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Abstract
Previous studies yielded discouraging results for
item-level locally differentially private linear re-
gression with s∗-sparsity assumption, where the
minimax rate for nm samples is O(s∗d/nmε2).
This can be challenging for high-dimensional data,
where the dimension d is extremely large. In
this work, we investigate user-level locally dif-
ferentially private sparse linear regression. We
show that with n users each contributing m sam-
ples, the linear dependency of dimension d can
be eliminated, yielding an error upper bound of
O(s∗2/nmε2). We propose a framework that first
selects candidate variables and then conducts es-
timation in the narrowed low-dimensional space,
which is extendable to general sparse estimation
problems with tight error bounds. Experiments
on both synthetic and real datasets demonstrate
the superiority of the proposed methods. Both
the theoretical and empirical results suggest that,
with the same number of samples, locally private
sparse estimation is better conducted when multi-
ple samples per user are available.

1. Introduction
Local differential privacy (LDP) (Kairouz et al., 2014; Duchi
et al., 2018), a variant of differential privacy (DP) (Dwork
et al., 2006), has gained considerable attention in recent
years. LDP assumes that each sample is possessed by a data
holder, who privatizes their data before it is collected by
the curator. Offering a stronger sense of privacy protection
compared to central DP, learning under LDP often encoun-
ters challenges such as slow convergence, high demand for
local machine capacity, and limited accessibility to basic
techniques (Duchi et al., 2018; Tramèr et al., 2022; Ma et al.,
2024b), which obstruct the theoretical analysis and practical
implementation of LDP learning.
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Fortunately, in some scenarios, each user may possess multi-
ple samples, which can serve as a way to overcome these dif-
ficulties. This is known as user-level LDP (ULDP) (Acharya
et al., 2023; Bassily & Sun, 2023). Research has demon-
strated performance improvement in intentionally designed
models when each user has multiple samples, from both the
central DP perspective (Liu et al., 2020; Ghazi et al., 2021;
Levy et al., 2021; Narayanan et al., 2022; Ghazi et al., 2023)
and the LDP perspective (Girgis et al., 2022; Acharya et al.,
2023; Bassily & Sun, 2023). In most cases (for ULDP), the
improvement lies in the effective sample size: if there are n
users with m samples and privacy budget ε, the problem is
as tractable as having nm users with one sample and privacy
budget ε. See Table 1 for a summary.

We proceed to ask the following question: Besides effective
sample size, does having multiple samples per user offer
benefits? If the answer to this question is affirmative, it holds
practical significance. For instance, when designing data
collection schemes, the primary focus should be on users
capable and willing to provide multiple samples. Moreover,
if a significant number of users lack trust in the data collector
but are willing to share information within small groups
(such as family or company), then better mechanisms can
be devised for conducting the learning process.

In this work, we offer an affirmative response to the question
from the perspective of sparse estimation. Sparse estimation
stands as a crucial task in modern machine learning, espe-
cially when dealing with high-dimensional data where struc-
tured assumptions like sparsity can significantly enhance
performance. Particularly, we study sparse linear regression.
We first elucidate why the minimax lower bound fails to hold
when each user possesses multiple samples and provide a
lower bound for ULDP (Theorem 2.4). Subsequently, we in-
troduce an algorithm structured as follows: half of the users
perform local variable selection and aggregate their findings
to identify the support of non-zero variables. Under mild
assumptions, we establish theoretical guarantees for both lo-
cal selection (Proposition 3.2) and aggregation (Proposition
3.3). Then, to conduct estimation on the narrowed space,
we propose a sub-optimal multi-round protocol (Theorem
3.4) and a two-round protocol (Theorem 3.6). The latter
achieves an estimation error O(s∗2/nmε2). Compared to
minimax error rate O(ds∗/nmε2) under LDP, our rate im-
proves by a factor of s∗/d which can be significant for high
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Table 1. Comparison of error rate between non-private, ULDP, and
LDP results. Results assume the true parameter lies within `∞ unit
ball. Here, we consider sparse regression with beta-min condition,
which improves a log d over the usual case.

Non-private
(nm samples)

ε-ULDP
(n users m samples)

ε-LDP
(nm samples)

discrete
distribution1

√
k
nm

√
k2

nmε2

√
k2

nmε2

mean
estimation2

d
nm

d2

nmε2
d2

nmε2

sparse
regression3

s∗

nm
s∗2

nmε2 (ours) ds∗2

nmε2

dimensional data. Furthermore, we demonstrate how the
latter protocol straightforwardly extendeds to other sparse
estimation problems (Theorem 3.7).

We summarize our contributions as follows.

• We formalize, for the first time, the advantage of ULDP
over LDP by considering the sparse assumption. Our
findings reveal that the rates of sparse problems, such
as sparse linear regression and sparse mean estimation,
do not scale linearly in d under ULDP, which contrasts
with previous negative results for LDP.

• We provide a general framework for ULDP sparse
estimation. Moreover, focusing on linear regression,
we devise tailored methods that achieve tight upper
bounds. The precise estimation procedures serve as
solutions to low-dimensional ULDP linear regression,
which are of independent interest.

• We conduct experiments on both synthetic and real
datasets, with convincing results demonstrating the
superiority of our methods.

The article is structured as follows: In Section 2, we discuss
related literature, preliminary knowledge, and minimax re-
sults of ULDP sparse linear regression. In Section 3, we
present our solutions. In Section 4, we provide experiment
results. All technical proofs, detailed algorithms, and addi-
tional experiment results are included in the appendix.

2. ULDP Sparse Linear Regression
2.1. Preliminaries

We introduce necessary notations. For any vector x, let
xi denote the i-th element of x. Let x{i1,··· ,ij} be a slic-
ing vector of x, whose j-th elements is xij . Let ‖x‖p be
the `p norm of x for 0 ≤ p ≤ ∞. We will evaluate the

1Kairouz et al. (2016); Acharya et al. (2023)
2Duchi et al. (2018); Bassily & Sun (2023)
3Ndaoud (2019); Zhu et al. (2023)

estimation error by the squared loss, i.e. ‖β̂ − β∗‖22. For
matrix A, let λi(A) denote the i-th largest singular value of
A. Throughout this paper, we use the notation an . bn and
an & bn to denote that there exist positive constant c and
c′ such that an ≤ cbn and an ≥ c′bn, for all n ∈ N. We
use a = O(b) if a . b. We denote an � bn if an . bn and
bn . an. Let a ∨ b = max(a, b) and a ∧ b = min(a, b).
Besides, for any set A ⊂ Rd, the diameter of A is defined
by diam(A) := supx,x′∈A ‖x− x′‖2.

Suppose we have n users. The i-th user has m i.i.d. sam-
ples (Xi, yi) = {(Xi,j , yi,j), j = 1, · · · ,m} from distri-
bution P on domain X × Y ⊆ Rd × R. We consider
the classical sparse linear regression. Let each Xi,j be
i.i.d. sub-Gaussian. Moreover, Σ = E[XX>] denote the
covariance matrix of the marginal distribution. Assume
C−1X ≤ λd(Σ) ≤ λ1(Σ) ≤ CX for some constant CX > 1.
For mean zero sub-Gaussian random variable σ, conditional
distribution PY |X and its coefficients β∗ are described by

y = Xβ∗ + σ, β∗ ∈ Ωds∗,a =

{
‖β∗‖0 ≤ s∗, (1)

‖β∗‖∞ ≤ 1, max
β∗j>0

|β∗j | ≥ a
}
,

which has s∗-sparsity and non-zero entries bounded away
from 0. Without loss of generality, we assume the first s∗

elements of β∗ are non-zero.

We adopt the following setting for privacy constraints. Any
estimation of β∗ is considered as a random variable, while
its construction process with respect to the data is user-level
locally differentially private (ULDP). We consider the se-
quential interactive case where the private observation Ui is
decided only by its local samples (Xi, yi) and previous ob-
servations U1, · · · , Ui−1. The rigorous definition of (pure)
ULDP is as follows.

Definition 2.1 (User-level local differential privacy).
Given data {(Xi, yi)}ni=1, each (Xi, yi) is mapped to
privatized information Ui which is a random vari-
able on U . Let σ(U) be the σ-field on U . Ui
is drawn conditional on (Xi, yi) via the distribution
R
(
Ui | Xi = x, Yi = y, U1:(i−1) = u1:(i−1)

)
. Then the

mechanism R provides ε-user-level local differential pri-
vacy (ε-ULDP) if

R
(
Ui ∈ U | Xi = x, Yi = y, U1:(i−1) = u1:(i−1)

)
R
(
Ui ∈ U | Xi = x′, Yi = y′, U1:(i−1) = u1:(i−1)

) ≤ eε
for all 1 ≤ i ≤ n, U ∈ σ(U), x, x′ ∈ Xm, and y, y′ ∈ Ym.

ULDP reduces to the conventional item-level LDP for
m = 1. Besides being more practically reasonable (Cum-
mings et al., 2022), ULDP is also a more stringent definition
than item-level LDP. To achieve ε-ULDP by trivially using
group privacy, each item must use a significantly smaller
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budget ε/m. Conversely, on the curator side, inference of
any single item is no easier than inference of the whole user,
which means each item is as safe as ε-LDP against the cura-
tor. As a compromise, each item should expose information
to its group mates. The requirement is typically acceptable,
such as when each user has multiple records on a personal
cellphone, or when data sources can be clustered into small
groups where secrete information is safely shared.

2.2. Related Work

Extensive studies have been conducted focusing on the cen-
tral DP setting for linear regression model in low dimensions
(Wang, 2018; Avella-Medina et al., 2023; Alabi et al., 2022;
Arora et al., 2022; Amin et al., 2023) and high dimensions
(Kifer et al., 2012; Talwar et al., 2015; Kumar & Deisen-
roth, 2019; Zhang & Zhang, 2021; Cai et al., 2021; Hu
et al., 2022; Khanna et al., 2023a;b; Raff et al., 2023). De-
spite variations in settings and assumptions, state-of-the-art
results (Liu et al., 2022; Varshney et al., 2022; Cai et al.,
2023) indicate a general error rate of O(s∗ log d/(nε2)) for
squared loss, where the dependency on the dimension of
feature space is log d. Thus, d can be exponentially large in
nε2 to ensure consistent estimation.

This is not the case in local setting, of which there is still a
lack of understanding compared to the central one. Several
works addressed the problem focusing on the optimization
error (Smith et al., 2017; Zheng et al., 2017). Both works
assumed diam(X ) ≤ 1 and do not generalize to many
practical settings, such as when all features are i.i.d. and
therefore diam(X ) = O(

√
d). As for statistical estimation,

Duchi et al. (2018) showed the matching upper and lower
bounds for low dimensional, non-interactive linear regres-
sion are O(d/(nε2)). Wang & Xu (2019) first provided the
lower bound O(d/(nε2)) for LDP linear regression with
1-sparsity, which is then generalized to s-sparsity by Zhu
et al. (2023). In summary, these prohibitive results indicate
that there exists no meaningful approach when d � nε2,
which is often the case in practice.

Our approach utilize a selection-estimation strategy, which
is shown to be advantages under many situation. Under
non-private setting, Wang et al. (2011); Liang et al. (2023)
select candidate variables by aggregating Lasso fitted on ran-
dom subsamples, which is also adopted with privacy (Kifer
et al., 2012). More recently, the strategy has been used
for communication-constrained learning (Duchi & Rogers,
2019; Barik & Honorio, 2020; Acharya et al., 2021). Note
that our method is also communication efficient, as each
user sends only 1 bit of information. Acharya et al. (2021)
tackled LDP sparse discrete distribution estimation by se-
lecting the support variables. However, this is only feasible
for such specific problems where users can provide useful
information about which variables are potentially non-zero

given only one sample. Their result does not generalize to
other problems.

During the preparation of the camera-ready version of this
paper, Kent et al. (2024) appeared online and analyzed
sparse mean estimation under ULDP. We share some re-
sults with their conclusions, including the negative results
for m ≤ s∗ log d, the established rates, and a support esti-
mation type estimator. However, we primarily consider the
case where s∗, log d . nε2,m . d, whereas their analysis
is more comprehensive, considering other regions and, more
importantly, identifying the phase transition.

2.3. Minimax Lower Bound

We introduce the related minimax results of locally private
sparse linear regression. For any loss function ` (squared
loss in our case), the minimax convergence rate is

inf
β

sup
P∈H

EP [`(β∗, β(X, y))]

where H is the hypothesis distribution class and β is any
estimator of β∗. The minimax lower bound for sparse linear
regression under LDP is well explored in Wang & Xu (2019)
and Zhu et al. (2023).

Proposition 2.2 (LDP lower bound). Let H be distri-
bution class satisfying (1) for 0 ≤ a ≤ 1. Let data
{(Xi, yi)}ni=1 be generated from (1) with n = n′m′ and
m = 1. For 0 < ε ≤ 1, let βε be any ε-LDP estimator of
β∗. Then we have

inf
βε

sup
P∈H

EP

[
‖β∗ − βε‖22

]
&

ds∗

n′m′ε2
.

The above result yields that for d & nm, any attempt to
LDP sparse linear regression is effortless, as the estimation
error does not even converge. In fact, similar negative result
also holds when m is small yet larger than 1.

Proposition 2.3 (Necessity of sufficiently large m). Sup-
pose s∗2 ≤ nε2 .

√
d and m ≤ s∗ log d. Let H be distri-

bution class satisfying (1) with some constant a ∈ [0, 1]. Let
data {(Xi, yi)}ni=1 be generated from (1). For 0 < ε ≤ 1,
let βε be any ε-LDP estimator of β∗. Then we have

inf
βε

sup
P∈H

EP

[
‖β∗ − βε‖22

]
&

1

s∗
.

Proposition 2.3 shows that for m ≤ s∗ log d, the error does
dot converge to zero as n grows. However, this is not the
case for user-level LDP if m is sufficiently large. The rig-
orous counterargument is by establishing upper bound in
Theorem 3.6, which is O(s∗2/nmε2). We explain why the
bound fails to generalize. Its proof involves construction of
a function class PZ and a distribution of Z, such that the mu-
tual information between Z and private views U1, · · · , Un
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is bounded from above and below. The former does not hold
any more given m samples, since the mutual information
becomes larger exponentially in m. By carefully bounding
the quantity, we establish the following lower bound for
ULDP.
Theorem 2.4 (ULDP lower bound). Suppose nε2 ≥ s∗2,
m ≤ d, and nε2 ≤ d. LetH be distribution class satisfying

(1) with a =
√

s∗

m . Let data {(Xi, yi)}ni=1 be generated
from (1). For 0 < ε ≤ 1, let βε be any ε-ULDP estimator
of β∗. Then we have

inf
βε

sup
P∈H

EP

[
‖β∗ − βε‖22

]
&

s∗2

nmε2
.

The result shows that any ULDP estimator admits an error
scaling at least with 1/nmε2. Thus, a possible improvement
for ULDP over LDP lies in replacing d with s∗.

3. An Algorithm
We begin by outlining our approach to solving the ULDP
sparse linear regression problem. A key observation is that
with m samples, each user can obtain a rough estimation of
parameter with its local samples. The central challenge then
lies in how to aggregate these rough estimations privately.
As depicted in Figure 1, our proposed solution operates in
two stages. In the initial stage, users within the first group in-
dependently identify the non-zero elements of β∗ from their
local data and transmit privatized information accordingly.
By aggregating this information, we determine the s most
frequent elements, which serve as the candidate variables for
our estimation process. On the narrowed parameter space,
we estimate the parameter using remaining users. Subse-
quently, we present the candidate variable selection, final
estimation, and extension to general sparse estimations in
Section 3.1, 3.2, and 3.3, respectively.

v1 v2 v5 v7

v1 v2

v1 v5

{v1, v2, v5}

β*

β

Figure 1. Illustration of the proposed sparse estimation framework.

3.1. Candidate Variable Selection

In this section, we elucidate the steps for candidate variable
selection. First, each user prepares a piece of information
vi ∈ [d], indicating the variable is selected by user i and
probably belong to the true variable set. Then, a curator
privately aggregates the information vis and outputs the
candidate variables.

To formalize vi, each user i adopt a local selector Si : (X ×
Y)m → [d]. For each i, Si can be any plug-in method and
is chosen differently based on the constraints of sample size,
computational power, and prior information, as long as it
produces a good selection results described as follows.

Definition 3.1 (α-Good selector). Consider user i and its
i.i.d. samples (Xi, yi) ∈ (X × Y)m from P. For 0 < α <
1, an α-good selector is an algorithm S such that for all
v ∈ {1, · · · , s∗}, there holds

Pr (v = S (Xi, yi)) ≥
α

s∗
. (2)

Here, the probability is taken w.r.t. randomness of both
(Xi, yi) and S.

(2) requires a lower bound on probability for the true vari-
ables to be selected. To induce such selectors, we consider
first conducting a local variable selection using (Xi, yi) and
uniformly sampling a vi. The following proposition demon-
strates that obtaining such a selector is feasible given mild
assumptions on distribution P, leveraging well-developed
variable selection methods.

Proposition 3.2 (Existence of good selectors). Under
model (1), if either of the following conditions holds,
there exists a α-good selector with a constant α: (i)
maxi 6=j |Σij | ≤ 3/s∗, a &

√
1/m, and m & s∗2 log d;

(ii) 1 ≥ a &
√
s∗/m ∨

√
logm log d/m.

See Appendix B.1 for examples of precise algorithms and
detailed proofs. (i) and (ii) are examples of sufficient con-
ditions that are relatively easy to satisfy. They require mild
correlations among covariates, a strong signal (minimum
absolute value of β∗), and an adequate number of local sam-
ples. Similar conditions are standard in high-dimensional
statistics (Fan & Li, 2001; Zhao & Yu, 2006). Though
the lower bound of a is considerable and will leads to a
improved minimax rate in the non-private case (Ndaoud,
2019), it is not the key for ULDP sparse linear regression
to be advantages over its LDP counterpart. This is because
the function classes constructed in Wang & Xu (2019); Zhu
et al. (2023) for lower bound proof are all covered by the
assumptions. Additionally, the sample size requirement re-
mains polynomial in s∗ and log d, which is theoretically
reasonable.

Given the local information vi, we conduct a private voting
to identify the frequently appeared variables {v̂1, · · · , v̂s}.
Suppose we use the first n/2 users for identification, al-
though the proportion is arbitrary and can be any constant.
Considering the large size d of the variable universe com-
pared to number of available users, this task is closely re-
lated to the problem of heavy hitter detection (Bassily et al.,
2020; Acharya et al., 2021). We solve the identification
problem in standard manner (Bassily et al., 2020), while
any tailored approach is adoptable. Specifically, we encode
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the d variables into a binary string using dlog de bits. Next,
we traverse a binary prefix tree from level 1 to dlog de and
eliminate nodes that cannot serve as prefixes of heavy hit-
ters, namely those with frequencies lower than a certain
threshold ρ. The key advantage of this method is its abil-
ity to identify frequent elements with frequencies above√
n log d log n/ε2, which overcomes the polynomial de-

pendency on d in LDP discrete density estimation (Kairouz
et al., 2016; Duchi et al., 2018). The detailed procedure
(HeavyHitter) is provided in Appendix B.2.

In the first part of Algorithm 1, we summarize the pipline
for candidate variable selection. The following proposition
demonstrates its effectiveness by establishing that, provided
the existence of local good selectors, the curator can select a
set of variables of size s � s∗ containing the true variables.
This property, known as perfect selection or consistent se-
lection (Zhao & Yu, 2006; Belloni & Chernozhukov, 2013),
plays a crucial role in the theoretical properties of subse-
quent operations.

Proposition 3.3. Let {v̂1, · · · , v̂s} be the selected variables
in Algorithm 1. Suppose that all Si are α-good selec-
tors with α & s∗

√
log n log d/nε2. If we take α/8s∗ ≤

ρ ≤ α/4s∗, then with probability 1 − 1/n2, we have (i)
{1, · · · , s∗} ⊆ {v̂1, · · · , v̂s}, (ii) s ≤ 32s∗/α.

Note that our scheme samples only one locally selected
variable and disregards the others. This select-one-and-
aggregate approach has been demonstrated to be as effective
as if each user had only one variable (Zhu et al., 2020;
Cohen et al., 2023). To fully utilize the information of
the selected variables, we can leverage the set-value heavy
hitters (Qin et al., 2016; Zhu et al., 2020; Wang et al., 2023).
However, this only results in an improvement of O(

√
s∗) in

the threshold, which is not our primary focus.

3.2. Coefficient Estimation

Given the selected variables {v̂1, · · · , v̂s}, the problem is
reduced to low dimensional linear regression. Efficient
algorithms and fundamental limits have been established
(Duchi et al., 2018; Wang & Xu, 2019) for item-level LDP.
Leveraging these algorithms, one can ignore all but one
sample from each user and obtain an error bound depending
polynomially on s∗ instead of d. However, we would like
to explore the benefits brought by having multiple samples
per user, as is addressed in the advanced research of ULDP.

We introduce necessary notations to define the learning
problem on the selected subspace. Given Proposition 3.3,
we assume the selected variables contain the true ones
in the following analysis. Without loss of generality, let
(v̂1, · · · , v̂s) = (1, · · · , s). We put a hat over the quantities
on the selected space. Let P̂ be the marginal distribution on
the selected space X̂ × Y = Rs+1, where P̂X̂ = PX1:s .

Define the data on selected space as X̂i,j = X1:s
i,j and

X̂i = {X1:s
i,j }mj=1. The underlying coefficients becomes

β̂∗ = β∗1:s.

3.2.1. A MULTI-ROUND PROTOCOL VIA SCO

At first glance, we can directly find β ∈ Rs through the
following ULDP stochastic convex optimization problem
on the selected space

arg min
‖β̂‖∞≤1

(
F (β̂) =

∫
X̂×Y

(
x>β̂ − y

)2
dP̂(x, y)

)
. (3)

Recent study (Bassily & Sun, 2023) provided methodology
and established theory with respect to smooth loss func-
tions. We borrow their algorithm, presented in Appendix
C.1, which is a private variant of accelerated mini-batch gra-
dient descent. It utilize the fact that the gradient of a local
batch concentrates with rate

√
1/m to reduce the magni-

tude of noise added to the gradients. While the methodology
remains the same, we improve the theoretical analysis in
Bassily & Sun (2023) to accommodate squared loss, which
possesses strong convexity and leads to faster convergence.

Theorem 3.4 (Informal). Let data {(Xi, yi)}ni=1 be gener-
ated as in (1). Suppose {Si}n/2i=1 are α-good selectors with
α & s∗

√
log n log d/nε2. Then with correct parameter

choice, solving (3) leads to an estimation β such that

E
[
‖β∗ − β‖22

]
.
s∗9 log6 n

nmε2α9
+
s∗4 log n

nmα4
.

The result stated in Theorem 3.4 holds in expectation, un-
like the other conclusions which hold with high probability.
This distinction arises from the formulation of the technical
lemma we borrowed. Upon initial inspection, we notice that
both parts of the theorem involve α, indicating a degrada-
tion associating to variable selection performance. However,
according to Proposition 3.2, α is merely a constant given
a sufficiently large m. The higher-order term of s∗ en-
compasses various overheads, including the private mean
estimation error and the Lipschitz constant of the squared
loss over the ‖ · ‖∞ ball.

3.2.2. A TWO ROUND PROTOCOL

The multi-round protocol is disadvantageous from two per-
spectives. Firstly, as a gradient-based method, it necessitates
O(
√
nmε2) rounds of communication, which can be pro-

hibitively slow in practice due to network latency (Smith
et al., 2017; Zheng et al., 2017). Secondly, compared to The-
orem 2.4, the upper bound provided in Theorem 3.4 is far
from tight concerning s∗. We question whether these draw-
backs can be mitigated for the specific problem of linear
regression. In this section, we provide an affirmative answer.
Our main inspiration stems from the following observation.
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Proposition 3.5. There exists estimators on selected vari-
ables β̂n/2+1, · · · , β̂n, such that for all β̂i ∈ Rs, we have

EP

[
β̂i

]
= β̂∗ and ‖β̂i − β̂∗‖2 .

√
s log n/m with proba-

bility 1 − 1/n2. Moreover, if either condition in Propo-
sition 3.2 holds, the bound improves to ‖β̂i − β̂∗‖2 .√
s∗ log n/m.

Since the mean of β̂i is β̂∗, an ideal estimator would be the
mean of β̂is. Moreover, Proposition 3.5 indicates that β̂i
concentrates as m increases, suggesting that we can confine
β̂i to a restricted area to enhance estimation accuracy. We
propose a two-stage estimation similar to Girgis et al. (2022).
First, leveraging user indices n/2 + 1 ≤ i ≤ 3n/4, we
designate a histogram bin on Rs, wherein almost all the β̂i
values will fall. Then, the last group of users project their
β̂i onto the bin and add a Laplace noise. Given the reduced
sensitivity of the projected coefficients, the noise magnitude
significantly diminishes. We provide detailed methodology
(ULDPMean) in Appendix C and summarize the pipline in
Algorithm 1.

Algorithm 1 Two-round ULDP sparse estimation.

Input: Local data sets {(Xi, yi)}ni=1, selectors {Si}n/2i=1,
privacy budget ε, threshold ρ, concentration radius τ .
Initialization: β ∈ Rd be a zero vector.
# candidate variable selection
# on local machine
for i in 1, · · · , n/2 do
vi = Si(Xi, yi).

end for
# dlog de round communication

{v̂1, · · · , v̂s} = HeavyHitter({vi}n/2i=1, ε, ρ).
# coefficient estimation
# on local machine
for i in n/2 + 1, · · · , n do

Fit β̂i according to (v̂1, · · · , v̂s).
end for
# 2 round communication
β̂ = ULDPMean({β̂i}3n/4i=n/2+1, {β̂i}ni=3n/4+1, τ , ε).

βv̂1:v̂s = β̂.
Output: β.

The entire protocol requires a reasonable log d+ 2 rounds
of communication, with each user sending 1 bit of infor-
mation. The log d communication rounds are necessary for
HeavyHitter, which can be substituted by any other cus-
tomized identification method for improved efficiency. In
the coefficient estimation stage, our method takes two round
communication, which is quite efficient. Fully utilizing mul-
tiple samples necessitates sequential interactivity (Acharya
et al., 2023; Bassily & Sun, 2023).

We now present the main result, which is the error upper
bound of the estimator summarized in Algorithm 1.
Theorem 3.6. Let data {(Xi, yi)}ni=1 be generated as in
(1). Suppose {Si}n/2i=1 are α-good selectors with α &
s∗
√

log n log d/nε2. Suppose we let α/8s∗ ≤ ρ ≤ α/4s∗

and τ �
√

log2 n/m. Let β be the output of Algorithm 1.
Then we have (i) Algorithm 1 is ε-ULDP. (ii) there holds

‖β∗ − β‖22 .
s∗ log n

nmα
+
s∗2 log3 n

nmε2α2
(4)

with probability at least 1− 4/n2. Moreover, if either con-
dition in Proposition 3.2 holds, the bound improves to

‖β∗ − β‖22 .
s∗ log n

nm
+
s∗2 log3 n

nmε2α
. (5)

The upper bound in (4) consists of two parts. Both terms
include additional αs and log ns, which are inevitable due
to selection degradation and the overhead of utilizing mul-
tiple local samples. The log ns are due to the union bound
arguments, while α is merely constants by Proposition 3.2.
Ignoring α and log n, the first part recovers the rate of non-
private linear regression on O(s∗) dimensional space. The
second part corresponds to privacy. When ε &

√
s∗, this

part is negligible. Algorithm 1 achieves the same error as if
its non-private. It worth noting that in most cases (see e.g.
Table 1), locally private algorithm matches its non-private
counterpart when ε &

√
s∗. The improvement of (5) over

(4) is based on the existence of sparse oracles that achieve
error s∗/m locally, instead of s/m.

We observe that, unlike common high-dimensional results
(Wang & Xu, 2019; Cai et al., 2023), our bound does not
involve a log d term. This phenomenon is also noted in
Ndaoud (2019), where the log d disappears if we leverage
the beta-min condition in Proposition 3.2. We will observe
in the experiments that if m is large enough, our method is
more robust to changes in d. However, this is not to say that
we can deal with arbitrarily large d. The logarithmical rela-
tionship is still contained in α, which poses a requirement
of m & log d as in Proposition 3.2. Moreover, omitting the
log factors, the privacy error is decided by the total number
of samples mn for sufficiently large m and n. Thus, we can
achieve the same estimation error with less number of users
if there are more local samples per user, while retaining the
same level of privacy for each user since ε is fixed. On con-
trary, if there is mn users with one sample each, the error is
inevitably O(ds∗/nmε2) (Proposition 2.2). This compari-
son illustrates the advantage of having both sufficient users
and local samples compared to having abundant users and
only one local sample. Note that this distinction holds only
between sequential-interactive ULDP and LDP. It is unclear
whether the lower bound holds under non-interactive ULDP,
since most ULDP methods require sequential interactivity
(Acharya et al., 2023; Bassily & Sun, 2023).
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3.3. Extension to Sparse Estimation

In this section, we show our framework can be applied to var-
ious sparse problems through reduction to non-private learn-
ers. We consider estimation of β∗ from data {Xi}ni=1 ∈
Xmn, which is generated from distribution Pβ∗ parameter-
ized by β∗. β∗ is assumed to be in Ωds,a. The assumptions
include linear regression as a special case. It’s important
to note that Algorithm 1 depends on the particular problem
form via two steps: (i) the selector Si and (ii) the estimator
β̂i. Both components depend on a non-private estimator of
β∗. The following theorem demonstrates that, given a qual-
ified estimator, our framework achieves fast convergence
rates for the general problem of sparse estimation.

Theorem 3.7 (Informal). Let data {Xi}ni=1 be generated
by Pβ∗ for β∗ ∈ Ωds,a. Suppose we have non-private es-
timators: (i) estimator β̃i with ‖β̃i − β∗‖2 ≤ ν1 for all
1 ≤ i ≤ n/2 and (ii) estimator β̂i on selected variables with

E
[
β̂i

]
= β̂∗ and ‖β̂i− β̂∗‖2 ≤ ν2 for all n/2 + 1 ≤ i ≤ n.

Then, for any a & ν1, there exists an ε-ULDP algorithm
whose output β has

‖β∗ − β‖22 .
ν22
n

+
ν22s
∗ log2 n

nε2α
(6)

with probability at least 1− 3/n2. Moreover, for `1 norm,
there holds

‖β∗ − β‖1 .

√
ν22s
∗

nα
+

√
ν22s
∗2 log2 n

nε2α2
(7)

with probability at least 1− 3/n2.

We also present a result for the `1 norm. Comparing (7) to
(6), the difference arises from the

√
s discrepancy between

the `1 and `2 norms, given that we only have s non-zero
elements in our sparse estimation problem. We discuss the
implications of Theorem 3.7. Consider the sparse mean esti-
mation (Duchi et al., 2018; Zhou et al., 2022), where non-
private estimator achieves ν2 = O(

√
s∗ log n/m) (John-

stone, 1994) under mild conditions. Then the bound (6)
becomes identical to (5), which eliminates the linear depen-
dency of d in LDP (Duchi et al., 2018). For sparse discrete
distribution estimation, Acharya et al. (2021) removed the
linear dependency of d. With ν2 = O(

√
s∗ log n/m), our

bound (7) is
√
s∗ larger than theirs in `1 sense.

It worth mentioning that when d is small, our upper bound
matches the lower bound for m = 1. In this scenario,
selector provides no useful information and is equivalent to
a random selection, i.e. α ≤ P (v = S(Xi, yi)) ·s∗ = s∗/d.
If α = s∗/d & s∗

√
log n log d/nε2, then (5) becomes

s∗ log n

nm
+
ds∗ log3 n

nmε2
.

Up to logarithmic factors, the second term matches the
lower bound established in Zhu et al. (2023) for sparse
linear regression and Duchi et al. (2018) for sparse mean
estimation.

4. Experiment Results
We conduct experiments on both synthetic and real datasets
to show the superiority of proposed methods and to validate
our theoretical findings. The tested methods include: (i)
2-SLR: The proposed two-round ULDP sparse linear re-
gression method outlined in Algorithm 1; (ii) M-SLR: The
proposed multi-round version in Algorithm 6. The compet-
ing methods are: (iii) LDPPROX: The non-interactive LDP
proxy estimator in Zhu et al. (2023); (iv) LDPIHT: The
LDP iterative hard thresholding in Wang & Xu (2019); Zhu
et al. (2023). Both comparison methods receive nm samples
with budget ε each. Additionally, we report performance
of non-privately fitting (v) Lasso using m samples, repre-
senting an alternative for each user to rely solely on their
local information. Implementation details are provided in
Appendix E. For each model, we report the best result over
its parameter grids, with the best result determined based
on the average of at least 30 replications. The size of the
parameter grids is selected based on running time to ensure
that each method incurs an equal amount of computation.
All experiments are conducted on a machine with 72-core
Intel Xeon 2.60GHz and 128GB of main memory. The code
is publicly available at GitHub4.

4.1. Simulation

We conducted experiments on synthetic data to validate the
theoretical findings. Two sets of parallel experiments are
conducted for independent and correlated marginal distribu-
tions, respectively, while results of the latter are presented
in Appendix E. We draw each Xk

i,j and σi,j independently
from standard Gaussian distribution. For β∗, we randomly
select s∗ = 8 coordinates to be 0.2 and let others be zero.
Typically, we set n = 400, m = 100, d = 256, and ε = 4,
while varying one of them to observe how the evaluated met-
ric varies. We use squared error to evaluate the estimated
coefficients and F1 score to evaluate variable selection.

We conduct experiments w.r.t. d. We first analyze the vari-
able selection performance. For d ∈ {16, 32, · · · , 1024},
we compute the averaged F1 scores of the proposed candi-
date variable selection (represented by 2-SLR) and other
methods. As shown in Figure 2(a), the selection perfor-
mance of 2-SLR is superior to variables induced by other
methods. Particularly noteworthy is that 2-SLR achieved
higher F1 scores than Lasso. This observation aligns with
Wang et al. (2011); Liang et al. (2023), where aggregating

4https://github.com/Karlmyh/ULDP-SL
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(a) d - F1 score.
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(b) d - `2 error with m = 100.
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(c) d - `2 error with m = 200.
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(d) ε - `2 error.

Figure 2. Experiments w.r.t. d and ε. We plot the quantiles over 30 repetitions with 95% coverage. We exclude LDPPROX in the last
three figures since it is highly unstable and do not fit into our plot scale.

Lasso fitted on random subsamples leads to performance
gains in both selection and prediction.

Next, we analyze the estimation performance with respect
to d. In Figures 2(b) and 2(c), we plot the curve of `2 error
w.r.t. d. Given a large m = 200, the proposed methods
are less sensitive to d compared to LDPIHT and Lasso.
This observation is compatible with the rate in (5), which
is independent of d. Conversely, for smaller m = 100, the
local selectors can not provide a constant α for exponentially
larger d. As a result, the trend of our methods is steeper.

We examine the privacy-utility trade-offs by investigating
performances under different ε. In Figure 2(d), the error de-
creases as ε increases for all private methods. Moreover, the
error of 2-SLR is consistently better than Lasso, while error
of M-SLR quickly drops below Lasso at medium privacy
levels (ε ≥ 2). This shows the superiority of our methods
compared to fitting Lasso using only local information.

Finally, we analyze the impact of sample sizes. We con-
ducted experiments with varying m (ranging from 50 to
200) under different n, comparing the performance of our
methods with Lasso on local samples. The results for vary-
ing m are presented in Figure 3. We observe that given
a sufficiently large n = 800, 2-SLR always outperforms
Lasso, and M-SLR performs comparably even for ε = 1.
If n = 400, only M-SLR with ε = 1 performs worse than
Lasso. However, given an insufficient n = 100, Lasso
performs comparably to 2-SLR with ε = 2. Similarly, in
Figures 4(a) and 4(b), the `2 error decreases as n increases
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(a) n = 100
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(b) n = 400
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Figure 3. Experiments w.r.t. m and `2 error.

for all ε. The results indicate that our methods outperform
Lasso under various (n,m, ε) settings, except for M-SLR
with ε = 1. This observation is reasonable and aligns with
phenomena commonly observed in ULDP learning, fed-
erated learning, or transfer learning, where incorporating
information from other data sources may not necessarily
improve estimation if the quality of that additional informa-
tion is low due to factors such as privacy constraints, data
heterogeneity, or data compression.

Moreover, we set nm = 400×100 and varied the ratio n/m.
In Figure 4(c), we observe that, for each ε, the error of 2-
SLR remains stable when n ≈ m, while it slightly increases
when either n or m is too small, which is consistent with
Theorem 3.6. Furthermore, the performance of M-SLR is
more sensitive to n becoming small. This is attributed to its
gradient nature, which requires a large number of users.

4.2. Real Data

We conduct experiments on six real datasets with various
sample sizes and dimensionalities. Among the datasets,
Airline and Taxi are the most suitable for our setting,
where each user possesses small local samples with large
dimensions. The datasets contain sensitive information and
have been used in privacy research (Ma et al., 2024b). The
other datasets are manually grouped to fit our framework.
See Appendix E.3 for description of datasets.

We first compute the mean squared error over 30 random
train-test splits for ε = 1 and ε = 4. To standardize the
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(a) n - `2 error.
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Figure 4. Experiments w.r.t. n and n/m.
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Table 2. Real data performances. To ensure significance, we employ the Wilcoxon signed-rank test (Wilcoxon, 1992) with a significance
level of 0.05 to determine if a result is significantly better. The best results are bolded and those holding significance towards the rest
results are marked with ∗.

Budget Datasets NP-2-SLR NP-M-SLR Lasso 2-SLR M-SLR LDPPROX LDPIHT

ε = 1

Airline 1.01 0.82 1.02 1.02 0.98* 1.38 1.85
Loan 0.97 0.88 0.99 0.98 0.97 5.27 2.00
MIP 1.00 0.96 1.65 1.00 0.98* 2.54 1.87
Taxi 0.95 0.01 1.04 0.96 0.01* 1.20 1.02
Wine 1.19 1.17 1.14* 1.34 1.37 7.71 2.30
Yolanda 1.10 1.14 1.19 1.19 1.22 1.90 2.36

ε = 4

Airline 1.01 0.82 1.02 1.02 0.88* 1.15 1.02
Loan 0.97 0.88 0.99 0.98 0.90* 2.05 1.65
MIP 1.00 0.96 1.65 1.01 0.96* 3.30 1.82
Taxi 0.95 0.01 1.04 0.95 0.01* 1.16 1.88
Wine 1.19 1.17 1.14* 1.19 1.27 5.39 1.74
Yolanda 1.10 1.14 1.19 1.11* 1.18 1.79 2.03

Rank sum - 31 24 19 56 50

scale across datasets, we report the MSE ratio relative to
non-private fitting with Lasso over all samples. The results
are displayed in Table 2. For both high privacy (ε = 1)
and medium privacy (ε = 4), the proposed methods sig-
nificantly outperform competitors in terms of both average
performance (rank sum) and the number of best results
achieved. It is worth noting that in most cases, Lasso fitted
on local datasets outperforms LDP competitors, yielding
the effortlessness of LDP sparse regression. Moreover, the
running time of the methods is displayed in Appendix E.3.
The results show that, if properly paralleled, our methods
are quite efficient.

We observe that our methods (2-SLR and M-SLR) can some-
times outperform non-private Lasso on the whole data. This
is somewhat expected. As explained in previous literature
(Ndaoud, 2019), given strong signal strength (minβj>0 |βj |
is large), the optimal error can actually be improved and
simply performing Lasso does not achieve this optimality.
Moreover, methodological works (Wang et al., 2011; Liang
et al., 2023) showed the effectiveness of selecting candidate
variables by aggregating Lasso fitted on random subsam-
ples. Intuitively, even with strong signal strength, fitting
Lasso does not guarantee the selection of all true variables
due to randomness, while aggregating variables selected
on random subsamples is more likely to identify true vari-
ables. We validated our conjecture by running non-private
SLRs (ε = 1024). The results are presented in Table 2. We
observe that 2-SLR and M-SLR never outperform their non-
private counterparts, while non-private SLRs occasionally
outperform Lasso on some datasets.

We also observe that 2-SLR outperforms M-SLR in simula-
tion, while the opposite is true in real data. The phenomenon
is attributed to the implicit regularization. In synthetic data,
where the data is neatly generated, estimations tend to con-
verge well. However, real data often contains more noise,

leading to potentially unstable estimations. In such cases, us-
ing zero coefficients as the initial point yields a regularized
estimator (Ali et al., 2019), which are biased yet stable.

5. Discussion
In this work, we investigate the ULDP sparse linear re-
gression. By proposing a two-phase solution, we show the
theoretical advantage of having multiple samples per user,
which is then validated by exhaustive experiments.

It is worth mentioning that we do not explore scenarios
where m is small, such as m ≤ s∗ log d. Our experi-
ments, particularly with the MIP dataset, demonstrate that
even with few local samples, satisfactory results can be
achieved. However, dealing with small m may require a
comprehensive distributional analysis of variable selection,
which could be a promising avenue for future research. We
also hope to establish a tight minimax lower bound of sparse
estimation under ULDP.

Currently, we consider a support estimation based algo-
rithm. As suggested by the reviewers, an interesting topic
would be an algorithm that simultaneously learns the sparse
coefficients and optimizes the model, potentially with a
Lasso-type optimization objective. Directly solving such
a problem is ineffective (Bassily & Sun, 2023). Each up-
date step will involve updating d− s redundant parameters,
whose information needs to be protected under differential
privacy. Thus, excessive random noise is injected. By uti-
lizing support estimation, we circumvent this issue in the
second phase, leading to improved final rates. A private
analog for algorithms with limited message passing each
round is promising, such as least-angle regression (LARS)
or coordinate gradient descent.
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In this appendix, we provide the omitted content for minimax lower bound (Appendix A), the algorithm and theoretical
results of candidate variable selection (Appendix B), the algorithm and theoretical results of coefficient estimation (Appendix
C), an extension from our framework to general problems (Appendix D), and details as well as additional results of
experiments (Appendix E).

A. Minimax Lower Bound
We first borrow assumptions and definitions from Acharya et al. (2020). Let Z = (Z1, . . . , Zd) be a random variable over
Z = {−1,+1}d such that P [Zi = 1] = τ for all i ∈ [d] and the Zi s are all independent; we denote this distribution by
Rad(τ)⊗d. For z ∈ Z , we denote z⊕i ∈ Z as the vector obtained by flipping the sign of the i-th coordinate of z.
Condition A.1. For every z ∈ Z and i ∈ [d] it holds that Pz⊕i � Pz (we refer to Pβz simply as Pz), and there exist
measurable functions φz,i : Rd → R such that

dPz⊕i

dPz
= 1 + φz,i.

Condition A.2. There exists some α2 ≥ 0 such that, for all z ∈ Z and distinct i, j ∈ [d],EPz [φz,i · φz,j ] = 0 and
EPz

[
φ2z,i
]
≤ α2.

Condition A.3. For every z, z′ ∈ Z = {−1,+1}d,

`2 (θz, θz′) = 4ν

(
dHam (z, z′)

τd

)1/2

where dHam (z, z′) :=
∑d
i=1 1 {zi 6= z′i} denotes the Hamming distance, where τ = s∗/2d, s∗ and ν denotes sparsity and

error rate respectively.

Proof of Theorem 2.4. First, suppose Xj is uniformly distributed on {−1, 1} for 1 ≤ j ≤ d. Let

β∗Z,j =
4
√

2ν√
s∗

Zj + 1

2

for 1 ≤ j ≤ d where Zjs are i.i.d. random variables with

Pr [Zi = +1] =
s∗

2d
, Pr [Zi = −1] = 1− s∗

2d
.

There holds β∗Z satisfies the conditions that ‖β∗Z‖∞ ≤ 1 and ‖β∗Z‖0 ≤ s∗ with probability 1 − s∗/2d using Fact 1 in
Acharya et al. (2020). Next, for each Z we let:

σZ =

{
1− 〈X,β∗Z〉 w.p. 1+〈X,β∗Z〉

2

−1− 〈X,β∗Z〉 w.p. 1−〈X,β∗Z〉
2

Thus, Y ∈ {−1, 1}. The above distribution satisfies (1) with probability 1−s∗/2d. The distribution PZ has density function
(1 + Y 〈X,β∗Z〉) /2d+1 for (X,Y ) ∈ {+1,−1}d+1. Then, for the i-th user who has the data sample (Xi, yi) from the
distribution PmZ , it sends its information through a private algorithm S after getting messages S1, · · · , Si−1. By definition,
for 1 ≤ j ≤ m, we have

dPz⊕k

dPz
=

m∏
j=1

1 + yi,j 〈Xi,j , βz⊕k〉
1 + yi,j 〈Xi,j , βz〉

=

m∏
j=1

1 +
yi,j 〈Xi,j , βz⊕k − βz〉

1 + yi,j 〈Xi,j , βz〉
=

m∏
j=1

1−
yi,jX

k
i,jzk

1 + yi,j 〈Xi,j , βz〉
· 4
√

2ν√
s∗

(8)

where the last step follows from Zhu et al. (2023). If we let ν to be small enough, we can guarantee that |yi,j〈Xi,j , βz〉| ≤ 1/2

for each z and | yi,jX
k
i,jzk

1+yi,j〈Xi,j ,βz〉 ·
4
√
2ν√
s∗
| ≤ 1/2. We compute the log transformation of the above quantity which is∑m

j=1 log

(
1− yi,jX

k
i,jzk

1+yi,j〈Xi,j ,βz〉 ·
4
√
2ν√
s∗

)
. For each j, we bound the expectation by Jensen’s inequality

E

[
log

(
1−

yi,jX
k
i,jzk

1 + yi,j 〈Xi,j , βz〉
· 4
√

2ν√
s∗

)]
≤ log

(
1− E

[
yi,jX

k
i,jzk

1 + yi,j 〈Xi,j , βz〉

]
· 4
√

2ν√
s∗

)
. (9)
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For each k, we have ∣∣∣∣∣E
[

yi,jX
k
i,jzk

1 + yi,j 〈Xi,j , βz〉

]∣∣∣∣∣ ≤
∣∣∣∣ 1

2 + 8
√

2s∗ν
− 1

2− 8
√

2s∗ν

∣∣∣∣ ≤ 8
√

2s∗ν. (10)

Bringing (10) into (9) leads to

E

[
log

(
1−

yi,jX
k
i,jzk

1 + yi,j 〈Xi,j , βz〉
· 4
√

2ν√
s∗

)]
≤ log

(
1 + 64ν2

)
As a result, the expectation of the log transformation has

E

 m∑
j=1

log

(
1−

yi,jX
k
i,jzk

1 + yi,j 〈Xi,j , βz〉
· 4
√

2ν

s∗

) ≤ m · log
(
1 + 64ν2

)
(11)

Moreover, since 1− 5|x| ≤ log(1 + x) ≤ 1 + 5|x| for |x| ≤ 1/2, we have

1− 10
√

2ν√
s∗
≤ log

(
1−

yi,jX
k
i,jzk

1 + yi,j 〈Xi,j , βz〉
· 4
√

2ν√
s∗

)
≤ 1 +

10
√

2ν√
s∗

.

Recall that |{z ∈ {−1, 1}d|
∑
j 1{zj = 1} ≤ s∗}| ≤ ds∗ . Thus, applying Hoeffding’s inequality with union bound yields∣∣∣∣∣∣

m∑
j=1

log

(
1−

yi,jX
k
i,jzk

1 + yi,j 〈Xi,j , βz〉
· 4
√

2ν√
s∗

)
− E

 m∑
j=1

log

(
1−

yi,jX
k
i,jzk

1 + yi,j 〈Xi,j , βz〉
· 4
√

2ν√
s∗

)∣∣∣∣∣∣
≤

20ν
√
m(log n+ s∗ log d)√

s∗
≤ 20ν

√
md

s∗
(12)

for all 1 ≤ i ≤ n and z ∈ {−1, 1}d with
∑
j 1{zj = 1} ≤ s∗ with probability at least 1− 2/n2. As a result, plugging (11)

and (12) into (8) yields

dPz⊕k

dPz
= exp

 m∑
j=1

log

(
1−

yi,jX
k
i,jzk

1 + yi,j 〈Xi,j , βz〉
· 4
√

2ν√
s∗

)
≤ exp

(
m · log

(
1 + 64ν2

)
+

20ν
√
md

s∗

)
.

Since nε2 ≥ s∗2, for sufficiently small ν, one can justify condition A.1 and A.2 for the defined Pz , with α2 � ν2md
s∗2 .

Applying Corollary 1 in Acharya et al. (2020) leads to(
1

d

d∑
i=1

dTV

(
PS

n

+i ,P
Sn

−i

))2

.
nmν2ε2

s∗2
. (13)

Note that this result, as well as Lemma 3 of Acharya et al. (2020) in the following, are developed for Xi being a single
sample. They are extendable to Xi being multiple samples since we can apply the original conclusion to the m(d + 1)
dimensional vector, formulated by stacking the Xi,js. Next we focus on lower bound of the total variation distance. Since

‖βz − βz′‖2 =

√√√√32ν2

s∗

d∑
i=1

1
{
Zi 6= Ẑi

}
= 4ν

(
dHam(z,ẑ)

τd

)1/2

,

i.e. Condition A.3 holds, applying Lemma 3 of Acharya et al. (2020) leads to

1

d

d∑
i=1

dTV

(
PS

n

+i ,P
Sn

−i

)
≥ 1

4
. (14)

15



Better Locally Private Sparse Estimation Given Multiple Samples Per User

Combining (13) and (14) leads to the desired conclusion.

Proof of Proposition 2.3. We follow the same construction as in the proof of Theorem 2.4 while adopting a different
strategy to bound dP

z⊕k
dPz

. Namely, we let

dPz⊕k

dPz
=

m∏
j=1

1−
yi,jX

k
i,jzk

1 + yi,j 〈Xi,j , βz〉
· 4
√

2ν√
s∗
≤

(
1 +

8
√

2ν√
s∗

)m
. (15)

Then one can justify condition A.1 and A.2 for the defined Pz , with

α2 �

((
1 +

8
√

2ν√
s∗

)m
− 1

)2

.

Applying Corollary 1 in Acharya et al. (2020) leads to(
1

d

d∑
i=1

dTV

(
PS

n

+i ,P
Sn

−i

))2

.
nε2

d
·

((
1 +

8
√

2ν√
s∗

)m
− 1

)2

. (16)

There holds similarly

1

d

d∑
i=1

dTV

(
PS

n

+i ,P
Sn

−i

)
≥ 1

4
. (17)

Combining (16) and (17) leads to

exp

(
νm√
s∗

)
�

(
1 +

8
√

2ν√
s∗

)m
& 1 +

√
d

nε2
.

which yields

ν2 &
s∗

m2
log2

(
1 +

√
d

nε2

)
.

Note that if nε2 .
√
d and m ≤ log d, there holds

ν2 &
s∗

m2
log2

(
1 +

√
d

nε2

)
&

s∗

m2
log2

(
1 + d1/4

)
&

log2 d

s∗ log2 d
=

1

s∗

which yields the desired result. Note that in this case, the constructed function class has beta-min condition with a =
ν/
√
s∗ & 1 which is a constant in a [0, 1].

B. Candidate Variable Selection
B.1. Good Selectors

B.1.1. PLUG-IN HIGH DIMENSIONAL VARIABLE SELECTION

In the following, we provide some example selectors and demonstrate that, under mild assumptions, they serve as components
of a good selector. We introduce commonly used variable selection approaches along with their associated theoretical results.
Our goal is twofold. Firstly, we want the true variables to be selected. Conversely, the redundant variables that are selected
should be as few as possible. We derive this from the perfect selection property (also known as strong oracle or consistent
selection), which asserts that our goal is achieved with a high probability. The primary conditions we impose on the potential
distributions fall into two categories:
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• Beta-min conditions, which necessitate that minβ∗j>0 |β∗j | is greater than a specified threshold. With this condition,
the signal strength from the regression functions is robust enough for the selector to identify the variables..

• Mild correlation conditions, which require that the correlation between the true and redundant variables is weak enough
for the selectors to distinguish.

In this section, we omit the user index i and write (X, y) representing the data of some user (Xi, yi), since the results in the
section consider one local dataset at a time.

Example B.1 (Lasso (Tibshirani, 1996)). Lasso, or Least Absolute Shrinkage and Selection Operator, is a regularization
technique in statistical learning that adds a penalty term to the linear regression objective function, effectively promoting
sparsity by encouraging some of the model coefficients to be exactly zero. Specifically, Lasso solves the regularized
optimization object

min
β∈Rd

{
1

n
‖y −Xβ‖22 + λ‖β‖1

}
. (18)

Used for variable selection, Lasso identifies the non-zero elements of the optimization solution as the selected variable.

To study the selection consistency of Lasso, Zhao & Yu (2006) proposed a general condition called the Irrepresentable
condition. Specifically, for Σ̂ = X>X/n, let the block matrix

Σ̂ =

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)
.

Here Σ̂11 is a s∗ × s∗ matrix, corresponding to the covariance matrix of the true variables. Irrepresentable Condition states
that there exists a positive constant vector η∣∣∣∣Σ̂21

(
Σ̂11

)−1
sign

(
β∗1:s

∗
)∣∣∣∣ ≤ 1− η, (19)

where 1− η is a d− s∗ vector with 1− η elementwisely. The following result holds for irrepresentable condition.

Lemma B.2. Under our assumptions, when using (18) as selector, let βLASSO be the solution. Suppose (19) holds. Suppose
the following conditions hold: (i) m & s∗2 log d. (ii) minβ∗j>0 |β∗j | &

√
1/m. Then there exists a constant Cp < 1 such

that, for sufficiently large m, with probability Cp, there holds

βjLASSO 6= 0 for j = 1, · · · , s∗ and βjLASSO = 0 for j = s∗ + 1, · · · , d.

Moreover, for Σ = EXX>, if |Σij | ≤ 3/s∗ for i 6= j, then we have the Irrepresentable Condition.

Proof of Lemma B.2. Since we assume sub-Gaussian noises, any k-th moment of the random noise exists, i.e. k can be
arbitrarily large. As a result, any λ &

√
m implies (λ/

√
m)2k/d→∞ for some k. By Theorem 3 in Zhao & Yu (2006),

for sufficiently large m, the probability of

sign(βjLASSO) = sign(β∗j) for j = 1, · · · , d

is larger than some constant Cp, given that the conditions (5,6,7,8) are satisfied. Thus it suffices to verify the conditions.
Condition (5) and (6) holds naturally due to our assumption of i.i.d. designs and boundedness of covariance matrix
norm. (7) and (8) are in our assumptions. As for the last statement, Zhao & Yu (2006) provides several commonly seen
sufficient conditions for the irrepresentable condition to hold, such as when |Σ̂ij | ≤ 1/(2s∗ − 1). If |Σij | ≤ 1/3s∗, then
|Σ̂ij | ≤ |Σij | + |Σij − Σ̂ij | ≤ 1/3s∗ + c/

√
m ≤ 1/(2s∗ − 1) for some constant c and sufficiently large m & s∗. This

bound holds for all users and all position i, j if we apply union bound, where we need log d/m . 1/s∗2, i.e. m & s∗2 log d.
Note here we assumed d & n. Thus the lemma is proved.

Example B.3 (SCAD (Fan & Li, 2001)). SCAD, or smoothly clipped absolute deviation, is a non-convex penalty function
used in statistical learning and regression analysis. It is designed to address limitations of traditional L1 regularization
methods like Lasso by providing a smooth and more robust penalty on regression coefficients, promoting sparsity while
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mitigating some of the biases associated with sharp discontinuities in penalty functions. Specifically, SCAD solves the
regularized optimization object

min
β∈Rd

 1

n
‖y −Xβ‖22 + λ

d∑
j=1

ψλ (βj)

 where ψ′λ(t) = λI{t≤λ} +
(aλ− t)+
a− 1

I{t>λ} for some a > 2. (20)

Used for variable selection, SCAD identifies the non-zero elements of the optimization solution as the selected variable.

The following lemma, which is a straightforward implication of Fan & Lv (2011), states that the essential condition for
SCAD estimator to consistently select the variables is the Beta-min condition, given that the sample size is relatively large.
Lemma B.4. Under our assumptions, when using (20) as selector, let βSCAD be the solution. Suppose the following
conditions hold: (i) The sparsity s∗ is O(1). (ii) m & s∗ ∨ logm log d. (iii) minβ∗j>0 |β∗j | &

√
s∗/m∨

√
log d logm/m.

Then there exists a constant Cp < 1 and a suitable choice of λm such that, for sufficiently large m, with probability Cp,
there holds

βjSCAD 6= 0 for j = 1, · · · , s∗ and βjSCAD = 0 for j = s∗ + 1, · · · , d.

Proof of Lemma B.4. By Theorem 3 in Fan & Lv (2011), for sufficiently large m, the probability of

‖βSCAD − β∗‖2 .

√
s∗

m
for j = 1, · · · , s∗ and βjSCAD = 0 for j = s∗ + 1, · · · , d

is larger than some constant Cp, given that the regularity conditions in the theorem are satisfied. Note that we have
|βjSCAD| ≥ |β∗j | −

√
s∗/m ≥ |β∗j |/2 > 0. Thus it suffices to verify the conditions. The condition 1 is satisfied by SCAD

penalty. Condition 5 is satisfied by our setting of sample size (note that log d . nα
′

for α′ defined in their context). (26) and
(28) of Condition 2 follows from our assumptions on the upper and lower bound of ‖EXX>‖2 and the estimation error of
covariance matrix which is O(

√
s∗/m) (Wainwright, 2019). (27) comes from s∗ = O(1).

B.1.2. PROOF OF PROPOSITION 3.2

Proof of Proposition 3.2. Under the two conditions, using Lemma B.2 and B.4, we can show that there exists a variable
selection method that perfectly select the true variables with a positive probability Cp. Then by sampling among the selected
variables, the probability can be computed as

Pr (S(Xi, yi) = v) ≥ CpPr (v = j for v ∼ Unif (1, · · · , s∗)) ≥ Cp
s∗

for 1 ≤ v ≤ s∗. This yields the desired conclusion.

B.1.3. COMPUTATIONAL ISSUE

For SCAD, the incorporation of a non-convex penalty proves effective in attaining coefficient sparsity while maintaining
oracle properties. Nonetheless, the non-convex nature introduces a challenge—the guarantee of solution uniqueness becomes
elusive, leading to the presence of multiple local optima. Consequently, the stability of results may be compromised. Fan
et al. (2014) introduce additional concave parameter to ensure consistency, which contributes to increased computational
complexity, further posing challenges in the computational efficiency of SCAD. As a result, Lasso is more preferable In
practice. We introduce another technique which can be useful to enhance the computation efficiency.
Example B.5 (Screening (Fan & Lv, 2008)). Sure Independence Screening (SIS) is a feature selection method in statistical
learning that aims to identify relevant variables in high-dimensional datasets. It does so by assessing the correlation between
each predictor and the response variable, and selecting a subset with the highest scores. Specifically, For (X, y) ∈ (X×Y)m,
let

w = X>y.

Then the s most largest position of w are identified as the selected variables. Screening can be a valuable pre-procedure for
other selection methods. Screening is employed to quickly identify and retain a subset of potentially important features,
reducing the dimensionality of the data before applying more computationally intensive or elaborate feature selection
techniques.
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B.2. Aggregation of Local Selected Variables

In this section, we present the omitted algorithm and technical proofs for the aggregation step after local variable selection.
In B.2.1, we introduce the detailed variable selection algorithm. In B.2.2, we present proofs omitted in Section 3.1.

B.2.1. HEAVY HITTER ALGORITHM

First, we introduce necessary definitions. Let V be a collection of binary prefixes. The define ChildSet = {v + 0, v +
1 for v ∈ V}. We define several public randomness that will be shared among users. See Bassily et al. (2020, Section
3.1) for details. Let V =

{
v ∈ {0, 1}` for some ` ∈ [log d]}. Define integer t = 3 log(n) and k = O(

√
n/3 log(n)).

We will consider a set of t pairs of hash functions {(h1, g1) , . . . , (ht, gt)}, where for each i ∈ [t], hi : V → [k] and
gi : V → {−1,+1} are independently and uniformly chosen pairwise independent hash functions. We assume that the server
creates a random partition Π : [n]→ [log d]× [k] that assigns to each user i ∈ [n] a random pair (`i, ji)← [log(d)]× [k],
as in the initialization of Algorithm 4. We also have another random function Q : [n]← [k] that assigns to each user i a
uniformly random index ri ← [k]. We assume that such random indices `i, ji, ri are shared between the server and each
user. Finally, we adopt shared encoding and decoding schemes for bijection between [d] and dlog de binary strings, denoted
as Encoding and Decoding, respectively.

Before presenting the HeavyHitter, we first introduce the functions it uses. The following algorithm generate a private
report for a single user. We seal the information of each vi into a binary value that is the Hardamard transform of hashes of
its prefix. The information is privatized using the random response mechanism (Warner, 1965) and sent to the curator.

Algorithm 2 LocalRnd (Bassily et al., 2020)
Input: Privacy budget ε, input vi.
Compute ṽi = Encoding(vi) the binary string encoding.
Using pubic randomness to get (`i, ji) and ri.
Let si := gji (ṽi [1 : `i]) and ci := hji (ṽi [1 : `i]). Here v[1 : `] denote the ` -bit prefix of v.
Compute xi = si ·Wri,ci . Here Wr,c denotes the sign of (r, c) entry of Hadamard matrix with size k.
Random permute xi with

yi =

{
xi w.p. eε

eε+1

−xi w.p. 1
eε+1

Output: yi.

The following algorithm shows how LocalRnd is invoked multiple times to scan the prefix tree.

Algorithm 3 FreqOracle (Bassily et al., 2020)

Input: Prefixes length `, a subset of `-bit prefixes V̂ ⊆ {0, 1}`, collection of t disjoint subsets of users:
{
Ĩj : j ∈ [t]

}
,

privacy budget ε.
for v̂ ∈ V̂ do

for Hash index j = 1 to t do
Let s := gj(v̂) and c := hj(v̂).
for i ∈ Ĩj do
yi = LocalRnd(ε, vi).

end for
Compute the j-th estimate of the frequency of v̂: f̂j(v̂) = t log d · e

ε+1
eε−1

∑
i∈Ĩj yi · s ·Wri,c.

end for
The final estimation of v̂ : f̂(v̂) := Median

({
f̂j(v̂) : j ∈ [t]

})
.

end for
FreqList = {(v̂, f̂(v̂)) : v̂ ∈ V̂}.
Output: FreqList

The final algorithm is presented in Algorithm 4. We modify the algorithm in Bassily et al. (2020) by removing the second
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phase of frequency estimation, since we only want to identify the heavy hitters and do not care about their frequencies. This
allows a saving of ε/2 budget.

Algorithm 4 HeavyHitter
Input: User values V = {vi ∈ [d]}, privacy budget ε, threshold ρ.
Initialization: Prefixes = {}, public randomness pairs Γ = {(`i, ji) ∈ [log d] × [3 log n] for 1 ≤ i ≤ n}, partition
I`,j = {i if (`i, ji) = (`, j)}.
for ` in 1, · · · , dlog de do
{(v̂, f̂(v̂)) : v̂ ∈ ChildSet(Prefixes)} = FreqOracle (`, ChildSet (Prefixes) , {I`,j : j ∈ [3 log n]} , ε).
Let NewPrefixes = {}.
for v ∈ ChildSet(Prefixes) do

if f̂(v̂) ≥ ρn then
Add v̂ to NewPrefixes.

end if
end for
if |NewPrefixes| = 0 then

Add arg maxv̂ f̂(v̂) to NewPrefixes. # Ensure NewPrefixes is non-empty.
end if
Prefixes← NewPrefixes.

end for
Output: {Decoding(v) for (v, f̂(v)) ∈ Prefixes}.

B.2.2. PROOF RELATED TO SECTION 3.1

To give the proof of Proposition 3.3, we need the following necessary technical result.

Lemma B.6. Algorithm 4 is ε- ULDP. Moreover, if α & s∗
√

log n log d/n/ε, then with probability at least 1− 1/n2, the
output list of the HeavyHitter protocol satisfies the following properties given sufficiently large n: (i) it contains all
items v ∈ V whose true frequencies above 2ρn. (ii) it does not contain any item v ∈ V whose true frequency below ρn/2.

Proof of Lemma B.6. Lemma 5.3 in Bassily et al. (2020) yields that the variables v retained in Prefixes in Algorithm 4
has |f̂(v)− f(v)| .

√
n log n log d/ε. Since α & s∗

√
log n log d/n/ε, we have

√
n log n log d/ε ≤ ρn/2 for sufficiently

large n. Then for any v in Prefixes, we have f(v) & ρn−
√
n log n log d/ε ≥ ρn/2. On the contrary, if f(v) ≥ 2ρn, then

f̂(v) & 2ρn−
√
n log n log d/ε ≥ ρn, which will be included in Prefixes.

Proof of Proposition 3.3. For notation simplicity, we denote the number of users and selectors used in the selection as n
instead of n/2 throughout this proof. We compute the frequency of variable j, namely

∑n
i=1 1 (vi = j). By Hoeffding’s

inequality, we have

Pr

(∣∣∣∣∣
n∑
i=1

1 (vi = j)−
n∑
i=1

Pr (vi = j)

∣∣∣∣∣ ≥√n(log nd)

)
≤ 2 exp (−2(log n+ log d)) .

Applying union bound, we get

Pr

(∣∣∣∣∣
n∑
i=1

1 (vi = j)−
n∑
i=1

Pr (vi = j)

∣∣∣∣∣ ≥√n log nd for 1 ≤ j ≤ d

)
≤2d exp (−2(log n+ log d))

< exp (−2 log n) = 1/n2. (21)

For conclusion (i), since vi is generated by a good selector, Definition 3.1 yields that

n∑
i=1

Pr (vi = j) ≥ nα

s∗
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for j = 1, · · · , s∗. This together with (21) leads to

n∑
i=1

1 (vi = j) ≥ nα

s∗
−
√
n log nd ≥ nα

2s∗

for any 1 ≤ j ≤ s∗ and sufficiently large n. Then for any ρ ≤ α/4s∗, by Lemma B.6, we have f̂(j) ≥ ρn. This means the
frequency of any true variable must be large enough to be detected as a heavy hitter. Next, we show (ii). Suppose that there
are s variables j1, · · · , js satisfying

∑n
i=1 1 (vi = j) ≥ ρn/2, i.e. potentially identified by the heavy hitters by Lemma B.6.

Then by applying (21), there holds

s∑
k=1

n∑
i=1

Pr (vi = jk) ≥ s · ρn
2
− s
√
n log nd ≥ s · ρn

4

for sufficiently large n, with probability at least 1− 1/n2. However, there holds

s · ρn
4
≤

s∑
k=1

n∑
i=1

Pr (vi = jk) ≤
d∑
j=1

n∑
i=1

Pr (vi = j) = n,

which indicates that s ≤ 4/ρ ≤ 32s∗/α.

C. Coefficient Estimation
C.1. The Multiple Round Protocol

C.1.1. SCO ALGORITHM

We use the same algorithm as in the Bassily & Sun (2023) while adopting a different set of default values of its parameters.
Such changes are due to the differential technical requirements for the theoretical analysis with strong convexity. Also,
the algorithm requires a solution to the user-level locally differentially private mean estimation (ULDPMean), which is
presented later in Section C.2.2. For notation simplicity, we denote the number of users and selectors used in the selection as
n instead of n/2 in this section.

Algorithm 5 ULDPSCO
Input: Local data sets {(Xi, yi)}ni=1, number of iterations T , concentration radius τ , privacy budget ε.
Initialization : β0 =

−→
0 , βag = β0, and {ηt, γt}t∈[T ] as in Lemma C.2.

for t = 0, 1, · · · , T − 1 do
Compute βmdt = γ−1t βt +

(
1− γ−1t

)
βagt .

Choose two fresh batches St,1 and St,2 of n0 = bn/2T c users, respectively.
Compute the average gradient at each user at βt, gi

(
βmdt

)
= 1

mL

∑m
j=1

(
X>i,jβ

md
t − yi,j

)
Xi,j for i ∈ St,1 ∪ St,2.

Compute the average gradients ∇̃F
(
βmdt

)
= ULDPMean({gi

(
βmdt

)
i
}i∈St,1 , {gi

(
βmdt

)
i
}i∈St,2 , τ, ε).

Update βt+1 = βmdt − ηt · L · ∇̃F
(
βmdt

)
.

Compute βagt+1 = γ−1t βt+1 +
(
1− γ−1t

)
βagt .

end for
Output: βagT .

For the algorithm, we have the following result. Note that Algorithm 5 adopts disjoint mini-batch when computing the
gradients while Lemma C.1 was established completely based on stochastic gradient descent. Yet, the theoretical analysis
generalize straightforwardly.

Lemma C.1 (Theorem 3 of Dieuleveut et al. (2017)). Consider the stochastic convex optimization problem (3). Suppose
each ∇̃F (β) is an unbiased stochastic oracle to ∇F (β) with variance ν2. Let β′agT be the associated non-private output of
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Algorithm 5 (ε =∞). There exists settings of {ηt, γt}t∈[T ] such that

E
[
F
(
β′agT

)
−min

β
F (β)

]
.
sν2

T
+
‖β∗‖22λn

(
E
[
XX>

])−1
T 2

.

For clearness, we additionally include the full multi-round protocol.

Algorithm 6 Multi-round ULDP sparse linear regression.

Input: Local data sets {(Xi, yi)}ni=1, selectors {Si}n/2i=1, privacy budget ε, threshold ρ.
Initialization: β ∈ Rd be a zero vector.
# candidate variable selection
# on local machine
for i in 1, · · · , n/2 do
vi = Si(Xi, yi).

end for
# dlog de round communication

{v̂1, · · · , v̂s} = HeavyHitter({vi}n/2i=1, ε, ρ).
# coefficient estimation
# n ∧

√
nmε2 round communication

β̂ = ULDPSCO({(Xi, yi)}ni=n/2+1, T , τ , ε).

βv̂1:v̂s = β̂.
Output: β.

C.1.2. PROOF OF THEOREM 3.4

We need the following technical result which states the effectiveness of optimization procedures in Algorithm 5.

Lemma C.2. Consider the stochastic convex optimization problem (3). Let T = n ∧
√
nmε2, and {ηt, γt}t∈[T ] as in

Lemma C.2, L = 6s3 log n, and τ � L
√

log n log (n ∨m) log T/m. Then Algorithm 5 is ε-ULDP and has

E
[∥∥∥βagT − β̂∗∥∥∥2

2

]
. E

[
F (βagT )− F (β̂∗)

]
.
s9 log6 n

nmε2
+
s4 log n

nm
.

Proof of Lemma C.2. The privacy guarantee comes from the privacy of Algorithm 9 and the fact that each batch of samples
are disjoint. For the privacy guarantee, consider the mean squared error

F (β) =

∫
X̂×Y

(
x>β − y

)2
dP(x, y) = E

[
σ2
]

+ (β − β∗)>Σ (β − β∗) .

By assumption on Σ = E
(
XX>

)
, we have

F (β)− inf
β
F (β) = F (β)− F (β̂∗) = (β − β∗)>Σ (β − β∗) ≥ C−1X ‖β − β

∗‖22.

Thus, it suffices to bound E
[
F (β)− F (β̂∗)

]
and the estimation error is of the same order. Note that under the assumption

‖β∗‖2 ≤ 1, the squared loss function `(β) constraint on the unit ball has

‖∇`(β)‖2 ≤ ‖(x>β − y)x‖2 . s3 log n

i.e. s3 log n-Lipschitzness. Let (βag1 , . . . , βagT ) be the parameter trajector of Algorithm 5. Let
(
β′ag1 , . . . , β′agT

)
be the

parameter trajectory of another algorithm which replaces the gradient estimate ∇̃F
(
θmd
t

)
by

∇̃F ′
(
βmdt

)
∼ 1

n0

∑
i∈St,1∪St,2

gi
(
βmdt

)
+ Lap

(
0,

6τ

ε
Id

)
.
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By analysis analogous to the proof of Lemma C.5, if we take τ � L
√

log n log (n ∨m) log T/m, there holds

βagt
D
= β

′ag
t

with probability 1− 1/nm for all 1 ≤ t ≤ T , where D= stands for equal in distribution. Hence we have

E [F (βagT )] ≤ E
[
F
(
β′agT

)]
+
s4 log n

nm
. (22)

For E
[
F
(
β′agT

)]
, we use the fact that E

[
∇̃F ′

(
βmdt

)]
= ∇F

(
βmdt

)
and, by Lemma C.5,

E
[∥∥∥∇̃F ′ (βmdt )

−∇F
(
βmdt

)∥∥∥2
2

]
.
L2s2 log3 n log T

n0mε2
+
s log n

n0m
.

Applying Lemma C.1, we have

E
[
F
(
β′agT

)
−min

β
F (β)

]
.
s9 log5 n log T

nmε2
+
s2 log n

nm
+

s

T 2
.

Taking T � n ∧
√
nmε2, this together with (22) lead to

E
[
F (βagT )− F (β̂∗)

]
.
s9 log6 n

nmε2
+
s4 log n

nm
.

Theorem C.3 (Formal version of Theorem 3.4). Let data {(Xi, yi)}ni=1 be generated as in (1). Suppose {Si}ni=1 are
α-good selectors with α & s∗

√
log n log d/nε2. Suppose we let α/8s∗ ≤ ρ ≤ α/4s∗, T = n ∧

√
nmε2, and {ηt, γt}t∈[T ]

as in Lemma C.2, L = 6s3 log n, τ � L
√

log n log (n ∨m) log T/m. Let β be the output of Algorithm 6. Then we have (i)
Algorithm 6 is ε-ULDP. (ii) there holds

E
[
‖β∗ − β‖22

]
.
s9 log6 n

nmε2
+
s4 log n

nm
.

Proof of Theorem C.3. By Lemma B.6 and C.2, both HeavyHitter and ULDPSCO are ε-ULDP. Since their associated
users do not cross, we have Algorithm 6 is also ε-ULDP. As for (ii), by Proposition 3.3, we know that all the non-zero
variables of β∗ is included in {v̂1, · · · , v̂s} with probability 1− 1/n2. Thus, we have

‖β∗ − β‖22 =
∥∥∥β̂∗ − β̂∥∥∥2

2
.

Applying Lemma C.2, this leads to

E
[
‖β∗ − β‖22

]
. E

[∥∥∥βagT − β̂∗∥∥∥2
2

]
.
s9 log6 n

nmε2
+
s4 log n

nm
+

1

n2
.
s∗9 log6 n

nmε2α9
+
s∗4 log n

nmα4
,

where in the last step we used s . s∗/α as in Proposition 3.3. The additional term 1/n2 is due to the failure probability of
Proposition 3.3 and is omitted since it is adjustable to any level with a constant multiplicative cost on the other terms.

C.2. The Two Round Protocol

C.2.1. PROOF OF PROPOSITION 3.5

Proof of Proposition 3.5. For the first conclusion, consider th local OLS estimator on selected variables of user i, which is
β̂ = (X̂>i X̂i)

−1X̂>i yi. Given the fact that m ≥ s, X̂>i X̂i is invertible and we have

β̂i = (X̂>i X̂i)
−1X̂>i ŷi = (X̂>i X̂i)

−1X̂>i (X̂iβ̂
∗ + σi) = β̂∗ + (X̂>i X̂i)

−1X̂>i σi,
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where σi,j are i.i.d. sub-Gaussian random variables for 1 ≤ j ≤ m. Therefore, the first argument follows from

E[β̂i] = β̂∗ + (X̂>i X̂i)
−1X̂>i E[σi] = β̂∗.

By implication of Hsu et al. (2012, Theorem 2.1), we have

Pr

(
‖β̂i − β̂∗‖2 ≥

√
3 log n · tr

[(
X̂>i X̂i

)−1]
· E[σ2

i,j ]

)
≤ 1− 1

n3
.

This together with covariance matrix estimation bounds ( e.g. Wainwright (2019, Theorem 6.5)) lead to

‖β̂i − β̂∗‖2 .

√
tr[Σ̂−1] log n

m
.

√
s log n

m
(23)

with probability 1− 1/n3. Applying union bound, (23) holds for all i = n/2 + 1, · · · , n with probability at least 1− 1/n2.
For the second statement, if either conditions in Proposition 3.2 holds, we can adopt Lasso (or SCAD) on the selected
variables. See Example B.1 and B.3. The oracle results in Belloni & Chernozhukov (2013) (or Fan & Lv (2011)) yield the
concentration bound with the true sparsity parameter

‖β̂i − β̂∗‖2 .

√
s∗ log n

m

for all i = n/2 + 1, · · · , n with probability at least 1− 1/n2.

C.2.2. ULDP MEAN ESTIMATION

We borrow the idea from Girgis et al. (2022) while slight modifications are made. The estimation is conducted in two

stages. In the first stage, a histogram partition of X̂ with bin width
√

log2 n/m is created. The server privately estimates the

range in which the means β̂i lie with high probability (Algorithm 7). In the second stage, each user projects its β̂i into the
determined range from the first step. Then, all users send the LDP versions of their projected β̂i to the curator (Algorithm 8).
Both steps are scalar operations. In the vector case, instead of applying them to each dimension separately, random rotation
(Levy et al., 2021) is adopted to eliminate a superfluous factor of O(

√
s). The full algorithm is summarized in Algorithm 9.

We only consider pure differential privacy here and utilize Laplace noise instead of Gaussian in Girgis et al. (2022).

Algorithm 7 Range
Input: Scalars {yi}, concentration radius τ , privacy budget ε.
# user side
All users divide the interval [−1, 1] into k = 1/τ disjoint intervals, each with width 2τ . Let T := {a1, a2, . . . , ak} be
the index set of middle points of intervals.
for y in {yi} do

Compute ν = arg minaj∈T |y − aj |.
Uniformly sample j ∈ [k].
Compute p = H>jk · eν/

√
k, where eν denotes the basis vector corresponding to ν and Hk is a size k Hadamard matrix.

Compute vector zi :

zi =

{
+H>jk ·

eε+1
eε−1 w.p. 1

2 +
√
k·p
2

eε−1
eε+1

−H>jk ·
eε+1
eε−1 w.p. 1

2 −
√
k·p
2

eε−1
eε+1

end for
# curator side
z =

∑
zi and ` = arg maxjz

j .
Output: Bin [a` − 3τ, a` + 3τ ].

Let the standard Laplace random variable have probability density function e−|x|/2 for x ∈ R.
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Algorithm 8 Mean
Input: Scalars {yi}ni=1, concentration range [a, b], privacy budget ε.
# user side
for i in 1, · · · , n do

Let ỹi = Π[a,b]yi + Lap(0, |b− a|/ε), where Π[a,b] is the projection onto [a, b].
end for
# curator side
Output:

∑
ỹi/n.

Algorithm 9 ULDPMean

Input: Two groups of local coefficients B1 = {βi}n/2i=1 and B2 = {βi}ni=n/2, concentration radius τ , privacy budget ε.
Initialization: Let D = Diag(w) and U = HsD/

√
s, where wi ∼ Unif{−1, 1} and Hs is a size s Hadamard matrix.

Let z be a s dimensional zero vector.
# histogram selection
for ` in 1, · · · , s do

for βi in B1 do
y`,i = (Uβi)

`.
end for
R` = Range({y`,i}n/2i=1, τ, ε/s).

end for
# coefficient estimation
for βi ∈ B2 do
` = i mod s.
y`,i = (Uβi)

`.
end for
for j in 1, · · · , s do
zj = s · Mean({y`,i such that ` = j}, Rj , ε).

end for
Output: U−1z.

The following lemma is a modified version of Theorem 2 of Girgis et al. (2022) under pure differential privacy.

Lemma C.4. Let β̂∗ be the true underlying coefficient, and β̂is be the coefficients estimated by each user. Suppose
E
[
β̂i

]
= β∗ and ‖β̂i − β∗‖2 ≤ τ with probability 1− 1/n2 for all i. Then with probability 1− 1/n2, we have∥∥∥∥∥∥ 2

n

n∑
i=n/2+1

β̂i − ULDPMean({β̂i}n/2i=1, {β̂i}
n
i=n/2+1, τ, ε)

∥∥∥∥∥∥
2

2

.
sτ2 log2 n

nε2

Proof of Lemma C.4. We know the β̂is satisfy Definition 2 in Girgis et al. (2022) with parameter (τ, 1/n2). By Levy et al.
(2021), we have

‖Uβ̂i − Uβ̂∗‖∞ .

√
τ2 log sn2

s
.

If we choose τ ′ �
√
τ2 log sn2/s �

√
τ2log n/s, then yi satisfy Definition 2 in Girgis et al. (2022) with parameter

(τ ′, 1/n2). Then the Lemma 1 of Girgis et al. (2022) implies that Π[a,b]yi = yi with probability 1− 1/n2 in Algorithm 8.
Then the least square error for Mean is∣∣∣∣∣∣2sn

n/2s∑
i=1

ỹi −
2s

n

n/2s∑
i=1

yi

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ |b− a|snε

n/2s∑
i=1

γi

∣∣∣∣∣∣ ≤
√

288sτ ′2 log n

nε2
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where the inequality follows from (2.18) in Wainwright (2019). Since ‖ · ‖2 is upper bounded by
√
s times infinity norm,

there holds ∥∥∥∥∥∥ 2

n

n∑
i=n/2+1

β̂i − ULDPMean({β̂i}n/2i=1, {β̂i}
n
i=n/2+1, τ, ε)

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥ 2

n
U

n∑
i=n/2+1

β̂i − z

∥∥∥∥∥∥
2

2

≤ s ·

∥∥∥∥∥∥ 2

n
U

n∑
i=n/2+1

β̂i − z

∥∥∥∥∥∥
2

∞

≤ 288s2τ ′2 log n

nε2
.
sτ2 log2 n

nε2
.

The following lemma is the key technical result to prove Theorem 3.6.

Lemma C.5 (Privacy and utility of Algorithm 9). Let β̂∗ be the true underlying coefficient, and β̂is be the coefficients

estimated by each user. Then the algorithm 9 is ε-ULDP. Moreover, there exists some τ �
√

log2 n/m such that, with
probability 1− 2/n2, we have

∥∥∥β̂∗ − ULDPMean({β̂i}n/2i=1, {β̂i}
n
i=n/2+1, τ, ε)

∥∥∥2
2
.
s2 log3 n

nmε2
+
s log n

nm

Proof of Lemma C.5. We first show the privacy property of Algorithm 9. Since the users of Range and Mean do not
across, it suffices to show that both of the algorithms are ε-ULDP. The privacy of Range follows from Lemma 1 of Girgis
et al. (2022). The privacy of Mean is straightforward by property of Laplace mechanism, given that the sensitivity of Π[a,b]y
is |b − a|. Now we prove the accuracy part. The squared error can be decomposed into two parts associating to private
estimation error and non-private estimation error, respectively.∥∥∥β̂∗ − ULDPMean({β̂i}n/2i=1, {β̂i}

n
i=n/2+1, τ, ε)

∥∥∥2
2

≤2 ·


∥∥∥∥∥∥ 2

n

n∑
i=n/2+1

β̂i − ULDPMean({β̂i}n/2i=1, {β̂i}
n
i=n/2+1, τ, ε)

∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥ 2

n

n∑
i=n/2+1

β̂i − β̂∗
∥∥∥∥∥∥
2

2

 .

We deal with private estimation error part first. From Proposition 3.5, we know the β̂is satisfy Lemma C.4 with τ =√
s log n/m. Then we have∥∥∥∥∥∥ 2

n

n∑
i=n/2+1

β̂i − ULDPMean({β̂i}n/2i=1, {β̂i}
n
i=n/2+1, τ, ε)

∥∥∥∥∥∥
2

2

.
s2 log2 n log n

nmε2
. (24)

If either conditions in Proposition 3.2 holds, the parameter becomes τ =
√
s∗ log n/m by Proposition 3.5, and the same

analysis goes with s∗ instead of s.∥∥∥∥∥∥ 2

n

n∑
i=n/2+1

β̂i − ULDPMean({β̂i}n/2i=1, {β̂i}
n
i=n/2+1, τ, ε)

∥∥∥∥∥∥
2

2

.
ss∗ log2 n log n

nmε2
. (25)

Next, we bound the non-private estimation error. When β̂i is the OLS estimator, by its sub-Gaussianality, we have∥∥∥∥∥∥ 2

n

n∑
i=n/2+1

β̂i − β̂∗
∥∥∥∥∥∥
2

2

.
s log n

nm
. (26)
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If either conditions in Proposition 3.2 holds, this becomes∥∥∥∥∥∥ 2

n

n∑
i=n/2+1

β̂i − β̂∗
∥∥∥∥∥∥
2

2

.
s∗ log n

nm
. (27)

Together, (24) and (26) lead to∥∥∥β̂∗ − ULDPMean({β̂i}n/2i=1, {β̂i}
n
i=n/2+1, τ, ε)

∥∥∥2
2
.
s2 log3 n

nmε2
+
s log n

nm
.

The overall failure probability is at least 2/n2 since we utilized two high probability arguments. Similarly, (25) and (27)
lead to ∥∥∥β̂∗ − ULDPMean({β̂i}n/2i=1, {β̂i}

n
i=n/2+1, τ, ε)

∥∥∥2
2
.
ss∗ log3 n

nmε2
+
s∗ log n

nm
.

C.2.3. PROOF OF THEOREM 3.6

Proof of Theorem 3.6. By Lemma B.6 and C.5, both HeavyHitter and ULDPMean are ε-ULDP. Since their associated
users do not cross, we have Algorithm 1 is also ε-ULDP. As for (ii), by Proposition 3.3, we know that all the non-zero
variables of β∗ is included in {v̂1, · · · , v̂s} with probability 1− 1/n2. Thus, we have

‖β∗ − β‖22 =
∥∥∥β̂∗ − β̂∥∥∥2

2
.

Applying Lemma C.5, this leads to

‖β∗ − β‖22 .
s2 log3 n

nmε2
+
s log n

nm
.
s∗2 log3 n

nmε2α2
+
s∗ log n

nmα
,

where in the last step we used Proposition 3.3. In the last, the overall failure probability of Proposition 3.3, Lemma B.6, and
Lemma C.5 is at most 4/n2.

D. Extension to Sparse Estimation

The full statement of Theorem 3.7 is as follows. We utilize Algorithm 1 while modifying the estimators β̂i and selectors Si
to accommodate the general problem.

Theorem D.1 (Formal version of Theorem 3.7). Let data {Xi}ni=1 be generated by Pβ∗ for β∗ ∈ Ωds,a. Suppose we
have non-private estimators: (i) estimator β̃i with ‖β̃i − β∗‖2 ≤ ν1 for all 1 ≤ i ≤ n/2 and (ii) estimator β̂i on selected

variables with E
[
β̂i

]
= β̂∗ and ‖β̂i − β̂∗‖2 ≤ ν2 for all n/2 + 1 ≤ i ≤ n. Then there exist α-good selectors {Si}n/2i=1

with α & s∗
√

log n log d/nε2, that is Pr (v = Si(Xi)) ≥ α/s∗ for 1 ≤ v ≤ s∗ and 1 ≤ i ≤ n/2. Suppose we let
α/8s∗ ≤ ρ ≤ α/4s∗, τ �

√
ν2α log n/s∗. Then, for any a & ν1, Algorithm 1 is ε-ULDP and has an output β with

‖β∗ − β‖22 .
ν22
n

+
ν22s
∗ log2 n

nε2α
(28)

with probability at least 1− 3/n2. Moreover, for `1 norm, there holds

‖β∗ − β‖1 .

√
ν22s
∗

nα
+

√
ν22s
∗2 log2 n

nε2α2
(29)

with probability at least 1− 3/n2.
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Proof of Theorem D.1. The privacy guarantee follows from Theorem 3.6. Since a & ν1, we can consistently select all
true variables with proxy estimators. This implies we can have α-good selectors with α & 1 & s∗

√
log n log d/nε2.

By Proposition 3.3, we know that all the non-zero variables of β∗ is selected with probability 1 − 1/n2. Thus, we have

‖β∗ − β‖22 =
∥∥∥β̂∗ − β̂∥∥∥2

2
. Applying Lemma C.4, we have

∥∥∥β̂∗ − β̂∥∥∥2
2
.

∥∥∥∥∥∥β̂∗ − 2

n

n∑
i=n/2+1

β̂i
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2

2

+
sν22 log2 n

nε2
.

Since β̂i are concentrated, it is sub-Gaussian. Thus, there holds∥∥∥β̂∗ − β̂∥∥∥2
2
.
ν22
n

+
sν22 log2 n

nε2
.
ν22
n

+
s∗ν22 log2 n

nε2α

where in the last step we used Proposition 3.3. In the last, the overall failure probability of Proposition 3.3, Lemma B.6, and
Lemma C.4 is at most 3/n2. This yields (28). For (29), note that there is only s . s∗/α none zero elements. Using the
difference between `1 and `2 norms, which is

√
s, yields (29).

E. Additional Experiment Results
E.1. Implementation Details

For each model, we report the best result over its parameter grids, with the best result determined based on the average result
of at least 30 replications. We do not perform any parameter selection (e.g. cross validation or validation set) since they are
prohibitive under locally private setting (Ma & Yang, 2024; Ma et al., 2024a) or will cost too much privacy budget (Papernot
& Steinke, 2021). The parameter grids size are selected based on running time so that each method costs equal amount of
computation. Efficient methods receive a exhaustive parameter grid and can be properly tuned. Computation heavy methods
receive a small grid with insensitive parameters set to default.

• For candidate variable selector of our methods, we adopt the Lasso estimator and identify its non-zero coefficients as
the selected variables. Moreover, we conduct a feature screening (see Appendix B.1 for detail) for acceleration. The
number of screened variables is set to 64. The number of selected variables s is selected in {2, 4, 8, 16}.

– 2-SLR: The two-round sparse linear regression protocol is implemented based on Algorithm 1. We select the
range [−B,B] in B ∈ {1, 2, 3} and the concentration radius is decided by the number of bins, which is in
{2, 4, 8, 16, 32}.

– M-SLR: The multi-round sparse linear regression protocol is implemented based on Algorithm 6. We set B = 3
and select the number of bins in {2, 4, 8, 16, 32}. Moreover, we set the learning rate of the gradient to be
ηt = 0.1 · ( 1+t

2 )0.2.

• LDPPROX: The non-interactive locally differentially private sparse linear regressor based on proxy estimator is
implemented according to Algorithm 1 in Zhu et al. (2023). Due to the heavy computation burden, we set r =

√
d · log n,

τ1 = 4, τ2 = 8. In simulation where we know minβ∗j 6=0 |β∗j | = 0.2, we set λ = 0.05. In real data, we set λ to the
10-th lower quantile of the absolute fitted coefficients.

• LDPIHT: The locally differentially private iterative hard thresholding is implemented according to Algorithm 2 in
Zhu et al. (2023). We select T ∈ {2, 5, 10, 20, 50}, η ∈ {0.01, 0.1, 1}, τ1, τ2 ∈ {2, 4, 8}, k′ ∈ {5, 10, 20, 50}.

• Lasso: The conventional Lasso regressor is fitted using the LassoCV class in scikit-learn package (Pedregosa et al.,
2011). We set n alphas = 300, max iter = 3000, and tol = 10−4.

E.2. Additional Simulation Results

We present the additional result of the correlated marginal distribution data experiment omitted in the main text due to page
limitation. The correlation of the first 50 dimensions are set to be exponentially decaying, i.e.

Cov
(
Xk
i,j , X

k′

i,j

)
= 2−|k−k

′|.

28



Better Locally Private Sparse Estimation Given Multiple Samples Per User

We draw each σi,j correlatedly from a standard Gaussian distribution. For β∗, we randomly select s∗ = 8 coordinates in the
first 50 dimensions to be 0.2 and let others be zero. We typically set n = 400, m = 100, d = 256, and ε = 4, while varying
one of them to observe how the evaluated metric varies. We use squared error as evaluation of the estimated coefficient and
F1 score as evaluation of the selected variables.
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(a) d - F1 score.
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(b) d - `2 error with m = 100.

16 32 64 128 256 512 1024
d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

l2
 e

rro
r

2-SLR
M-SLR
LASSO
LDPIHT

(c) d - `2 error with m = 200.
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(d) ε - `2 error.

Figure 5. Experiments w.r.t. d and ε for correlated marginal. We plot the quantiles over 30 repetitions with 95% coverage. We exclude
LDPPROX in some figures since it is highly unstable and do not fit into our plot scale.

We conduct experiments with respect to d. We first analyze the variable selection performance. Due to the high sparsity, we
use F1 score as the evaluation criterion. For d ∈ {16, 32, · · · , 1024}, we compute the averaged F1 scores of the proposed
candidate variable selection (represented by 2-SLR) and other methods. As depicted in Fig. 5(a), the overall performance
of all methods deteriorates compared to that under the independent setting, whereas 2-SLR remains stable and maintains
its advantage. When d = 16, the selection performances of Lasso and LDPPROX are slightly superior than the variables
induced by other methods. However, as d increases, the variable selection performance of Lasso, LDPIHT and LDPPROX
decreases sharply, while the F1 scores of 2-SLR only fluctuate slightly and become higher than those of other competitors
when d ≥ 64.

Then, we analyze the estimation performance. In 5(b) and 5(c), we plot the curve of `2 error with respect to d. Whether
m = 100 or m = 200, the proposed methods are less sensitive to d compared to LDPIHT. The is also compatible with rate
in (5) which scales with log d. Compared to the independent case, the correlated case requires more local samples to achieve
a consistent selection. Thus, thus difference in results for large m and small m is less apparent.

We examine the privacy-utility trade-offs by investigating performances under different εs. In 5(d), the error decreases as ε
increases for all private methods as expected. Moreover, the error of 2-SLR is comparable to Lasso, while error of M-SLR
quickly drops below Lasso at medium privacy region ε ≥ 4. This again ensures the superiority of our methods compared to
fitting Lasso using only local information.

Finally, we analyze the impact of sample sizes. In Figure 6(a) and 6(b), the `2 error decreases as both n and m increases for
all ε, which confirms our theoretical claims. The error is generally higher than that in the independent case. The overall `2
curve is less sensitive to n and m. Moreover, we let nm = 400× 100 and vary the ratio n/m. In 4(c), we observe that, for
each ε, the error of 2-SLR retains for n/m ≈ 1, while increase slightly when either n or m is too small, which is compatible
with Theorem 3.6. The performance of M-SLR is still sensitive to n becoming small.

E.3. Real Dataset Description

A summary of key information for these datasets after pre-processing can be found in Table 3. For user-specific sample
partitioning, certain datasets come with predefined partitions, while others undergo random partitioning. Categorical features
in the datasets are transformed into dummy variables, while each continuous feature is individually scaled to zero mean
and unit variance. We also present additional information of the data sets including the data source and the pre-processing
details.

Airline: The Airlines-Departure-Delay dataset originally comes from United States Department of Transportation and
currently available on OpenML (LeDell, 2020), consists of 1,048,575 observations, including one target variable and 9
attributes pertaining to flight information. We partition samples into users based on the ”Destination” variable, selecting 205
users with sample counts ranging from 200 to 400. Attributes such as ”Origin” and ”UniqueCarrier” are transformed into
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Figure 6. Experiments w.r.t. sample sizes for correlated marginal.

Table 3. Information of real datasets.
Dataset Sample Partition d n m Area

Airline Predefined 260 205 200-400 Social
Loan Random 735 500 100 Business
Mip Predefined 144 218 5 Computer Science
Taxi Predefined 213 1200 189-200 Social
Wine Random 41 60 100 Business
Yolanda Random 100 800 200 Social

dummy variables, contributing to a total of 260 features in the ”Airlines” dataset. Overall, the Airlines dataset contains
75, 600 samples.

Loan: The Loan-Default-Prediction dataset is obtained from the training set of the Kaggle Loan Default Prediction challenge
(DrivenData, 2021a), which aims to reduce the consumption of economic capital and optimize on the risk to the financial
investor. The original dataset comprises 55319 instances of 735 attributes We randomly select 50, 000 samples and partition
the data into 500 groups, with each group containing 100 samples.

Mip: The MIP-2016-regression dataset, available on OpenML, comprises 1, 090 instances featuring 144 attributes and 1
output attribute (Bergdoll, 2019). Within this dataset, there are a total of 218 users, with each user possessing 5 samples.

Taxi: The Taxi dataset is obtained from the Differential Privacy Temporal Map Challenge (DrivenData, 2021b), which
aims to develop algorithms that preserve data utility while guaranteeing individual privacy protection. The dataset contains
quantitative and categorical information about taxi trips in Chicago, including time, distance, location, payment, and service
provider. We partition the samples based on the unique identification number of taxis (taxiid), resulting in 1200 taxis
with sample counts ranging from 189 to 200. Other features include the time of each trip (seconds), the distance of each
trip (miles), the time period during which each trip occurs(shift), index of the zone where the trip starts (pca), index
of the zone where the trip ends (dca), service provider (company), the method used to pay for the trip (payment type)
and amount of tips (tips) and fares (fare). We use the other variable to predict the fares of the fares (fare) of the trips.
Attributes such as shift, pca,dca, company and payment type are transformed into dummy variables, resulting in a total
of 213 features in the Taxi dataset.

Wine: This dataset originates from the Wine Quality dataset (Cortez et al., 2009) on UCI Machine Learning Repository,
which combines data from both the ”red wine” and ”white wine” datasets. The original dataset comprises 11 features
associated with wine to predict the corresponding wine quality. In an effort to enhance dimensionality, Gaussian random
noise in 30 dimensions has been incorporated. 6000 instances are collected in the dataset. The samples are randomly
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partitioned among 60 users, with each user having 100 samples.

Yolanda: The Yolanda dataset (Guyon et al., 2019) contains 400000 instances of 100 attributes and 1 output attribute. We
randomly select 160, 000 samples and distribute them into 800 groups, with each group containing 200 samples.

E.4. Additional Real Datasets Results

Table 4. Running time(seconds) on real datasets.

Datasets Lasso 2-SLR M-SLR LDPPROX LDPIHT

Airline 0.7 15.8 15.3 766.5 6.1
Loan 43.1 74.7 106.9 4124.0 30.6
MIP 0.1 0.1 2.3 5.5 4.3
Taxi 0.1 0.7 11.5 1569.1 7.0
Wine 0.2 0.7 2.9 3.5 2.6
Yolanda 0.5 0.4 12.5 365.8 4.4
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