay
buffer, limiting sample efficiency and policy per-
formance. In this work, we discover that concur-
rently training an offline RL policy based on the
shared online replay buffer can sometimes outper-
form the original online learning policy, though
the occurrence of such performance gains remains
uncertain. This motivates a new possibility of
harnessing the emergent outperforming offline
optimal policy to improve online policy learn-
ing. Based on this insight, we present Offline-
Boosted Actor-Critic (OBAC), a model-free on-
line RL framework that elegantly identifies the
outperforming offline policy through value com-
parison, and uses it as an adaptive constraint to
guarantee stronger policy learning performance.
Our experiments demonstrate that OBAC outper-
forms other popular model-free RL baselines and
rivals advanced model-based RL methods in terms
of sample efficiency and asymptotic performance
across 53 tasks spanning 6 task suites1.

1. Introduction
Online model-free deep reinforcement learning (RL) meth-
ods have achieved success in many challenging sequential
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Figure 1. Overview. (Top): we illustrate the framework of OBAC,
where the concurrent offline optimal policy can boost the online
learning policy with an adaptive constraint mechanism. (Bottom):
comparison of normalized score. Our OBAC can be comparable
with advanced model-based RL method TD-MPCs, and outperform
several popular model-free RL methods BAC, SAC and TD3.

decision-making tasks (Mnih et al., 2015; Van Hasselt et al.,
2016; Wang et al., 2022), including gaming AI (Perolat
et al., 2022), chip design (Mirhoseini et al., 2021), and auto-
matic driving (Kiran et al., 2021). Many of these advances
are attributed to off-policy RL methods (Kallus & Uehara,
2020), that enable agents to leverage collected data from
historical policies to train the current policy. However, the
reliance on millions of environment interaction steps still
hampers the real-world deployment of RL (Haarnoja et al.,
2018a). We boil the algorithmic inefficiency down to their
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insufficient data utilization: when performing policy evalu-
ation for value function learning and policy extraction via
value maximization, most algorithms neglect and thus fail
to leverage the inherent patterns and knowledge from the
heterogeneous data in the replay buffer.

One cure for the inefficient data utilization of RL meth-
ods is model-based RL (Moerland et al., 2023): learning
an environmental dynamics model as the reservoir of do-
main knowledge, by generating new pseudo-samples for
Dyna-style (Ji et al., 2022) or planning-style (Hansen et al.,
2024) policy learning. However, these approaches can be
computationally complex and sometimes brittle due to the
use of imperfect explicit model learning and long propaga-
tion chains. Alternatively, offline RL (Levine et al., 2020;
Kumar et al., 2020; Kostrikov et al., 2021) provides a new
possibility by allowing the learning of an optimal policy
and the corresponding value function from fixed datasets
without interacting with the environment. From an online
RL perspective, leveraging such an offline learned policy
and its offline value offers two advantages: (i) the offline
learned policy, a blend of optimal historical behaviors, can
serve as an explicit performance baseline for current on-
line policy optimization; and (ii) the pessimistic training
scheme (Kostrikov et al., 2021; Xu et al., 2022b) enables
in-distribution value estimation and offline policy learning,
preventing bias propagation issues seen in model-based RL.

Several prior studies have explored the use of offline RL to
enhance online off-policy RL training, generally falling into
two directions, each exploiting key advantages of offline RL:
(i) incorporating an additional offline dataset for sampling
augmentation (Song et al., 2022; Wagenmaker & Pacchiano,
2023; Ball et al., 2023), however, this may be expensive and
easily impacted by data quality; and (ii) without the offline
dataset, learning an optimal offline value function from
collected data (e.g., replay buffer) to adjust the online value
function accordingly (e.g., via linear interpolation) (Zhang
et al., 2022a; Ji et al., 2023; Xu et al., 2024). However,
this approach may result in inaccurate policy evaluation,
particularly when the offline policy in the replay buffer is of
low quality, thus naı̈vely mixing the offline value sometimes
can be ineffective or even harmful. Although we do observe
in this work that the optimal offline policy learned from
the replay buffer can often outperform the online policy,
the occurrence of such superiority varies across tasks as
well as different training stages. Yet, despite numerous
previous attempts, a unified understanding and framework
for leveraging offline RL for effective online off-policy RL
remains lacking. This raises the following questions: When
and how can we effectively leverage offline RL to ensure
improvement in online off-policy RL?

In this work, we introduce Offline-Boosted Actor-Critic
(OBAC) to address the above questions, providing a new

solution to leverage offline RL for adaptively blending opti-
mal historical behaviors in online off-policy RL, as shown
in Figure 1. To tackle the “when” issue, we compare the
evaluated state-values of the online learning policy and the
offline optimal policy to identify the superior offline op-
timal policy. To address the “how” challenge, we derive
an adaptive mechanism that utilizes the superior offline op-
timal policy as a constraint to guide policy optimization.
In short, OBAC can accumulate small performance gains
when the offline optimal policy is better than the online
learning policy, forming a positive cycle that a better of-
fline policy helps online policy explore better data in return
enhancing both policies in the next update, finally leading
to significant overall performance improvement. Notably,
to circumvent the computational complexity w.r.t explicitly
learning the offline optimal policy—a similar issue seen
in model-based RL when learning a dynamics model—we
make a key technical contribution by introducing implicit
offline policy learning in both evaluation and improvement
steps, resulting in a cost-effective practical algorithm.

We evaluate our method across 53 diverse continuous
control tasks spanning 6 domains: Mujoco (Todorov
et al., 2012), DMControl (Tassa et al., 2018), Meta-
World (Yu et al., 2020), Adroit (Kumar & Todorov, 2015),
Myosuite (Caggiano et al., 2022), and Maniskill2 (Gu
et al., 2022), comparing it with BAC (Ji et al., 2023), TD-
MPC2 (Hansen et al., 2024), SAC (Haarnoja et al., 2018a),
and TD3 (Fujimoto et al., 2018). Our results, summarized
in Figure 1, showcase OBAC’s superiority. It outperforms
BAC, the first documented effective model-free algorithm on
challenging high-dimensional dog locomotion series tasks,
by adjusting Q values with offline values. When compared
with TD-MPC2, a state-of-the-art model-based planning
method known for efficiency in various tasks, OBAC demon-
strates comparable performance with only 50% of the pa-
rameters and 20% less training time2.

2. Preliminaries
We consider the conventional Markov Decision Process
(MDP) (Bellman, 1957) defined by a 6-tuple M =
⟨S,A,P, r, γ, d0⟩, where S ∈ Rn and A ∈ Rm repre-
sent the continuous state and action spaces, P(s′|s, a) :
S × A → ∆(S) denotes a Markovian transition (dynam-
ics) distribution, r(s, a) : S × A → ∆(R) is a stochastic
reward function, γ ∈ [0, 1) gives the discounted factor for
future rewards, and d0 is the initial state distribution. The
RL agent’s objective is to find a policy π(a|s) : S → ∆(A)
that maximizes the discounted cumulative reward from the
environment, Jπ = Ed0,π,P [

∑∞
t=0 γ

tr(st, at)].

2We have released our code here: https://github.com/
Roythuly/OBAC
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We focus on the off-policy RL setting, where the agent
interacts with the environment, collects new data into a
replay buffer D ← D ∪ {(s, a, s′, r)}, and updates the
learning policy using the stored data. At the k-th iteration
step, the online learning policy is denoted as πk, with its
corresponding Q value function

Qπk(s, a) = Eπk,P

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
(1)

and the value function V πk(s) = Ea∼πk [Qπk(s, a)].

Considering the replay buffer as a given dataset allows us to
derive a concurrent offline optimal policy µ∗

k(a|s), given by

µ∗
k ≜ argmaxEa∼D [Qµk(s, a)] . (2)

Unlike previous off-policy RL methods, we simultaneously
train an online learning policy πk and an offline optimal
policy µ∗

k by sharing a communal replay buffer D. A key
property of µ∗

k is its strong relevance to dataset distribu-
tion (Fujimoto et al., 2019; Kumar et al., 2020), which
means, action derived from it are restricted in support of
actions in the replay buffer, a ∼ µ∗

k ⇒ a ∈ D, while the
online learning policy can have unrestricted action choices,
a ∼ πk ⇒ a ∈ A. Thus, µ∗

k characterizes the historical op-
timal behavior from the mixture of collected data, serving as
an explicit and reliable performance baseline for πk. Despite
its conceptual simplicity, little previous work has introduced
such a baseline for online learning optimization, resulting
in wasted knowledge exploitation and sample inefficiency.

3. Offline-Boosted Off-Policy RL
In this section, we introduce Offline-Boosted Actor-Critic
(OBAC), a framework aimed at improving the performance
of online learning policies through the incorporation of an
offline optimal policy. To gain insights into the behavior
of such an offline optimal policy during online concurrent
training, we conduct a set of thorough experiments, reveal-
ing its potential for outperforming the online learning policy.
However, the timing of this superiority proves to be task-
dependent and varies across different training stages. Taking
this property into consideration, we detail how we adaptively
integrate the offline optimal policy into alternating policy
evaluation and optimization steps in off-policy RL paradigm.
Following it up, we present a practical model-free RL algo-
rithm based on the general actor-critic framework, achieving
low computational cost and high sample efficiency.

3.1. A Motivating Example

In general, offline RL adheres to a principle of pessimism
in policy training, aiming to prevent extrapolation errors in
Q-value estimation by avoiding Out-Of-Distribution (OOD)
actions (Fujimoto et al., 2019; Xie et al., 2021a; Shi et al.,
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Figure 2. Motivating example. (Top): Q-value estimation, (Bot-
tom): policy performance. We compare three agents including pure
off-policy, concurrent offline and pure offline in online settings.
The results demonstrate that the concurrent offline optimal policy
can outperform the learning policy by sharing the replay buffer.

2022). However, these concerns typically stem from training
policies on fixed datasets. In contrast, during the online RL
training process, as new samples are continuously collected
through interaction with the environment, both the quantity
and quality of data in the replay buffer grow dynamically.
These characteristics break the limitations inherent in offline
RL, prompting us to explore better performance by inte-
grating historical optimal behavior as more data becomes
available. To explore these properties, we conduct investiga-
tions across three OpenAI Gym environments (Hopper-v3,
Walker2d-v3, Ant-v3), employing three different agents:

Pure off-policy agent. We train a Soft Actor-Critic (SAC)
agent (Haarnoja et al., 2018a) through 1 million steps of
environmental interaction. At each time step, new data is
accumulated in a dedicated replay buffer DSAC , updating
the online learning policy.

Concurrent offline agent. Simultaneously with train-
ing the SAC agent, we employ the Implicit Q-Learning
(IQL) (Kostrikov et al., 2021), an offline RL algorithm,
to learn an offline optimal policy concurrently within the
dynamically changing SAC buffer DSAC , referred to IQL
Concurrent. Notably, the concurrent IQL agent does not
interact with the environment during whole training process.

Online-training offline agent. In an online setting, we
use IQL. This involves the IQL agent interacting with the
environment, collecting new experiences stored in a replay
bufferDIQL, and updating its policy, denoted as IQL Online.
The training procedure aligns with that of the SAC agent
but employs a different algorithm.

We present the performance of each agent, alongside their
Q-value estimations in Figure 2. In each task, when com-
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paring the IQL concurrent agent with the SAC agent, we
observe the potential superiority of the offline optimal policy
over the online one, even though both share the same replay
buffer explored by SAC. Considering the different actor
training methods between IQL (by forward KL-divergence)
and SAC (by reverse KL-divergence) may cause perfor-
mance loss (Chan et al., 2022), the Q-value comparison
serves as a clearer indicator of the performance gap. These
findings suggest that, contrary to its conservative reputation,
offline RL can identify a potentially superior policy with a
growing dataset when compared with off-policy RL. How-
ever, without the online policy buffer, even though the IQL
Online agent can collect new samples, it exhibits notable
conservatism, leading to premature convergence in both
Q-value estimation and overall performance.

Despite these interesting discoveries, the timing of the of-
fline optimal policy’s superiority is uncertain, varying across
tasks. And even within a single task, it depends on the
quality of online learning policy interactions. While some
works (Ji et al., 2023; Zhang et al., 2022a) have utilized
the offline optimal Q-value to regularize the Q-value of the
online learning policy, the challenge arises when the offline
optimal policy is inferior, potentially leading to harm to the
online policy. Thus, the uncertainty in the timing of supe-
riority makes it non-trivial to leverage the offline optimal
policy effectively.

3.2. Derivation of Offline-Boosted Policy Iteration

To better determine the suitable timing for introducing µ∗
k,

we first individually evaluate both πk and µ∗
k. Let V πk(s)

denote the state value function and Qπk(s, a) represent the
state-action value function of the online learning policy πk.
Similarly, let V µ

∗
k(s) and Qµ

∗
k(s, a) denote the value func-

tion and state-action value function for the offline optimal
policy µ∗

k. We exploit the Bellman Expectation Operator
given by:

T χQχ(s, a) = r(s, a) + γEs′,a′∼χ [Qχ(s′, a′)] , (3)

V χ(s) = Ea∼χ [Qχ(s, a)] , χ = πk or µ∗
k, (4)

within the replay buffer for the evaluation of πk and µ∗
k.

Since T χ is a γ-contraction mapping within a single policy
evaluation step w.r.t either πk or µ∗

k (Denardo, 1967; Belle-
mare et al., 2017), the (state-action) value function Qχ(s, a)
and V χ(s) can be obtained by repeatedly applying T χ.

Next, when performing policy improvement, we utilize the
maximization of Qπk(s, a) as the objective function, as it
provides an unbiased evaluation of the current learning pol-
icy. In contrast with previous off-policy learning methods,
we introduce the offline optimal policy as a guidance policy
to assist in generating a new online learning policy. Specif-
ically, using the value function V χ(s) as the performance
indicator, which measures the performance of policies at

each state, we design the following adaptive mechanism for
any state s ∈ D:

• When V πk(s) ≥ V µ
∗
k(s), i.e., Ea∼πk [Qπk(s, a)] ≥

Ea∼µ∗
k
[Qµ

∗
k(s, a)], according to the definition of µ∗

k (2),
it implies that even using the optimal actions in the re-
play buffer, the online learning policy πk would still
perform better than them. Thus, we can directly solve
the objective function without the introduction of µ∗

k,
avoiding potential negative effects.

• When V πk(s) ≤ V µ∗
k(s), we can identify better actions

in the replay buffer compared to the current learning pol-
icy. In this case, we consider adding a policy constraint
to the objective function. This ensures that the updated
policy not only optimizes the objective function, but
also integrates the distribution of better actions from the
offline optimal policy as guidance, thus leveraging the
historical optimal behavior when it surpasses the online
learning policy.

Following this insight, we reconstruct the optimization prob-
lem in the policy improvement step as:

πk+1 = argmax
π

Ea∼π[Qπk(s, a)] (5)

s.t.
∫
a∈A
f

(
π(a|s)
µ∗
k(a|s)

)
1

(
V µ

∗
k(s)− V πk(s)

)
µ∗
k(a|s)da ≤ ϵ,

(6)∫
a∈A

π(a|s)da = 1, ∀s ∈ D, (7)

where f(·) is a regularization function, and 1(·) is an in-
dicator function with x ≥ 0,1(x) = 1;x < 0,1(x) = 0.
Constraint (6) allows us to adaptively blend the offline op-
timal policy into online policy learning. By leveraging the
Lagrangian multiplier and KKT condition (Peters et al.,
2010; Peng et al., 2019), we derive the closed-form solution
for the constrained optimization problem, as outlined in the
following proposition.

Proposition 3.1. For the constrained optimization problem
defined by (5)∼(7), if V µ

∗
k(s) ≥ V πk(s), the closed-form

solution is

πk+1 =
1

Z(s)
µ∗
k(a|s) (f ′)

−1
(
Qπk(s, a)

)
, (8)

where Z(s) is a partition function to normalise the action
distribution. Or, when V µ

∗
k(s) < V πk(s), πk+1 is an ordi-

nary solution to maximize Qπk(s, a).

The proof is provided in Appendix A. Then, based on this
closed-form solution, we show that the newly generated
learning policy πk+1 would have a higher value than the old
learning policy πk w.r.t. the state-action distribution of the
replay buffer in the following proposition.

4



Offline-Boosted Actor-Critic

Proposition 3.2. Let πk be the older learning policy and the
newer one πk+1 be the solution of (5)∼(7). Then we achieve
Qπk+1(s, a) ≥ Qπk(s, a) for all (s, a) ∈ D, with the offline
optimal policy µ∗

k serving as a performance baseline policy.

With the convergence of policy evaluations on πk and µ∗
k, as

well as the results of policy improvement, we can alternate
both steps and the online learning policy would provably
converge to the optimal policy.
Proposition 3.3. Assume |A| <∞, repeating the alterna-
tion of the policy evaluation (3)∼(4) and policy improve-
ment (5)∼(7) can make any online learning policy πk ∈ Π
converge to the optimal policies π∗, s.t. Qπ

∗
(st, at) ≥

Qπk(st, at),∀(st, at) ∈ S ×A.

3.3. Offline-Boosted Actor Critic

Inspired by the previous analyses, we introduce our method
for online off-policy RL, Offline-Boosted Actor-Critic
(OBAC), summarized in Algorithm 1. To extend OBAC
to large continuous control domains, we derive a practical
implementation with high-quality function approximators
following previous works (Haarnoja et al., 2018a; Lee et al.,
2020). Besides, we highlight that OBAC introduces implicit
regularization of the offline optimal policy for online policy
training, without explicitly learning it, thereby mitigating
computational complexity at each iteration.

Specifically, we consider parameterized state value func-
tions V χψ (s) and state-action value functions Qχϕ(s, a) with
parameters ψ and ϕ, where χ represents both the online
learning policy π and the offline optimal policy µ∗, along-
side a tractable online learning policy πθ(a|s) defined as a
Gaussian policy with parameters θ. We utilize the updated
online learning policy to interact with the environment, col-
lecting new samples {(s, a, s′, r)} into the buffer D.

Policy Evaluation. In this step, we first derive V π(s) and
Qπϕ(s, a) through the Bellman Expectation Operator (3), by
minimizing the squared residual error

argmin
Qπϕ

E(s,a,r,s′)∼D

[
1

2

(
Qπϕ(s, a)−T πQπϕ(s, a)

)2]
(9)

and then we compute the value function V π(s) forward
without gradient step,

V π(s) = Ea∼π[Qπϕ(s, a)]. (10)

Recalling the definition (2) of the offline optimal policy
µ∗
k = argmaxa∼D Q

µk(s, a). To eliminate the require-
ment of µ∗

k in the evaluation step, we transfer the Bellman
Expectation Operator T µ∗

k as

T µ
∗
kQ

µ∗
k

ϕ (s, a) = r(s, a) + γEs′,a′∼µ∗
k

[
Q
µ∗
k

ϕ (s′, a′)
]

= r(s, a) + γEs′
[
max
a′∼D

Q
µ∗
k

ϕ (s′, a′)
]
. (11)

Algorithm 1 Offline-Boosted Actor-Critic (OBAC)

1: Input: Critic Qπϕ, critic Qµ
∗

ϕ , value V µ
∗

ψ , actor πθ, re-
play buffer D.

2: repeat
3: for each environment step do
4: a ∼ πϕ(a|s) and r, s′ ∼ P(s′|s, a)
5: D ← D ∪ {(s, a, s′, r)}
6: end for
7: for each gradient step do
8: For π: Update Qπϕ by (9), compute V π by (10)

9: For µ∗: Update Qµ
∗

ϕ by (13), update V µ
∗

ψ by (12)
10: Update πθ by (15)
11: end for
12: until the policy performs well in the environment

Within Equation (11), prior works on offline RL have effec-
tively addressed maxa′∼D without explicitly requiring µ∗

k,
such as expectile regression used in IQL (Kostrikov et al.,
2021). For simplicity, we use expectile regression to achieve
Qµ

∗
(s, a) and V µ

∗
k(s), with two specific steps:

argmin
V µ

∗
ψ

E(s,a)∼D

[
Lτ2

(
Qµ

∗

ϕ (s, a)− V µ
∗

ψ (s)
)]

(12)

where Lτ2(x) = |τ−1(x < 0)|x2 is the expectile regression
function, and τ is an expectile factor. And,

argmin
Qµ

∗
ϕ

E(s,a,s′,r)∼D

[
1

2

(
r + γV µ

∗

ψ (s′)−Qµ
∗

ϕ (s, a)
)2

]
.

(13)

Based on Theorem 3 in Kostrikov et al. (2021), when
τ → 1, the term maxa′∼D Q

µ∗
k

ϕ (s′, a′) can be approached

to derive Qµ
∗
k

ϕ (s, a). Thus, we complete the policy evalua-
tion for both πk and µ∗

k, where the former is based on (9)
and (10), and the latter by (12) and (13). In our implementa-
tion, we employ the Clipped Double Q-technique (Fujimoto
et al., 2018) for stability and mitigating overestimation.

Policy Improvement. Directly using the closed-form so-
lution (8) for policy updates is intractable with the unknown
Z(s) and µ∗

k. In our implementation, we opt to restrict
the solution within a tractable set of Gaussian policies and
project the improved policy into these desired policies by
Kullback-Leibler divergence DKL(·). Then, if we choose
the regularization function f(x) = x log x, the objective of
the updated policy is

argmin
π


DKL

(
π
∥∥∥exp(Qπk)

Z

)
, V πk ≥ V µ

∗
k ,

DKL

(
π
∥∥∥µ∗

k exp(Q
πk)

Z

)
, V πk ≤ V µ

∗
k .

(14)
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Figure 3. Main results. We provide performance comparisons for 12 of the 53 tasks, two for each task suite. Please refer to Appendix C.2
for the comprehensive results. The solid lines are the average return/success rate, while the shades indicate 95% confidence intervals. All
algorithms are evaluated with 5 random seeds.

Given the data {(s, a, s′, r)} randomly sampled from D, if
V µ

∗
k(s) < V πk(s), we disable the constraint and update

the policy as prior off-policy RL methods. In contrast, if
V µ

∗
k(s) ≥ V πk(s), we consider the distribution of sampled

data can achieve better performance than the learning policy,
thus it can approximate the offline optimal policy (Zhang
et al., 2022a). Thus, with the Gaussian policy set, we sum-
marise both cases for policy updating:

arg min
πθ∈Π

Es∼D

{
Ea∼πθ [log πθ(a|s)−Qπk(s, a)]

− λEa∼D[log πθ(a|s)]1
(
V µ

∗
k(s)− V πk(s)

)}
. (15)

where λ is a behavior clone weighted factor, similar to
previous offline RL works (Kostrikov et al., 2021).

4. Experiment
We evaluate OBAC across 53 continuous control tasks span-
ning 6 domains: Mujoco (Todorov et al., 2012), DMCon-
trol (Tassa et al., 2018), Meta-World (Yu et al., 2020),
Adroit (Kumar & Todorov, 2015), Myosuite (Caggiano et al.,
2022), and Maniskill2 (Gu et al., 2022). These tasks cover

a wide range of challenges, including high-dimensional
states and actions (up to S ∈ R375 and A ∈ R39), sparse
rewards, multi-object and delicate manipulation, muscu-
loskeletal control, and complex locomotion. Please refer to
Appendix B for the implementation details and environment
settings in our experiments.

With these experimental evaluations, we seek to investigate
the following questions: 1) Does the introduction of the
concurrent offline optimal policy significantly improve per-
formance? 2) How does OBAC compare to the popular
model-free and model-based RL methods for sample effi-
ciency and eventual performance? 3) How does the adaptive
mechanism work in OBAC?

Baselines. Our baselines contain: 1) SAC (Haarnoja et al.,
2018a) and TD3 (Fujimoto et al., 2018), two data-efficient
off-policy model-free RL methods, where the former uti-
lizes stochastic policy while the latter uses deterministic
policy; 2) BAC (Ji et al., 2023), an off-policy model-free RL
method to employ the state-action value of offline optimal
policy to mitigate the underestimation of the Q-value of on-
line learning policy; 3) TD-MPC2 (Hansen et al., 2024), a
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Figure 4. Parameters and Wall time. (left): parameter quantity of
each algorithm, and (right): training wall time per 1 million steps
of environmental interaction. With these comparisons, OBAC can
achieve similar simplicity with other model-free RL methods, and
require only 50% parameters and 20% training time compared to
model-based RL methods.

high-efficient model-based RL method that combines model
predictive control and TD-learning.

4.1. Experimental Results

Performance comparison. The learning curves presented
in Figure 3 demonstrate the performance of OBAC along-
side various baselines across diverse task suites. Over-
all, OBAC, as a model-free RL method, obviously outper-
forms other model-free RL baselines and exhibits compa-
rable capabilities to model-based RL methods in terms of
exploration efficiency and asymptotic performance. No-
tably, with identical hyperparameters, OBAC excels in high-
dimensional locomotion tasks (DogRun), multi-body con-
tact manipulation (Baoding4th), and intricate muscle control
tasks (myoHand). A noteworthy achievement is the success-
ful application of OBAC to solve the Baoding-4th task, a
challenging scenario involving a shadow hand managing
the rotation cycle of two Baoding balls, without any prior
demonstrations. Additionally, we observe that TD-MPC2,
even with different prediction horizons (ranging from 3
to 6), does not perform well on the Mujoco suite, possi-
bly influenced by variations of the done signal settings of
the environments (please refer to Appendix C.2 for more
discussion). We provide a comprehensive presentation of ex-
perimental results in Appendix C.2, with accompanying vi-
sualizations provided in https://roythuly.github.
io/OBAC/.

Computational efficiency. To showcase OBAC’s effi-
ciency, we provide a detailed comparison with our baselines
in Figure 4, considering parameter quantity and training wall
time on a single RTX3090 GPU. In contrast to model-based
RL methods TD-MPC2, OBAC achieves a 50% reduction
in parameter quantity, featuring a simpler architecture with

Figure 5. Ablation on adaptive constraints. (Top): Policy perfor-
mance, and (Bottom): Q value comparison. We adopt two tasks
from Mujoco suite and DMControl suite to demonstrate the ne-
cessity of adaptive constraints in OBAC. Mean of 5 runs; shaded
areas are 95% confidence intervals.

just two critics, one value and one actor, each component
employing a 3-layer MLP with a hidden-layer size of 512.
In comparison, TD-MPC2 requires additional components
such as a dynamics model, reward model, and 5 ensemble
critics. Furthermore, OBAC exhibits notable improvements
in training efficiency, requiring only 20% of the training
time per 1 million steps of environmental interaction while
maintaining comparable sample efficiency and convergent
performance. When compared with other model-free RL
methods, OBAC demonstrates a similar level of simplicity
and cost-effectiveness, highlighting the effectiveness of our
algorithmic implementation.

4.2. Ablation Studies

We conduct several investigations to ablate the effectiveness
of OBAC’s design in this section.

Necessity of adaptive constraints. One of the key designs
of OBAC is the adaptive policy constraint, which dynam-
ically adjusts based on value comparisons. To evaluate
its necessity, we conducted experiments comparing OBAC
(Adaptive) with a fixed constraint OBAC (Fixed), where pol-
icy updates are consistently constrained by the empirical
distribution of the replay buffer, as well as OBAC (Without)
constraint. The top of Figure 5 illustrates that the fixed con-
straint leads to performance degradation due to excessive
conservatism, underscoring the effectiveness of our adaptive
mechanism for performance improvement. Additionally,
the comparison of Q values between the offline optimal
policy and the learning policy is visualized at the bottom
of Figure 5. The blue region indicates Qµ

∗
k ≤ Qπk while

the red region signifies Qµ
∗
k ≥ Qπk . The combined results

indicate that when Qµ
∗
k ≥ Qπk occurs, activating the policy

constraint significantly improves OBAC’s performance.

Extension in noise and sparse tasks. To better ground
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Figure 6. Extension on noise and sparse tasks. We evaluate OBAC in noisy and sparse tasks for comprehensive investigations. Mean of
5 runs, shaded areas are 95% confidence intervals.

the effectiveness of OBAC, we applied it to a set of stochas-
tic tasks, where a Gaussian noise with different standard
deviations σ to each dimension of actions at every step,
including σ = 0.05 and σ = 0.1 to represent the increas-
ing environmental stochasticity. Compared to our baselines
BAC and SAC, as shown in Figure 6a, OBAC consistently
demonstrates superior robustness, even in challenging sce-
narios with higher noise levels (e.g., σ = 0.1). Furthermore,
we extended the evaluation to tasks featuring sparse rewards,
where success yields a reward of 1 and failure results in a
reward of 0. The results in Figure 6b highlight OBAC’s
capacity to outperform the baselines in sparse reward sce-
narios, underscoring its effectiveness across diverse chal-
lenges. Appendix C.3 provides a detailed comparison of
performance decline rates to better explain the robustness
of OBAC.

More Ablations. In addition to these results, we pro-
vide the variant of OBAC, where a deterministic policy
is employed for online learning, as shown in Figure 19,
Appendix D. The results show that when employing a de-
terministic online learning policy, the adaptive constraint
can also provide performance improvement across various
scenarios, indicating the versatility of our methods.

5. Related Works
We briefly summarize relevant methods about off-policy RL,
offline RL and off-policy RL with offline techniques.

Off-policy RL. Off-policy RL offers a general paradigm
for reusing previously collected data in current policy train-
ing (Munos et al., 2016; Peng et al., 2019; Rakelly et al.,
2019; Duan et al., 2020). This involves alternating between
policy evaluation, where the performance is assessed by
computing a value function, and policy improvement, where
the policy is updated based on the value function (Chan
et al., 2022). Many approaches focus on accurate value
function estimation (Fujimoto et al., 2018; Moskovitz et al.,
2021; Wei et al., 2022), exploration term design (Haarnoja

et al., 2018a; Liu et al., 2020), and real-world applica-
tions (Delarue et al., 2020; Chen et al., 2022). However,
in the training process, the i.i.d assumption of data (Judah
et al., 2014; Chen & Jiang, 2019; Zhang et al., 2021; Liu
et al., 2022) makes them often overlook the inherent domain
knowledge (DEramo et al., 2020), which is available as an
offline optimal policy by re-stitching different state-action
pairs (Xu et al., 2022a) in the replay buffer. This oversight
leads to issues of sample inefficiency and training instabil-
ity, which OBAC addresses by leveraging this knowledge to
enhance policy performance.

Offline RL. Given a fixed dataset without environmen-
tal interaction, offline RL aims to train a policy within the
support of the training distribution (Levine et al., 2020;
Prudencio et al., 2023), categorized by either explicit or
implicit constraints. Explicit constraints involve learning an
empirical distribution of behavior policy (Fujimoto et al.,
2019; Kumar et al., 2019) for policy regularization or im-
proving in-distribution action values while decreasing out-
of-distribution (OOD) actions’ values (Kumar et al., 2020).
Implicit constraints (Kostrikov et al., 2021; Xiao et al., 2022;
Mao et al., 2024) achieve similar value/policy regulariza-
tion without additional behavior approximation through im-
plicit constraints. However, the pessimistic principle in
these methods makes their application challenging in on-
line settings (Xie et al., 2021b), as the policy tends to be
too conservative to explore better actions. While, our work
adopts offline RL techniques within an online training set-
ting, where the data is growing as the policy training and
exploring, avoiding the conservative nature of offline RL.

Bridging off-policy and offline RL. Recent works have
explored the settings of offline-to-online RL (Lee et al.,
2022; Yu & Zhang, 2023; Zhang et al., 2022b) or Hybrid
RL (Niu et al., 2022; Panaganti et al., 2022), leveraging ad-
ditional offline datasets for policy pretraining (Zhang et al.,
2022b; Yu & Zhang, 2023) or for training data augmenta-
tion (Wagenmaker & Pacchiano, 2023; Ball et al., 2023;
Song et al., 2022; Uchendu et al., 2023) to fine-tune the
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learning policy and improve sample efficiency. In contrast,
OBAC’s training can start with zero data, following a pure
online setting without pretraining. Some similar methods
introduce the offline optimal Q-value, estimated by the tran-
sitions observed in the replay memory, to regularize the
Q-value of the online learning policy (Zhang et al., 2022a;
Ji et al., 2023). However, our motivating examples demon-
strate that offline optimal Q-value may be suboptimal to
the learning one, especially in the early training stage, lead-
ing to a potential drawback for the learning policy. OBAC
addresses this issue by introducing an adaptive constraint
that smartly determines the timing of introducing the offline
optimal policy.

6. Conclusion
In this work, we propose a novel off-policy RL framework
OBAC, where an agent can exploit an offline optimal policy
concurrently trained by the replay buffer to boost the perfor-
mance of the online learning policy. Based on the theoretical
results of offline-boosted policy iteration, which shows the
convergence to the optimal policy, this naturally derives a
practical algorithm with low computational cost and high
sample efficiency. Abundant experimental results demon-
strate the superiority of OBAC when compared with both
model-free and model-based RL baselines. Our findings of-
fer valuable insights that leveraging collected data to derive
an offline optimal policy can effectively improve the sample
efficiency, introducing a novel and practical approach to
combining off-policy RL and offline RL. Future works of
OBAC can be extended by applying more advanced offline
RL methods when deriving the offline optimal policy, or
adding more exploration in the online policy to facilitate ex-
ploring better data, thus allowing OBAC to improve policy
performance from both exploitation and exploration.
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A. Theoretical Analyses
Lemma A.1. Given a fixed policy χ, the Bellman Expectation Operator T χ is a γ-contraction mapping within a single
evaluation step.

Proof. Let Q1(s, a) and Q2(s, a) be two arbitrary state-action value functions. Based on the definition of T χ, we have

∥T χQ1(s, a)− T χQ2(s, a)∥∞ = ∥r(s, a)− γEs′,a′∼χ[Q1(s
′, a′)]− r(s, a) + γEs′,a′∼χ[Q2(s

′, a′)]∥∞
≤ γEs′ |Ea′∼χ[Q1(s

′, a′)]− Ea′∼χ[Q2(s
′, a′)]|

≤ γEs′,a′∼χ|Q1(s
′, a′)−Q2(s

′, a′)|
≤ γmax

s,a
|Q1(s, a)−Q2(s, a)|

= γ∥Q1(s, a)−Q2(s, a)∥∞. (16)

Thus, we conclude that T χ is a γ-contraction mapping. Further, this property guarantees that given any fixed policy χ, any
initial Q function will converge to a unique fixed point by repeatedly applying this operator.

Recall the constrained optimization problem in policy improvement step,

πk+1 = argmax
π

Ea∼π[Qπk(s, a)]

s.t.
∫
a∈A

f

(
π(a|s)
µ∗
k(a|s)

)
1

(
V µ

∗
k(s)− V πk(s)

)
µ∗
k(a|s)da ≤ ϵ,∫

a∈A
π(a|s)da = 1, ∀s ∈ D,

Proposition A.2. For the constrained optimization problem defined by (5)∼(7), if V µ
∗
k(s) ≥ V πk(s), the closed-form

solution is
πk+1 =

1

Z(s)
µ∗
k(a|s) (f ′)

−1
(
Qπk(s, a)

)
, (17)

where Z(s) is a partition function to normalise the action distribution. Or, when V µ
∗
k(s) < V πk(s), πk+1 is an ordinary

solution to maximize Qπk(s, a).

Proof. Following prior methods (Peters et al., 2010; Peng et al., 2019), we apply the KKT conditions for the constrained
optimization problem. The Lagrangian is:

L(π, λ, α) = Ea∼π[Qπk(s, a)]+λ
[
ϵ− f

(
π(a|s)
µ∗(a|s)

)
1

(
V µ

∗
k(s)− V πk(s)

)
µ∗
k(a|s)

]
+α

(
1−

∫
a∈A

π(a|s)da
)
. (18)

Then, we perform differentiation with respect to π, and have

∂L
∂π

= Qπk(s, a)− λXXXXµ∗
k(a|s)

1
(
V µ

∗
k(s)− V πk(s)

)
XXXXµ∗
k(a|s)

f ′
(
π(a|s)
µ∗(a|s)

)
− α

= Qπk(s, a)− λ1
(
V µ

∗
k(s)− V πk(s)

)
f ′

(
π(a|s)
µ∗(a|s)

)
− α (19)

By KKT conditions, we set ∂L∂π = 0. When V µ
∗
k(s) ≥ V πk(s), i.e., 1

(
V µ

∗
k(s)− V πk(s)

)
= 1, then we have

πk+1 =
1

Z(s)
µ∗(a|s) (f ′)−1

(
Qπk(s, a)

)
, (20)

where Z(s) is a partition function to normalise the action distribution, and λ is a behavior clone weight.

In contrast, if V µ
∗
k(s) < V πk(s), the constraint (6) is ineffective. Thus, πk+1 is an ordinary solution to maximize Qπk(s, a).

The proof is completed.
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Proposition A.3. Let πk be the older learning policy and the newer one πk+1 be the solution of (5)∼(7). Then we achieve
Qπk+1(s, a) ≥ Qπk(s, a) for all (s, a) ∈ D, with the offline optimal policy µ∗

k serving as a performance baseline policy.

Proof. Since πk+1 is the solution of (5)∼(7), we discuss it into two cases:

• Unconstrained Optimization Problem

In this case, we have πk+1 = argmaxπ Ea∼π[Qπk(s, a)]. Thus, it satisfies Ea∼πk+1
[Qπk(s, a)] ≥ Ea∼πk [Qπk(s, a)]. In a

similar way to the proof of the soft policy improvement (Haarnoja et al., 2018a), we come to the following inequality:

Qπk(st, at) = r(st, at) + γEst+1,at+1∼πk [Q
πk(st+1, at+1)]

≤ r(st, at) + γEst+1,at+1∼πk+1
[Qπk(st+1, at+1)]

...
= Qπk+1(st, at) (21)

Thus, we can obtain that Qπk+1(s, a) ≥ Qπk(s, a).

• Constrained Optimization Problem

Based on Proposition A.2, we have the closed-form solution of πk+1 as

πk+1 =
1

Z(s)
µ∗(a|s) (f ′)−1

(
Qπk(s, a)

)
.

Note that the definition of the offline optimal policy is µ∗
k(a|s) = argmaxa∼D Q

µ∗
k(s, a). Then, when the constraint is

effective, i.e., V µ
∗
k(s) ≥ V πk(s), we can derive that

Ea∼πk+1
[Qπk(s, a)] =

∫
a∼A

πk+1(a|s)Qπk(s, a)da

=

∫
a∼A

1

Z(s)
µ∗(a|s) (f ′)−1

(
Qπk(s, a)

)
Qπk(s, a)da

=

∫
a∼A

1

Z(s)

[
argmax

a∼D
Qµ

∗
k(s, a)

]
(f ′)

−1
(
Qπk(s, a)

)
Qπk(s, a)da

≥
∫
a∼A

1

Z(s)

[
argmax

a∼D
Qπk(s, a)

]
(f ′)

−1
(
Qπk(s, a)

)
Qπk(s, a)da

≥
∫
a∼A

1

Z(s)
πk(a|s) (f ′)

−1
(
Qπk(s, a)

)
Qπk(s, a)da ◁ Satisfied in D

≥
∫
a∼A

πk(a|s)Qπk(s, a)da

= Ea∼πk [Qπk(s, a)]. (22)

Thus, we reuse the results in the unconstrained optimization problem, we can have Qπk+1(s, a) ≥ Qπk(s, a).

Combining the results in both cases, we achieve Qπk+1(s, a) ≥ Qπk(s, a) for all (s, a) ∈ D.

Proposition A.4. Assume |A| < ∞, repeating the alternation of the policy evaluation (3)∼(4) and policy improve-
ment (5)∼(7) can make any online learning policy πk ∈ Π converge to the optimal policies π∗, s.t. Qπ

∗
(st, at) ≥

Qπk(st, at),∀(st, at) ∈ S ×A.

Proof. Suppose Π is the policy set and πk is the policy at iteration k. At each iteration, we guarantee the sequence Qπk
is monotonically increasing through Proposition A.3. Besides, ∀(st, at) ∈ S × A, Qπi would converge by repeatedly
using the Bellman Expectation Equation as a γ-contraction mapping, which is proved in Lemma A.1. Thus, the sequence
of πk converges to some π∗ that are local optimum. Then, we would show that π∗ is indeed optimal. Using the same
iterative argument as in the proof of Proposition A.3, the optimal policy π∗ would satisfy that Qπ

∗
(s,a) ≥ Qπ′

(s, a) for all
(s, a) ∈ S ×A. Hence, π∗ are optimal in Π.
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B. Implementation Details
In this section, we delve into the specific implementation details of OBAC. We use the same hyperparameters for all OBAC
experiments in this paper. In terms of architecture, we use a simple 2-layer ELU network with a hidden size of 512 to
parameterize all components, which contains: a Q-value network and a policy network for the online learning policy π; a
Q-value network and a V -value network for the offline optimal policy µ∗.

Specifically, to encourage online learning policy exploration, we utilize a max-entropy framework (Haarnoja et al., 2018b)
for π with automatic temperature tuning.

Table 1. The hyperparameters of OBAC

OBAC Hyperparameters

Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Discount factor 0.99
Mini-batch 512
Actor Log Std. Clipping (−20, 2)
Replay buffer size 1e6
Expectile factor τ 0.9
Behavior clone weight λ 0.001

Architecture ×4
Network hidden dim 512
Network hidden layers 2
Network activation function elu

B.1. Hyper-parameters

In all of our experiments, we use a single set of hyper-parameters with τ = 0.9 and λ = 0.001. Here, a big expectile factor
τ can approach the maximization of offline Q value in the replay buffer, thus enabling better online policy learning. To
balance the training stability and optimality of offline policy, we choose τ = 0.9. For the behavior clone weight λ which is
from the solution within the KKT condition, we can apply dual gradient descent for auto-tuning in principle, while we find a
fixed λ = 0.001 can achieve satisfied performance. Besides, several offline RL works (Kumar et al., 2019; Fujimoto & Gu,
2021) also use fixed weight for policy constraint. Thus, we apply a fixed λ in our works.

B.2. Baselines and Environments

In our experiments, we have implemented SAC, TD3 and TD-MPC2 using their original code bases to ensure a fair and
consistent comparison.

• For SAC (Haarnoja et al., 2018a), we utilized the open-source PyTorch implementation, available at https://github.
com/pranz24/pytorch-soft-actor-critic.

• TD3 (Fujimoto et al., 2018) was integrated into our experiments through its official codebase, accessible at https:
//github.com/sfujim/TD3.

• TD-MPC2 (Hansen et al., 2024) was employed with its official implementation from https://github.com/
nicklashansen/tdmpc2.

For BAC (Ji et al., 2023), we reproduce the proposed BEE operator. Specifically, the Bellman Exploitation operator T µexploit
is implemented by IQL (Kostrikov et al., 2021), and the Bellman Exploration operator T πexplore with the entropy exploration
term is based on SAC (Haarnoja et al., 2018a), both of which are suggested in its original paper. We choose the trade-off
hyper-parameter in BAC as 0.5 and expectile factor 0.7 aligning with its most suggestion.

We use the official setting of each task domain, including the reward setting, the task horizon, the done signal and the
original state-action spaces.
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C. More Experimental Results
We provide complete experimental results to show the superiority of OBAC.

C.1. Task Visualization

Figure 7. Visualization of tasks in Mujoco.

Figure 8. Visualization of tasks in DM Control.
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Figure 9. Visualization of tasks in Meta-World.

Figure 10. Visualization of tasks in Adroit.

Figure 11. Visualization of tasks in Maniskill2.

Figure 12. Visualization of tasks in Myosuite.

17



Offline-Boosted Actor-Critic

C.2. Complete Experimental Results

We note that, since the task-specific done signal setting, TD-MPC2 may perform poorly in Mujoco suite, especially for Ant,
Hopper, Walker2d and Humanoid, where the episode may be terminated early if the robot falls. In such cases, TD-MPC2
can not find a feasible policy to prevent the fall thus achieving limited performance. Besides, we did not find the results of
Mujoco in TD-MPC2’s paper.

However, in the other suites, we find TD-MPC2 can perform well even within unseen tasks in its original paper. Thus, we
think the reproduction results are reasonable. Note that, in these suites, the episode would be done only when the task
horizon comes to an end, which may provide more exploration information compared with Mujoco suite.

For the consideration of fair comparison, we follow the official setting of each task suite when evaluating all algorithms.

Figure 13. The results of 6 tasks in Mujoco.

Figure 14. The results of 17 tasks in DM Control.
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Figure 15. The results of 17 tasks in Meta-World.

Figure 16. The results of 4 tasks in Adroit.

Figure 17. The results of 5 tasks in Maniskill2.

Figure 18. The results of 4 tasks in Myosuite.
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C.3. Performance comparison under noise tasks

To better explain the robustness of OBAC, we provide the performance decline rates of OBAC and baselines here, whose
results are similar to Figure 6a. Our results show that OBAC exhibits a lower performance decline than the baselines.

• Given the same noise level (σ = 0.1)

Table 2. Performance comparison of OBAC and baselines with the same noise level

Task (success rate) OBAC BAC SAC

Hammer (σ = 0) 0.9 0.9 0.4
Hammer (σ = 0.1) 0.8 0.75 0.35

Decline rate 11.11% 16.67% 12.5%

Pen (σ = 0) 0.6 0.75 0.5
Pen (σ = 0.1) 0.45 0.25 0.15
Decline rate 25.00% 66.67% 70.00%

• Given the different noise level (σ = 0.1 and σ = 0.05)

Table 3. Performance comparison of OBAC with different noise levels

Task (success rate) OBAC

Hammer (σ = 0.05) 0.85
Hammer (σ = 0.1) 0.8

Decline rate 5.88%

Pen (σ = 0.05) 0.5
Pen (σ = 0.1) 0.45
Decline rate 10.00%
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D. Additional Ablations
Except for the ablation studies in the main paper, we additionally provide the results of OBAC’s variant to assess OBAC
completely.

Variant of OBAC. In our implementation, we employ the stochastic Gaussian policy for online policy learning. On the
other side, we derive a variant of OBAC by using a deterministic policy for the online learning policy. Thus, the policy
objective can be

arg min
πθ∈Π

Es∼D

{
Ea∼πθ [−Qπk(s, a)]− λEa∼D

[
(πθ(s)− a)2

]
1

(
V µ

∗
k(s)− V πk(s)

)}
. (23)

We conduct several experiments on such a variant. The results show that our method can also
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Figure 19. Comparison of OBAC and its variant.
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