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Abstract
Federated Learning is widely employed to tackle
distributed sensitive data. Existing methods pri-
marily focus on addressing in-federation data het-
erogeneity. However, we observed that they suffer
from significant performance degradation when
applied to unseen clients for out-of-federation
(OOF) generalization. The recent attempts to
address generalization to unseen clients gener-
ally struggle to scale up to large-scale distributed
settings due to high communication or compu-
tation costs. Moreover, methods that scale well
often demonstrate poor generalization capability.
To achieve OOF-resiliency in a scalable manner,
we propose Topology-aware Federated Learning
(TFL) that leverages client topology - a graph rep-
resenting client relationships - to effectively train
robust models against OOF data. We formulate a
novel optimization problem for TFL, consisting
of two key modules: Client Topology Learning,
which infers the client relationships in a privacy-
preserving manner, and Learning on Client Topol-
ogy, which leverages the learned topology to iden-
tify influential clients and harness this informa-
tion into the FL optimization process to efficiently
build robust models. Empirical evaluation on a va-
riety of real-world datasets verifies TFL’s superior
OOF robustness and scalability.

1. Introduction
Federated Learning (FL) has emerged as a promising solu-
tion for handling distributed sensitive data, enabling multi-
institutional collaboration by distributing model training
to data owners and aggregating results on a centralized
server (McMahan et al., 2017). This data-decentralized
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Figure 1. Our empirical evaluation of patient mortality predic-
tion using Federated Learning on distributed Healthcare dataset
(eICU (Pollard et al., 2018)). We observed that a model exhibiting
high accuracy with in-federation (IF) data can fail catastrophi-
cally when presented with out-of-federation (OOF) data.

approach harnesses the collective intelligence of all partici-
pating nodes to build a model that is potentially more robust
and generalizable (Sheller et al., 2020). Existing robust FL
methods (Li et al., 2020b; Deng et al., 2020) primarily focus
on learning a global model with good average or worst-case
performance, addressing in-federation (IF) data heterogene-
ity. However, these methods can fail catastrophically on
out-of-federation (OOF) clients, i.e., clients outside the col-
laborative federation. The OOF clients pose significant gen-
eralization challenges, as FL models may encounter unseen
distributions outside their training space (Pati et al., 2022a).
Our empirical study shows that existing methods suffer from
significant performance degradation when applied to unseen
clients for OOF generalization (see Figure 1).

There have been recent attempts to address the challenge of
unseen clients through client augmentation and client align-
ment. However, these approaches encounter difficulties in
large-scale distributed environments. Client augmentation
methods (Liu et al., 2021) often necessitate intensive client-
server communication, leading to a notable communication
bottleneck that hinders scalability (Zhou et al., 2023). Client
alignment methods (Zhang et al., 2021), which operate by
aligning client distributions through adversarial training, are
less communication costly but introduce substantial compu-
tation burdens due to complex local training process (Bai
et al., 2023). While using a fixed reference distribution for
alignment (Nguyen et al., 2022) offers computational effi-

1



Beyond the Federation: Topology-aware Federated Learning for Generalization to Unseen Clients

25 30 35 40 45 50 55
Wall-clock Time (mins)

67.0

67.5

68.0

68.5

69.0

69.5

70.0

70.5
OO

F 
Ac

cu
ra

cy
 (%

)

FedAvg

FedSR
DRFA FedProx

FedDG

TFL (Ours)

OOF Accuracy vs. Wall-clock Time

Figure 2. Accuracy vs. wall-clock time on PACS dataset (Li et al.,
2017). Wall-clock time is used as a holistic evaluation of scalability
(communication and computation costs). We see a tradeoff between
OOF robustness and scalability in existing methods.

ciency, it has shown limited generalization capabilities to
unseen clients (Bai et al., 2023). Our empirical evaluation
(Figure 2) reveals the tradeoff between OOF resiliency and
scalability in current methods. A question naturally arises:
Can we build OOF robust models in a scalable manner?

We propose to trigger OOF-resiliency while being scalable
by leveraging client topology. Client topology, a graph rep-
resenting client relationships, allows for using graph mining
techniques (Saxena & Iyengar, 2020; Lü & Zhou, 2011) to
derive insights into client data distributions. It can be used
to identify “influential” clients that are representative of the
training clients, containing distributions more likely to be
encountered in OOF clients. For instance, an influential
client could be a regional hospital that aggregates a diverse
range of patient data. This hospital’s data encapsulates a
rich repository of information, mirroring the variety and
complexity of data that could be seen in OOF scenarios.
Leveraging these influential clients as priority contributors
in the training rounds can facilitate the model in learning
from the most representative data, thereby potentially en-
hancing its OOF robustness. On the other hand, by reducing
unnecessary communication with non-influential clients,
communication costs can be significantly reduced.

Grounded on the concept of client topology, we formulate
the problem of generalization to unseen clients as the opti-
mization of a joint objective over the models and the client
topology. To solve this optimization problem, we propose
Topology-aware Federated Learning, which consists of two
steps: 1) Client Topology Learning: Inferring the client
topology while respecting data privacy. 2) Learning on
Client Topology: Leveraging the learned topology to build
a robust model. The first step learn a client topology that
reflects client relationships by analyzing pairwise model
similarity. In the second step, a robust model is efficiently
optimized by harnessing the client’s influential information
to regularize a distributed robust optimization process.

Our contributions are as follows: Firstly, we introduce
the Topology-aware Federated Learning (TFL), a scal-

able framework designed to enhance FL’s out-of-federation
(OOF) robustness. TFL utilizes client relationships to de-
velop robust models against OOF data. Secondly, we design
an iterative client topology learning and learning on client
topology approach to solve TFL. Finally, we have curated
two OOF benchmarks using real-world healthcare data, of-
fering valuable testbeds for subsequent research. Through
extensive experiments on curated and standard benchmarks,
we verify TFL’s superior OOF-resiliency and scalability.

2. Preliminaries
We start by presenting the average-case formulation of FL
and subsequently introduce a fundamental robust optimiza-
tion framework for FL (worst-case formulation).

Federated learning (Average-case formulation). The stan-
dard FL involves collaboratively training a global model
leveraging data distributed at K clients. Each client k
(1 ≤ k ≤ K) has its own data distribution Dk(x, y), where
x ∈ X is the input and y ∈ Y is the label, and a dataset with
nk data points: D̂k = {(xn

k , y
n
k )}

nk

n=1. Local data distribu-
tions {Dk}Kk=1 could be the same or different across the
clients. FL aims to learn a global model θ by minimizing
the following objective function:

min
θ∈Θ

F (θ), where F (θ) :=

K∑
k=1

pkfk(θ), (1)

where fk(θ) is the local objective function of client k. The
local objective function is often defined as the empirical
risk over local data, i.e., fk(θ) = E(x,y)∼D̂k

[ℓ(θ;x, y)] =
1
nk

∑nk

n=1 ℓ(θ;x
n
k , y

n
k ). The term pk (pk ≥ 0 and

∑
k pk =

1) specifies the relative importance of each client, with two
settings being pk = 1

N or pk = nk

N , where N =
∑

k nk is
the total number of samples.

Distributionally robust federated learning (Worst-case
formulation). While Equation 1 can build a global model
with good average performance on in-federation clients,
it may not necessarily guarantee good performance in the
presence of heterogeneous data. In the real world, data
could be statistically heterogeneous due to different data
acquisition protocols or various local demographics (Rieke
et al., 2020). Thus, the local data distributions may deviate
significantly from the average distribution, implying that an
“average” global model can fail catastrophically under dis-
tributional drift. To tackle this issue, distributionally robust
optimization (Staib & Jegelka, 2019) has been adapted to FL,
resulting in distributionally robust federated learning (Deng
et al., 2020; Reisizadeh et al., 2020). The formulation of
this new problem is as follows:

min
θ∈Θ

max
λ∈∆K

F (θ,λ) :=

K∑
k=1

λkfk(θ), (2)

where λ is the global weight for each local loss function
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Figure 3. Overview of Topology-aware Federated Learning (TFL). TFL contains two alternating steps: client topology learning (CTL)
and learning on client topology (LCT). CTL learn the client topology that describes the relationships between local clients. We use
model weights as node embedding and construct a ϵ-graph by measuring the similarity of node pairs. LCT leverage the learned client
topology to achieve better OOF robustness. We identify the influential client and then use the influential client as prior knowledge to
regularize a distributionally robust optimization framework. In this way, the optimization process can balance the “worst-case” client and
the “influential” client to avoid overly pessimistic models with compromised OOF-resiliency.

and ∆K denotes the K − 1 probability simplex. Intuitively,
Equation 2 minimizes the maximal risk over the combi-
nation of empirical local distributions, and therefore the
worst-case clients would be prioritized during training.

While this framework has the potential to address distribu-
tion shifts (Mohri et al., 2019; Qiao & Peng, 2023; Deng
et al., 2020), directly implementing it for OOF resiliency
may yield suboptimal models. This approach heavily relies
on worst-case clients, those with large empirical risks, to
develop robust models. However, these clients may not
necessarily be the influential ones that are representative
of clients. In some cases, it is possible that this approach
overly focuses on “outlier” clients, clients that are signifi-
cantly different from most of the training clients, leading to
models with limited OOF robustness. Therefore, we argue
that, to build optimal OOF-resilient models, the optimiza-
tion process should focus on not only the worst-case but
also the influential clients.

3. Methodology
In this section, we introduce the proposed Topology-aware
Federated Learning (TFL) framework. TFL aims to leverage
client topology to improve the model’s OOF robustness. We
use graphs as tools to describe the client topology because
they provide a flexible way to represent the relationship
between distributed clients (Dong et al., 2019; Mateos et al.,
2019). Specifically, we model client topology using an
undirected graph (Vanhaesebrouck et al., 2017; Ye et al.,
2023). In the graph, nodes correspond to clients, and edges
reflect client connectivity. Let G = (V,E,W ) denote the
client topology, where V is the node set with |V | = K,
E ⊆ V × V is the edge set and W ∈ RK×K is the adja-
cency matrix. An edge between two clients vk and vl is
represented by ek,l and is associated with a weight wk,l.

Optimization problem. Let ϕ denotes graph measures, e.g,
centrality measure (Saxena & Iyengar, 2020). The function
“sim” indicates any similarity function, including but not
limited to cosine similarity, ℓ2, or ℓ1. γ represents a trade-
off hyperparameter. D symbolizes arbitrary distributional
distance measure. As the client topology is often not readily
available, we propose to jointly optimize the client topology
and the robust model by solving the following problem:

min
θ∈Θ
w∈W

max
λ∈∆K

F (θ,λ,W ) :=

K∑
k=1

λkfk(θ)

− γ

2

∑
k ̸=l

wk,l sim(vk, vl),

s.t. D(λ ∥ p) ≤ τ, where p = ϕ(W ).

(3)

In the proposed objective function, the first term follows
the same spirit of Equation 2 to adopt a minimax robust
optimization framework. The difference is that it minimizes
the risk over not only the worst-case but also the influential
clients. The second term is dedicated to learning the client
topology by measuring the pair-wise client similarity.

Our formulation stands apart from existing work in two re-
spects. First, it employs client topology to explicitly model
the client relationships. Analyzing this topology facilitates
the identification of influential clients that are crucial for
developing OOF generalization. Second, our formulation
enables seamless integration of client topology into the op-
timization process, ensuring that the model assimilates in-
sights from the most significant clients.

In Equation 3, it is infeasible to simultaneously update both
the client topology W and model parameters θ as local
clients do not have access to other clients’ data. To this end,
we propose to solve this problem using an alternating two-
step approach: learning the client topology (updating W )
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and building an OOF-resilient model with client topology
(updating λ and θ). As shown in Figure 3, we term these
steps as Client Topology Learning (CTL) and Learning
on Client Topology (LCT), respectively. The following
sections will provide further details on these two steps.

3.1. Client Topology Learning

Our goal is to learn the client topology that accurately
describes the characteristics of local data, capturing the
underlying relationships among clients. Conventional ap-
proaches typically adopt similarity-based (Chen et al.,
2020a; Franceschi et al., 2019) or diffusion-based (Zhu
et al., 2021; Mateos et al., 2019) methods to estimate the
graph structure from data. However, most methods require
centralizing training data on a single machine, thereby rais-
ing privacy concerns. Therefore, the primary challenge lies
in learning the client topology while respecting data privacy.

We propose to utilize model weights to learn client topology.
Intuitively, when two clients have similar data distributions,
their corresponding models should be more similar. It is
possible to obtain data distribution relationships with model
similarity. While the feasibility of this idea is supported by
literature (Yu et al., 2022), we intend to empirically verify
whether it holds in our setting. We use four types of simi-
larity measures, including ℓ1-based, ℓ2-based, dot product-
based, and cosine similarity-based metrics. We conduct
experiments on PACS where clients 6 to 10 share similar
data distributions. Then, we measure the similarity between
client 10 and all other clients. For a clear comparison, we
normalized all scores into [0, 1]. The results are shown
in Figure 4. We observe that clients sharing similar data
distributions exhibit significantly higher similarity scores
compared to others. Furthermore, these distinct similarity
scores remain consistent across various metrics.

In summary, utilizing model weights to learn client topology
offers two merits. First, models can be freely shared among
clients, addressing privacy issues of client topology learning.
Second, since models are trained on local data, their similar-
ity measures the similarity between local data distributions.
We formulate client topology learning as follows:

min
w∈W

−
∑
k ̸=l

wk,l sim(θk, θl) + ∥W∥0 , (4)

where θ denotes the model of local clients. This objective
ensures that similar clients have large edge weights. Our
formulation is aligned with the common network homophily
assumption that edges tend to connect similar nodes (New-
man, 2018). To avoid learning a fully connected graph with
trivial edges, we enforced graph sparsity by penalizing the
l0-norm of the adjacency matrix ∥W∥0. We implement the
sparsity term using an implicit method, i.e., hard threshold-
ing on W to construct ϵ-graph (Zhu et al., 2021). Specifi-
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Figure 4. Model similarity under different metrics. Client models
are trained using the same algorithm and hyperparameters. Clients
6 to 10 share similar data distributions. We observe that clients
with similar data distribution tend to have more similar models.

cally, we mask out (i.e., set to zero) those elements in W
smaller than a non-negative threshold ϵ.

3.2. Learning on Client Topology

The learned client topology captures the relation among lo-
cal clients. We aim to leverage such relations to develop TFL
for better OOF-resiliency. Recall that, to tackle distribution
shift, distributionally robust federated learning (DRFL) as-
sumes that the target distribution lies within an arbitrary
mixture of training distributions:

∑K
k=1 λkDk. DRFL

builds OOF-resilient models by minimizing the worst-case
risk over an uncertainty set of possible target distribution
Q := {

∑K
k=1 λkDk | λ ∈ ∆K}. However, DRFL pri-

marily emphasizes the worst-case distribution, potentially
ignoring the influential ones that are more representative
of the training clients. This can lead to overly pessimistic
models with compromised OOF resiliency (Hu et al., 2018).

We leverage client topology to construct an uncertainty set
that can better approximate the unseen distribution. Our
insight is to optimize the model for both the worst-case
and influential distributions. The key challenge is how to
identify the influential distribution. Our idea is to use graph
centrality as the criterion to choose influential distributions.
Graph centrality is widely used in social network analy-
sis (Newman, 2005) to identify the key person by measuring
how much information propagates through each entity. We
introduce client centrality to identify influential ones, which
can be calculated by graph measurements such as degree,
closeness, and betweenness. Specifically, we first calculate
the centrality of each client in G as the topological prior p.
Then we use p to constraint the uncertainty set Q by solving
the following minimax optimization problem:

min
θ∈Θ

max
λ∈∆K

F (θ,λ) :=

K∑
k=1

λkfk(θ),

s.t. D(λ ∥ p) ≤ τ.

(5)
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The topological constraint directs the optimization to fo-
cus on worst-case and influential clients. Notably, both
FedAvg (McMahan et al., 2017) (Equation 1) and DRFL
(Equation 2) can be viewed as special cases of TFL: When
τ = 0 and the prior p is a uniform distribution, Equation 5
minimizes the average risks over local clients, which is iden-
tical to FedAvg; When τ → ∞, Equation 5 only prioritizes
the worst-case clients, resembling the DRFL approach.

The above optimization problem is typically nonconvex, and
methods such as SGD cannot guarantee constraint satisfac-
tion (Robey et al., 2021). To tackle this issue, we leverage
the Lagrange multiplier and KKT conditions (Boyd et al.,
2004) to convert it into unconstrained optimization:

min
θ∈Θ

max
λ∈∆K

F (θ,λ,p) :=

K∑
k=1

λkfk(θ)− qD(λ ∥ p), (6)

where q is the dual variable. We solve the primal-dual
problem by alternating between gradient descent and ascent:

θt+1 = θt − ηtθ∇θF (θ,λ),

λt+1 = P∆K
(λt + ηtλ∇λF (θ,λ)),

(7)

where ηt is the step size. P∆K
(λ) projects λ onto the

simplex ∆K for regularization.

Influential client. We identify the influential clients by
calculating betweenness centrality. Betweenness central-
ity measures how often a node is on the shortest path be-
tween two other nodes in the graph G. It has been re-
vealed that the high betweenness centrality nodes have
more control over the graph as more information will pass
through them (White & Borgatti, 1994). The between-
ness centrality of client k is given by the expression of
ck =

∑
s̸=k ̸=t∈[K]

σst(k)
σst

, where σst is the total number of
shortest path from node s to node t ((s, t)-paths) and σst(k)
is the number of (s, t)-paths that pass through node k. Then
we apply softmax to normalize client centrality ck to obtain
client topological prior pk = exp(ck)/

∑K
k=1 exp(ck).

Discussion. Handling high-dimensional models. Large
models are getting more attention in FL (Zhuang et al.,
2023). Its high dimensionality might raise computational
concerns when calculating model similarity. For better com-
putation efficiency, we can leverage only partial model pa-
rameters, e.g., the last few layers. We empirically show that
using partial parameters does not significantly affect the
OOF performance (see results in Table 7). Client topology
learning in cross-device settings. Client topology learn-
ing incurs O(N2) computation complexity for N clients.
This quadratic complexity could be prohibitively expensive
in cross-device FL that involves thousands or millions of
clients. We argue that computation costs can be significantly
reduced via client clustering (Sattler et al., 2020). Our em-
pirical evaluation (see results in Table 6) shows that client
clustering significantly reduces computation costs.

4. Experiments
4.1. Datasets and Baselines

Datasets. TFL is evaluated on our curated real-world
datasets (①eICU, ②FeTS, ③TPT-48) and standard bench-
marks (④CIFAR-10/-100, ⑤PACS), spanning a wide range
of tasks including classification, regression, and segmen-
tation. Evaluations covers both out-of-federation (datasets
①-③, ⑤) and in-federation (datasets ③-④) scenarios. Below
are the descriptions of the real-world datasets. For detailed
descriptions of all datasets, including ④CIFAR-10/-100 and
⑤PACS, please refer to Supplementary A.

① eICU (Pollard et al., 2018) is a large-scale multi-center
critical care database. It contains high granularity criti-
cal care data for over 200, 000 patients admitted to 208
hospitals across the United States. We follow (Huang
et al., 2019) to pre-process the raw data. The resultant
dataset comprises 19, 000 patients over 72 hospitals. We
further split the patients into four groups based on census
regions and provided the protocol for OOF evaluation.

② FeTS (Pati et al., 2022b) is a multi-institutional med-
ical imaging dataset. It comprises clinically acquired
MRI scans of glioma. We use a subset of the original
data, comprising 358 subjects from 21 distinct global
institutions, and provide a protocol for OOF evaluation.
The task is brain tumor segmentation and the evaluation
metric is Dice Similarity Coefficient (DSC ↑).

③ TPT-48 (Vose et al., 2014) contains the monthly average
temperature for the 48 contiguous states in the US from
2008 to 2019. The task is to predict the next six months’
temperature given the first six months’ data. We consider
two tasks: (1) E(24) → W(24): Using the 24 eastern
states as IF clients and the 24 western states as OOF
clients; (2) N(24) → S(24): Using the 24 northern states
as IF clients and the 24 southern states as OOF clients.
The evaluation metric is Mean Squared Error (MSE ↓).

Baselines. We compare with FedAvg (McMahan et al.,
2017) and FedProx (Li et al., 2020b), the most referenced
baselines in the literature. DRFA (Deng et al., 2020) is the
latest work that adopts the federated distributionally robust
optimization framework. FedSR (Nguyen et al., 2022) is
the most recent work that tackles FL’s generalization to
unseen clients. We did not compare with FedDG (Liu et al.,
2021) as it requires the sharing of data in the frequency
space with each other. This can be viewed as a form of
data leakage (Bai et al., 2023; Nguyen et al., 2022). We
provide implementation details on model architecture and
hyperparameters in Supplementary D.

4.2. Evaluation on OOF-resiliency

Takeaway 1: Learning on client topology improves OOF
robustness. We evaluate our method on different datasets
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Table 1. Accuracy on the PACS. We conduct experiments using leave-one-domain-out, meaning each domain serves as the evaluation
domain in turn. Existing methods typically consider each domain as an individual client (Liu et al., 2021; Nguyen et al., 2022). To
simulate a large-scale setting, we further divide each domain into 5 subsets and treat each subset as a separate client. The total number of
clients is 20. The reported numbers are from three independent runs. Our method outperformed others across all tested settings.

Models Backbone PACS

A C P S Average

Centralized
Methods

DGER (Zhao et al., 2020) ResNet18 80.70 76.40 96.65 71.77 81.38
DIRT-GAN (Nguyen et al., 2021) ResNet18 82.56 76.37 95.65 79.89 83.62

Federated
Learning
Methods

FedAvg ResNet18 55.83±0.31 61.37±0.66 77.87±0.61 74.53±0.18 67.40
FedProx ResNet18 56.84±0.88 62.56±0.87 78.33±0.46 75.17±0.61 68.23
DRFA ResNet18 56.59±0.34 62.87±0.22 78.63±0.77 75.55±0.42 68.41
FedSR ResNet18 57.56±0.95 61.91±0.35 78.42±0.19 74.73±0.27 68.16

TFL (Ours) ResNet18 59.05±0.69 64.46±0.21 79.35±0.61 76.93±0.39 69.95

Table 2. Best ROC-AUCs, corresponding communication round, and the total number of communicated parameters (donate as c-params.
(M) in the table) on eICU. This dataset comprises EHRs collected from a diverse range of 72 hospitals across the United States. We trained
our model using data from 58 hospitals located in the MIDWEST, NORTHEAST, and SOUTH regions. We evaluated the performance of
the global model on an independent set of 14 hospitals from the WEST. The reported numbers are from three independent runs. Our
approach achieves the best OOF performance with minimal communication rounds and the number of communicated parameters.

Centralized Method Federated Learning Methods

ERM FedAvg FedProx DRFA FedSR TFL (Ours)

ROC-AUC round c-params. ROC-AUC round c-params. ROC-AUC round c-params. ROC-AUC round c-params. ROC-AUC round c-params.

67.04±1.88 57.18±0.03 6 15.66M 57.21±0.01 6 15.66M 57.20±0.09 2 10.44M 57.25±0.03 8 20.88M 58.41±0.06 2 10.44M

and summarize the results in Tables 1, 2, and 3. We make
the following observation: our method improves the model’s
OOF-resiliency on both standard and real-world datasets.
From Table 1, our method performs 2.25% better than the
federated robust optimization method (DRFA) and 2.63%
better than the federated domain generalization method
(FedSR). From Table 2, our method performs 2.11% bet-
ter than DRFA and 2.03% better than FedSR. Lastly, from
Table 3, our method performs 1.98% better than DRFA
and 3.00% better than FedSR. Overall, our method shows
consistently superior OOF robustness than state-of-the-art
across all the evaluated datasets. We also visualize the seg-
mentation results of FeTS in Figure 5. Our method delivers
high-quality segmentation results, suggesting increased re-
liability for real-world healthcare applications that have to
contend with diverse local demographics.

Visualization of client topology. We also visualize the
learned client topology of the eICU dataset in Figure 6. We
observe that the learned client topology helps to identify the
“influential” clients. The figure indicates that the majority
of important clients are from the MIDWEST and SOUTH,
with no influential clients from the NORTHEAST.

4.3. Evaluation on Scalability

Takeaway 2: TFL is scalable for OOF generalization.
We investigate whether TFL will significantly increase the
communication or computation overhead, potentially affect-
ing scalability in large-scale settings. We present ROC AUC,
communication rounds, and transmitted parameters for the

Table 3. DSC (↑) score on FeTS. This dataset contains tumor im-
ages from 21 institutions worldwide. We conduct training on 15
institutions and evaluate the model on the remaining 5. The re-
ported numbers are from three independent runs. Our method
delivers the best OOF robustness.

Centralized Method Federated Learning Methods

ERM FedAvg FedProx DRFA FedSR TFL (Ours)

83.14±0.98 71.45±0.05 71.15±0.04 72.12±1.03 72.85±0.05 74.29±0.15

Patient ID: 00454 Patient ID: 00448

Patient ID: 00452 Patient ID: 01015

Figure 5. Qualitative results on unseen patients from FeTS dataset.
We also show the DSC (↑) score. Our method consistently demon-
strates superior OOF robustness under diverse local demographics.
Additional visualizations can be found in Supplementary A.

eICU dataset in Table 2 and Figure 7. Our method achieves
the highest ROC AUC score while requiring the fewest com-
munication rounds and the total number of communicated
parameters, thereby indicating its superior communication
efficiency. Notably, DRFA also achieves its peak perfor-
mance within the same number of communication rounds
as our method. This is primarily attributable to the fact that
both DRFA and our approach utilize a distributionally ro-
bust optimization framework. By minimizing the worst-case
combination of local client risks, the model converges faster
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Client influence
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Uniformly initializing client topology 
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Figure 6. Visualization of client topology on the eICU dataset. Hospitals from MIDWEST, SOUTH, and NORTHEAST collaboratively
train a global model, which is then applied to hospitals in the WEST region for OOF generalization. We observe that the learned client
topology becomes denser, revealing underlying relationships that were previously unknown. Furthermore, the identified “influential”
hospitals are more from the MIDWEST and SOUTH rather than NORTHEAST. This observation is rational, given the geographical
proximity of these two regions to the target evaluation region, the WEST.
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Figure 7. Visualization of ROC AUC vs. comm. round. Our
method yields the best result with fewer communication rounds.

toward the optimum. Additionally, we also show the wall
clock time versus OFF accuracy on PACS in Figure 2. Our
method approximates the scalability of FedAvg and FedSR
while achieving superior OOF accuracy.

4.4. Evaluation on In-federation Performance

Takeaway 3: Prioritizing influential clients also benefit
in-federation (IF) performance. We have shown that TFL
can significantly boost the model’s OOF robustness. This
naturally leads us to examine its IF performance. We are
interested in understanding if TFL can also improve the IF
performance. To this end, we conducted empirical evalua-
tions using the TPT-48 and CIFAR-10/-100. The TPT-48
dataset, offering additional hold-out data from IF clients,
is particularly well-suited for evaluating IF performance.
CIFAR-10 and -100 are widely recognized benchmarks for
IF evaluation. The results, shown in Tables 4 and 5, reveal
that our method indeed enhances the IF performance. For
example, TFL outperforms DRFA by 2.2% on TPT-48 and
2.5% on CIFAR-10. These findings underscore the value of
focusing on influential clients when building robust models
with good IF and OOF performance.

Table 4. Results on TPT-48. We report results for both IF and OOF
evaluations. The numbers are the mean of three independent runs.
Our method improves both the OOF and IF performance.

Method Centralized FedAvg FedProx DRFA TFL (Ours)

Out-of-federation Evaluation (MSE ↓)

E(24) → W(24) 0.3998 0.6264 0.6312 0.5451 0.4978
N(24) → S(24) 1.4489 2.0172 1.9729 1.8972 1.7432

In-federation Evaluation (MSE ↓)

E(24) → E(24) 0.1034 0.2278 0.2163 0.1554 0.1523
N(24) → N(24) 0.1329 0.1550 0.1523 0.1437 0.1405

Table 5. In-federation accuracy on CIFAR-10/-100, where a Dirich-
let distribution (Hsu et al., 2019) with parameter Dir(0.1) is used to
partition the datasets into heterogeneous clients at different scales.
The reported numbers are the mean of three independent runs. Our
method yields the best accuracy at various scales.

Dataset # of clients FedAvg FedProx DRFA TFL (Ours)

CIFAR-10 25 68.07 68.15 70.51 72.24
50 64.48 64.33 63.19 65.59

CIFAR-100 25 37.90 37.76 38.04 38.85
50 37.33 37.28 37.54 38.08

4.5. Evaluation on Effectiveness of Client Clustering

Takeaway 4: Client clustering reduces the computation
costs of client topology learning. We conducted experi-
ments on eICU to validate whether client clustering effec-
tively reduces computation costs. The eICU dataset was cho-
sen due to its larger scale (including 72 clients) compared
to all other evaluated datasets. Specifically, during client
topology learning, we employed KMeans (Lloyd, 1982) to
group training clients into several clusters (e.g., 10 clusters)
based on their model weights. The client topology is then
learned at the cluster level. As shown in Table 6, our cluster-
ing approach significantly reduces computation costs while
slightly decreasing the OOF accuracy.
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Table 6. Comparison of wall-clock time on eICU. Our client clus-
tering approach (with 10 clusters) significantly decreases com-
putation costs by 69%, while only marginally impacting OOF
performance, evidenced by a slight reduction of 0.77%.

ROC-AUC Wall-clock time (s)

FedAvg 57.18±0.03 120.15
TFL 58.41±0.06 437.61
TFL w/ Clustering 57.96±0.18 133.08

4.6. Ablation Study

Effects of partial model approximation. To handle high-
dimensional models, we can leverage partial model parame-
ters to compute the similarity scores for better computation
efficiency. Here, we report the OOF performance when
using full and partial model parameters. Experiments are
conducted on PACS and results are shown in Table 7.

Effects of graph sparsity. To avoid learning a fully con-
nected graph with trivial edges, we add a sparsity contain
to client topology learning. In implementation, we adopt ϵ-
graph to ensure Equation 4 is solvable. The threshold value
ϵ controls the graph sparsity. Here, we investigate how it
will affect the TFL. We report the results on PACS in Table 8.
We observe that ϵ = 0.4 yields the best performance.

Effects of topology update frequency. The frequency of
updating client topology during training affects the total
training time (f = 5 denotes updating the topology every 5
rounds). More frequent updates result in extended training
times. We investigated the impact of client topology updat-
ing frequency on the performance of the model on PACS.
Our results in Table 8 indicate that model performance re-
mains relatively stable across various updating frequencies.
We provide more ablation studies in Supplementary C.

5. Related Work
FL generalization to unseen clients. There are recent at-
tempts to address generalization to unseen clients in FL.
FedDG (Liu et al., 2021) is proposed to share the ampli-
tude spectrum of images among local clients to augment
the local data distributions. FedADG (Zhang et al., 2021)
adopts the federated adversarial training to measure and
align the local client distributions to a reference distribu-
tion. FedSR (Nguyen et al., 2022) proposes regularizing
latent representation’s ℓ2 norm and class conditional infor-
mation to enhance the OOF performance. However, existing
methods often ignore scalability issues, yielding inferior per-
formance in large-scale distributed setting (Bai et al., 2023).
We introduce an approach that employs client topology to
achieve good OOF-resilency in a scalable manner.

FL with Graphs. One line of research is to combine FL
with GNNs, leading to federated GNNs (Xie et al., 2021;

Table 7. TFL’s OOF accuracy on PACS using full and partial model
parameters. The results show that using partial model parameters
achieves performance on par with full parameters.

A C P S Avg.

Full 59.05±0.69 64.46±0.21 79.35±0.61 76.93±0.39 69.95

Partial 58.96±0.85 64.57±0.98 78.94±0.65 76.61±0.13 69.77

Table 8. Ablation study on effects of graph sparsity and client
topology update frequency on PACS.

Graph Sparsity (ϵ), Accuracy ↑
ϵ = 0.45 ϵ = 0.4 ϵ = 0.38 ϵ = 0.35 ϵ = 0.3

58.61 59.05 58.83 58.11 57.73

Topology update frequency (f ), Accuracy ↑
f = 50 f = 30 f = 20 f = 10 f = 5

59.19 58.91 58.27 58.80 58.28

Wu et al., 2021). These federated GNNs primarily engage
in learning from distributed graph data that already has
inherent structural information. In contrast, our primary
objective is to obtain a distribution graph that captures the
relationships between distributed clients. Another research
line explores the use of graphs to enhance personalization
in FL (Ye et al., 2023; Zantedeschi et al., 2019). For ex-
ample, pFedGraph (Ye et al., 2023) utilizes a collaboration
graph to tailor the global model more effectively to indi-
vidual clients. These types of research primarily deal with
in-federation clients. Different from these methods, our
approach aims to utilize a client topology to improve the FL
model’s generalizability to clients outside of the federation.

Graph topology learning. The problem of graph topol-
ogy learning has been studied in graph signal process-
ing (Stanković et al., 2020) and graph neural networks (Chen
et al., 2020a;b). Traditional topology learning methods often
require centralizing the data, raising privacy concerns. Yet,
how to estimate the graph topology with privacy regulations
has been less investigated. We explore simple methods to
infer the graph topology using model weights. An extended
related work section is provided in Supplementary B.

6. Conclusion
Federated Learning faces significant out-of-federation
(OOF) generalization challenges that can severely impair
model performance. We propose to improve OOF robust-
ness by leveraging client relationships, leading to Topology-
aware Federated Learning (TFL). TFL contains two key
modules: i) Inferring a topology that describes client re-
lationships with model similarity and ii) Leveraging the
learned topology to build a robust model. Extensive experi-
ments on real-world and benchmark datasets show that TFL
demonstrates superior OOF-resiliency with scalability.
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A. Additional Experimental Results & Detailed Dataset Description
A.1. Evaluating OOF-resiliency on OfficeHome

We conduct additional experiments on OfficeHome (Venkateswara et al., 2017) dataset. It contains 15, 588 images from
four domains: art, clipart, product, and real world. The task is a 65-class classification problem. Like PACS’s experimental
setup, we evenly split each domain into 5 subsets, yielding 20 subsets, and treat each subset as a client. We followed the
common leave-one-domain-out experiment, where 3 domains are used (15 clients) for training and 1 domain (5 clients) for
testing. We use ResNet50 (He et al., 2016) as our model and train the model for 100 communication rounds. Each local
client optimized the model using stochastic gradient descent (SGD) with a learning rate of 0.01, a momentum of 0.9, weight
decay of 5e−4, and a batch size of 64. The model is evaluated using classification accuracy.

Table 9. Accuracy on the OfficeHome dataset. We conduct experiments using a leave-one-domain-out approach, meaning each domain
serves as the evaluation domain in turn. Existing methods typically consider each domain as an individual client (Liu et al., 2021; Nguyen
et al., 2022). However, in order to simulate a large-scale distributed setting, we took a different approach by further dividing each domain
into 5 subsets and treating each subset as a separate client. This increased the total number of clients to 20. Our method outperformed
others across all experimental settings, demonstrating superior results.

Models Backbone OfficeHome

A C P R Average

Centralized
Methods

Mixup (Xu et al., 2020) ResNet50 64.7 54.7 77.3 79.2 69.0
CORAL (Sun & Saenko, 2016) ResNet50 64.4 55.3 76.7 77.9 68.6

Federated
Learning
Methods

FedAvg ResNet50 24.10 23.16 40.19 43.47 32.73
FedProx ResNet50 23.16 23.47 41.08 42.66 32.59
DRFA ResNet50 25.29 23.98 41.23 42.35 33.21
FedSR ResNet50 23.51 22.93 39.30 41.48 31.81

TFL (Ours) ResNet50 26.37 24.47 43.96 44.74 34.89

A.2. Data Pre-processing on eICU

We follow (Huang et al., 2019) to predict patient mortality using drug features. These features pertain to the medications
administered to patients during the initial 48 hours of their ICU stay. We’ve extracted pertinent patient and corresponding
drug feature data from two primary sources: the ’medication.csv’ and ’patient.csv’ files. Our final dataset is a table with
the dimension of 19000× 1411. Each row in this matrix symbolizes a unique patient, while each column corresponds to a
distinct medication.

A.3. More Results on eICU

We conduct more experiments on the eICU dataset to evaluate the gap between in-federation (IF) and out-of-federation
(OOF) and visualize the results in Figure 8. We observe that existing FL methods are not robust against OOF data.

A.4. Detailed Dataset Description
① eICU (eICU Collaborative Research Database) (Pollard et al., 2018) is a large-scale multi-center critical care database. It

contains high granularity critical care data for over 200, 000 patients admitted to 208 hospitals across the United States.
Each hospital is considered an individual client. We follow (Huang et al., 2019) to prepare the data. The final dataset
includes data from approximately 19000 patients over 72 hospitals. The generalization task could be deploying models
trained on hospitals from the SOUTH region to those in the WEST. The evaluation metric for patient mortality prediction
is ROC-AUC.

② FeTS (Federated Tumor Segmentation Dataset) (Pati et al., 2022b) is a multi-institutional medical imaging dataset. It
comprises clinically acquired multi-institutional MRI scans of glioma. A subset of the original data was used, comprising
358 subjects from 21 distinct global institutions. The associated task is to identify and delineate brain tumor boundaries.
Each institution is a client. Evaluation metric is Dice Similarity Coefficient (DSC ↑). See more visualizations in Figure 9.

③ TPT-48 (Vose et al., 2014) contains the monthly average temperature for the 48 contiguous states in the US from 2008 to
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Generalization Task:
MIDWEST, SOUTH, NORTHEAST → WEST

Generalization Task:
WEST, SOUTH, NORTHEAST → MIDWEST

Generalization Task:
MIDWEST, WEST, NORTHEAST → SOUTH

Generalization Task:
MIDWEST, WEST, SOUTH → NORTHEAST

(a)

(c)

(b)

(d)

Figure 8. Additional results on eICU (IF vs. OOF performance). eICU’s 72 hospitals are distributed across the United States. Specifically,
there are 14 hospitals in the WEST, 28 hospitals in the MIDWEST, 26 hospitals in the SOUTH, and 4 hospitals in the NORTHEAST. We
employ a leave-one-region-out approach, designating one geographic region as the OOF region while the remaining as IF regions. We
observe a considerable gap between IF and OOF performance, indicating that current FL methods are not robust against OOF data.

2019. The task is to predict the next six months’ temperature given the first six months’ temperature. For TPT-48, we
consider two generalization tasks: (1) E(24) → W(24): Using the 24 eastern states as IF clients and the 24 western states
as OOF clients; (2) N(24) → S(24): Using the 24 northern states as IF clients and the 24 southern states as OOF clients.
The evaluation metric is Mean Squared Error (MSE ↓).

④ CIFAR-10/-100 (Krizhevsky & Hinton, 2009) are the most commonly used benchmarks in FL literature. In these
datasets, we use Dirichlet distribution (Hsu et al., 2019) to partition the dataset into the heterogeneous setting with 25
and 50 clients.

⑤ PACS (Li et al., 2017) contains 9, 991 images from four domains: art painting, cartoon, photo, and sketch. The task is
seven-class classification. For PACS, we evenly split each domain into 5 subsets, yielding 20 subsets, and we treat each
subset as a client. We followed the common “leave-one-domain-out” experiment, where 3 domains are used (15 clients)
for training and 1 domain (5 clients) for testing. Model performance is evaluated by classification accuracy.

B. Extended Related Work
Federated learning. Federated learning (Li et al., 2020a; Kairouz et al., 2021; McMahan et al., 2017) has emerged
as a powerful tool to protect data privacy in the distributed setting. It allows multiple clients/devices to collaborate in
training a predictive model without sharing their local data. Despite the success, current FL methods are vulnerable to
heterogeneous data (non-IID data) (Smith et al., 2017; Sattler et al., 2019; Li et al., 2023; Tan et al., 2022), a common
issue in real-world FL. Data heterogeneity posits significant challenges to FL, such as the severe convergence issue (Li
et al., 2020c) and poor generalization ability to new clients (Sattler et al., 2019). To improve the model’s robustness against
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Patient ID: 01025 Patient ID: 01023 Patient ID: 01020

Patient ID: 01015 Patient ID: 01013 Patient ID: 00446

Figure 9. Additional qualitative results comparison on unseen patients of the FeTS dataset. We show both the tumor segmentation and
DSC (↑) score. Our method demonstrates consistent superior OOF-resiliency across a range of local demographics.

data heterogeneity, FedProx (Li et al., 2020b) add a proximal term to restrict the local model updating, avoiding biased
models toward local data distribution. SCAFFOLD (Karimireddy et al., 2020) introduces a control variate to rectify the local
update. FedAlign (Mendieta et al., 2022) improve the heterogeneous robustness by training local models with better
generalization ability. However, most FL methods focus on the model’s in-federation performance. Orthogonal to existing
work, we propose leveraging client topology to improve the model’s OOF generalization capability.

FL generalization to unseen clients. There are recent attempts to address generalization to unseen clients in FL. FedDG (Liu
et al., 2021) is proposed to solve domain generalization in medical image classification. The key idea is to share the amplitude
spectrum of images among local clients to augment the local data distributions. FedADG (Zhang et al., 2021) adopts the
federated adversarial training to measure and align the local client distributions to a reference distribution. FedGMA (Tenison
et al., 2022) proposes gradient masking averaging to prioritize gradients aligned with the overall domain direction across
clients. FedSR (Nguyen et al., 2022) proposes regularizing latent representation’s ℓ2 norm and class conditional information
to enhance the OOF performance. However, existing methods often ignore scalability issues, yielding inferior performance
in large-scale distributed setting (Bai et al., 2023). We introduce an approach that employs client topology to achieve good
OOF-resiliency in a scalable manner.

Graph topology learning. The problem of graph topology learning has been studied in different fields. In graph signal
processing (Mateos et al., 2019; Dong et al., 2019; Stanković et al., 2020), existing work explores various ways to learn
the graph structure from data with structural regularization ( e.g., sparsity, smoothness, and community preservation (Zhu
et al., 2021)). In Graph Neural Networks (GNNs) (Wu et al., 2020; Welling & Kipf, 2016), researchers have explored
scenarios where the initial graph structure is unavailable, wherein a graph has to be estimated from objectives (Li et al.,
2018; Norcliffe-Brown et al., 2018) or words (Chen et al., 2019; 2020b). The existing graph topology learning methods often
require centralizing the data, making it inapplicable in federated learning. However, how to estimate the graph topology with
privacy regulations has been less investigated. We explore simple methods to infer the graph topology using model weights.

FL with graphs. One line of research is to combine FL with GNNs, leading to federated GNNs (Xie et al., 2021; Wu
et al., 2021). These federated GNNs primarily engage in learning from distributed graph data that already has inherent
structural information. In contrast, our primary objective is to obtain a distribution graph that captures the relationships
between distributed clients. Another research line explores the use of graphs to enhance personalization in FL (Ye et al.,
2023; Zantedeschi et al., 2019). For example, pFedGraph (Ye et al., 2023) utilizes a collaboration graph to tailor the global
model more effectively to individual clients. These types of research primarily deal with in-federation clients. Our approach,
however, aims to utilize client topology to significantly improve generalization to clients outside of the federation.
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C. Additional Ablation Study

Table 10. Ablation study evaluating the efficacy of hyperparameter tuning,
centrality, and similarity metric.

Effectiveness of q, ROC AUC ↑
q =1.0 q = 1e−1 q = 1e−2 q = 1e−3 q = 1e−4

57.91 58.31 57.43 57.36 57.29

Effectiveness of centrality, ROC AUC ↑
Betweenness Degree Closeness Eigenvector Current flow

58.28 57.69 57.86 57.57 57.83

Effectiveness of similarity measure, Accuracy ↑

ℓ1 ℓ2 dot produt cosin

OOF Accuracy 58.11 58.26 59.14 58.52

Hyperparameter q. We investigate the impact of hy-
perparameter η on eICU. Our findings demonstrate that
setting q = 0.1 yields the best results. Centrality. We
employed betweenness centrality to derive the topolog-
ical prior. However, it is worth noting that other types
of centrality, such as degree (Freeman et al., 2002) and
closeness (Bavelas, 1950), could also be utilized. We
conducted experiments on eICU to verify the impact
of different centrality measures on TFL. Our findings
indicate that betweenness centrality produces the best
result. Similarity metrics. We investigate how the
model performs under different similarity metrics on
PACS. We found that the dot product-based metric
produces the best results.

D. Implementation Details
Experiment settings and evaluation metrics. For the PACS dataset, we evenly split each domain into 5 subsets, yielding
20 subsets, and we treat each subset as a client. We followed the common “leave-one-domain-out” experiment, where
3 domains are used (15 clients) for training and 1 domain (5 clients) for testing. We evaluated the model’s performance
using classification accuracy. We use ResNet18 (He et al., 2016) as our model and train the model for 100 communication
rounds. Each local client optimized the model using stochastic gradient descent (SGD) with a learning rate of 0.01,
momentum of 0.9, weight decay of 5e−4, and a batch size of 8. For CIFAR-10/100, we adopt the same model architecture
as FedAvg (McMahan et al., 2017). The model has 2 convolution layers with 32, 64 5× 5 kernels, and 2 fully connected
layers with 512 hidden units. we use Dirichlet distribution (Hsu et al., 2019) to partition the dataset into the heterogeneous
setting with 25 and 50 clients. For eICU, we treat each hospital as a client. We use a network of three fully connected layers.
This architecture is similar to (Huang et al., 2019; Ma et al., 2021; Sheikhalishahi et al., 2020). We train our model for 30
communication rounds, using a batch size of 64 and a learning rate of 0.01, and report the performance on unseen hospitals.
Within each communication round, clients perform 5 epochs (E = 5) of local optimization using SGD. The evaluation metric
employed was the ROC-AUC, a common practice in eICU (Huang et al., 2019). For FeTS, we treat each institution as
a client. We adopt the widely used U-Net (Ronneberger et al., 2015) model. We train our model for 20 communication
rounds, using a learning rate of 0.01 and a batch size of 64. We conduct training with 16 intuitions and report results on 5
unseen institutions. Each institution performs 2 epochs of local optimization (E = 2) using SGD. The evaluation metric is
Dice Similarity Coefficient (DSC ↑). For TPT-48, we consider two generalization tasks: (1) E(24) → W(24): Using the 24
eastern states as IF clients and the 24 western states as OOF clients; (2) N(24) → S(24): Using the 24 northern states as IF
clients and the 24 southern states as OOF clients. We use a model similar to (Xu et al., 2022), which has 8 fully connected
layers with 512 hidden units. We use SGD optimizer with a fixed momentum of 0.9. The evaluation metric is Mean Squared
Error (MSE ↓). Algorithm 1 shows the overall algorithm of TFL. In implementation, we used dot product as the metric to
measure client similarity. All experiments are conducted using a server with 8×NVIDIA A6000 GPUs.

E. Discussion of Limitations
In this section, we discuss the limitations of TFL and the potential solutions.

Concerns on privacy leakage. Client topology learning may raise concerns about (unintentional) privacy leakage. However,
we argue that any such leakage would be a general issue for FL methods rather than a unique concern for our approach.
In comparison to standard FL, our method does not require additional information to construct the client topology, thus
providing no worse privacy guarantees than well-established methods like FedAvg (McMahan et al., 2017) and FedProx (Li
et al., 2020b). Nonetheless, FL may still be vulnerable to attacks that aim to extract sensitive information (Bhowmick et al.,
2018; Melis et al., 2019). In future work, we plan to explore methods for mitigating (unintentional) privacy leakage.

Concerns on high-dimensional node embedding. As outlined in Section 3.1, we harness model weights as node
embeddings. Nevertheless, incorporating large-scale models, such as Transformers (Vaswani et al., 2017; Ma et al., 2022;
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Algorithm 1 Topology-aware Federated Learning

Input: K clients; learning rate ηθ and ηλ; Communication round T ; initial model θ(0); initial λ(0).
repeat

for each communication round t = 1, · · ·T do
server samples m clients according to λ(t)

for each client i = 1, · · ·m in parallel do
θt+1
i = θti − ηθt

i
∇θt

i
F (θti)

client i send θt+1
i back to the server

end for
server computes θt+1 =

∑m
i=1 θ

t+1
i

if t%f == 0 then
server updating graph G via Equation 4

end if
server calculating topological prior p from G
server calculating ∇λ(t)F (θ(t+1),λ(t)) via Equation 6
server updates λt+1 = P∆K

(λt + ηtλ∇λ(t)F (θ(t+1),λ(t)))
end for

until convergence

Dosovitskiy et al., 2021), may present a formidable obstacle, producing an overwhelmingly high-dimensional node vector.
This will significantly increase computational demands for assessing node similarity. We argue that this can be addressed
by dimension reduction. There are two possible ways: (1) Utilizing model weights of certain layers as node embedding
instead of the whole model. (2) Directly learning the low-dimensional node embedding. One simple idea is to leverage
Hypernetworks (Shamsian et al., 2021) to learn the node embedding with controllable dimensions.

F. Future Direction
Handling adversarial clients. We see the potential of using client topology to tackle adversarial clients. In scenarios where
clients, due to system or network failures, disobey the protocols and send arbitrary messages (such as shuffled, sign-flipped,
or noised parameters), our client topology learning approach becomes particularly useful. These adversarial behaviors
typically result in models that show lower similarity to normal models. By leveraging client topology learning, we can
identify these adversarial clients as isolated nodes within the topology. Once identified, applying centrality measures to these
nodes can effectively lower their importance scores. This approach minimizes their impact on the overall model aggregation
process. Therefore, we envision that our method holds the potential to tackle adversarial clients. Improving FL’s adversarial
robustness is an important and interesting problem, we will leave the exploration of TFL in this direction to future work.
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