
Cluster-Aware Similarity Diffusion for Instance Retrieval

Jifei Luo 1 Hantao Yao 2 3 Changsheng Xu 2 3

Abstract
Diffusion-based re-ranking is a common method
used for retrieving instances by performing sim-
ilarity propagation in a nearest neighbor graph.
However, existing techniques that construct the
affinity graph based on pairwise instances can lead
to the propagation of misinformation from outliers
and other manifolds, resulting in inaccurate re-
sults. To overcome this issue, we propose a novel
Cluster-Aware Similarity (CAS) diffusion for in-
stance retrieval. The primary concept of CAS is
to conduct similarity diffusion within local clus-
ters, which can reduce the influence from other
manifolds explicitly. To obtain a symmetrical and
smooth similarity matrix, our Bidirectional Sim-
ilarity Diffusion strategy introduces an inverse
constraint term to the optimization objective of
local cluster diffusion. Additionally, we have op-
timized a Neighbor-guided Similarity Smoothing
approach to ensure similarity consistency among
the local neighbors of each instance. Evaluations
in instance retrieval and object re-identification
validate the effectiveness of the proposed CAS,
our code is publicly available.

1. Introduction
Instance retrieval aims to search through a large-scale
database to identify images that share similar content with a
given image. Recently, traditional descriptors (Lowe, 2004;
Jégou et al., 2012) are gradually being supplanted by global
descriptors extracted with deep neural networks (Radenović
et al., 2019; Yang et al., 2021; Lee et al., 2023) for instance
retrieval. Due to factors such as illumination, occlusion, and
variations in viewpoint among images, the global descriptors
may not yield optimal retrieval results. Therefore, refining
the initial retrieval results to enhance the retrieval perfor-
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mance becomes a pivotal task, also known as re-ranking.
Among re-ranking methods, Query Expansion (QE) (Chum
et al., 2007; Arandjelović & Zisserman, 2012; Gordo et al.,
2017; 2020) is a representative approach that involves the
weighted summation of features from top-ranked images
to generate enhanced features for a secondary round of re-
trieval. However, QE is a primitive operation that cannot
explore the data manifold structure.

To model the intricacies of the underlying data manifold,
diffusion-based re-ranking methods (Donoser & Bischof,
2013; Iscen et al., 2017; 2018; Yang et al., 2019; Chang
et al., 2019; Pang et al., 2019; Bai et al., 2017b; 2019b) have
been proposed to perform similarity propagation within the
nearest neighbor graph. The concept of ranking data con-
cerning the intrinsic global manifold structure in a diffusion
manner was initially introduced by (Zhou et al., 2003b). Var-
ious methods (Yang et al., 2009; Donoser & Bischof, 2013;
Gao et al., 2016; Zhang et al., 2023) propose to iteratively
propagate the similarity among pairwise neighbors in the
graph during each iteration. To capture the complex relation-
ships between instances, some studies (Yang et al., 2013;
Zhang et al., 2015; Bai et al., 2019a) expand the diffusion
theory to a hypergraph, thereby considering higher-order
information. However, since these graphs and hypergraphs
are constructed based on pairwise instances, the similarity
propagation is prone to mistakenly spread information from
outliers and other manifolds throughout the entire graph,
leading to suboptimal performance. Therefore, mitigating
the influence of samples from other manifolds during simi-
larity propagation is crucial for enhancing the robustness of
diffusion-based re-ranking.

In diffusion-based re-ranking methods, the connections of
outliers or other manifolds to individual instances can re-
duce the reliability of ranking during the process of similar-
ity propagation. Therefore, the intuitive idea is to use the
neighborhood cluster of each individual instance to guide
the process of diffusion. Different from existing methods
that propagate the similarity among the entire graph, we aim
to constrain the similarity propagation among the local clus-
ters consisting of the individual instance and its neighbors.
Most of the undesired instances can be explicitly filtered
out by the approximated local cluster, allowing us to benefit
from reducing the impact of other manifolds. Based on
the assumption that samples belonging to the same cluster
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should be similar, an individual instance and its neighbor
samples should have a consistent similarity with other in-
stances. Compared to traditional diffusion-based methods
that only use instance-to-instance similarity, leveraging local
neighbors to optimize the similarity matrix can be beneficial
in reducing the impact of anomalous instances within the
local cluster, potentially leading to better retrieval results.
Moreover, inspired by QE, the local neighbors can be used
to further enhance the representation of the similarity ma-
trix. In conclusion, the cluster can be utilized to guide the
construction of a similarity matrix, thereby enhancing the
re-ranking performance of the diffusion-based model.

By considering the above issues, we propose a novel Cluster-
Aware Similarity (CAS) diffusion for instance retrieval,
consisting of Bidirectional Similarity Diffusion (BSD) and
Neighbor-guided Similarity Smooth (NSS). Given the initial
similarities of all samples, Bidirectional Similarity Diffusion
(BSD) first generates a local cluster for each instance. After
that, by introducing an inverse similarity constraint term,
Bidirectional Similarity Diffusion is optimized to obtain a
symmetrical and smooth similarity matrix within the local
cluster diffusion process. To further suppress the influence
from anomalous instances and other manifolds, NSS ensures
the similarity consistency among neighbors by leveraging
the average similarity between instances and local neigh-
bors to refine the matrix. Moreover, the local neighbors can
also be used to enhance the representation of the similarity
matrix. Finally, to better fit the global retrieval task, we
propagate the similarity matrix within the graph, which is
then applied for global instance retrieval.

Evaluations in instance retrieval and re-identification vali-
date the effectiveness of the proposed Cluster-Aware Sim-
ilarity diffusion. For example, CAS achieves an mAP of
80.7%/64.8% on the medium and hard tasks of ROxf, and
91.0%/80.7% on RPar, demonstrating its superior perfor-
mance.

2. Related Work
Instance Retrieval. In instance retrieval tasks, the objective
is to identify images within a database that either depict the
same object as the query image or portray a scene similar
to it. With the rapid advancement of deep learning, global
features extracted by using neural networks (Yang et al.,
2021; Lee et al., 2022; 2023) have surpassed traditional
local descriptors (Lowe, 2004; Jégou et al., 2012) in both
speed and accuracy, thereby dominating the field of image
retrieval tasks. In this paper, the search results obtained by
global features are referred to as initial ranking. Person re-
identification (ReID) is a special kind of instance retrieval,
it aims at matching the same identities captured by different
camera views. In recent years, there has been a significant
improvement in the performance of ReID (Ye et al., 2022;

Wang et al., 2018; Ge et al., 2020; Li et al., 2023; Luo et al.,
2019; Zhang et al., 2022; Zhou et al., 2022; Chen et al.,
2019; Zhou et al., 2023; He et al., 2021).

Re-ranking. Re-ranking enhances the overall retrieval per-
formance by refining the initial ranking list through a second
round of retrieval or optimization techniques, which can be
divided into Query Expansion, Diffusion-based Method,
Context-based Method, and Learning-based Method.

Query Expansion. Based on the observation that top-ranked
images have the potential capability to enhance ranking
performance, Query Expansion (QE) seeks to aggregate
the neighboring features to construct a stronger and more
descriptive query. AQE (Chum et al., 2007) directly average
the top-k returned image features, while AQEwD (Gordo
et al., 2017) and αQE (Radenović et al., 2019) proposes a
monotonically decreasing weights to mitigate the impact of
later images. To make use of the bottom-ranked negative
samples, DQE (Arandjelović & Zisserman, 2012) trains a
linear SVM to resort the gallery images. And the recently
proposed SG (Shao et al., 2023) further refines the QE
strategy, leading to enhanced retrieval efficiency.

Diffusion-based Method. Diffusion-based method is a pow-
erful re-ranking technique that can leverage the intrinsic
manifold structure of data, its principles and applications
have been studied (Zhou et al., 2003b; Yang et al., 2009;
Donoser & Bischof, 2013) for years. As the most represen-
tative works, DFS (Iscen et al., 2017) and FSR (Iscen et al.,
2018) have achieved excellent results in instance retrieval
tasks. In order to effectively aggregate higher-order informa-
tion, (Bai et al., 2019a; Yang et al., 2013; Zhang et al., 2015)
construct a hypergraph for diffusion. Besides, Fusion with
Diffusion (Zhou et al., 2012) manages to integrate the mani-
fold information from distinct affinity graphs, later works
(Bai et al., 2019c;b) further assign automatically learned
weights and generalize the procedure into a unified frame-
work. Additionally, EGT (Chang et al., 2019) adjusts the
diffusion process through a two-stage approach, resulting in
improved effectiveness.

Context-based Method. The relevant contextual informa-
tion contained by k-nearest neighbors holds the potential to
improve retrieval performance significantly. CDM (Jégou
et al., 2007) iteratively modifies the neighborhood structure,
kNN (Shen et al., 2012) recalculates the distance measure
based on the rank lists of k-nearest neighbors, while ECN
(Sarfraz et al., 2018) introduces the concept of expanded
cross neighborhood for aggregating a new rank list. More-
over, SCA (Bai & Bai, 2016), k-reciprocal (Zhong et al.,
2017) and STML (Kim et al., 2022) encode each instance
into a contextual affinity feature space, where similar im-
ages exhibit higher consistency. ConAff (Zhang et al., 2020;
Yu et al., 2023) further enhances feature representation by
propagating information within the affinity graph.
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Learning-based Method. Recently, self-attention mecha-
nism and graph neural network (GNN) have been intro-
duced into the field of visual re-ranking. LAttQE (Gordo
et al., 2020) leverages a transformer encoder to learn affin-
ity weights for query expansion, while CSA (Ouyang et al.,
2021) represents each instance as an affinity feature and then
aggregates the contextual information with a self-attention
mechanism. By adapting the properties of graph neural net-
work (Kipf & Welling, 2016; Gasteiger et al., 2018), GSS
(Liu et al., 2019) and SSR (Shen et al., 2021) can obtain
a more representative descriptor by optimizing the graph
model.

3. Background
Given a query image xq, the instance retrieval aims to
sort the gallery image set Xg in ascending order based
on a distance metric. We say that the higher-ordered im-
age has a higher probability of having the same label as
the query instance. Formally, we define the query set
as Xq = {x1, x2, ..., xnq

}, and the gallery set as Xg =
{x1, x2, ..., xng

}, where nq and ng are the number of im-
ages in query and gallery sets, respectively. The whole
image set can be represented as X = {x1, x2, ..., xn}, in
which n = nq + ng. For each image in X , a d-dimension
deep feature is extracted for retrieval. Defining the feature
of xi as f i, the pairwise distance between images xi and
xj can be calculated using the Euclidean distance between
their features as follows:

d(i, j) = ∥f i − f j∥2. (1)

After computing the distance among each pair of images,
we can obtain the initial distance matrix M ∈ Rn×n, where
M ij = d(i, j). Each row M i represents the distance be-
tween the image xi and image set X , which is used to sort
the gallery images with respect to the query image xi.

Based on the prior knowledge that similar images are lying
on a low-dimensional manifold structure contained by the
distance matrix M , we can map M into a new space to
ensure that instances with high rankings are not only close
in Euclidean space but also exhibit higher proximity in the
manifold space. Moreover, the manifold structure can be
approximated by utilizing the feature set X to construct
an k-nearest neighbor graph G = {V, E}. The vertices set
V = {v1, v2, . . . , vn} represents a corresponding feature in
X , while E are the edges between two vertices. The edge
weights are represented as:

W ij = 1ij exp (−d2(i, j)/σ2), (2)

where 1 is an indicator, denote the k-nearest neighbors
belongs to xi as N (i, k), then 1ij = 1, if j ∈ N (i, k).

Based on the k-nearest neighbor graph inferred by affinity
weight matrix W , the diffusion-based methods (Zhou et al.,
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Figure 1. The workflow of Cluster-Aware Similarity Diffusion.

2003b; Iscen et al., 2017; Bai et al., 2017a) propagates the
information through the graph G for inferring a similarity
matrix F . Since the propagation progress is over the whole
graph, the obtained similarity matrix F is susceptible to the
negative impacts from outlier and nearby manifolds, which
yields bad performance for instance retrieval.

4. Cluster-Aware Similarity Diffusion
Different from existing methods that propagate the similarity
through the entire graph, we constrain the diffusion process
to the local graph consisting of the individual instance and
its neighbors, which can help mitigate the affection from
other manifolds. Therefore, we propose a novel Cluster-
Aware Similarity (CAS) diffusion to optimize the similarity
matrix F . Especially, an inverse similarity term is intro-
duced in the Bidirectional Similarity Diffusion (BSD) for
obtaining a symmetrical and smooth similarity matrix F
with the constraint from the approximated cluster of each
instance. Subsequently, the Neighbor-guided Similarity
Smooth (NSS) is further proposed to refine the similarity
matrix F by ensuring similarity consistency among the lo-
cal neighbors of each instance. The workflow is shown in
Figure 1, in the following, we will give a detailed introduc-
tion to the Bidirectional Similarity Diffusion and Neighbor-
guided Similarity Smooth.

4.1. Bidirectional Similarity Diffusion

Bidirectional Similarity Diffusion seeks to perform simi-
larity propagation on the local graph instead of the entire
graph, such that the dissemination of misleading informa-
tion from other noisy samples can be diminished. For each
instance, the local graph can be treated as a local cluster C
that includes the instance itself and its similar neighbors,
e.g., C[i] represents the local cluster of the image xi. The
smoothed similarity matrix F can be optimized by solving
the following objective function:

min
F

1

4

n∑
k=1

∑
i,j∈C[k]

W ij

( F ki√
Dii

− F kj√
Djj

)2

+W ij

( F ik√
Dii

− F jk√
Djj

)2

+ µ∥F −E∥2F ,

s.t F ij = 0, j /∈ C[i]

(3)
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where W is a symmetric matrix representing the adjacent
weights of the nearest neighbor graph. D is the diagonal
matrix with its i-th diagonal element equal to the summation
of the i-th row in W . Matrix E in the regularization term
is positive and semi-definite, which can prevent F from
excessively smooth. While µ > 0 represents the constraint
weight. For a triplet of instances xk, xi and xj within the
local cluster, the edge weight W ij is used to regularize the
similarity between F ki and F kj . Meanwhile, the pair of
similarities F ik and F jk is also taken into account, such that
the smooth strategy is bidirectional, ensuring the symmetric
of the obtained similarity matrix F .

In addition, we incorporate k-reciprocal neighbors (Qin
et al., 2011; Zhong et al., 2017) to construct the local clus-
ter C, which can be viewed as a stricter case of k-nearest
neighbors by considering reverse information. This strategy
is effective in diminishing the presence of noises within
the neighbor set, thereby minimizing their influence dur-
ing the cluster-aware smoothing process. The definition of
k-reciprocal neighbors is formulated as:

R(i, k) = {j|(j ∈ N (i, k)) ∧ (i ∈ N (j, k))}, (4)

To avoid ambiguity and reduce the number of parameters,
we set the value of k used to construct the local cluster as k1.
Additionally, the k-reciprocal neighbors of an image xi can
be expanded from R(i, k1) to a larger set R∗(i, k1) when
the number of elements within R(i, k1) reaches a certain
threshold.

However, it is difficult to directly optimize Eq. (3). We thus
simplify the optimization problem as two sub-problems by
relaxing the smoothing area and the constraint conditions.
Firstly, we aim to solve the optimization problem without
considering the cluster constraint with Eq. (5),

min
F

1

4

n∑
k=1

n∑
i,j=1

W ij

( F ki√
Dii

− F kj√
Djj

)2

+W ij

( F ik√
Dii

− F jk√
Djj

)2

+ µ∥F −E|2F .
(5)

Then, we only update the similarity terms for samples be-
longing to the corresponding cluster C, which serves as an
effective approximation for performing similarity propaga-
tion within local clusters. To facilitate the solution of the
optimization problem in Eq. (5), we leverage certain graph
theory tools to reformulate the objective function as follow1:

J = vec(F )T
(
I− S̄

)
vec(F ) + µ∥vec(F −E)∥22, (6)

where I ∈ Rn2×n2

is a diagonal matrix. The normalized
matrix of W is represented as S = D−1/2WD1/2, and
S̄ ∈ Rn2×n2

is a mean Kronecker product calculated by

1The proof is shown in Appendix A.2

S̄ = (S ⊗ I + I ⊗ S)/2. The term vec−1(·) denotes
the inverse function of vec(·), which is a vectorization or
flattening operation.

The optimization problem in Eq. (6) is convex with the
condition that its Hessian matrix is positive definite. The
Hessian matrix H of the objective function is:

H = ∇2
vec(F )J = 2(I− S̄) + 2µI. (7)

Lemma 4.1. Let A ∈ Rn×n, the spectral radius of A is
denoted as ρ(A) = max{|λ|, λ ∈ σ(A)}, where σ(A) is
the spectrum of A that represents the set of all the eigenval-
ues. Let ∥ · ∥ be a matrix norm on Rn×n, given a square
matrix A ∈ Rn×n, λ is an arbitrary eigenvalue of A, then
we have |λ| ≤ ρ(A) ≤ ∥A∥.

Lemma 4.2. Let A ∈ Rm×m, B ∈ Rn×n, denote
{λi,xi}mi=1 and {µi,yi}ni=1 as the eigen-pairs of A and
B respectively. The set of mn eigenpairs of A⊗B is given
by

{λiµj ,xi ⊗ yj}i=1,...,m, j=1,...n, (8)

Proof of the positive definiteness of the Hessian matrix H:
Consider the matrix D−1W , since D is a diagonal matrix
with its i-th element the sum of the corresponding i-th row of
matrix W , we can obtain that ∥D−1W ∥∞ = 1. According
to Lemma 4.1, all the eigenvalues are no larger than 1,
i.e., ρ(D−1W ) ≤ 1. As for the normalized matrix S =

D−1/2WD−1/2 we are concerned about, we can rewrite
it as D1/2D−1WD−1/2, which implies that it is similar
to the matrix D−1W . Since two similar matrices share
the same eigenvalues, it can be inferred that ρ(S) ≤ 1.
By applying Lemma 4.2, the spectral radius of the mean
Kronecker product S̄ = S ⊗ I + I ⊗ S is not exceeding
1, i.e., ρ(S̄) ≤ 1. Since the constraint weight µ > 0, we
can conclude that the Hessian matrix of Eq. (7) is positive
definite.

Therefore, the optimization problem in Eq. (6) is convex,
and we can obtain the optimal solution by taking the partial
derivative of vec(F ), that is:

∇vec(F )J = 2(I− S̄)vec(F ) + 2µ(vec(F −E)). (9)

By setting the value of Eq. (9) to zero, the closed form
solution F ∗ can be obtained by Eq. (10),

F ∗ = (1− α)vec−1
(
(I− αS̄)−1vec(E)

)
. (10)

Here we substitute the hyper-parameter µ with α = 1
1+µ to

simplify the expression, and a more general case is discussed
in Appendix A.2 when W is not symmetric. Moreover,
the optimum solution to the slack optimization can also be
derived by solving the following Lyapunov equation:

(I − αS)F + F (I − αS) = 2(1− α)E. (11)
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Figure 2. Explanation of the Neighbor-guided Similarity Smooth
strategy. For an instance xi, the average similarity T ij from xj to
its local neighbor is used to constrain the similarity F ij . Which can
help suppress the influence of instances from different manifolds.

By taking the graph G = {V, E} as a progressively stable
linear system defined by ż = (αS − I)z, with z represent-
ing the status of each vertex, a Lyapunov energy induced
by F of the linear system can be solved, where F contains
the manifold distance information instinctively. Since it
is infeasible to directly solve the closed-form of Eq. (10)
in terms of time complexity, we can adopt an iterative ap-
proach2 to gradually converge towards the solution, making
the computational process more feasible and efficient,

F (t+1) =
1

2
α
(
F (t)S⊤ + SF (t)

)
+ (1− α)E. (12)

As proved in Appendix A.3, F (t) will converge to the closed-
form solution, allowing us to numerically solve the optimiza-
tion problem. After obtaining the relaxed similarity matrix
F ∗, we selectively preserve similarity between each point
and its local cluster C, following the constraint conditions.
Taking an instance xi for example, only the terms corre-
sponding to the local cluster C[i] are assigned with similar-
ity solved by Eq.(10) to obtain the cluster-aware smoothed
similarity matrix F . Subsequently, an l1-normalization op-
eration is applied to each row to obtain the final smoothed
similarity matrix.

4.2. Neighbor-guided Similarity Smooth

Local neighbors can provide a more precise estimation of
inter-class relationships compared with individual points.
Therefore, we aim to leverage the heuristic information from
the local neighbor set ξ to further enhance the smoothness
of the similarity matrix by constraining the similarity consis-
tency from instance to local neighbors, and then adjusting it
to fit the global retrieval task.

Based on the above issue, the Neighbor-guided Similarity
Smooth (NSS) is proposed to initially refine the obtained
similarity matrix F into a neighbor consistent matrix F̂ .
Subsequently, by leveraging F̂ , an enhanced representation
F̃ is obtained, finally, F̃ is extended to the entire graph to

2Algorithm 1 introduces a more efficient iteration with a higher
convergence rate.

generate F ′, thereby accommodating global retrieval tasks.
As shown in Figure 2, for an instance xi, its local neigh-
bors ξ[i] obtained by R(i, k2) are indicated by shades, i.e.,
k2 < k1. The objective is to jointly optimize the similarity
from xi to other images by constraining the local neighbor
consistency. Specifically, the optimized similarity between
xi and xj should be consistent with the factor T ij/r, which
is a normalized value that measures the proximity from an
image xj to the neighbors of xi. In this case, we define
T ij as the average similarities from image xj to the local
neighbors for image xi. Additionally, the average similarity
between pairwise instances within the local neighborhood ξ
is defined as r to represent the reliability of local neighbors.
Since a larger r implies a higher likelihood that neighbors
belong to the same cluster, here we use r2 to constrain the
adjustment. By considering the above issue, the optimiza-
tion objective can be formulated as:

minimize
1

2
r2∥F̂ i −

T i

r
◦ F i∥22 + β∥F̂ i − F i∥22,

subject to F̂ ij ≥ 0, j ∈ C[i]
F̂ ij = 0, j = 1, 2 . . . , |X |/C[i]
∥F̂ i∥1 = ∥F i∥1

(13)
where symbol ◦ denotes that two vectors are multiplied by
the corresponding element. C is the local cluster set that we
used to constrain the similarity connections as introduced
in Section 4.1. The regularization term weighted by β can
constrain the value of F̂ i from deviating too much from the
initial value F , we set β with a low value to achieve better
numerical stability. Moreover, here we truncate the vector
T i to ensure that all its values are no larger than r.

The Lagrange function L(F̂ i,λ, ν) corresponding to the
primal constrained optimization problem Eq. (13) is formu-
lated as below,

L(F̂ i,λ, ν) =
1

2
r2∥F̂ i −

T i

r
◦ F i∥22 + β∥F̂ i − F i∥22

−
n∑

j=1

λjF̂ ij + ν(

n∑
j=1

F̂ ij −
n∑

j=1

F ij).

(14)

The optimal solution can be obtained by solving the KKT
conditions as proved in Appendix B. Consequently, the
neighbor-guided smoothed similarity F̂ can then be ob-
tained by applying the following smooth strategy:

F̂ ij =
rT ij + 2β

r2 + 2β
F ij +

r2∥F i∥1 − rT⊤
i F i

|C[i]|(r2 + 2β)
, j ∈ C[i]

(15)
Apart from increasing consistency, local neighbors can pro-
vide guidance for similarity refinement in other ways. Pri-
marily, the role of local neighbors can be emphasized in the
diffusion process by assigning higher weights to the edges
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Table 1. Evaluation of the Performance on ROxf, RPar, ROxf+1M, RPar+1M. Using R-GeM (Radenović et al., 2019) as the baseline.

Method
Medium Hard

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

R-GeM (Radenović et al., 2019) 67.3 49.5 80.6 57.4 44.2 25.7 61.5 29.8

AQE (Chum et al., 2007) 72.3 56.7 82.7 61.7 48.9 30.0 65.0 35.9
αQE (Radenović et al., 2019) 69.7 53.1 86.5 65.3 44.8 26.5 71.0 40.2
DQE (Arandjelović & Zisserman, 2012) 70.3 56.7 85.9 66.9 45.9 30.8 69.9 43.2
AQEwD (Gordo et al., 2017) 72.2 56.6 83.2 62.5 48.8 29.8 65.8 36.6
LAttQE (Gordo et al., 2020) 73.4 58.3 86.3 67.3 49.6 31.0 70.6 42.4

ADBA+AQE 72.9 52.4 84.3 59.6 53.5 25.9 68.1 30.4
αDBA+αQE 71.2 55.1 87.5 68.4 50.4 31.7 73.7 45.9
DDBA+DQE 69.2 52.6 85.4 66.6 50.2 29.2 70.1 42.4
ADBAwD+AQEwD 74.1 56.2 84.5 61.5 54.5 31.1 68.6 33.7
LAttDBA+LAttQE 74.0 60.0 87.8 70.5 54.1 36.3 74.1 48.3

kNN (Shen et al., 2012) 71.3 54.7 83.8 63.2 49.1 29.2 66.4 36.7
DFS (Iscen et al., 2017) 72.9 59.4 89.7 74.0 50.1 34.9 80.4 56.9
FSR (Iscen et al., 2018) 72.7 59.6 89.6 73.9 49.6 34.8 80.2 56.7
RDP (Bai et al., 2019a) 75.2 55.0 89.7 70.0 58.8 33.9 77.9 48.0
EIR (Yang et al., 2019) 74.9 61.6 89.7 73.7 52.1 36.9 79.8 56.1

GSS (Liu et al., 2019) 78.0 61.5 88.9 71.8 60.9 38.4 76.5 50.1
EGT (Chang et al., 2019) 74.7 60.1 87.9 72.6 51.1 36.2 76.6 51.3
SSR (Shen et al., 2021) 74.2 54.6 82.5 60.0 53.2 29.3 65.6 35.0
CSA (Ouyang et al., 2021) 78.2 61.5 88.2 71.6 59.1 38.2 75.3 51.0
SG (Shao et al., 2023) 71.4 53.9 83.6 61.5 49.5 28.8 67.6 35.8

CAS 80.7 61.6 91.0 75.5 64.8 39.1 80.7 59.7

correlated with ξ when constructing the nearest neighbor
graph. Formally, the entry 1ij of the indicator turns into κ
if j ∈ ξ[i], where κ is the importance weight.

Since the instances among the same local neighbors have
a high probability of belonging to the same class, we aim
to aggregate the similarity within the neighborhood ξ to get
a neighbor-enhanced representation F̃ . This is achieved
through a weighted average of the similarity matrix, where
neighbors from N (i, k2) are also taken into account,

F̃ i =
(
λ

∑
j∈ξ[i]

F̂ j/|ξ|+
∑

j∈N (i,k2)

F̂ j/k2
)
/(κ+ 1). (16)

The obtained similarity F̃ can be considered as the optimal
representation of the data manifold within the local cluster.
To align with the global ranking task, we conduct a compre-
hensive propagation of similarity information to obtain F ′

with the transition matrix calculated by P = F̃
⊤
F̃ . Sparse

operations can be employed to handle the transition matrix,
thereby further diminishing the impact of outliers, the final
similarity matrix is given by:

F ′
i =

∑
j

P ijF̃ j . (17)

4.3. Inference

After that, the optimized similarity matrix F ′ denotes the
similarity among samples that can be used for retrieval.

Formally, we jointly consider the Euclidean distance d(i, j)
and modified distance d′(i, j) inferred by similarity matrix
F ′ to maintain the crucial neighborhood information in
Euclidean space, the final distance is represented as:

d∗(i, j) = (1− ω)d′(i, j) + ωd(i, j), (18)

where ω is the balance weight, and the Euclidean distance
term can be replaced with diffusion-based distance to fur-
ther enhance the robustness. Since the similarity matrix F ′

represents the transition probability within the diffusion pro-
cess, intuitively, we apply the Jensen-Shannon divergence3

to compute the modified distance d′(i, j),

d
′
(i, j) =

1

2

( n∑
k=1

F
′
ik log

( 2F ′
ik

F ′
ik + F ′

jk

)
+ F

′
jk log

( 2F ′
jk

F ′
ik + F ′

jk

))
.

(19)

5. Experiment
5.1. Experiment Setup

Datasets: We conduct experiments on instance retrieval and
object re-identification (ReID) tasks to verify the effective-
ness of our proposed method. For instance retrieval, the
widely known Oxford5k (Philbin et al., 2007) and Paris6k
(Philbin et al., 2008) datasets are being revisited by (Raden-
ović et al., 2018), referred to as Revisited Oxford5k (ROxf)
and Revisited Paris6k (RPar), respectively. Moreover, a col-

3The variants of the formula is discussed in Appendix C
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Table 2. Evaluate the performance on ReID tasks, the backbone is trained on a sub-dataset (150 identities) of Market1501.

Method
BoT OSNet AGW MGN AdaSP ABD-Net TransReID CLIP-ReID

mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP mAP mINP

Baseline 54.1 18.1 57.5 19.3 57.9 21.5 65.9 26.0 60.3 23.2 64.0 26.7 72.0 39.3 63.2 25.9
kNN 60.9 25.4 63.8 26.9 64.5 29.5 72.9 35.4 66.3 32.8 70.6 37.3 77.1 48.7 70.2 37.3
AQE 69.9 44.1 71.0 44.1 71.9 47.5 81.4 60.9 73.4 48.6 77.0 56.9 81.3 64.2 77.8 58.1
αQE 69.2 41.2 69.9 42.7 71.4 44.8 80.4 55.2 73.7 47.9 74.5 51.9 79.8 61.1 77.7 57.9

AQEwD 69.5 43.0 70.9 42.9 71.8 46.5 80.9 59.0 73.5 47.6 77.5 54.9 81.5 63.0 77.3 56.0
RDP 72.1 50.4 74.3 50.0 75.6 55.8 84.0 67.7 76.7 54.8 80.2 62.5 84.5 70.5 80.1 62.8
SCA 73.6 54.0 74.4 51.5 76.3 57.6 84.5 69.8 77.1 56.6 80.9 64.6 84.1 71.1 81.0 65.2
k-recip 74.9 55.2 76.0 53.8 77.4 58.7 85.3 69.0 78.3 58.3 81.8 64.7 85.4 71.6 81.9 65.1
ECN 74.6 54.2 75.5 52.0 77.0 58.1 85.1 70.1 78.3 57.3 81.8 65.4 85.0 71.7 81.6 65.6

CAS 78.1 61.3 79.6 60.6 80.1 64.7 87.5 76.1 81.3 64.0 84.2 70.7 87.3 76.9 84.4 71.0

lection of 1 million distractor images are added to form large
scale ROxf+1M and RPar+1M datasets. We also evaluate
our method on object ReID datasets, including Market1501
(Zheng et al., 2015) and CUHK03 (Li et al., 2014).

Evaluation Metrics: The mean Average Precision (mAP)
metric is used for measuring the performance of instance re-
trieval, and the assessment includes reporting results for
Easy (E), Medium (M), and Hard (H) protocols on the
ROxf and RPar datasets, respectively. For object ReID, we
also consider Rank1 (CMC@1) and mean Inverse Negative
Penalty (mINP) (Ye et al., 2022).

Feature Extraction: For instance retrieval, maximum ac-
tivation of convolutions (MAC), regional maximum acti-
vation of convolutions (R-MAC) (Tolias et al., 2016), and
Generalized-Mean (R-GeM) (Radenović et al., 2019) are
used to extract image descriptors. For object ReID, some
representative methods, such as BoT (Luo et al., 2019),
MGN (Wang et al., 2018), AGW (Ye et al., 2022), AdaSP
(Zhou et al., 2023), SpCL (Ge et al., 2020), ISE (Zhang
et al., 2022), OSNet (Zhou et al., 2022), ABDNet (Chen
et al., 2019), TransReID (He et al., 2021), CLIP-ReID (Li
et al., 2023) are used to extract the person descriptions.
By using a different number of identities to train the ReID
model, we can construct various levels of retrieval baselines,
enabling evaluation of performance in more challenging
scenarios.

5.2. Comparison with existing methods

Comparison of Instance Retrieval. We first compare the
proposed method with existing instance retrieval methods
on ROxf and RPar, and summarize the results in Table 1, Ta-
ble 3 and Table 4. The compared methods consist of query
expansion methods with and without database-side augmen-
tation (DBA), including AQE, αQE, DQE, AQEwD, SG
and LAttQE; diffusion-based methods including DFS, FSR,
RDP, and EIR; and the graph or attention learning-based
methods including GSS, EGT, SSR and CSA. From those
tables, we can observe that our proposed method exhibits
superior performance against others with global descrip-

Table 3. Image retrieval performance based on MAC descriptor
summarized by (Tolias et al., 2016).

Method
Easy Medium Hard

ROxf RPar ROxf RPar ROxf RPar

MAC 47.2 69.7 34.6 55.7 14.3 32.6

AQE 54.4 80.9 40.6 67.0 17.1 45.2
αQE 50.3 77.8 37.1 64.4 16.3 43.0
DQE 50.1 78.1 37.8 66.5 16.0 45.7
kNN 56.6 79.7 41.6 66.5 17.4 44.5

AQEwD 52.8 79.6 39.7 65.0 17.3 42.9

DFS 54.6 83.8 40.6 74.0 18.8 58.1
FSR 54.4 83.9 40.4 73.5 18.4 57.5
EIR 57.9 86.9 44.2 76.8 22.2 60.5
RDP 59.0 85.2 45.3 76.3 21.4 58.9
GSS 60.0 87.5 45.4 76.7 22.8 59.7

CAS 68.6 90.1 52.9 82.3 30.4 68.1

Table 4. Image retrieval performance based on R-MAC descriptor
proposed in (Tolias et al., 2016).

Method
Easy Medium Hard

ROxf RPar ROxf RPar ROxf RPar

R-MAC 61.2 79.3 40.2 63.8 10.1 38.2

AQE 69.4 85.7 47.8 71.1 15.9 47.9
αQE 64.9 84.7 42.8 70.8 11.4 47.8
DQE 65.5 84.9 45.3 71.9 15.5 49.1
kNN 70.6 84.6 48.9 70.2 16.0 46.1

AQEwD 70.5 85.9 48.7 70.7 15.3 46.9

DFS 70.0 87.5 51.8 78.8 20.3 63.5
FSR 69.7 87.3 51.4 78.1 20.1 62.6
EIR 68.0 89.4 50.8 78.7 21.7 63.3
RDP 73.7 88.8 54.3 79.6 22.2 61.3
GSS 75.0 89.9 54.7 78.5 24.4 60.5

CAS 82.6 90.0 62.5 82.5 34.1 67.4

tors extracted by MAC, R-MAC and R-GeM. Among all
existing methods, the diffusion-based methods are the most
related to ours, and the proposed CAS obtains an obvious
improvement over those diffusion-base methods, e.g., CAS
achieves the mAP of 62.5% and 34.1% test with R-MAC
descriptors on the medium protocol of ROxf, compare to
the top-performing diffusion model, our approach delivers
an improvement of 7.8% and 11.9% in mAP. As for the
ROxf+1M and RPar+1M, we first perform the Euclidean
search over the whole dataset, then fine arranged the top
5,000 images within each retrieval. The superior perfor-
mance demonstrates the effectiveness of our proposed CAS
and its potential in re-ranking large datasets.
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Table 5. Effectiveness of Bidirectional Similarity Diffusion.

Method
ROxf(M) ROxf(H)

MAC R-MAC R-GeM MAC R-MAC R-GeM

Baseline 34.6 40.2 67.3 14.3 10.5 44.2

OSM+k-nn 51.8 60.4 78.4 28.3 29.8 60.6
SSM+k-nn 51.8 61.6 79.1 28.6 31.0 62.2
BSD+k-nn 52.6 62.4 79.3 29.8 33.7 62.4

OSM+k-recip 52.2 61.1 80.1 28.4 30.1 63.7
SSM+k-recip 52.2 61.6 80.2 28.8 31.3 63.9
BSD+k-recip 52.9 62.5 80.7 30.4 34.1 64.8
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(a) Evaluate on ROxf(M). (b) Evaluate on ROxf(H).

Figure 3. Effectiveness of Neighbor-guided Similarity Smooth.

Comparison of Object ReID. Object ReID is a special in-
stance retrieval task that focuses on matching the person
images captured by different camera views. Compared to
the general instance retrieval, the person has a small inter-
class and large intra-class variance, leading object ReID is
more challenging than the general instance retrieval. We
thus conduct the proposed CAS as a re-ranking method for
instance ReID to verify its effectiveness and generalization.
As shown in Table 2, the proposed CAS obtains a higher
performance than existing re-ranking methods on all eight
ReID backbones. More comparisons of different models
trained with Market1501 and CUHK03 datasets are shown
in Appendix D.

5.3. Ablation Study

Effectiveness of Bidirectional Similarity Diffusion. As listed
in Table 5, we perform several ablation studies to prove
the effectiveness of our proposed Bidirectional Similarity
Diffusion (BSD) strategy. BSD comprises two crucial com-
ponents, the bidirectional smooth strategy and the approxi-
mation of the local cluster. To demonstrate the effectiveness
of the bidirectional smooth strategy, we compare the pro-
posed BSD with two existing types of similarity matrices:
the original similarity matrix (OSM) in Euclidean space,
and the similarity smoothed matrix (SSM) obtained by (Bai
et al., 2019a). As shown in Table 5, the proposed BSD
obtains a higher performance than OSM and SSM on both
cluster generation methods such as k-nn and k-recip over
three types of extractors (MAC/R-MAC/R-GeM). For in-
stance, in the case of k-reciprocal neighbors, BSD achieves
an average performance of 62.5%/34.1%, showcasing im-
provements of 1.4%/2.0% and 0.9%/2.8% over OSM and
SSM, respectively. The superior performance verifies the
effectiveness and rationality of Bidirectional Similarity Dif-
fusion.

Table 6. Effectiveness of the proposed distance measure.

Method
ROxf(M) ROxf(H)

MAC R-MAC R-GeM MAC R-MAC R-GeM

Baseline 50.6 59.7 73.2 27.8 31.1 54.4
Euclidean 44.6 52.0 71.7 24.0 21.9 51.4
Cosine 52.7 62.2 78.3 29.1 31.3 61.7
Jaccard 52.1 61.6 79.3 29.5 31.4 62.3

JS Divergence 52.9 62.5 80.7 30.4 34.1 64.8
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Figure 4. Effect of parameter k1, here we plot the sensitivity of a
diffusion-based method to its hyper-parameter on the same graph.

Effectiveness of Neighbor-guided Similarity Smooth. More-
over, we conduct the comparison to evaluate the effective-
ness of our proposed Neighbor-guided Similarity Smooth
strategy. As depicted in Figure 3, when not taking NSS into
account (‘w/o NSS’), our method obtains a noticeable im-
provement over the baseline, which further substantiates the
superiority of the Bidirectional Similarity Diffusion. How-
ever, when compared with our full method accounting for
Neighbor-guided Similarity Smooth (‘w/ NSS’), there is a
significant performance gap, e.g., the average performance
gap is 5.5% in ROxf(M) and 8.8% in ROxf(H). In addition,
we draw on the idea from query expansion to fuse the simi-
larity matrix from k-nearest neighbors, we then replace it
with our NSS (‘w/ AQE’) to evaluate its performance.The re-
sults from Figure 3 indicate that this substitution only yields
limited improvement to the baseline compared with our pro-
posed method. In this way, we validate the effectiveness of
our proposed Neighbor-guided Similarity Smooth.

Effectiveness of Shannon divergence. In Eq.(19), the Shan-
non divergence is used to compute the pairwise distance
after obtaining the optimized similarity matrix F ′. To verify
the rationality of Shannon divergence, we also conduct the
comparison by replacing Eq.(19) with Cosine, Euclidean,
and Jaccard distance, as well as directly using the similarity
matrix F ′ for retrieval (Baseline).

Time complexity. Denote the dimension of image descrip-
tors as d, and the total number of re-ranking candidates as
n. The overall time complexity of our proposed CAS is
O(n3), which is comparable to other diffusion-based meth-
ods. Moreover, since our BSD module is highly optimized
and can be parallel executed on GPU, although the time com-
plexity is on the same level, our method still outperforms
others. It is also noteworthy that, unlike learning-based
methods such as GSS and SSR, our approach does not re-
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Table 7. Analysis of time complexity.
Method Time Complexity Re-ranking Latency (ms)

αQE O(n2d) 121
k-recip O(n3) 8,524

DFS O(n3) 1,857
RDP O(n3) 6,018
GSS - > 5 min

CAS O(n3) 1,278

Table 8. Effect of parameter k2.
k2 1 2 3 4 5 6 7 8 9 10

ROxf(M) 78.14 78.81 79.7 80.8 80.8 80.7 80.5 79.2 78.3 78.0
ROxf(H) 61.27 62.44 64.0 65.6 65.3 64.8 64.9 62.7 61.2 61.2

quire training a graph neural network. Consequently, com-
pared to their training time of several minutes, our method
only requires 1,278ms to re-rank the ROxford dataset. The
re-ranking latency is tested with one single RTX 3090.

Effect of k1 and k2. The hyper-parameters k1 and k2 are
used to approximate the local cluster C and neighbor set
ξ, respectively. As shown in Figure 4, setting the hyper-
parameter of the traditional diffusion-based method as k1,
our approach exhibits its robustness in comparison. The
further analysis of k2 is shown in Table 8. We can observe
that a balanced selection of k2 yields optimal results. This
is because neighbor set ξ obtained through an appropriate
k2 can include a higher quantity and proportion of correct
samples, which is crucial for adjustment.

Effect of ω. In Eq. (18), the hyper-parameter ω is treated
as a balance weight to fuse the original Euclidean distance
and the Jensen-Shannon divergence. As shown in Table 9,
the optimal result is attained when ω is set to 0.2 and 0.3.
This achievement is attributed to our incorporation of the
original distance, thereby improving the robustness of the
retrieval process.

6. Conclusion
The existing diffusion-based method suffers from the in-
fluence affected by nearby manifolds, which restricts its
performance. To address this issue, we propose a novel
Cluster-Aware Similarity (CAS) diffusion method for in-
stance retrieval. CAS confines diffusion within a local clus-
ter and utilizes a neighbor set to refine the obtained similarity
matrix. Extensive evaluation of several benchmarks demon-
strates the effectiveness of the proposed CAS in boosting the
retrieval performance, indicating that CAS can effectively
suppress the negative impacts from neighboring manifolds
in the diffusion process.

Nevertheless, there is still room for improvement in provid-
ing a more accurate estimation of the local cluster. In the
future, we aim to explore a more effective method for lo-
cal cluster diffusion and enable the model to autonomously
adjust its hyper-parameters.

Table 9. Effect of parameter ω.
ω 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ROxf(M) 79.1 80.0 80.5 80.7 80.7 80.5 80.1 79.4 78.4 76.5
ROxf(H) 64.2 64.6 65.2 65.3 64.8 63.9 63.0 61.8 60.4 58.0
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A. Bidirectional Similarity Diffusion
A.1. Basic Similarity Diffusion Process

In this section, we will first introduce a Basic Similarity Diffusion Process. Follow the settings in (Zhou et al., 2003a;
Donoser & Bischof, 2013; Iscen et al., 2017), the similarities form xi and xj to other points in the data manifold are
constrained by the same affinity weight W ij , where W is explicitly designed to be a symmetric matrix. In addition, we
expect the final obtained F to be under the supervision of a self-similarity matrix I , thus we introduce a regularization term
at the end. The optimal value is obtained by minimizing the following objective function J :

J =
1

2

n∑
i,j=1

W ij

∥∥∥ F i∗√
Dii

− F j∗√
Djj

∥∥∥2
2
+ µ∥F − I∥22

=
1

2

n∑
i,j=1

W ij

(F i∗(F i∗)
⊤

Dii
− 2

F i∗(F j∗)
⊤√

DiiDjj

+
F j∗(F j∗)

⊤

Djj

)
+ µ∥F − I∥22

=
1

2

(
2tr(FF⊤)− 2tr(S⊤FF⊤)

)
+ µtr

(
(F − I)(F − I)⊤

)
,

(20)

where F i∗ and F ∗j are used to denote the i-th row and j-th column of F respectively, and tr(·) represents the trace
operator that return the summation of the diagonal items in a matrix. In addition, define the normalized matrix S as
S = D−1/2WD−1/2. To solve the minimization problem, we first show that the objective function J is convex. By
expanding the last trace item and merging it with the previous ones, we can get the following equation:

J = tr(FF⊤)− tr(S⊤FF⊤) + µtr(FF⊤)− 2µtr(F ) + µtr(I)

= tr
(
F⊤(µI + I − S)F

)
− 2µtr(F ) + µtr(I).

(21)

Later in Appendix A.2, we will prove that for a normalized graph matrix S, its eigenvalues are no larger than 1. We can
conclude that (µ + 1)I − S is positive definite, thus there exists a matrix M such that (µ + 1)I − S = MM⊤. The
objective function J turns out to be:

J = tr(F⊤MM⊤F )− 2µtr(F ) + µtr(I)

= ∥M⊤F ∥F − 2µtr(F ) + µtr(I).
(22)

The first item denotes the Frobenius norm of M⊤F , which is strictly convex, the remaining parts can be viewed as affine
functions, thus J is convex. Take the derivative of J to variable F , we can get:

∇F J = 2(µ+ 1)F − (S + S⊤)F − 2µI. (23)

In the basic settings, both W and S are symmetric, set the above derivation to 0, we can conclude that the optimum value of
F is the solution to the following equation: (

(µ+ 1)I − S
)
F = µI, (24)

by substituting α = 1
µ+1 , we can simplify the optimal result as below:

F ∗ = (1− α)(I − αS)−1I. (25)

The resulting matrix derived from the Basic Similarity Process captures more manifold information, providing a more
dependable foundation for ranking. However, computing the inverse of matrix I − αS is a process with very high time
complexity. Zhou et al. (2003b) proved that the optimal result can be iteratively approached, reducing the time complexity
to O(n3), where n is the dimension of matrix S. Moreover, following (Iscen et al., 2017; 2018), the iterative time can be
further reduced by utilizing the conjugate gradient method.
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A.2. Bidirectional Similarity Diffusion Process

To reveal the underlying manifold information in the Euclidean space, we first utilize the initial feature embedding to
construct an affinity graph G = {V, E}, which explicitly represents the data manifold by connecting the nearest neighbors
with a weight matrix W . The diffusion process aims to obtain a manifold-aware similarity matrix by performing the
information propagation within the affinity graph. Unlike the previous work (Bai et al., 2019a; Yang et al., 2013; Zhou et al.,
2012) that conducts diffusion in a hypergraph, the Bidirectional Similarity Diffusion Process only utilizes direct neighbors
to regularize pairwise similarity weights, thereby better mitigating the influence of outliers. Intuitively, we introduce a
reverse smoothness term to ensure the symmetry of the resulting similarity matrix, i.e., the affinity weight W ij is used to
constrain both the forward pair of similarities F ki and F kj , as well as the reverse pair F ik and F jk. In this section, we
will reformulate the original optimization problem of the Bidirectional Similarity Diffusion Process into a matrix form and
demonstrate its equivalence to solving a corresponding Lyapunov equation. The objective function is defined as:

min
F

1

4

n∑
k=1

n∑
i,j=1

(
W ij

( F ki√
Dii

− F kj√
Djj

)2

+W ij

( F ik√
Dii

− F jk√
Djj

)2
)

︸ ︷︷ ︸
smoothness

+µ∥F −E∥2F︸ ︷︷ ︸
regularization

,
(26)

where the left and right side in the expression are refereed to as the smoothness term and regularization term respectively.
Similar to the definition in Appendix A.1, D is the diagonal matrix with its element equal to the summation of the
corresponding row in the weight matrix W , i.e., Dii =

∑
j W ij . The regularization term is weighted by the hyper-

parameter µ and the semi-positive matrix E is introduced to prevent the objective similarity matrix F from becoming
excessively smooth. In order to convert the expression into matrix format, we involve a new identity matrix I to streamline
the derivation, the smoothness term can then be transformed into:

1

4

n∑
k,l=0

n∑
i,j=0

(
W ijIkl

( F ki√
Dii

− F lj√
Djj

)2

︸ ︷︷ ︸
part 1

+ IklW ij

( F ik√
Dii

− F jl√
Djj

)2

︸ ︷︷ ︸
part 2

)
.

(27)

For further transformation, we need to introduce the vectorization operator vec(·) and the Kronecker product ⊗. The
vectorization operator vec(·) can transform a matrix into a column vector by stacking its columns sequentially, while the
Kronecker product ⊗ can generate a larger block matrix by multiplying each element of the first matrix with the entire
second matrix. Moreover, define α ≡ n(i− 1) + k, β ≡ n(j − 1) + l, W(1) = W ⊗ I and D(1) = D ⊗ I for the first part
in Eq. (27), γ ≡ n(k − 1) + i and δ ≡ n(l− 1) + j, W(2) = I ⊗W and D(2) = I ⊗D for the second part in Eq. (27). In
addition to this, define the normalized matrix as S = D−1/2WD−1/2, S(1) = S ⊗ I and S(2) = I ⊗ S. Then we can
reformulate the smoothness term into matrix form as follows:

1

4

n2∑
α,β=1

W(1)
αβ

(vec(F )α√
D(1)

αα

− vec(F )β√
D(1)

ββ

)2

+
1

4

n2∑
γ,δ=1

W(2)
γδ

(vec(F )γ√
D(2)

γγ

− vec(F )δ√
D(2)

δδ

)2

=
1

4

n2∑
α,β=1

W(1)
αβ

vec(F )2α

D(1)
αα

+
1

4

n2∑
α,β=1

W(1)
αβ

vec(F )2β

D(1)
ββ

− 1

2

n2∑
α,β=1

vec(F )α
W(1)

αβ√
D(1)

ααD(1)
ββ

vec(F )β

1

4

n2∑
γ,δ=1

W(2)
γδ

vec(F )2γ

D(2)
γγ

+
1

4

n2∑
γ,δ=1

W(2)
γδ

vec(F )2δ

D(2)
δδ

− 1

2

n2∑
γ,δ=1

vec(F )γ
W(2)

γδ√
D(2)

γγD(2)
δδ

vec(F )δ

=vec(F )⊤vec(F )− 1

2
vec(F )⊤

(
(D(1))−1/2W(1)(D(1))−1/2 + (D(2))−1/2W(2)(D(2))−1/2

)
vec(F )

=vec(F )⊤
(
I− 1

2
S(1) − 1

2
S(2)

)
vec(F ).

(28)

The above inference utilizes the following facts:

1. vec(F )α = F ki, vec(F )β = F lj in part 1, vec(F )γ = F ik and vec(F )δ = F jl in part 2.

2. W(1)
αβ = W ijIkl, D(1)

αα = Dii and D(1)
ββ = Djj in part 1, W(2)

γδ = IklW ij , D(2)
γγ = Dii and D(2)

δδ = Djj in part 2.
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3.
∑n2

β=1 W
(1)
αβ = D(1)

αα,
∑n2

α=1 W
(1)
αβ = D(1)

ββ ,
∑n2

δ=1 W
(2)
γδ = D(2)

γγ and
∑n2

γ=1 W
(2)
γδ = D(2)

δδ since:

n2∑
β=1

W(1)
αβ =

n∑
j=1

W ij

n∑
l=1

Ikl = Dii = D(1)
αα,

n2∑
α=1

W(1)
αβ =

n∑
i=1

W ij

n∑
k=1

Ikl = Djj = D(1)
ββ ,

n2∑
δ=1

W(2)
γδ =

n∑
l=1

Ikl

n∑
j=1

W ij = Dii = D(2)
γγ ,

n2∑
γ=1

W(2)
γδ =

n∑
k=1

Ikl

n∑
i=1

W ij = Djj = D(2)
δδ .

4. S(1) = (D(1))−1/2W(1)(D(1))−1/2 and S(2) = (D(2))−1/2W(2)(D(2))−1/2 since:

S(1)αβ = SijIkl = D
−1/2
ii W ijD

−1/2
jj Ikl S(2)γδ = IklSij = IklD

−1/2
ii W ijD

−1/2
jj

= D
−1/2
ii W ijIklD

−1/2
jj = D

−1/2
ii IklW ijD

−1/2
jj

= (D(1)
αα)

−1/2(W(1))αβ(D(1)
ββ )

−1/2, = (D(2)
γγ )

−1/2W(2)
γδ (D

(2)
δδ )

−1/2.

The Frobenius regularization term in Eq. (26) is equivalent to the squared norm of vec(F −E). By jointly considering the
smoothness term and the regularization term, the objective function can be formulated as:

min
F

vec(F )T
(
I− 1

2
S(1) − 1

2
S(2)

)
vec(F ) + µ∥vec(F −E)∥22. (29)

Lemma A.1. Let A ∈ Rn×n, the spectral radius of A is denoted as ρ(A) = max{|λ|, λ ∈ σ(A)}, where σ(A) is the
spectrum of A that represents the set of all the eigenvalues. Let ∥ · ∥ be a matrix norm on Rn×n, given a square matrix
A ∈ Rn×n, λ is an arbitrary eigenvalue of A, then we have |λ| ≤ ρ(A) ≤ ∥A∥.

Lemma A.2. Let A ∈ Rm×m, B ∈ Rn×n, denote {λi,xi}mi=1 and {µi,yi}ni=1 as the eigen-pairs of A and B respectively.
The set of mn eigen-pairs of A⊗B is given by

{λiµj ,xi ⊗ yj}i=1,...,m, j=1,...n.

Denote the objective function as J , then we will prove that it is convex, which allows us to easily find the optimal solution at
the point where the partial derivative is zero. Consider matrix D−1W , since D is a diagonal matrix with its i-th element
the sum of the corresponding i-th row of matrix W , we can easily obtain that ∥D−1W ∥∞ = 1. According to Lemma A.1,
it is obviously that ρ(D−1W ) ≤ 1. As for the matrix S = D−1/2WD−1/2 we are concerned about, we can rewrite it as
D1/2D−1WD−1/2, which means S ∼ D−1W . Since two similar matrices share the same eigenvalues, we can conclude
that ρ(S) ≤ 1. By applying Lemma A.2, the spectral radius of the Kronecker product S(1) = S ⊗ I and S(2) = I ⊗S is no
larger than 1, i.e., ρ(S(1)) ≤ 1, ρ(S(2)) ≤ 1.

The Hessian matrix H of the objective function is 2(µ + 1)I − S̄(1) − S̄(2), where 2S̄(1) = S(1) + (S(1))⊤ and 2S̄(2) =
S(2) + (S(2))⊤. Since µ > 0 and ρ(S) ≤ 1, we can observe that all the eigenvalue of H is larger than 0, which means the
Hessian matrix H is positive definite. The positive definite Hessian matrix implies that the objective function is convex, in
this case, we can solve the optimal problem by taking the partial derivative of vec(F ), that is:

∇vec(F )J = (2I− S̄(1) − S̄(2))vec(F ) + 2µ(vec(F −E)), (30)

the optimal value is attained when the partial derivative is equal to zero, thus we can get the solution as:

vec(F ∗) =
2µ

µ+ 1

(
2I− 1

µ+ 1
S̄(1) − 1

µ+ 1
S̄(2)

)−1

vec(E), (31)

by substituting α = 1
µ+1 and S̄ = (S̄(1) + S̄(2))/2, we can obtain the following simplified expression as:

F ∗ = (1− α)vec−1
(
(I− αS̄)−1vec(E)

)
. (32)

Lemma A.3. Let A ∈ Rm×n, X ∈ Rn×p and B ∈ Rp×q respectively, then

vec(AXB) = (B⊤ ⊗A)vec(X).
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Additionally, by utilizing the relationship provided by Lemma A.3 and maintaining the partial derivatives given in Eq. (30)
as zero, we can derive the following expression:

2F − F S̄ − S̄F + 2µ(F −E) = 0, (33)

where S̄ = (S + S⊤)/2. By performing some simple substitutions, we can obtain that the optimal value F ∗ is equivalent
to the solution of the following Lyapunov equation:

(I − αS̄)F + F (I − αS̄) = 2(1− α)E. (34)

A.3. Basic Iterative Solution

Directly solving the Lyapunov equation proposed in Eq. (34) is time consuming, therefore, it is crucial to develop a more
efficient method to approximate the solution. In this section, we will prove that the optimal result can be infinitely approached
in an iterative manner as follows:

F (t+1) =
1

2
αF (t)S̄

⊤
+

1

2
αS̄F (t) + (1− α)E. (35)

where S = D−1/2WD1/2, and S̄ = (S + S⊤)/2 is symmetric. By utilizing Lemma A.3 and incorporating the vec(·)
operator on both sides, we can reformulate the updating process as:

vec(F (t+1)) =
1

2
α(S̄ ⊗ I)vec(F (t)) +

1

2
α(I ⊗ S̄)vec(F (t)) + (1− α)vec(E)

= αS̄vec(F (t)) + (1− α)vec(E).

(36)

Suppose the iteration starts from an initial value of F (0), for instance, F (0) can be equal to matrix E. By recursively
substituting the current value into the iterative formula, we can derive a relationship where the current value F (t) depends
only on the initial value F (0), that is:

vec(F (t)) = (αS̄)tvec(F (0)) + (1− α)

t−1∑
i=0

(αS̄)ivec(E). (37)

Lemma A.4. Let A ∈ Rn×n, then limk→∞ Ak = 0 if and only if ρ(A) < 1.

Lemma A.5. Given a matrix A ∈ Rn×n and ρ(A) < 1, the Neumann series I +A+A2 + · · · converges to (I −A)−1.

We have already shown that the spectral radius of S̄ is no larger than 1, by taking advantage of these above two lemmas, we
can determine the limits of the following two expressions:

lim
t→∞

(αS̄)t = 0, (38)

and

lim
t→∞

t−1∑
i=0

(αS̄)i = (I− αS̄)−1. (39)

Therefore, the iteration in Eq. (36) induce to:

vec(F ∗) = (1− α)(I− αS̄)−1vec(E), (40)

by taking the inverse vectorization operator vec−1(·) on both side, we can obtain that:

F ∗ = (1− α)vec−1
(
(I− αS̄)−1vec(E)

)
, (41)

which is identical to the expression in Eq. (32). Then we will analyze the convergence rate of Eq. (36). Since we have
already proved that ρ(S̄) ≤ 1 and thus ρ(αS̄) < 1 given α < 1, and we can find a matrix norm ∥ · ∥ such that ∥αS̄∥ < 1.
More generally, with an induced matrix norm ∥ · ∥, the iteration follows the convergence rate:

∥vec(F (t))− vec(F ∗)∥ ≤ ∥(αS̄)t∥ · ∥vec(F (0))− vec(F ∗)∥. (42)
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Algorithm 1 Efficient Iterative Solution for Bidirectional Similarity Diffusion Process

Input: initial estimation F (0) ∈ Rn×n, normalized Kronecker matrix S̄ ∈ Rn2×n2

, identity matrix I ∈ Rn2×n2

, max
number of iterations maxiter, hyper-parameter α = 1

1+µ , iteration tolerance δ.

1: initialize P (0) and R(0) with 2(1− α)E − (I − αS̄)F (0) − F (0)(I − αS̄).
2: denote f t = vec(F (t)), rt = vec(R(t)), pt = vec(P (t)).
3: for t = 0, 1, . . . ,maxiter do

4: compute parameter αt =
r⊤t rt

2p⊤
t (I− αS̄)pt

.

5: refresh f t+1 = f t + αtpt.
6: update residue rt+1 = rt − 2αt(I− αS̄)pt.
7: if ∥rt+1∥ < δ then
8: return F ∗ = vec−1(f∗).
9: end if

10: compute parameter βt =
r⊤
t+1rt+1

r⊤
t rt

.
11: refresh pt+1 = rt+1 + βtpt.
12: end for
Output: F ∗ = vec−1(f∗).

Lemma A.6. Let ∥ · ∥ be a matrix norm on Rn×n and let A ∈ Rn×n, then ρ(A) = limk→∞ ∥Ak∥1/k.

If we define the average convergence rate at t-th iteration as Rt(αS̄) = − ln ∥(αS̄)t∥/t. By utilizing Lemma A.6, we can
derive that the asymptotic convergence rate R∞(αS̄) of the error follows:

R∞(αS̄) = lim
t→∞

Rt(αS̄) = − ln ρ(αS̄). (43)

In addition to that, since all the entries of matrix F (0), S̄ and E in the iterations of Eq. (36) are no less than zero, we
can easily obtain that all the elements of F ∗ are also greater than or equal to zero. This characteristic is useful to our
Bidirectional Similarity Diffusion process.

A.4. Efficient Iterative Solution
Definition A.7. Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the k-th Krylov subspace is defined as
Kk(A;x) = span{x,Ax,A2x, . . . ,Ak−1x}. If A is symmetric positive definite and thus invertible, we can sort the
eigenvalues of A in ascending order, i.e., λ1 < λ2 < · · · < λn, λi ∈ σ(A), and the condition number of A is denoted
as κ(A) = ∥A∥2∥A−1∥ = λn/λ1. The inner product of x,y ∈ Rn with respect to operator A is defined as (x,y)A =

A⊤Ay, which can induces the A-norm defined on Rn by ∥x∥A =
√
x⊤Ax. If (x,y)A = 0, we say that x and y are

A-orthogonal.

Algorithm 1 demonstrates an efficient solution to Eq. (34) utilizing the conjugate gradient method. It can be viewed as
minimizing the residual r over the Krylov subspace defined by Kt(I − αS̄; r0) in an iterative way. The iteration starts
from an initial value F (0), and denote the result after t-th iteration by F (t). Take the vectorize operation vec(·) during the
updating process, the error is measured by the (I− αS̄)-norm of the difference between vec(F (t)) and the optimum value
vec(F ∗), with the following convergence rate:

∥vec(F (t))− vec(F ∗)∥2I−αS̄ ≤ inf
pt∈Pt

pt(0)=1

sup
λ

|pt(λ)|2∥vec(F (0))− vec(F ∗)∥2I−αS̄, (44)

where pt(x) ∈ Pt is the so called residual polynomial constrained by pt(0) = 1. It guarantees that the optimal solution will
be found within a limited number of iterations even in the worst case. By selecting specific residual polynomials, we can
derive various upper bounds for convergence. In particular, we can utilize the following Chebyshev polynomial Tt(x) to
define the residual polynomial pt(x):

Tt(x) =

{
cos(t · arccosx), |x| ⩽ 1
cosh(t · arccoshx), |x| > 1

(45)
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and thus the convergence rate can be obtained by:

∥vecF (t))− vec(F ∗)∥I−αS̄ ≤ 2
(√κ(I− αS̄)− 1√

κ(I− αS̄) + 1

)t

∥vec(F (0))− vec(F ∗)∥I−αS̄, (46)

where κ(I− αS̄) is the corresponding condition number mentioned in Definition A.7. The convergence will be even faster
if the eigenvalues are clustered. Assume σ(I − αS̄) = σ0

⋃
σ1, and the number of elements in σ0 is l, we can obtain a

corollary shown in Eq. (47), which implies that the convergence rate is mainly governed by the effective condition number
b/a,

∥vec(F (t))− vec(F ∗)∥ ≤ 2M
(√b/a− 1√

b/a+ 1

)t−l

∥vec(F (0))− vec(F ∗)∥, (47)

in which:
a = min

λ∈σ1

λ, b = max
λ∈σ1

λ, and M = max
λ∈σ1

∏
µ∈σ0

|1− λ/µ|.

B. Neighbor-guided Similarity Smooth
In this section, we will first derive a more generalized formulation of our proposed optimization problem as below. The goal
of this proposition is to find an optimal vector x to minimize the quadratic objective function, note that all the elements of f
and p are no less than 0, and all the entries of p are also not exceed r, i.e., 0 ≤ pi ≤ r for i = 1, 2 . . . , n.

minimize
1

2
∥rx− p ◦ f∥22 + β∥x− f∥22

subject to xi ≥ 0, i = 1, 2 . . . , n

∥x∥1 = ∥f∥1,

(48)

where β > 0 is the regularization weight, and symbol ◦ is an element-wise multiplier, capable of merging two vectors. We
first rewrite the optimization problem into a standard form. Note that both the objective function and constraints are convex,
thus the primal problem is also convex,

minimize
1

2
∥rx− p ◦ f∥22 + β∥x− f∥22

subject to − xi ≤ 0, i = 1, 2 . . . , n
n∑

i=1

xi −
n∑

i=1

f i = 0.

(49)

Denote D as the domain defined by the inequality constraints. Since there exists a feasible point x∗ ∈ refine D that makes
the inequality constraints strictly hold. Thus the convex optimization problem satisfies Slater’s constraint qualification,
which states that the strong duality holds and the KKT conditions can provide sufficiency and necessity for finding the
optimal solution. The Lagrange function L(x,λ, ν) corresponding to the primal constrained optimization problem can
formulated as below:

L(x,λ, ν) = 1

2
∥rx− p ◦ f∥22 + β∥x− f∥22 −

n∑
i=1

λixi + ν(

n∑
i=1

xi −
n∑

i=1

f i). (50)

Suppose x̃, λ̃, ν̃ satisfy the following KKT conditions. Since the Slater’s condition holds for this convex optimization
problem, x̃ and λ̃, ν̃ are primal and dual optimal with zero duality gap and the optimum is attained,

−x̃i ≤ 0, i = 1, . . . , n
n∑

i=1

x̃i −
n∑

i=1

f i = 0

λ̃i ≥ 0, i = 1, . . . , n

λ̃ix̃i = 0, i = 1, . . . , n

r2x̃i − rpif i + 2β(x̃i − f i)− λ̃i + ν̃ = 0, i = 1, . . . , n.

(51)
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First, we prove that λ̃i = 0 for i = 1, 2, . . . , n, then we can get the closed-form solution to the optimization problem more
easily. Suppose there exists some i such that λ̃i > 0 and thus the corresponding x̃i = 0 according to the complementary
slackness condition. We can obtain that λ̃i = ν̃ − rpif i − 2βf i. And it is worth to notice that not all the x̃i = 0 since
∥x̃∥1 = ∥f∥1. Taking the sum of all the λ̃i by using the last KKT condition in Eq. (51), we can get:

n∑
i=1

λ̃i = nν̃ + r2
n∑

i=1

f i − r

n∑
i=1

pif i, (52)

which is equal to the summation of all the λ̃i ̸= 0, that is:∑
i,λ̃i ̸=0

λ̃i =
∑

i,λ̃i ̸=0

ν̃ − rpif i − 2βf i. (53)

Take some small transformations to the two Eq. (52) and Eq. (53), we can derive that:

∑
i,λ̃i=0

ν̃ = r

n∑
i=1

(pif i − rf i)−
∑

i,λ̃i ̸=0

(rpif i + 2βf i).

As we have pi ≤ r in our settings, we can infer that ν̃ ≤ 0, which will lead to a contradiction that λ̃i = ν̃−rpif i−2βf i ≤ 0

for all i when we are expecting there exists some λ̃i > 0. Thus, we have proved that λ̃i = 0 for i = 1, 2 . . . , n. From
Eq. (52), we can solve the optimal value of ν̃ as:

ν̃ = r

n∑
i=1

(pif i − rf i)/n. (54)

Bring back ν̃ into the last equation in the KKT conditions, we can find the optimal value as below:

x̃i =
rpi + 2β

r2 + 2β
f i +

r
∑n

i=1(rf i − pif i)

n(r2 + 2β)
, (55)

which can also be expressed in vector form as:

x̃ =
rp+ 2β

r2 + 2β
◦ f +

r2∥f∥1 − rp⊤f

n(r2 + 2β)
. (56)

In addition, we introduce a sparse variation to the original optimization problem. If f is a sparse vector with activation
dimension set C, and the optimized vector x share the same sparsity, the objective function then becomes:

minimize
1

2
∥rx− p ◦ f∥22 + β∥x− f∥22

subject to xi ≥ 0, i ∈ C
xi = 0, i = 1, 2 . . . , |X |/C
∥x∥1 = ∥f∥1.

(57)

It can be viewed as a special case of the general optimization problem, the optimal solution can be quickly obtained by:

x̃i =
rpi + 2β

r2 + 2β
f i +

r
∑

i∈C(rf i − pif i)

|C|(r2 + 2β)
, i ∈ C. (58)

As for the proposed Neighbor-guided Similarity Smooth problem proposed in Section 4.2. We can leverage the above
formula to get the closed-form solution as below:

F̂ ij =
rT ij + 2β

r2 + 2β
F ij +

r2∥F i∥1 − rT⊤
i F i

|C[i]|(r2 + 2β)
, j ∈ C[i]. (59)
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Table 10. Evaluation of the performance on Market1501. Here we select BoT (Luo et al., 2019), OSNet (Zhou et al., 2022), AGW (Ye
et al., 2022), MGN (Wang et al., 2018) and SpCL (Ge et al., 2020) as our backbone model.

Method
BoT OSNet AGW MGN SpCL

mAP R1 mINP mAP R1 mINP mAP R1 mINP mAP R1 mINP mAP R1 mINP

Baseline 86.4 94.7 60.9 85.8 94.8 57.1 88.4 95.6 66.1 89.9 95.8 68.1 72.2 87.7 33.3
kNN 88.8 95.2 65.3 89.1 95.5 66.5 90.1 96.0 68.3 91.7 96.4 72.4 77.5 89.3 42.3
AQE 93.3 95.4 85.6 92.6 95.0 84.1 93.9 95.8 87.3 94.8 96.4 89.3 82.8 89.6 58.5
αQE 92.9 95.6 82.8 91.4 95.0 81.5 93.6 96.0 84.9 94.8 96.5 87.4 78.4 88.6 50.7

AQEwD 93.1 95.3 84.8 92.5 94.8 83.6 93.7 95.8 86.6 94.6 96.4 88.6 83.6 90.3 57.3
RDP 93.6 95.8 87.5 93.2 95.7 86.0 93.9 96.2 88.5 95.1 96.8 90.7 85.7 90.4 64.3
SCA 93.8 94.9 88.5 93.3 95.0 86.4 94.1 95.4 89.3 95.3 96.3 91.2 85.7 90.0 64.7
k-recip 94.2 95.6 88.6 93.7 95.2 86.8 94.7 95.9 89.5 95.4 97.0 90.1 86.1 90.6 63.3
ECN 94.0 95.6 88.6 93.7 95.5 87.0 94.3 96.0 89.5 95.5 96.7 91.5 86.2 90.7 65.5

Ours 95.2 96.1 91.2 94.6 95.7 88.8 95.2 96.4 91.1 95.9 96.7 92.3 87.8 91.5 67.7

C. Sparse Jensen-Shannon Divergence
Instead of directly using the optimized similarity matrix F for instance retrieval, we apply Eq. (19) to compute the Jensen-
Shannon divergence as our distance measure. Note that each row in F is post-processed with an l1-normalization operation,
which can be viewed as a probability distribution within the data manifold. This approach aligns more closely with our
similarity diffusion process. Recall the divergence function as below:

dJS(i, j) =
1

2

n∑
k=1

F ik log
( 2F ik

F ik + F jk

)
+

1

2

n∑
k=1

F jk log
( 2F jk

F ik + F jk

)
. (60)

The computation speed can be enhanced by leveraging the sparsity of the similarity matrix. For the first part in Eq. (60), we
can decompose and rewrite this term as follows:

1

2

n∑
k=1

F ik log
( 2F ik

F ik + F jk

)
=

1

2

∑
k|F ik ̸=0

F ik log
( 2F ik

F ik + F jk

)
+

1

2

∑
k|F ik=0

F ik log
( 2F ik

F ik + F jk

)
, (61)

where the corresponding item when F ik = 0 is obviously equal to zero. As for the situation when F ik = 0, we can make
some further decomposition depending on whether F jk is equal to 0, that is:

1

2

∑
k|F ik ̸=0

F ik log
( 2F ik

F ik + F jk

)
=

1

2

∑
k|F ik ̸=0,F jk=0

F ik log
( 2F ik

F ik + F jk

)
+

1

2

∑
k|F ik ̸=0,F jk ̸=0

F ik log
( 2F ik

F ik + F jk

)
.

(62)
Based on the observation that the log function in the expression is equal to 1 while F ik ̸= 0 and F jk = 0, and by leveraging
the fact that the l1-norm of F i equal to 1, i.e., ∥F i∥1 = 1, we can obtain that:

1

2

∑
k|F ik ̸=0

F ik log
( 2F ik

F ik + F jk

)
=

1

2

∑
k|F ik ̸=0

F ik − 1

2

∑
k|F ik ̸=0,F jk ̸=0

F ik +
1

2

∑
k|F ik ̸=0,F jk ̸=0

F ik log
( 2F ik

F ik + F jk

)
=

1

2
+

1

2

∑
k|F ik ̸=0,F jk ̸=0

F ik

(
log

( 2F ik

F ik + F jk

)
− 1

)
.

(63)
Similar decomposition can be conducted to the second term in Eq. (60), substituting them back into the original formula, the
final Jensen-Shannon divergence can be efficiently computed by:

dJS(i, j) = 1 +
1

2

∑
k|F ik ̸=0,F jk ̸=0

F ik

(
log

( 2F ik

F ik + F jk

)
− 1

)
+

1

2

∑
k|F ik ̸=0,F jk ̸=0

F jk

(
log

( 2F jk

F ik + F jk

)
− 1

)
.

(64)

D. Extended Experiments
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Figure 5. We showcase the retrieval performance of the initial search and our proposed method through selected qualitative examples,
tested on the ROxford dataset. The interest region in the images on the left side are extracted with an orange bounding box as the query.
On the right side, the top 10 retrieval results from both the initial search and our proposed method are presented, with true positives
marked by a green bounding box and false matches denoted by a red bounding box.

Table 11. Evaluation of the performance on Market1501. Here we select AdaSP (Zhou et al., 2023), ABD-Net (Chen et al., 2019),
TransReID (He et al., 2021) and ISE (Zhang et al., 2022).

Method
AdaSP ABD-Net TransReID CLIP-ReID ISE

mAP R1 mINP mAP R1 mINP mAP R1 mINP mAP R1 mINP mAP R1 mINP

Baseline 86.7 93.9 62.5 88.5 95.4 65.4 88.2 94.7 67.2 89.8 95.5 69.3 83.9 93.0 54.8
kNN 88.7 93.8 70.9 91.3 95.7 74.5 90.8 95.3 75.2 92.3 96.1 77.8 87.5 93.9 64.5
AQE 92.2 94.4 83.1 93.5 95.8 87.4 92.0 94.9 85.3 94.4 95.9 89.4 90.3 93.6 79.8
αQE 92.5 94.6 83.2 92.1 95.3 84.1 90.9 94.5 82.8 94.4 96.0 89.1 86.4 93.1 71.9

AQEwD 92.2 94.6 82.6 93.6 95.8 86.3 92.2 94.6 84.6 94.3 96.2 88.6 91.2 94.4 79.2
RDP 92.9 94.8 85.8 94.3 96.1 89.3 93.3 95.9 87.1 94.9 96.2 90.3 92.2 94.7 83.2
SCA 92.6 94.2 85.0 94.4 95.7 89.6 93.0 94.3 87.4 94.9 95.7 90.8 92.2 94.3 83.6
k-recip 93.0 94.5 85.6 94.7 96.4 89.0 93.6 95.0 87.3 95.0 96.1 90.1 92.3 94.6 81.3
ECN 93.0 94.9 85.8 94.7 96.3 90.2 93.8 95.8 88.0 95.2 96.5 91.2 92.4 94.7 84.1

Ours 93.7 95.0 87.5 95.0 96.2 90.6 94.6 95.7 89.7 95.4 96.5 91.6 93.4 95.0 84.9
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Table 12. Evaluation of the performance on CUHK03-D and CUHK03-L. We select BoT (Luo et al., 2019), AGW (Ye et al., 2022), MGN
(Wang et al., 2018) and AdaSP (Zhou et al., 2023) as our backbone model.

Method
CUHK03-D CUHK03-L

mAP R1 mINP mAP R1 mINP

BoT 63.0 64.4 51.6 66.1 67.0 54.8

kNN 67.3 68.5 57.5 70.2 71.0 60.4
AQE 75.5 73.6 71.5 77.8 75.6 74.8
αQE 74.8 73.4 70.0 77.2 75.1 73.5
RDP 78.3 77.1 75.6 79.7 77.9 77.4
SCA 80.7 75.8 79.1 82.9 77.8 81.7
k-recip 79.6 76.2 78.3 81.6 78.3 81.1
ECN 80.5 77.5 79.6 82.1 79.0 81.8

Ours 81.6 78.7 81.4 83.7 80.6 83.7

Method
CUHK03-D CUHK03-L

mAP R1 mINP mAP R1 mINP

AGW 69.8 71.4 59.4 72.6 73.4 62.7

kNN 73.8 74.5 65.4 76.8 78.1 69.3
AQE 80.0 78.5 77.4 83.1 81.9 80.7
αQE 79.1 77.7 75.6 82.1 80.6 78.8
RDP 82.5 80.1 80.8 85.7 84.4 84.0
SCA 84.1 79.5 83.0 87.1 83.1 86.2
k-recip 84.0 81.2 83.2 86.4 83.5 85.9
ECN 83.7 80.4 83.4 86.2 83.3 86.0

Ours 85.8 82.9 85.5 87.7 85.2 87.9

Method
CUHK03-D CUHK03-L

mAP R1 mINP mAP R1 mINP

MGN 72.2 74.6 61.3 75.9 77.9 65.9

kNN 76.2 77.1 67.7 80.2 80.9 72.7
AQE 83.3 81.8 80.3 86.3 84.6 84.3
αQE 82.0 80.7 78.3 85.5 84.2 82.8
RDP 86.1 85.1 83.7 88.3 87.1 86.8
SCA 87.7 84.2 86.5 90.5 87.4 89.6
k-recip 87.1 84.8 86.4 89.6 87.9 89.2
ECN 86.9 84.6 86.3 89.8 87.9 89.5

Ours 88.6 87.1 88.1 90.6 89.0 90.5

Method
CUHK03-D CUHK03-L

mAP R1 mINP mAP R1 mINP

AdaSP 79.0 82.9 68.8 81.0 82.9 72.2

kNN 82.5 83.9 75.3 84.4 85.4 78.1
AQE 87.4 86.4 84.6 89.0 88.3 86.9
αQE 87.3 86.2 84.4 89.1 88.6 86.9
RDP 88.9 88.1 86.7 91.3 90.3 89.7
SCA 90.6 88.1 89.1 92.6 89.9 91.9
k-recip 90.2 88.9 89.2 92.2 90.6 91.8
ECN 90.3 88.9 89.5 92.5 90.9 92.1

Ours 91.5 90.3 90.7 93.2 91.9 93.0
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(a) Ablation studies of κ.
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(b) Ablation studies of σ.
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(c) Ablation studies of µ.
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(d) Ablation studies of β.

Figure 6. Extended ablation studies of other hyper-parameters. Test with R-GeM (Radenović et al., 2019) extracted descriptors.
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