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Abstract
Post-Training Quantization (PTQ) is a vital tech-
nique for network compression and acceleration,
gaining prominence as model sizes increase. This
paper addresses a critical challenge in PTQ: the
severe impact of outliers on the accuracy of
quantized transformer architectures. Specif-
ically, we introduce the concept of ‘reconstruc-
tion granularity’ as a novel solution to this issue,
which has been overlooked in previous works.
Our work provides theoretical insights into the
role of reconstruction granularity in mitigating
the outlier problem in transformer models. This
theoretical framework is supported by empirical
analysis, demonstrating that varying reconstruc-
tion granularities significantly influence quanti-
zation performance. Our findings indicate that
different architectural designs necessitate distinct
optimal reconstruction granularities. For instance,
the multi-stage Swin Transformer architecture
benefits from finer granularity, a deviation from
the trends observed in ViT and DeiT models.
We further develop an algorithm for determin-
ing the optimal reconstruction granularity for
various ViT models, achieving state-of-the-art
(SOTA) performance in PTQ. For example, apply-
ing our method to 4-bit quantization, the Swin-
Base model achieves a Top-1 accuracy of 82.24%
on the ImageNet classification task. This result
surpasses the RepQ-ViT by 3.92% (82.24% VS
78.32%). Similarly, our approach elevates the
ViT-Small to a Top-1 accuracy of 80.50%, out-
performing NoisyQuant by 3.64% (80.50% VS
76.86%).
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Figure 1. Introducing finer-grained slicing involves dividing the
transformer block into three modules: self-attention module A,
out project module B, and MLP module C. Different combination
granularity leads to significant differences in accuracy.

1. Introduction
With the development of neural networks, transformer-like
structures (Dosovitskiy et al., 2020; Touvron et al., 2021;
Liu et al., 2021a) dominate on various vision tasks. As trans-
former blocks are stacked and model dimensions increase,
the performance of transformer-like models continues to
improve (Dosovitskiy et al., 2020). However, larger models
require more computational resources despite their bene-
fits. Consequently, researchers are increasingly focusing
on compression methods for transformer models to reduce
the model size and speed up inference, such as neural ar-
chitecture search (Li et al., 2021a; Chen et al., 2021c;b;a),
pruning (Dong et al., 2023; Yang et al., 2021; Tang et al.,
2022; Yang et al., 2023; Yu & Xiang, 2023), and model
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quantization (Lin et al., 2021; Yuan et al., 2022; Ding et al.,
2022; Li et al., 2023; Liu et al., 2023b; Sun et al., 2022).

Quantization is a technique that converts model weights
and activations from floating-point numbers to low-bit
fixed-point numbers (Krishnamoorthi, 2018), resulting
in smaller model sizes and improved access efficiency.
When implemented on hardware that supports low-bit arith-
metic, quantization models can further accelerate inference.
Quantization-Aware Training (QAT) (Choi et al., 2018;
Gong et al., 2019; Esser et al., 2019; Bondarenko et al.,
2023) and Post-Training Quantization (PTQ) (Li et al.,
2021b; Nagel et al., 2020; Wei et al., 2022a; Hubara et al.,
2021; Lin et al., 2021; Yuan et al., 2022; Ding et al., 2022;
Li et al., 2023; Liu et al., 2023b) are two classes of quantiza-
tion algorithms, differing in the overhead required to obtain
a quantization model. PTQ is particularly favored for large-
scale models due to its low data dependency and minimal al-
gorithmic overhead. However, the efficiency of PTQ comes
at the expense of a significant loss in model performance.
This loss is especially pronounced in vision transformers
due to the challenge posed by outliers in the data distribu-
tion (Bondarenko et al., 2023; Lin et al., 2021; Yuan et al.,
2022; Ding et al., 2022; Li et al., 2023; Liu et al., 2023b),
which adversely affects PTQ, particularly uniform quantiza-
tion. Recent research in PTQ for vision transformers aims
to address this issue. FQ-ViT (Lin et al., 2021) addresses
attention map distribution pathology by employing the log2
quantizer and proposes an integer approximation of the ex-
ponential function for softmax quantization. Additionally,
by combining it with power-of-two quantization of the layer-
norm layer (Ba et al., 2016), FQ-ViT achieves integer-only
inference for vision transformers. PTQ4ViT (Yuan et al.,
2022) introduces twin uniform quantization for activation
values after softmax and activation functions to handle out-
lier distribution. APQ-ViT (Ding et al., 2022) utilizes a bot-
tom elimination function to prioritize the loss generated by
outliers during calibration. RepQ-ViT (Li et al., 2023) pro-
poses log

√
2 quantization to better adapt to the distribution

of softmax output activations and employs a reparameteriza-
tion technique to transition from log

√
2 quantization and the

per-channel activation quantization to log2 quantization and
per-layer activation quantization after layernorm, resulting
in improved inference efficiency. Quantizable Transform-
ers (Bondarenko et al., 2023) employs clipped softmax to
prevent gradient accumulation in pre-training and introduces
gated attention to selectively update the representation of
specific tokens, making the pre-trained model outlier-free
and more suitable for quantization.

However, the importance of reconstruction granularity in vi-
sion transformer quantization has been overlooked by exist-
ing approaches. MRECG (Ma et al., 2023) discusses the role
of reconstruction granularity in mitigating loss oscillations
in convolutional neural networks. However, this assump-

tion of topological homogeneity does not hold for different
modules within transformer blocks and across transformer
blocks. Therefore, it is necessary to investigate the prop-
erties of vision transformers and explore their impact on
quantization performance.

In this study, we present a theorem demonstrating that
coarser reconstruction granularity leads to smaller quan-
tization loss for the same input. We conduct experiments
by sampling various reconstruction granularities in different
vision transformer quantization models. The experimental
results confirm our theorem, as the number of transformer
block combinations exhibits a negative correlation with the
final block loss. However, the downsampled blocks in Swin
transformer result in outliers appearing exclusively in the
third stage. Consequently, the joint optimization of modules
across stages only yields sub-optimal results. As a result, the
quantization loss of the last transformer block and the final
loss in Swin transformers show a negative correlation due to
inadequate optimization, which is contrary to ViT and DeiT
conclusions. Consequently, we propose two rules to estab-
lish the reconstruction granularity for various vision trans-
formers. Furthermore, we partition the transformer block
internally into three modules: self-attention, out projection,
and MLP. We exhaustively compare the performance of
different combinations of modules due to violation of the
topological homogeneity assumption. Finally, we validate
the effect of reconstruction granularity on quantization per-
formance across different vision transformer models.

In summary, our contribution is as follows.

• We first examine the impact of outliers on quantiza-
tion performance in vision transformers. (Section 3.1)
And then, we propose a novel optimization approach,
termed ‘Reconstruction Granularity’. Our theoretical
and empirical analyses reveal the relationship between
reconstruction granularity and outliers. As a result,
reconstruction granularity substantially affects quanti-
zation performance. (Section 3.2)

• We offer two rules for setting the ideal granularity
in diverse vision transformer models. With an as-
sumption of transformer-like topological homogeneity,
coarser granularity leads to lower quantization loss.
(Section 3.3)

• We empirically validate the impact of reconstruction
granularity on quantization performance across various
models using the ImageNet dataset. Notably, with
a 4/4 bit quantization on DeiT-tiny, we attain a Top-
1 accuracy of 66.31%. Furthermore, our approach
achieves a Top-1 accuracy of 80.50% on ViT-small,
surpassing NoisyQuant by a margin of 3.64% (80.50%
versus 76.86%). (Section 4)
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2. Related Work
Post-training quantization. PTQ (Frumkin et al., 2023;
Xu et al., 2023; Lin et al., 2023a; Bai et al., 2022; Liu et al.,
2023a; Jeon et al., 2022; Li & Gu, 2023) has less data depen-
dency and higher algorithmic efficiency than QAT (Le & Li,
2023; Wang et al., 2022b; He et al., 2023; Wang et al., 2022a;
Li et al., 2022a). Therefore, PTQ is preferred for rapid de-
ployment scenarios of quantization models and large-scale
model quantization scenarios. In the field of convolutional
neural networks, Adaround (Nagel et al., 2020) expands the
optimization space of weight rounding by an adaptive round-
ing technique. Further, the quantization loss at each layer
is used to guide the optimization of the weight rounding
parameters. BRECQ (Li et al., 2021b) further expands the
layer-by-layer optimization granularity to block-by-block
optimization and uses diagonal Fischer matrices to approx-
imate the Hessian matrices for the efficiency-performance
trade-off. Qdrop (Wei et al., 2022a) randomly discards quan-
tization activations during optimization to achieve better
performance. PTQ in vision transformers targets two main
issues: the heavy-tailed activation distribution post-softmax
and outliers in deep model blocks. Research focuses on so-
lutions involving pre-trained models, quantization functions,
and algorithms. For more details, refer to Section 1.

Granularity Reconstruction. MRECG (Ma et al., 2023)
has investigated the importance of various joint optimiza-
tion schemes in addressing loss oscillations in convolutional
neural networks. However, the inclusion of self-attention in
vision transformer models significantly distinguishes their
structure from convolutional neural networks. Furthermore,
vision transformers encounter the issue of outliers, which
is not typically observed in convolutional neural networks.
Consequently, it is crucial to examine the impact of re-
construction granularity on vision transformer models to
tackle the outlier problem effectively. NWQ (wang et al.,
2022) similarly uses a coarser reconstruction granularity
for convolutional neural networks and proposes Activation
Regularity, ASoftmax, and AMixup to solve overfitting and
discrete optimization problems.

3. Methodology
In this section, we first discuss the impact of outliers in the
vision transformer on quantization in Section 3.1. Secondly,
we investigate the relationship between model outliers and
quantization loss. Through theoretical analysis and sam-
pling experiments, we demonstrate the importance of recon-
struction granularity in optimizing outliers in Section 3.2.
At last, we uncover the issue of inadequate optimization due
to stages acrossing without satisfying the topological ho-
mogeneity assumption in Section 3.3, which inspires us to
propose two rules for determining different reconstruction
granularity for various models.

3.1. Outliers in Vision Transformer

In this subsection, we reveal the outlier problem in vision
transformers and analyze how outliers affect quantization.
Quantization converts floating-point numbers to low-bit
fixed-point numbers, enhancing access efficiency and re-
ducing model size. However, this efficiency improvement is
accompanied by a loss in quantization model performance.
The quantization function is defined as follows,

Q(x) =
(
clip

(⌊x
s

⌉
+ zp, 0, 2n − 1

)
− zp

)
∗ s. (1)

Where clip(·) denotes the truncation operation. s, zp, and
n stand for the step size, zero points, and bit-width, re-
spectively. ⌊·⌉ denotes the rounding operation. To handle
the non-differentiability of the rounding operation, we em-
ploy the Straight-Through Estimator (STE) (Bengio et al.,
2013) for obtaining an approximate back-propagated gra-
dient. Equation (1) shows that the quantization error com-
prises the truncation error beyond the domain and the round-
ing error within the domain. Consequently, a theoretical
minimum quantization error exists when the input x follows
the uniform distribution.

However, outliers in activation values are observed in the
vision transformer models. Figure 4 illustrates the distribu-
tion of hidden channel data for a specific token of output
activation in the 6-th and 5-th blocks of the ViT and Swin
models, respectively. These distributions reveal that cer-
tain channels exhibit magnitudes significantly larger than
those of other channels. Moreover, these magnitudes tend to
increase in subsequent transformer blocks. Since the distri-
bution of quantization fixed points is uniform, when outliers
are not truncated by the largest quantization fixed point, the
activation of the remaining channels gets massively mapped
to the zero point, resulting in substantial rounding errors.
In scenarios where the distribution of quantization fixed
points does not account for the presence of outliers, the
quantization error is primarily dominated by truncation er-
ror. Consequently, only a small fraction of activations are
mapped to quantization fixed points that are uniformly dis-
tributed between outliers and non-outliers. The existence of
outliers “compresses” the representation of the remaining
values, posing a challenge for quantization.

3.2. The Relationship between Outliers and
Reconstruction Granularity

We examine the relationship between reconstruction gran-
ularity and outliers. Initially, Figure 3 shows how outliers
amplify quantization loss. Subsequently, we prove, both the-
oretically and through extensive experiments, that adopting
coarser granularity under specific conditions can diminish
quantization loss during optimization. Thus, coarser granu-
larity helps mitigate the impact of outliers.
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Outliers pose a significant challenge in post-training quanti-
zation for vision transformers. However, the reconstruction
methods used in post-training quantization for convolutional
neural networks may not be directly suitable for vision trans-
formers. These methods typically optimize an intermediate
agent guided by an objective function to minimize the quan-
tization error. In the context of vision transformers, if we
consider transformer blocks as the reconstruction granular-
ity, the quantization error can be defined as follows,

L(Xi−1,Wi) = E
[
∥fi(Xi−1,Wi)− fi(X̂i−1, Ŵi)∥

2

F

]
.

(2)
Where fi(·) is the i-th transformer block function.
Xi−1,Wi are the input activations and the weights of the
i-th transformer block, respectively. X̂i−1, Ŵi are the cor-
responding quantized versions. || · ||F is the frobenius norm.
Notably, the quantization loss demonstrates a significant
decrease when outliers are removed. We evaluate the mean
square error loss of the 11-th transformer block output acti-
vation of ViT-small before and after quantization according
to Equation (2). To determine the activation values used
for calculating the quantization error loss, we establish 20
quantile points based on the distribution interval of the ab-
solute difference pre- and post-quantization. Any activation
values exceeding a quantile point are not considered in the
loss calculation. Figure 3 illustrates that excluding 5% of
outliers results in a sharp two-order-of-magnitude reduction
in quantization error loss. Furthermore, as more values are
excluded, the loss decreases exponentially. Consequently,
optimizing quantization loss is crucial for addressing the
outlier problem in vision transformers.

MRECG (Ma et al., 2023) discusses the quantization loss of
convolutional neural networks as affected by module capac-
ity under the assumption of module topology homogeneity.
The incorporation of self-attention in vision transformers
alters the model structure, deviating from a stack of con-
volutional layers. Therefore, we propose the concept of
“Transformer-Like Topological Homogeneity” to classify a
specific group of transformer blocks.

Definition 3.1. (Transformer-Like Topological Homogene-
ity) Suppose two blocks have the same number of post-
fusion linear layers and the operators between the corre-
sponding linear layers of the two blocks remain consistent.
Then we claim that two modules containing at least one
such block are topologically homogeneous.

In Definition 3.1, we emphasize the post-fusion since suc-
cessive linear layers in parallel or series can be fused into
a single linear layer. Transformer blocks comprising self-
attention and MLP modules exhibit topological homogene-
ity. This homogeneity persists whether a stack of n or m
transformer blocks forms separate modules. Subsequently,

we introduce a theorem that delineates the connection be-
tween reconstruction granularity and quantization loss.

Theorem 3.2. Assuming that the two modules satisfy the
transformer-like topological homogeneity, for the same in-
put activation, the coarser granularity module corresponds
to a smaller quantization error. Formally,

L(Xi,Wi+1, · · · ,Wi+n)

≤ L(Xi,W
′

i+1, · · · ,W
′

i+h, · · · ,Wi+n). (3)

Where {W ′

i+1, · · · ,W
′

i+h} make L(Xi,W
′

i+1, · · · ,W
′

i+h)
optimal.

Please refer to Appendix A for comprehensive proof. The-
orem 3.2 establishes that a coarser granularity results in a
reduced quantization loss during optimization. Furthermore,
we conduct extensive sampling of reconstruction granulari-
ties on ViT, DeiT, and Swin models. Given the complexity
of the candidate space, our sampling is limited to com-
binations of up to three consecutive transformer blocks.
However, for Swin transformers, we break the definition of
transformer-like topological homogeneity, which constrains
the sampling space due to the downsampling block. This
implies allowing cross-stage combinations of transformer
blocks in the Swin model. Random sampling is performed
to obtain a substantial number of reconstruction granularity
schemes, and optimization is utilized to restore quantization
accuracy. As shown in the first row of Figure 2, the number
of combinations is negatively correlated with the final block
loss on all vision transformers. This experimentally indi-
cates that coarser reconstruction granularity leads to smaller
model quantization loss. In essence, coarser reconstruc-
tion granularity effectively addresses the outlier problem in
vision transformers.

3.3. Granularity Determination

Based on our analysis, we summarize two key rules:

Rule 1: For vision transformers with transformer-like topo-
logical homogeneity, coarse granularity quantization is rec-
ommended.

Rule 2: Without such homogeneity, finer granularity quanti-
zation is favored.

In the case of the Swin transformer, the presence of out-
liers is observed primarily in the third stage, which contains
a large stack of transformer blocks. By adhering to the
definition of transformer-like topological homogeneity and
limiting the search within stages, the Swin model yields
consistent results with ViT and DeiT models. Please refer
to Appendix B for detailed experimental information. How-
ever, the search results are confined to a local optimum with
the in-stage restriction. On the other hand, a global search
for the Swin model leads to inadequate optimization due

4



Outlier-Aware Slicing for Post-Training Quantization in Vision Transformer

to the violation of the definition of topological homogene-
ity. Specifically, when the reconstruction module traverses
the h-th and (h+ 1)-th stages of Swin, the gradient of the
parameter at stage h is defined as follows:

∂L(Xh+1
i−1 ,W

h+1
i )

∂Wh
j

= E
[
2
∥∥∥fh+1

i (Xh+1
i−1 ,W

h+1
i )− fh+1

i (X̂h+1
i−1 , Ŵ

h+1
i )

∥∥∥
F

×
(
f

′h+1
i (Xh+1

i−1 ,W
h+1
i )− f

′h+1
i (X̂h+1

i−1 , Ŵ
h+1
i )

)
× f

′

DS(X
h
l ,WDS)×

i−1∏
a=1

f
′h+1
a (Xh+1

a−1 ,W
h+1
a )

×
l∏

b=j

f
′h
b (Xh

b−1,W
h
b )×

∂fh
j (X

h
j−1,W

h
j )

∂Wh
j

]
. (4)

Where superscript represents the stage and subscript repre-
sents the transformer block. For example, f

′h
b denotes the

b-th transformer block of the h-th stage in the Swin takes the
partial derivative with respect to the activation. xh+1

i−1 refers
to the output activation of the (i− 1)-th transformer block
of the (h+ 1)-th stage. The term fDS represents the down-
sampled block. l denotes the number of transformer blocks
in the h-th stage. If under the definition of transformer-like
topological homogeneity, the optimization parameters in
stage h are not affected by the quantization loss in stage
h + 1. Specifically, the gradient of the parameters of the
module within stage h is,

∂L(Xh
e−1,W

h
e )

∂Wh
j

= E
[
2
∥∥∥fh

e (X
h
e−1,W

h
e )− fh

e (X̂
h
e−1, Ŵ

h
e )

∥∥∥
F

×
(
f

′h
e (Xh

e−1,W
h
e )− f

′h
e (X̂h

e−1, Ŵ
h
e )

)
×

e−1∏
b=j

f
′h
b (Xh

b−1,W
h
b )×

∂fh
j (X

h
j−1,W

h
j )

∂Wh
j

]
. (5)

Where e is the e-th transformer block of the h-th stage and
e <= l. From Equations (4) and (5), we note that crossing
stages determines if the optimized parameter gradient at
stage h is affected by the gradient at stage h + 1 and the
downsampled layer. There’s also a marked change in the
Frobenius norm of differences pre- and post-quantization
between stages. Specifically, the norm magnitude during
the outlier accumulation stage significantly exceeds that of
the non-outlier stage, impacting parameter optimization at
stage h negatively. The specific derivation of Equations (4)
and (5), along with further experimental analysis, can be

found in Appendix C. In the bottom line of Figure 2, we
observe a consistent positive correlation between the quanti-
zation loss and the final performance of the ViT and DeiT.
This indicates that using a coarser reconstruction granularity
leads to improved quantization model performance. We
present quantization loss distributions for various granu-
larity of ViT and DeiT models in our ablation study. In
addition, our search space is limited to combinations of up
to 3 consecutive transformer blocks. However, it should be
noted that the more coarse granularity results in compro-
mised accuracy. For a more comprehensive analysis, please
refer to Section 4.3. For the Swin model, the problem of
inadequate optimization leads to opposite conclusions from
ViT and DeiT. Specifically, finer granularity corresponds to
better quantization performance. This observation motivates
us to explore further slicing of the transformer block.

We partition the transformer block into three modules: self-
attention module A, out projection module B, and MLP
module C. We explore various combinations of these mod-
ules across different models. Notably, the optimization
within the transformer blocks of ViT and DeiT models does
not adhere to the principle that coarser granularity yields
superior quantization performance, as transformer-like topo-
logical homogeneity is not satisfied. Conversely, the Swin
model achieves optimal quantization performance when em-
ploying the finest granularity slice, corroborating our earlier
findings. Please refer to Section 4.3 and Appendix D for
detailed experiments and algorithm.

4. Experiments
In this section, we aim to validate the effectiveness of our
algorithm. First, we provide comprehensive details of the ex-
perimental setup. Next, we conduct a comparative analysis
between our method and a wide range of post-training quan-
tization methods for vision transformer models on ImageNet.
Finally, we perform an ablation study of our method, which
includes validation at different granularities, exploration of
various combinations of internal slices within transformer
blocks, and comparisons of quantization loss between dif-
ferent granularity optimizations.

4.1. Settings

For the reconstruction optimization, we incorporate the op-
timization process in Adaround (Nagel et al., 2020) for
weight rounding. In addition, we also refer to the random
drop method for activations in QDrop (Wei et al., 2022a).
We take 16 batch data for PTQ optimization, and the batch
size is 64. For the hyper-parameter settings of the optimiza-
tion parameters, such as reconstruction iteration, learning
rate, etc., we refer to the default settings of the above meth-
ods and keep them consistent. Please refer to Appendix F
for details. We conduct our experiments on NVIDIA Tesla
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Figure 2. The relationship between reconstruction granularity and quantization model performance. The “Combine Number” indicates the
number of two consecutive transformer block combinations, reflecting the coarseness of the reconstruction granularity. The “Final Block
Loss” represents the output quantization loss of the last transformer block, while “Classifier Loss” denotes the final quantization loss of
the model, which correlates positively with model performance. The top line illustrates the relationship between reconstruction granularity
and model quantization loss, while the bottom line illustrates the relationship between model quantization loss and model performance.

Table 1. Comparison of the Top-1 accuracy (%) of our algorithm with the State-Of-The-Art method on ImageNet. “T”, “S”, and “B”
represent the Tiny, Small, and Base models, respectively. “W/A” denotes the bit-width of the weights and activation quantization.

Methods W/A ViT-S ViT-B DeiT-T DeiT-S DeiT-B Swin-S Swin-B

FP32 − 81.38 84.53 72.13 79.83 81.80 83.23 85.27

FQ-ViT (Lin et al., 2021) 4/4 0.1 0.1 0.1 0.1 0.1 0.1 0.1
PTQ4ViT (Yuan et al., 2022) 4/4 42.57 30.69 36.96 34.08 64.39 76.09 74.02
APQ-ViT (Ding et al., 2022) 4/4 47.95 41.41 47.94 43.55 67.48 77.15 76.48
RepQ-ViT (Li et al., 2023) 4/4 65.05 68.48 57.43 69.03 75.61 79.45 78.32

Ours 4/4 72.88 76.59 66.31 76.00 78.83 81.02 82.46

FQ-ViT (Lin et al., 2021) 6/6 4.26 0.1 58.66 45.51 64.63 66.50 52.09
PSAQ-ViT (Li et al., 2022b) 6/6 37.19 41.52 57.58 63.61 67.95 72.86 76.44
Ranking (Liu et al., 2021c) 6/6 − 75.26 − 74.58 77.02 − −

PTQ4ViT (Yuan et al., 2022) 6/6 78.63 81.65 69.68 76.28 80.25 82.38 84.01
NoisyQuant (Liu et al., 2023b) 6/6 78.65 82.32 − 77.43 80.70 82.86 84.68
APQ-ViT (Ding et al., 2022) 6/6 79.10 82.21 70.49 77.76 80.42 82.67 84.18
RepQ-ViT (Li et al., 2023) 6/6 80.43 83.62 70.76 78.90 81.27 82.79 84.57

Ours 6/6 80.60 83.81 71.52 79.50 81.72 82.76 84.91

V100.

Regarding the reconstruction granularity, we adopt a com-
bination strategy involving three consecutive transformer

blocks for ViT and DeiT models. For the Swin model, we
employ the finest-grained scheme, optimizing the three mod-
ules individually as depicted in Figure 1. Furthermore, as the
coarser-grained gains demonstrated in Figure 2 do not seem
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Table 2. Different module combinations within a transformer block are validated using the following configurations: A-B-C, AB-C, A-BC,
and ABC. In the A-B-C configuration, modules A, B, and C were not combined during the optimization process. AB-C and A-BC
configurations involved joint optimization of module A with module B and module B with module C, respectively. The ABC configuration
optimized each transformer block independently. All experiments quantized both the weight and activation of the model to 4 bit.

Model FP32 A-B-C AB-C A-BC ABC

ViT-Small 81.38 72.60 68.67 70.52 67.07
DeiT-Tiny 72.13 64.07 64.30 64.06 64.71

Swin-Small 83.23 80.98 80.89 80.57 79.60

Table 3. Validation of extensive reconstruction granularity. We validate a wider range of reconstruction granularity on ViT-Small and
DeiT-Tiny. “n-block” implies that the model performs a combination of n consecutive transformer blocks during the optimization process.

Model FP32 1-block 2-block 3-block 4-block 6-block 12-block

ViT-Small 81.38 67.38 72.86 73.32 71.81 70.31 66.33
DeiT-Tiny 72.13 64.89 66.15 66.31 65.91 65.11 60.15
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Figure 3. Outliers contribute significantly to the quantization error
loss. Specifically, we analyze the mean square error loss of the
11-th transformer block output of ViT-small before and after quan-
tization. Additionally, we vary the proportions of values retained
for the loss calculation by using quantile points. Any values be-
yond the quantile points are assigned a value of 0.

to reach saturation for ViT and DeiT models, we conduct ad-
ditional ablation experiments with the more coarse-grained
settings. For further information, please refer to Section 4.3
for a detailed analysis.

4.2. Main Results

Table 1 presents a comprehensive comparison of our al-
gorithm with other post-training quantization methods for
vision transformers across various models and quantiza-
tion configurations. Notably, we outperform RepQ-ViT by
8.88% on the 4/4 bit quantization of DeiT-Tiny, achieving
an accuracy of 66.31% compared to their 57.43%. Simi-
larly, our method achieves an accuracy of 72.88% on the
4/4 bit quantization of ViT-small, surpassing RepQ-ViT by
7.83% (72.88% vs. 65.05%). Furthermore, our method

demonstrates more pronounced gains in low-bit quantiza-
tion. For instance, the accuracy improvement on the 4/4
bit quantization of ViT-small (7.83%) exceeds that of the
6/6 bit quantization (0.17%). Since low-bit quantization
is more susceptible to outliers due to the limited number
of quantized fixed points, our method effectively addresses
the outlier problem through optimal granularity, resulting in
significant performance enhancements.

4.3. Ablation Study

Finer reconstruction granularity. We examine the im-
pact of combining modules with finer reconstruction gran-
ularity within a transformer block across different models
in Table 2. Contrary to previous findings, the notion that
coarser granularity leads to superior quantization perfor-
mance in ViT and DeiT is no longer valid due to the absence
of transformer-like topological homogeneity. This is evident
in the performance of ViT-Small, where the finer-grained A-
B-C scheme is outperformed by the coarser-grained scheme
ABC (72.60% vs. 67.07%). Additionally, in the presence of
a downsampled layer, a globally optimal sampling strategy
is maintained for the Swin model as illustrated in Figure 2.
The Swin model’s preference for finer-grained reconstruc-
tion schemes aligns with the experimental results presented
in Table 2. Furthermore, as outliers tend to appear in mod-
ules B and C, the joint optimization of modules AB in ViT
still suffers from inadequate optimization, resulting in lower
quantization accuracy.

Coarser reconstruction granularity. To assess the im-
pact of coarser reconstruction granularity on ViT and DeiT
models, we conduct experiments as the quantization perfor-
mance gains demonstrated in Figure 2 do not reach satura-
tion. During the optimization process, we combine consec-
utive n transformer blocks (where n ∈ {1, 2, 3, 4, 6, 12})
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Figure 4. Outliers in vision transformers. We extract the output
activations of the 6-th and 5-th transformer blocks in the ViT
and Swin models, respectively. The magnitude of the hidden
channel data distribution is recorded for a specific token within the
activation value.

for joint optimization. The results in Table 3 consistently
indicate a decrease in quantization performance for both
ViT and DeiT models. When the reconstruction granularity
reaches a certain threshold, the parameter optimization re-
sembles the process of quantization-aware training (QAT).
Fine-tuning for quantization error in QAT often requires
a large amount of data, whereas the limited data available
for post-training quantization can lead to overfitting of the
optimized parameters when the reconstruction granularity is
too large. In summary, the quantization performance of ViT
and DeiT models initially improves but eventually declines
as the reconstruction granularity becomes coarser.

Loss distribution. We optimize ViT-Small and DeiT-Tiny
using different granularities. Figure 5 presents the loss
distribution and Top-1 accuracy of ViT and DeiT models at
different granularities, demonstrating that optimizing with a
coarser granularity significantly reduces quantization loss
and addresses the outlier problem in vision transformers.
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(a) DeiT-Tiny
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(b) ViT-Small

Figure 5. Loss distribution and Top-1 accuracy at different gran-
ularities for ViT and DeiT. “1-block” denotes single transformer
block optimization. “3-block” denotes the joint optimization of
three consecutive transformer blocks.

5. Conclusion
In this paper, we investigate the problem of outliers in the
vision transformer model and its impact on quantization.
We also establish the equivalence between optimizing the
quantization loss and addressing the outlier problem through
a quantile exclusion experiment. By converting the contra-
diction from the vision transformer model’s outlier problem
to the optimization problem of quantization loss, we demon-
strate, under the transformer-like topological homogeneity,
that coarser-grained reconstruction effectively reduces the
quantization loss of ViT and DeiT models. We extensively
validate the effectiveness of our algorithm across various
quantization configurations for numerous vision models.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proof of Theorem 1
Theorem A.1. Assuming that the two modules satisfy the
transformer-like topological homogeneity, for the same in-
put activation, the coarser granularity module corresponds
to a smaller quantization error. Formally,

L(Xi,Wi+1, · · · ,Wi+n)

≤ L(Xi,W
′

i+1, · · · ,W
′

i+h, · · · ,Wi+n). (6)

Where {W ′

i+1, · · · ,W
′

i+h} make L(Xi,W
′

i+1, · · · ,W
′

i+h)
optimal.

Proof. When the loss function L is convex, the local optimal
solution of L is part of the global optimal solution. We
define the following optimization problem.

argmin
Wi+1,··· ,Wi+n

L(Xi,Wi+1, · · · ,Wi+n). (7)

Assume that the optimal solution to the above optimiza-
tion problem is {W ∗

i+1, · · · ,W ∗
i+n}, and if L is a convex

function, then {W ′

i+1, · · · ,W
′

i+h} ∈ {W ∗
i+1, · · · ,W ∗

i+n}.
where {W ′

i+1, · · · ,W
′

i+h} make L(Xi,W
′

i+1, · · · ,W
′

i+h)
optimal. However, the quantization loss landscape is ex-
tremely nonconvex due to the derivatives of the approximate
rounding operation (Liu et al., 2021b; Frumkin et al., 2023).
Therefore, there exists a parameter set {W ◦

i+1, · · · ,W ◦
i+n}

such that,

L(Xi,W
◦
i+1, · · · ,W ◦

i+n)

≤ L(Xi,W
′

i+1, · · · ,W
′

i+h, · · · ,Wi+n) (8)

when L(Xi,W
′

i+1, · · · ,W
′

i+h)≤L(Xi,W
◦
i+1, · · · ,W ◦

i+h).
We take {Wi+1, · · · ,Wi+n} to be {W ◦

i+1, · · · ,W ◦
i+n} and

the theorem is proved.

B. In-stage Search of Swin
Figure 6 illustrates the relationships between final block
loss and classifier loss in the Swin model, constrained by
transformer-like topological homogeneity. This model’s
coarser reconstruction granularity, achieved by in-stage sam-
pling restriction, aligns with the quantization performance
observed in the ViT and DeiT models, indicating improved
quantization outcomes.

C. Gradient Formula Derivation
When the reconstruction module traverses the h-th and (h+
1)-th stages of Swin, the gradient of the parameter at stage
h is defined as follows:

Algorithm 1 Granularity and Optimization
Input: ViT blocks B, model input X , model weight W
Output: quantized weight Ŵ
Initialize DSFlag = False.
for i = 1 to B do

if i is downsample block then
DSFlag = True

end if
end for
if DSFlag == True then

for i = 1 to 3B do {finer granularity}
argmin

Ŵ

L(Xi−1,Wi)

end for
else

for i = 1 to B/n do {coarser granularity}
argmin

Ŵ

L(Xi−1,Wi,Wi+1, · · · ,Wi+n)

end for
end if
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h+1
i )

)
×

i−1∏
a=1

f
′h+1
a (Xh+1

a−1 ,W
h+1
a )

∂fDS(X
h
l ,WDS)

∂Xh
l

∂Xh
l

∂Wh
j

]
,

(12)

=E
[
2
∥∥∥fh+1

i (Xh+1
i−1 ,W

h+1
i )− fh+1

i (X̂h+1
i−1 , Ŵ
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Figure 6. Relationship between final block loss and classifier loss
on the Swin model. We maintain an invariant combining scheme
for the first, second, and fourth stages, and exclusively sample the
transformer block combining scheme in the third stage.
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Where subscript represents the transformer block and su-
perscript represents the stage. For example, f

′h
b denotes

the b-th transformer block of the h-th stage in the Swin,
which takes the partial derivative with respect to the activa-
tion. xh+1

i−1 refers to the output activation of the i − 1)-th
transformer block of the (h + 1)-th stage. The term fDS

represents the downsampled block. l denotes the number of
transformer blocks in the h-th stage.

Meanwhile, the gradient of the parameters of the module
within stage h is,
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Figure 7. In the Swin model’s third stage, we analyze the non-
rounding parameter ratios for the final transformer block’s six
linear layers. “No Across” denotes the absence of cross-stage
optimization. “Across 1 Block” refers to joint optimization with
one block in the subsequent stage. “Across 2 Blocks” and “Across
3 Blocks” indicate joint optimization with two and three blocks in
the next stage, respectively.
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Where e is the e-th transformer block of the h-th stage and
e <= l.

D. Insufficient Optimization Across Stages
Figure 8 illustrates that the non-stage crossing optimization
scheme results in the highest non-rounding parameter ra-
tio across all linear layers. This suggests that parameters
in non-crossing stage scenarios are more likely to deviate
from initial rounding values, indicating more effective op-
timization. In contrast, cross-stage optimization scenarios
tend to retain initialized rounding values, implying subop-
timal optimization. Moreover, as joint optimization block
numbers across stages increase, the effectiveness of parame-
ter optimization in earlier stages decreases, evident in the
reduced ratio of non-rounded parameters with more com-
bined blocks. Equations (13) and (16) demonstrate how loss
gradients at different stages affect parameter optimization.
Algorithm 1 outlines the process for determining reconstruc-
tion granularity and quantization optimization.
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Table 4. Comparison of perplexity effects under the w2a16g128 quantization configuration on Llama1&2.

Method LLaMA-7B LLaMA2-7B
WikiText2 C4 WikiText2 C4

FP 5.68 7.08 5.47 6.97
RTN 1.9e3 1.0e3 4.2e3 4.9e3

GPTQ 44.01 27.71 36.77 33.70
AWQ 2.6e5 1.9e5 2.2e5 1.7e5

OmniQuant 9.72 12.97 11.06 15.02
Ours+OmniQuant 8.80 12.03 9.51 13.13

E. LLM Results
We integrate our method with OmniQuant (Shao et al., 2023)
on LLaMA1&2 and pursue coarse granularity quantization
as per Rule 1, choosing a 4-block granularity to evenly split
the 32 hidden blocks. Without loss of generality, we evaluate
the w2a16g128 quantization scheme, with detailed results
presented below. Our approach uniquely explores granular-
ity in PTQ optimization for language models, setting it apart
from existing PTQ methods like SmoothQuant (Xiao et al.,
2023), AWQ (Lin et al., 2023b), Outlier Suppression (Wei
et al., 2022b), and OmniQuant (Xiao et al., 2023), which
mainly focus on equivalent transformations to minimize
quantization errors.

F. Experimental Settings
Our approach aligns with the hyperparameter settings used
in Adaround (Nagel et al., 2020), BRECQ (Li et al., 2021b),
and QDrop (Wei et al., 2022a). We use 16 batches of 64
samples each from the training set for calibration. The
learning rates are set at 1e-3 for the rounding parameter and
4e-5 for the quantization scale of the activation layer. The
rounding loss rate is set at 0.1, with 20,000 iterations per
optimization block. The activation value drop probability is
50%. We gradually reduce the power β of the progressive
soft function from 20 to 2. For activation calibration, we
use the EMA-mean-square-error method, and for weights,
we employ min-max calibration.
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Figure 8. The relationship between initial input activation loss and post-optimization output loss. By randomly sampling initial activations
for ViT-Small and Swin-Small’s last block and optimizing with a 4/4 bit quantization setup, we observe a positive correlation between the
magnitude of initial loss and final optimization loss.
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