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Abstract
Despite their exceptional capabilities, large lan-
guage models (LLMs) are prone to generating un-
intended text due to false or outdated knowledge.
Given the resource-intensive nature of retraining
LLMs, there has been a notable increase in the
development of knowledge editing. However, cur-
rent approaches and evaluations rarely explore the
perturbation of editing on neighboring knowledge.
This paper studies whether updating new knowl-
edge to LLMs perturbs the neighboring knowl-
edge encapsulated within them. Specifically, we
seek to figure out whether appending a new an-
swer into an answer list to a factual question leads
to catastrophic forgetting of original correct an-
swers in this list, as well as unintentional inclusion
of incorrect answers. A metric of additivity is in-
troduced and a benchmark dubbed as Perturbation
Evaluation of Appending Knowledge (PEAK) is
constructed to evaluate the degree of perturbation
to neighboring knowledge when appending new
knowledge. Besides, a plug-and-play framework
termed Appending via Preservation and Preven-
tion (APP) is proposed to mitigate the neighbor-
ing perturbation by maintaining the integrity of
the answer list. Experiments demonstrate the ef-
fectiveness of APP coupling with four editing
methods on four LLMs. The code and data are
available at https://github.com/mjy1111/PEAK.

1. Introduction
Large language models (LLMs) such as GPT-4 (OpenAI,
2023) have demonstrated remarkable capabilities in Nat-
ural Language Processing (NLP) (Ouyang et al., 2022;
Zhang et al., 2023a; Touvron et al., 2023). Nonetheless,
current LLMs often inevitably exhibit hallucinations stem-
ming from outdated or erroneous knowledge within their
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Figure 1. Illustration of the neighboring perturbations while ap-
pending a new answer into an answer list to a factual question.
Catastrophic forgetting of original correct answers and uninten-
tional inclusion of incorrect answer are both undesirable. fθ / fθe
denotes the models before / after editing.

parameters (Zhang et al., 2023b; Peng et al., 2023; Ji et al.,
2023; Huang et al., 2023). Given that retraining LLMs is
both costly and time-consuming, there has been a surge in
research focused on knowledge editing (a.k.a., model edit-
ing) (Sinitsin et al., 2020; Zhu et al., 2020; Cao et al., 2021;
Meng et al., 2022; 2023; Dai et al., 2022; Mitchell et al.,
2022b; Yao et al., 2023; Zhong et al., 2023; Cohen et al.,
2023; Ma et al., 2023; Gu et al., 2024), which aims at effi-
ciently altering LLMs’ behaviors within specific domains
while preserving overall performance across various inputs.

Many researchers endeavor to develop editing methods to
modify the parameters of models, which can be generally
classified into two categories of Meta-Learning and Locate-
then-Edit (Wang et al., 2023; Yao et al., 2023; Zhang et al.,
2024). Numerous benchmarks have been designed to as-
sess these methods across various dimensions, the most
fundamental of which are Efficacy, Generalization, and Lo-
cality (Meng et al., 2022; Zhong et al., 2023; Cohen et al.,
2023; Ma et al., 2023). These approaches and benchmarks
primarily focus on determining if the new target knowledge
has been successfully memorized. However, the perturba-
tions of editing on knowledge neighboring to the new target
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knowledge have not been fully explored when updating new
knowledge to LLMs.

In this study, we particularly investigate whether the edit-
ing operation of appending a new answer into an answer
list to a factual question perturbs the neighboring knowl-
edge encapsulated within them, as illustrated in Figure 1.
Specifically, we seek to figure out whether the knowledge
appending leads to catastrophic forgetting of original cor-
rect answers in this answer list, as well as the unintentional
inclusion of incorrect answers. In addition to the metrics
that are commonly used in previous works, a new metric of
additivity is introduced to assess the degree of perturbation
to neighboring knowledge when appending. To evaluate
the additivity of edited models, a benchmark dubbed as
Perturbation Evaluation of Appending Knowledge (PEAK)
is constructed, with each example comprising a factual ques-
tion, a list of original correct answers, a list of incorrect
distractors, and a piece of knowledge to append. After an
editing operation of knowledge appending, the list of orig-
inal correct answers is utilized to calculate the proportion
of them that are accidentally removed. Similarly, the list of
incorrect distractors is utilized to calculate the proportion of
them that are unintentionally included. PEAK includes two
datasets of PEAK-CF based on counterfactual edits, and of
PEAK-T based on temporal knowledge edits of changes in
real-world.

To mitigate the neighboring perturbations after append-
ing new knowledge, a plug-and-play framework named
Appending via Preservation and Prevention (APP) is pro-
posed. A set of editing objectives is designed to minimize
the probability perturbations of both correct and incorrect
knowledge. On the one hand, a certain margin is maintained
between the probability of correct knowledge and that of
incorrect knowledge. On the other hand, it involves ensuring
that the probability of correct knowledge does not decrease
while controlling that the probability of incorrect knowl-
edge does not increase. In this way, this framework helps
preserve the integrity of original correct knowledge and pre-
vent the inclusion of false knowledge while appending new
knowledge. Furthermore, the proposed editing framework
eliminates the need for a training step, and is adaptable to
be coupled with multiple existing editing methods.

To investigate the performance of current knowledge edit-
ing methods for appending knowledge, this study conducts
comprehensive experiments that encompass a wide range of
methods, including FT (Zhu et al., 2020), MEND (Mitchell
et al., 2022a), KN (Dai et al., 2022), ROME (Meng et al.,
2022) and MEMIT (Meng et al., 2023). Four representa-
tive LLMs of varying sizes are utilized as our foundational
models, including GPT-2 XL (1.5B) (Radford et al., 2019),
GPT-J (6B) (Wang & Komatsuzaki, 2021), LLaMA-2 (7B)
and LLaMA-2 (13B) (Touvron et al., 2023). We surpris-

ingly observe that although current editing methods can
effectively incorporate new facts, they significantly under-
mine the probability distribution of knowledge neighboring
to the new facts, disrupting the integrity of original cor-
rect knowledge and introducing unintentional noise. Fur-
thermore, experimental results extensively demonstrate the
effectiveness of the proposed APP in mitigating the neigh-
boring perturbations of editing, as well as its compatibility
with four editing methods on four representative LLMs of
different sizes.

In essence, our research offers three significant contribu-
tions: (1) This study pioneers the exploration of neighbor-
ing perturbations via appending new knowledge to LLMs.
A metric of additivity is introduced and a new benchmark
PEAK is constructed to gauge the degree of perturbation
to neighboring knowledge. (2) Through comprehensive ex-
periments, we observe that although established methods
and LLMs absorb new knowledge effectively, they seriously
disrupt the integrity of original correct knowledge and intro-
duce unintentional false knowledge. (3) The plug-and-play
APP is proposed which is effective in mitigating neighbor-
ing perturbations when appending knowledge. We aspire
that both our benchmark and method can shed light on the
neighboring perturbations of knowledge editing on LLMs.

2. Related Work
Many knowledge editing methods have been proposed to
modify knowledge encoded in model, such as meta-learning,
and locate-then-edit (Yao et al., 2023). On the one hand,
meta-learning methods train a hypernetwork to get gradi-
ent changes to update model parameters (Cao et al., 2021;
Mitchell et al., 2022a). MEND (Mitchell et al., 2022a)
learns to transform the fine-tuning gradient into a low-rank
decomposition of the gradient. On the other hand, locate-
then-edit methods first locate knowledge neurons in LLMs
that exhibit a positive correlation with a knowledge expres-
sion, and then modify them accordingly (Dai et al., 2022;
Meng et al., 2022; 2023). Dai et al. (2022) computed the
contribution of each neurons to a certain knowledge, then
updated or erased knowledge by modifying these neurons
with the embedding vectors of facts. Meng et al. (2022)
located multi-layer perceptron (MLP) storing factual knowl-
edge, and then edited such knowledge by injecting new
key-value pair in the MLP module, which follows recent
observations that these layers can be cast as key-value mem-
ories that store factual knowledge (Geva et al., 2021; 2022).
In addition, Zhu et al. (2020) also propose the constrained
fine-tuning approach on modified facts. DeepEdit (Wang
et al., 2024) is neuro-symbolic that decodes with constraints
and can be flexibly applied to black-box LLMs. Besides,
some benchmarks are proposed for assessing knowledge
editing (Meng et al., 2022; Cohen et al., 2023; Ma et al.,
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2023; Li et al., 2023; Gandikota et al., 2023). For example,
MQUAKE (Zhong et al., 2023) uses the multi-hop questions
to assess knowledge editing, suggesting that editing a par-
ticular fact implies that many other facts need to be updated.
BAKE (Ma et al., 2023) assesses knowledge editing bidirec-
tionally. Li et al. (2023) have explored two significant areas
of concern: Knowledge Conflict and Knowledge Distortion,
which aims to unveil more weakness in knowledge editing.
Additionally, editing has been applied in various domains,
such as changing model personality (Mao et al., 2023), edit-
ing multimodal models (Cheng et al., 2023), protecting users
privacy (Wu et al., 2023), etc.

Compared with previous studies (Meng et al., 2022; 2023;
Mitchell et al., 2022a; Zhong et al., 2023; Cohen et al., 2023;
Ma et al., 2023; Yao et al., 2023) that are the most relevant
to our work, a main difference should be highlighted. These
approaches generally focus on determining if the new target
knowledge has been successfully memorized, while this
study explores the perturbation and impact of editing on
neighboring knowledge. To the best of our knowledge, this
paper makes the first attempt to introduce a new metric
of additivity, build a benchmark for assessing the degree
of perturbation to neighboring knowledge when appending
knowledge, and propose a general framework to mitigate
the neighboring perturbations.

3. Preliminary
3.1. Querying Factual Knowledge in LLMs

Following previous works (Meng et al., 2022; Zhong et al.,
2023; Yin et al., 2023; Yao et al., 2023; Ma et al., 2023),
we study factual knowledge of the form (s, r, o), consisting
of a subject s, a relation r, and an object o (e.g., s = Eiffel
Tower, r = location, o = Paris). Besides, we also follow them
to employ discrete prompts to test whether the knowledge
is in a language model. Specifically, a natural language
template tr(·) is constructed for each relation r, which is
then combined with a subject s as input to generate a prompt
(question or cloze-style statement) tr(s). For instance, given
the subject “Eiffel Tower” and the relation “location”, we
can form a cloze sentence “The Eiffel Tower is located in”.

3.2. Knowledge Editing

The goal of knowledge editing is to incorporate new facts
into model parameters without retraining. Previous works
focus on altering the original knowledge stored in LLMs
as (s, r, o) → (s, r, o∗), which only cares about the new
target knowledge. However, the potential impact of the
editing operation of appending new knowledge on its neigh-
boring knowledge remains unclear. Therefore, this paper
explores the scenarios where a subject has multiple cor-
responding objects under a given relation. In detail, ap-

pending knowledge aims at incorporating a new object
to the set of original objects, retaining original objects,
and not introducing false objects: (s, r, {o1, o2, ..., oN}) →
(s, r, {o1, o2, ..., oN , o∗}). In this paper, for a new piece of
knowledge to append (s, r, o∗), its neighboring knowledge
is defined as (s, r,O) where O = {o1, o2, ..., oN}. Define
an editing fact as e = (s, r,O, o∗) and given an unedited
model F , the edited language model is gained by using a
model editor K, F∗ = K(F , e).

To evaluate the performance of editing methods in append-
ing knowledge, the previous three metrics are still utilized.

Efficacy validates whether the edited models could recall
the appended fact under the sole editing prompt p. The
assessment is based on Efficacy Score (ES) representing as:
1[PF∗(o∗ | p) > min{PF∗(o | p) | o ∈ O}]1.

Generalization verifies whether the edited models could
recall the appending fact under the paraphrase prompts PG

via Generalization Score (GS): Ep∈PG [1[PF∗(o∗ | p) >
min{PF∗(o | p) | o ∈ O}] ].

Locality verifies whether the output of the edited mod-
els for inputs out of editing scope remains unchanged
under the locality prompts PL via Locality Score (LS):
Epl∈PL [1[PF∗(ol | pl) > PF∗(o∗ | pl)] ], where ol was the
original answer of pl. 1 is the indicator function.

For example, given an editing fact (s = Apple, r = products,
O = {AirPods 3, MacBook Air,..., iPhone 14}, o∗=iPhone
15), the editing prompt p could be “What are the products
of Apple?” and a paraphrase prompt could be “What items
does Apple produce?” A locality prompt and its original
answer could be “Which company developed Windows?”
and “Microsoft” respectively.

4. Definition of Additivity
Given a subject s, a relation r, a composed question
tr(s), original objects O, and an object to append o∗, it
is unclear whether the original correct knowledge Kc =
(s, r, {o1, o2, ..., oN}) is still retained, and part of the false
knowledge Kf = (s, r, {of1, of2, ..., ofM}) is unintention-
ally included after editing, where {of1, of2, ..., ofM} ∩
{o1, o2, ..., oN , o∗} = ∅. Therefore, a new metric termed
additivity is designed to evaluate the degree of perturbation
to neighboring knowledge, which is calculated in terms of
relative ranking and absolute probability change of objects.

Relative ranking of objects We assume that the minimum
probability of correct knowledge Kc should be larger than
the maximum probability of false knowledge Kf before
and after editing. Otherwise, there is a risk of forgetting
original correct knowledge or introducing false knowledge.

1Previous works care about whether the probability surpasses
the original o. Here O is a set, so we make a slight adaptation.
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Intuitively, the maximum probability of false knowledge
Pmax
f = maxMi=1 PF∗(ofi|tr(s)) is used as a threshold

to calculate the proportion of the list of original correct
objects of Kc whose probabilities are below this threshold.
Mathematically, we have Ranking Forgetting Factor (RFF):

RFF =∑N
i=1[1{PF∗(oi|tr(s)) < Pmax

f } ∗ σ(PF∗(oi|tr(s)))]∑N
i=1 σ(PF∗(oi|tr(s)))

,
(1)

σ is the sigmoid function. Here, σ(P ) of each original cor-
rect knowledge is regarded as its weight, since knowledge
with larger probability should weigh more and the sigmoid
function can also be used for smoothing.

Similarly, the minimum probability of original correct
knowledge Pmin

c = minNi=1 PF∗(oi|tr(s)) is used as a
threshold to calculate the proportion of the list of sampled
false objects of Kf whose probabilities are above this thresh-
old. Then, Ranking Noise Factor (RNF) is defined as:
RNF =∑M

i=1[1{PF∗(ofi|tr(s)) > Pmin
c } ∗ σ(PF∗(ofi|tr(s)))]∑M

i=1 σ(PF∗(ofi|tr(s)))
,

(2)

Absolute probability change of objects In addition to
satisfying the assumption of relative ranking of objects, it
is also necessary to characterize their absolute probability
changes. Even if the relative ranking remains unchanged,
substantial harm is inflicted upon the model if the abso-
lute probability changes unexpectedly. Therefore, Correct
Probability Change (CPC) is introduced to characterize this
issue, which is defined as the ratio of the mean probability
of correct knowledge after and before editing:

CPC =

∑N
i=1 PF∗(oi|tr(s))∑N
i=1 PF (oi|tr(s))

. (3)

Similarly, False Probability Change (FPC) is defined as the
ratio of the mean probability of false knowledge after and
before editing:

FPC =

∑M
i=1 PF∗(ofi|tr(s))∑M
i=1 PF (ofi|tr(s))

. (4)

Aggregation Finally, we aim to aggregate these two
dimensions of relative ranking and absolute probability
change into a unified metric, providing a more compre-
hensive representation of the detrimental impact induced
by appending knowledge. The Additive Forgetting Factor
(AFF) is defined as the degree to which the original correct
knowledge is forgotten:

AFF = 1− (1−RFF ) ∗min{1, CPC}. (5)

This definition means that if the probability of correct knowl-
edge does not decrease after editing (CPC >= 1), AFF

equals RFF. Otherwise, the adverse effects of CPC and RFF
would combine, resulting in AFF surpassing RFF. The AFF
spans from 0 to 1, reflecting the extent to which the original
correct knowledge is forgotten amidst neighboring perturba-
tions. A higher AFF value corresponds to a more substantial
negative impact. Similarly, the other aggregated metric Ad-
ditive Noising Factor (ANF) is defined as the degree to
which false knowledge is introduced:

ANF = 1− (1−RNF ) ∗min{1, 1

FPC
}. (6)

The ANF spans from 0 to 1, reflecting the extent to which
the false knowledge is introduced in neighboring perturba-
tions. A higher ANF value corresponds to a more substantial
negative impact.

5. PEAK: Perturbation Evaluation of
Appending Knowledge

This paper designs the PEAK benchmark to assess the extent
of perturbation to neighboring knowledge during editing.
It comprises two datasets of PEAK-CF and PEAK-T. The
former is designed as a counterfact dataset for the evaluation
of knowledge editing methods on counterfactual appending
following Meng et al. (2022) and Ma et al. (2023). The
latter is based on temporal knowledge edits of changes in
the real-world following Zhong et al. (2023).

5.1. Data Construction of PEAK-CF

Aggregating facts This dataset is constructed based on
Wikidata (Vrandecic & Krötzsch, 2014), a knowledge base
containing millions of fact triples. First, we manually
chose a total of 32 relations, where a subject has multi-
ple corresponding objects under each relation. Then we
collected all triples for each relation and classified triples
of the same subject s and relation r together, denoted as
Fm(r) = {(s, r,O) | O = {o1, o2, ..., oN})}. For each
relation r, ChatGPT (gpt-3.5-turbo) was used to generate
some templates T (r) expressing the same semantics. The
subject s can be replaced to form the full prompts: P(s, r)
= {tr(s) | tr(·) ∈ T (r)}. For example, a template for (r
= product) might be “{} has products like”, where “Apple”
substitutes “{}”.

Constructing counterfactual edits Following previous
works (Meng et al., 2022; Yao et al., 2023; Ma et al.,
2023), counterfactual edits were built in this dataset. The
previous three metrics are used in this dataset. Given a
set of triples (s, r,O) ∈ Fm(r) and an object o∗, where
o∗ /∈ O and (s, r, o∗) is a counterfact, an edit is repre-
sented as E = {s, r,O, o∗, p} to test efficacy, where the
editing prompt p ∈ P(s, r). Besides, to test generalization,
a set of two semantically-equivalent paraphrase prompts
PG are sampled from P(s, r)\ {p}. Moreover, to test local-
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Table 1. An example in the PEAK-T dataset. a and a∗ in different
rows represent the original answer and desired answer after editing
respectively. ∪ refers to the set union operation.

E

(s, r): (Olympic Winter Games, host country)
O: {France, United States, ..., South Korea}
o∗: China
p: What are the host countries of Olympic Winter Games?
(a: O, a∗: O ∪ {o∗})

PG
The host countries of Olympic Winter Games are
Which nations have hosted the Winter Olympics?
(a: O, a∗: O ∪ {o∗})

PL Big Ben is located in (a & a∗: London)
The headquarters of Apple is in (a & a∗: California)

Oh {Japan, Shanghai, Hong Kong, ..., Russia}
Or {Uruguay, Mozambique, Fiji, ..., Tripoli}

ity, a set of triples outside the scope of editing is selected:
S = {(s′, r′, o′)}. For example, select (s= Olympic Games,
r= host city, o= Paris), S might contain triple like (s′=
France, r′= shares border, o′= Germany). Then a set of
prompts {P (s′, r′) | (s′, r′, o′) ∈ S} is constructed to sam-
ple the locality prompts PL.

Sampling false answers For the additivity proposed in
this paper, given a factual question tr(s) (e.g., the edit-
ing prompt p), both the original correct answers and sam-
pled false answers are utilized. O is the list of original
correct answers, while the false answers were sampled in
two settings Hard and Random (sampling details are in
Appendix A.1). For the Hard setting, some objects that
establish direct relations with the new object o∗ are se-
lected, represented as Oh = {oh1, oh2, ..., ohM}, where
Oh ∩O = ∅. Similarly, for the Random setting, some ob-
jects Or = {or1, or2, ..., orM} that are semantically distant
from the new object are sampled. Intuitively, false answers
in the Hard setting are more easily introduced into the model
compared to answers in the Random setting.

Filtering correct and false answers Subsequently, ac-
cording to additivity defined in Section 4, for tr(s), the
minimum probability of correct answers O should be larger
than the maximum probability of false answers Oh and Or

before and after editing. Therefore, before editing, we fil-
tered out correct answers with probabilities below a certain
threshold in the original model. Then false answers with
probabilities greater than the minimum probability of the
selected correct answers were also filtered out.

5.2. Data Construction of PEAK-T

This dataset focuses on temporal-based, real-world edits,
where each edit is factually correct and occurs after the
model is trained. Following Yin et al. (2023), it is built
upon YAGO (Mahdisoltani et al., 2015), a knowledge base

Table 2. The statistics of PEAK-CF and PEAK-T datasets.
Type PEAK-CF PEAK-T

Editing examples 1,962 993
Correct answers 26,512 7,759
Paraphrase prompts 3,344 1,995
Neighborhood prompts 10,760 6,207
False answers (hard) 24,043 7,879
False answers (random) 19,616 9,929

containing fact triples extracted from Wikipedia, enriched
with WordNet, GeoNames, and other data sources, and con-
tains the time when the facts occurred. We sampled facts in
YAGO that occurred after 2021, which took place following
the release of GPT-2 XL and GPT-J. Due to the limited num-
ber of relation types, 9 relations have been selected. Then
the construction is similar to PEAK-CF.

5.3. Dataset Summary

Dataset Format As shown in Table 1, each instance in
the PEAK benchmark is represented as a tuple (E , PG, PL,
Oh, Or), where E comprises a piece of new knowledge and
original correct knowledge. PG and PL are the prompts
utilized to validate generalization and locality respectively.
Oh and Or represent the sampled false answer lists for the
factual questions p and PG under the Hard and Random
settings respectively. a and a∗ denote the original answer
and desired answer after editing respectively.

Dataset Statistics Table 2 summarizes the statistics of the
PEAK-CF and PEAK-T datasets. To verify generalization
and locality, there is at least one prompt for each instance.
Besides, each fact question has about an average of 10 cor-
rect and 20 false answers. Generally speaking, these two
datasets contain counterfactual edits and temporal edits re-
spectively, and are used to study neighborhood perturbations
of edited models. Readers can refer to Appendix A.2 for the
details of relations and prompts.

6. Appending via Preservation and Prevention
The neighboring perturbations in the process of appending
knowledge may lead to the forgetting of original correct
knowledge, as well as the unintentional inclusion of noise. A
plug-and-play framework APP (Appending via Preservation
and Prevention) is proposed to improve existing editing
methods to mitigate this detriment in editing.

Given the new knowledge to append (s, r, o∗) and an edit-
ing prompt p, current editing methods usually define an
editing objective Le(o

∗, θF ) to incorporate the new knowl-
edge, where θF denotes the parameters to be updated in the
unedited model F . APP designs a set of editing objectives
which can be coupled with Le(o

∗, θF ), to minimize the
probability perturbations of both neighboring correct and
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Table 3. Evaluation results (%) of the PEAK-CF dataset. “hard” refers to the additivity calculated using false answers in the Hard setting,
while “ran” refers to that in the Random setting. ↑ indicates that a higher value corresponds to better performance, while ↓ is the opposite.
Numbers marked with † indicate statistically significant improvements in the method coupled with APP over the original method (t-test
with p-value <0.05). Since KN has no loss to optimize, APP is not applied to it. Due to space limitation, the results of LLaMA-2 (13B)
were put in Appendix B.4.

Editor
GPT-2 XL (1.5B) LLaMA-2 (7B)

Previous Additivity (hard) Additivity (ran) Previous Additivity (hard) Additivity (ran)

ES ↑ GS ↑ LS ↑ AFF ↓ ANF ↓ AFF ↓ ANF ↓ ES ↑ GS ↑ LS ↑ AFF ↓ ANF ↓ AFF ↓ ANF ↓

FT 90.99 64.68 87.71 78.86 59.04 69.29 37.12 98.27 87.72 68.48 74.51 60.62 64.22 38.72
KN 26.48 26.08 89.08 44.71 29.47 41.23 22.96 46.67 46.45 66.16 45.63 40.51 43.72 35.64
MEND 97.46 84.87 42.46 30.15 33.97 12.86 11.62 95.22 86.02 47.47 35.39 33.51 21.16 14.61
MEMIT 72.90 63.08 98.44 51.49 52.11 31.71 17.22 99.95 99.11 92.12 94.26 84.14 86.03 53.61
ROME 99.27 94.05 90.57 87.44 69.80 75.16 35.58 99.69 97.74 94.40 93.05 82.47 83.80 52.25

FT+APP 87.89 59.30 89.21 70.48† 49.73† 59.85† 29.76† 98.01 85.24 73.55† 68.44† 49.62† 57.93† 33.34†

MEND+APP 94.25 81.02 45.51† 26.27† 28.81† 12.21 11.07 92.86 82.46 51.43† 32.55† 29.73† 20.44 13.99
MEMIT+APP 69.75 59.26 98.66 39.89† 43.41† 22.14† 13.58† 99.42 96.51 94.81† 38.83† 17.41† 32.65† 11.69†

ROME+APP 96.15 87.17 93.27† 40.45† 31.60† 25.92† 12.61† 100.00 94.24 96.22† 43.11† 20.14† 36.86† 13.74†

incorrect knowledge. On the one hand, the editing objective
L1(O,Oh, θF ) is designed to maintain a certain margin be-
tween the probabilities of original correct answers O and
those of false answers Oh for the question tr(s) via the
Hinge Loss (Gentile & Warmuth, 1998; Wu & Liu, 2007)
as follows:2

L1(O,Oh, θF ) =
1

NM

N∑
i=1

M∑
j=1

max{0, M

− logPF ′(oi | p) + logPF ′(ohj | p)},

(7)

where F ′ is the intermediate model of the editing process.
N and M represent the number of elements in O and Oh

respectively. This equation implies that the log probabilities
of correct answers are encouraged to be larger than those of
false answers by at least a certain margin M.

On the other hand, it involves ensuring that the absolute
probabilities of correct answers do not decrease while those
of false answers do not increase during editing, which
can be conceptualized as two objectives L2(O, θF ) and
L3(Oh, θF ) respectively as:

L2(O, θF ) =
1

N

N∑
i=1

max{0,

logPF (oi | p)− logPF ′(oi | p)},

(8)

L3(Oh, θF ) =
1

M

M∑
i=1

max{0,

logPF ′(ohi | p)− logPF (ohi | p)},

(9)

L2(O, θF ) means that if the probability of the correct an-
swer decreases during editing, the loss is equal to the log

2Oh is adopted due to hard negative sampling.

probability decrease value, otherwise it is 0. L3(Oh, θF ) is
designed similarly. Finally, these proposed objectives are
jointly optimized with the original editing objective in each
method Le(o

∗, θF ) as:

L =min
θF

Le(o
∗, θF ) + αL1(O,Oh, θF )

+ βL2(O, θF ) + γL3(Oh, θF ).
(10)

Here α, β, γ >= 0 are hyperparameters. Appendix C pro-
vides an example illustrating how the proposed APP method
is coupled with a selected editing method for clarity.

7. Experiments
In this section, experiments were conducted to demonstrate
the neighborhood perturbations of existing editing methods
based on four representative LLMs. Furthermore, the pro-
posed APP method was coupled with these editing methods
to mitigate the neighborhood perturbations. Finally, com-
prehensive analyses were carried out to further verify the
effectiveness of the proposed framework.

7.1. Base LLMs and Editing Methods

Four popular LLMs were used for experiments. Consid-
ering limited computing resources, the PEAK-CF dataset
was conducted on GPT-2 XL (1.5B) (Radford et al., 2019),
LLaMA-2 (7B) and LLaMA-2 (13B) (Touvron et al., 2023).
Since there is little data in YAGO after LLaMA-2 release
date (2023-7), The PEAK-T was conducted on GPT-2 XL
and GPT-J (6B) (Wang & Komatsuzaki, 2021). Five pop-
ular knowledge editing methods were selected as the base-
lines including FT (Zhu et al., 2020), KN (Dai et al., 2022),
MEND (Mitchell et al., 2022a), ROME (Meng et al., 2022),
and MEMIT (Meng et al., 2023). Readers can refer to
Appendix B.1 for the details of these editing methods.
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Table 4. Evaluation results (%) of the PEAK-T dataset.

Editor
GPT-2 XL (1.5B) GPT-J (6B)

Previous Additivity (hard) Additivity (ran) Previous Additivity (hard) Additivity (ran)

ES ↑ GS ↑ LS ↑ AFF ↓ ANF ↓ AFF ↓ ANF ↓ ES ↑ GS ↑ LS ↑ AFF ↓ ANF ↓ AFF ↓ ANF ↓

FT 83.31 59.89 61.67 80.44 38.10 72.24 18.76 95.21 80.68 42.74 87.25 40.14 77.09 14.97
KN 28.39 27.38 83.81 50.85 24.41 47.29 18.73 45.49 43.11 67.05 93.84 46.47 93.29 40.23
MEND 99.00 89.90 8.78 24.02 19.78 12.91 8.18 99.72 87.55 10.05 24.73 16.82 13.66 5.12
MEMIT 57.92 46.46 97.71 25.92 31.45 7.31 4.19 100.00 85.42 94.00 50.18 36.35 22.85 2.95
ROME 100.00 86.77 92.95 57.65 33.84 36.05 5.35 100.00 92.57 89.15 60.48 38.66 33.87 4.02

FT+APP 79.03 53.19 67.29† 75.24† 31.64† 67.47† 17.75† 90.85 74.50 49.53† 82.75† 31.06† 75.02† 13.41†

MEND+APP 99.29 90.68 8.37 26.27 28.81 12.21 11.07 99.72 87.49 9.93 26.38 17.05 14.85 5.12
MEMIT+APP 59.06 47.68 97.92 23.30† 29.00† 6.86 4.20 100.00 83.23 94.36 21.40† 16.78† 7.54† 1.93†

ROME+APP 99.86 86.70 93.65 28.81† 14.84† 16.79† 3.16† 100.00 90.83 89.90 31.56† 17.15† 16.17† 2.17†

7.2. Evaluation Metrics

Three basic metrics of Efficacy (ES), Generalization (GS)
and Locality (LS) (Meng et al., 2022; 2023) defined in Sec-
tion 3.2 were still adopted to measure each editing method.
Besides, the proposed Additivity was to evaluate the degree
of perturbation to neighboring knowledge when appending
knowledge. AFF and ANF designed in Section 4 were em-
ployed to quantify the extent of forgetting original correct
answers and the inclusion of noise and incorrect answers
respectively. When assessing the additivity, both the editing
and paraphrase prompts {p} ∪ PG were utilized without
loss of generality. For all the above metrics, the average
results across all edits in each dataset were reported.

7.3. Results of Existing Editing Methods

The top five rows of Table 3 and Table 4 reported the knowl-
edge editing results of current editing methods on PEAK-CF
and PEAK-T respectively. These results were analyzed from
the following perspectives.

The performance of editing the new target knowledge.
Except for KN, editing methods performed well in efficacy
(ES) and generalization (GS), showing that most of existing
editing methods are capable of effectively appending new
target knowledge. For locality, locate-then-edit methods
(KN, ROME, MEMIT) significantly outperformed other
methods, demonstrating that they have little interference
with irrelevant knowledge. Moreover, as the model size
increased, the performance of a particular editing method
exhibited continuous improvement in appending new facts.

The perturbations of editing on neighboring knowledge.
We were surprised to observe that existing editing methods
significantly perturbed the knowledge neighboring to the
target knowledge in LLMs after editing, compromising the
integrity of original correct knowledge and introducing un-
intentional noise. Taking LLaMA-2 edited by ROME on
PEAK-CF as an example, despite its superior performance
evaluated by previous metrics, it achieved remarkably poor

performance of 93.05% AFF and 82.47% ANF respectively
in the Hard negative setting. Even in the Random setting,
they still show poor performance, indicating severe damage
to neighboring knowledge. Meanwhile, edited models gen-
erally showed worse performance under the Hard setting
than those under the Random setting in terms of AFF and
ANF, demonstrating that the closer the semantic relationship
between the false answer and the newly appended answer,
the more susceptible it is to perturbation. Remarkably, while
MEND performed the best in terms of additivity, its rela-
tively low LS indicates a significant disruption to irrelevant
knowledge. Our findings suggest that current editing meth-
ods primarily care about the editing performance of new
target knowledge, while neglecting the negative perturba-
tions on its neighboring knowledge.

Comparison between datasets. Comparing the results of
each method on the two datasets, two conclusions were
drawn. (1) The ES and GS of each method on PEAK-
T were lower than those on PEAK-CF, showing that the
PEAK-T is more challenging for existing methods to append
knowledge without neighboring perturbations. This could
be attributed to the fact that, for PEAK-T, new knowledge
originates from the external world and has never been seen
by the model. In contrast, PEAK-CF already contains some
weak counterfactual associations, making it easier for the
model to integrate counterfacts. (2) Both AFF and ANF on
PEAK-T were lower than those on PEAK-CF, suggesting
that PEAK-T suffers fewer neighboring perturbations during
editing than PEAK-CF. This is possibly due to the weaker
correlation between the sampled false answers and the new
external knowledge compared to the original counterfactual
knowledge in the model. Consequently, the perturbations
when appending new knowledge in PEAK-T are smaller.

7.4. Results of APP

As shown in the bottom four rows in Table 3 and Table 4,
APP was coupled with four editing methods. The false
answers utilized in APP were from the Hard setting. De-
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Figure 2. Average probability of the correct answers O and the
false answers Oh (Hard) and Or (Random) of LLaMA-2 after
editing with different editing methods. LLaMA-2 refers to the
unedited model. “+” means this method was coupled with APP.

tailed hyperparameters of each method can be referred to
in Appendix B.2. In general, APP almost maintained the
performance of appending new knowledge in terms of previ-
ous editing metrics, and greatly mitigated the neighborhood
perturbations in terms of AFF and ANF under both the
Hard and Random settings. Particularly, ROME+APP and
MEMIT+APP still performed well in appending new knowl-
edge, with the most substantial reduction in perturbations
compared to the original editing methods. Besides, we also
found that APP has also improved the performance of LS,
preserving irrelevant knowledge. These results help con-
clude that APP effectively preserves the integrity of original
correct knowledge and prevents the inclusion of false knowl-
edge while appending new knowledge. Despite the notable
improvement in additivity, it remains considerably below
a satisfactory level, highlighting the severity and complex-
ity of the proposed neighboring perturbations. Addressing
this challenge will necessitate collaborative efforts from the
community.

7.5. Probability Change of Answers

To further analyze the neighboring perturbations in edited
models and the mechanism of our proposed APP, the average
probability of both correct and false answers in LLaMA-2
models edited by different methods on PEAK-CF, is illus-
trated in Figure 2. Two conclusions can be drawn here.

Existing editing methods severely perturb probabilities.
Compared with the original LLaMA-2, the probabilities
of correct answers dropped significantly, while the proba-
bilities of false answers (Hard) increased a lot, especially
for MEMIT and ROME. MEND has shown minimal dis-
turbance, aligning with its superior additivity performance.
Compared to the false answers (Hard), the probabilities of
false answers (Random) undergo a notably smaller shift af-
ter editing, indicating that the false answers more closely
tied to the new appended answers warrant greater attention.

APP effectively mitigates the probability perturbations.
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Figure 3. Ablation analysis of probability and additivity for APP.
Results were conducted with LLaMA-2 on PEAK-CF dataset. Due
to page limit, results for other methods are put in Appendix B.5.

After coupling existing editing methods with the proposed
APP, the probability perturbations for both correct and false
answers were significantly mitigated. These results vividly
explain why APP can effectively mitigate perturbations,
thereby preserving the correct knowledge and preventing
the inclusion of false knowledge.

7.6. Ablation study

Ablation tests of removing each editing objective L1, L2 or
L3 in APP were conducted to validate their effectiveness.
The AFF and ANF of additivity, as well as the probabil-
ities of correct and false (Hard) answers were illustrated
in Figure 3. We have two findings. First, removing any
editing objective of the APP led to performance degradation
in terms of additivity and probability perturbations, showing
their effectiveness. Second, removing L1 resulted in the
most significant performance degradation. It demonstrated
the most importance of L1 in APP, which is designed to
maintain a certain margin between the probabilities of cor-
rect answers and those of false answers.

7.7. Effect of Access to All Correct Answers

The proposed method has access to all the correct answers O
during editing, whereas the baseline methods can only have
access to the new correct answer o∗. To explore the effect of
access to all the correct answers, we let these baseline meth-
ods also directly use all correct answers as editing targets
when editing. Specifically, all baseline methods have been
extended to utilize the entire set O when editing LLMs to
ensure a fair comparison. The results are shown in Table 5.
Comparing these results with those of the proposed APP in
Table 3, we observe that, Despite similar performance in ap-
pending new knowledge, the additivity of the new baselines
is still significantly higher than that of the proposed APP
method, suggesting that APP performs better at maintaining
the integrity of the answer list.

7.8. Effect of Number of Neighboring Answers

Figure 4 illustrates how the performance of APP changed
with respect to different numbers of neighboring answers
on PEAK-CF with LLaMA-2 edited by different meth-
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Table 5. Evaluation results (%) of the baselines using LLaMA-2
(7B) to access all correct answers on the PEAK-CF dataset. “+”
refers to the baseline coupled with all correct answers O. Here
only false answers in the Hard setting were used.

Editor
LLaMA-2 (7B)

Previous Additivity (hard)

ES ↑ GS ↑ LS ↑ AFF ↓ ANF ↓
FT+ 97.54 85.93 71.68 74.35 61.83
MEND+ 93.26 79.90 50.91 33.92 32.03
MEMIT+ 98.29 93.07 94.20 48.10 66.72
ROME+ 100.00 93.13 95.48 50.27 64.91

ods. To this end, we extended our evaluation and consid-
ered utilizing k correct and false answers in APP, where
k ∈ [0, 1, 3, 5, all]. It can be seen from these results that
the performance of all editing methods coupled with APP
was significantly improved as the number of neighboring
answers increased. This trend shows the effectiveness of
considering more neighboring answers to comprehensively
characterize the neighboring perturbations. It also shows
that both AFF and ANF can be significantly improved even
with fewer answers, showcasing the practicality of the pro-
posed APP method.

8. Conclusion & Limitation
This study investigates the neighboring perturbations of
knowledge editing on LLMs. A metric of additivity is in-
troduced and a benchmark dubbed as PEAK is constructed
for assessing the degree of perturbations in neighboring
knowledge. A plug-and-play framework APP is proposed to
mitigate perturbations by minimizing the probability disrup-
tions during knowledge appending. Comprehensive exper-
iments on various knowledge editing methods and LLMs
reveal that they inevitably perturb neighboring knowledge
during editing, and the proposed APP method demonstrates
its effectiveness in mitigating this perturbations to a certain
extent. In the future, we will explore expanding the scope of
neighbor knowledge to more comprehensively characterize
the neighboring perturbations of knowledge editing.

Besides, there are several limitations to our work. First,
regarding the experimental settings, the editing methods
employed in this paper involve modifying the model pa-
rameters. But some editing methods that preserve model
parameters remain to be explored. Second, this paper fo-
cuses on factual knowledge, and it would be beneficial to
extend this approach to different types of knowledge, such
as commonsense, logical, or spatial knowledge. Third, this
paper designs the proposed additivity metric based on prob-
ability. However, the results generated by the actual model
do not entirely depend on probability. Therefore, while this
evaluation roughly reflects the degree of perturbation, it may
deviate from real-world scenarios to some extent.
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Figure 4. Both AFF and ANF in Hard setting on PEAK-CF with
LLaMA-2 across four editing methods equipped with APP where k
original correct and false answers were used. k ∈ [0, 1, 3, 5, all].
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A. Datasets
A.1. Construction of False Answers

For the additivity proposed in this paper, given an edit E = {s, r,O, o∗, p} where tr(s) = p, both the original correct
answers and sampled false answers are utilized. The false answers were sampled in two settings Hard and Random. For the
Hard setting, some objects establish direct relations with the new object o∗ are selected. Specifically, denote the triples
of Wikidata as W (r) = {(s, r, o)}, we firstly seek entities in W (r) which have a link r′ with o∗ (could be the form of
(o∗, r′, ∗), (∗, r′, o∗)), then we collect them and choose the entities has same entity type with o∗. For example, if o∗ is a
person, then the selected entities are persons, too. Finally, we sample some selected entities as the false answers. For the
Random setting, we seek entities do not have links with o∗, while other parts are the same. In this way, the false answers in
the Hard setting are more semantically close to the new appended object, while false answers in the Random setting are
semantically distant from the new object.

A.2. Relations and Templates of Datasets

Table 6 and 7 show some examples of relations and their templates.

Table 6. Part of templates T (r) for relation r in PEAK-CF. Actually, there are several templates for each relation. Here we only display
one or two templates for each relation.

Relation (r) T (r)

producer “{} is the producer of what products?”, “{} has produced many products such as’
official language “{}, which is the official language of”, “{} has been the official language of”
illustration “The illustrator {} has created illustrations”
written “{}, who has written some books like”, “Which books have been written by {}?”

Table 7. Part of templates T (r) for relation r in PEAK-T.

Relation (r) T (r)

plays for “For so long, {} has been at which clubs?”, “ What clubs have hired {} as a player?”
created “{} was the individual responsible for creating”
has won prize “{} was the recipient of the prize”,“What prizes have been gained by {}?”

B. Experimental Setup
B.1. Baseline Methods

Five popular model editing methods were selected as baselines including:

• FT (Zhu et al., 2020): this method simply performed gradient descent on the edits to update model parameters. It
fine-tuned one layer in the model with a norm constraint on weight changes to prevent overfitting. Since the original
authors did not publish their code, we followed Meng et al. (2022) re-implementation in their study.

• KN (Dai et al., 2022)3: it first selected neurons that were associated with knowledge expression via gradient-based
attributions, and then modified MLP layer at the rows corresponding to those neurons by adding scaled embedding
vectors.

• MEND (Mitchell et al., 2022a)4: it learned a hypernetwork to produce weight updates by decomposing the fine-tuning
gradients into rank-1 form.

3https://github.com/EleutherAI/knowledge-neurons.
4https://github.com/eric-mitchell/mend
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• ROME (Meng et al., 2022)5: it first localized the factual knowledge at a specific layer in the transformer MLP modules,
and then updated the knowledge by directly writing new key-value pairs in the MLP module.

• MEMIT (Meng et al., 2023)6: it extended ROME to edit a large set of facts and updated a sequence of MLP layers to
update knowledge.

The ability of these methods were assessed based on EasyEdit (Wang et al., 2023), an easy-to-use knowledge editing
framework which integrates the released codes and hyperparameters from previous methods.

B.2. Hyperparameters for APP

To set the hyperparameters, we additionally created a small validation set. Table 8 shows the details of hyperparameters set
for different LLMs. Besides, the margin M is set to 2.

Table 8. The hyperparameters for APP on each method on each model.

Editor GPT-2 XL (1.5B) GPT-J (6B) LLaMA-2 (7B)

α β γ α β γ α β γ

FT+APP 0.2 0.5 0.2 0.2 0.5 0.2 0.2 0.5 0.2
MEND+APP 0.5 0 0 0.5 0 0 0.3 0 0
MEMIT+APP 0.05 0.05 0.05 0.1 0.3 0.2 0.6 1.0 0.3
ROME+APP 0.2 0.2 0.1 0.2 0.2 0.1 0.5 0.8 0.1

B.3. Examples of previous metrics

Here we provide an example to show what each previous metric means.

Efficacy Given an editing fact (s = Apple, r = products, O = {AirPods 3, MacBook Air,..., iPhone 14}, o∗=iPhone 15),
if the edited model F∗ assigns a higher probability to the new object o∗ than the minimum probability in O7 under the
corresponding question tr(s) “What are the products of Apple?”, then this new knowledge is appended effectively.

Generalization The edited model is considered to have generalized successfully if it can recall the new knowledge with
paraphrased prompt like “What items does Apple produce?”. That is, to determine whether the probability assigned by the
edited model F∗ to the new object o∗ is higher than the minimum probability in O under the paraphrased prompt.

Locality The edited model should remain unchanged in response to prompts that are irrelevant or outside the scope of
editing. For example, the answer to the question “Which company developed Windows?” should still be “Microsoft”.

B.4. Results of LLaMA-2 (13B)

The results of LLaMA-2 (13B) are shown in Table 9. Compared with previous results, we can conclude that previous
important conclusions are still valid, such as “The performance of memorizing the new target knowledge is good”, “larger
LLMs suffer more serious perturbation” and “APP significantly mitigates the perturbation”.

B.5. Ablation study

Figure 5 shows other results of the ablation study in Section 7.6. As MEND could only use L1 in APP, we only list the
results of FT.

C. Examples of how APP is coupled with existing methods
Here we take the editing method ROME as an example.

5https://github.com/kmeng01/rome
6https://github.com/kmeng01/memit
7Previous works care about whether the probability surpasses the original o. Here O is a set, so we made slight changes.
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Table 9. Evaluation results (%) on the PEAK-CF dataset with LLaMA-2 (13B).

Editor
LLaMA-2 (13B)

Previous Additivity (hard) Additivity (ran)

ES ↑ GS ↑ LS ↑ AFF ↓ ANF ↓ AFF ↓ ANF ↓
FT 99.66 84.46 78.16 81.30 57.86 73.45 37.65
MEMIT 99.66 98.47 93.50 94.00 85.92 86.10 56.18
ROME 100.00 97.90 92.91 93.09 84.93 83.46 54.29

FT+APP 97.61 81.07 80.75 71.04 47.30 61.22 32.19
MEMIT+APP 97.95 92.26 96.13 51.03 26.20 44.92 20.19
ROME+APP 96.59 91.41 94.97 42.08 23.09 35.25 17.26
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Figure 5. Ablation analysis of probability and additivity for APP. Results were conducted with LLaMA-2 on PEAK-CF dataset.

C.1. Rank-One Model Editing (ROME)

ROME (Meng et al., 2022) applies causal mediation analysis (Pearl, 2001; Vig et al., 2020) to locate the MLP modules
that store facts. An MLP module consists of two layers, where the first and second layers are denoted as W l

fc and W l
proj

respectively. W l
proj is considered as a linear associative memory and an editing area. A new fact is represented as a

key-value pair (k∗, v∗) (Geva et al., 2021), which can be inserted into the MLP module of the model by solving a constrained
least-squares problem (Bau et al., 2020). All that remains is to choose the appropriate k∗ and v∗.

Denote L as an edited MLP layer, F as the unedited model, and e = (s, r, o∗) as the editing fact. The key k∗ is obtained by
calculating the average representation of the last token of the subject s outputted by WL

fc as follows:

k∗ =
1

N

N∑
j=1

k (xj + s) ,

where k(x) = σ
(
W

(L)
fc γ

(
a
(L)
[x],i + h

(L−1)
[x],i

))
.

(11)

Here, xj is the random sampled sequence and i is the location of the last token of the subject in sentence x. h is the hidden
states, a is the attention, γ is the layernorm, and σ is the activation function.

The value v∗ encodes the new knowledge (r, o∗) as a property of s. To calculate it, ROME sets v∗ = argminz L(z), where
the objective is denoted as:

Le(o
∗, z) = − logPF

(
m

(L)
i :=z

) [o∗ | p] +DKL

(
PF

(
m

(L)

i′ :=z
) [x | p′] ∥PF [x | p′]

)
. (12)

The first term in Eq. (12) seeks a vector z that, when substituted as the output of the MLP at the token i (notated
F
(
m

(L)
i := z

)
and here i is the end of the subject in prompt p), will cause the network to predict the target object o∗

in response to the factual prompt p (e.g., p=Eiffel Tower is located in, o∗=London). The second term minimizes the KL
divergence (Ma et al., 2022) of predictions for the prompt p′ (of the form ” { subject } is a”) to the unchanged model, which
helps preserve the model’s understanding of the subject’s essence (i′ is the location of the last token of the subject in p′).
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Finally, the MLP weight WL
proj is updated with a rank-one update to insert the new fact:

Ŵ = W + Λ
(
C−1k∗

)T
, (13)

where C is a constant by estimating the covariance of many existing keys. Λ = (v∗ −Wk∗) /
(
C−1k∗

)T
k∗, representing

the residual error of the new key–value pair on the original memory matrix.

Readers can refer to Meng et al. (2022) for more details of ROME.

C.2. Apply APP to ROME

In ROME, the editing objective is Le(o
∗, z), and the parameter to be optimized is z for v∗ = argminz L(z). Therefore, the

proposed APP could be coupled with Le(o
∗, z) to optimize z.

On the one hand, the editing objective L1(O,Oh, z) designed to maintain a certain margin between the probabilities of
original correct answers O and those of false answers Oh could be written as follows:

L1(O,Oh, z) =
1

NM

N∑
i=1

M∑
j=1

max{0, M− logPF(m
(L)
i :=z)

(oi | p) + logPF(m
(L)
i :=z)

(ohj | p)}, (14)

N and M represent the number of elements in O and Oh respectively. This equation seeks a z that the log probabilities of
correct answers are encouraged to be larger than those of false answers by at least a certain margin M.

On the other hand, it involves ensuring that the absolute probabilities of correct answers do not decrease while simultaneously
controlling that the probabilities of false answers do not increase during editing, which can be represented as two objectives
L2(O, z) and L3(Oh, z) respectively as:

L2(O, z) =
1

N

N∑
i=1

max{0, logPF (oi | p)− logPF(m
(L)
i :=z)

(oi | p)}, (15)

L3(Os, z) =
1

M

M∑
i=1

max{0, logPF(m
(L)
i :=z)

(ohi | p)− logPF (ohi | p)}. (16)

PF (oi | p) refers the probability output by the unedited model. PF(m
(L)
i :=z)

(oi | p) refers the probability output by the model
operated with the same operation in Eq. (12). These two equations respectively seek a z that the log probabilities of correct
answers are encouraged not to be decreased and the log probabilities of false answers not to be increased. Finally, these
proposed objectives are jointly optimized with the editing objective Le(o

∗, z) to obtain v∗:

v∗ = argmin
z

Le(o
∗, z) + αL1(O,Oh, z) + βL2(O, z) + γL3(Oh, z). (17)

Finally, the Eq. (13) is utilized to update parameters in model.
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