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Abstract
Large Language Models have recently gained sig-
nificant attention in scientific discovery for their
extensive knowledge and advanced reasoning ca-
pabilities. However, they encounter challenges
in effectively simulating observational feedback
and grounding it with language to propel advance-
ments in physical scientific discovery. Conversely,
human scientists undertake scientific discovery by
formulating hypotheses, conducting experiments,
and revising theories through observational anal-
ysis. Inspired by this, we propose to enhance
the knowledge-driven, abstract reasoning abili-
ties of LLMs with the computational strength of
simulations. We introduce Scientific Generative
Agent (SGA), a bilevel optimization framework:
LLMs act as knowledgeable and versatile thinkers,
proposing scientific hypotheses and reason about
discrete components, such as physics equations
or molecule structures; meanwhile, simulations
function as experimental platforms, providing ob-
servational feedback and optimizing via differ-
entiability for continuous parts, such as physical
parameters. We conduct extensive experiments to
demonstrate our framework’s efficacy in constitu-
tive law discovery and molecular design, unveil-
ing novel solutions that differ from conventional
human expectations yet remain coherent upon
analysis.

1. Introduction
In physical science, spanning physics, chemistry, pharma-
cology, etc., various research streams aim to automate and
speed up scientific discovery (Wang et al., 2023). Each
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stream innovates within its field, creating methods tailored
to its specific challenges and nuances. However, this ap-
proach often misses a universally applicable philosophy
(Popper, 2005; Fortunato et al., 2018), which can be piv-
otal to democratizing access to advanced research tools,
standardizing scientific practices, and enhancing efficiency
across disciplines. Our goal aims to transcend specific do-
mains, offering a unified approach to physical science.

As an inspiration, we observe how human scientists con-
duct scientific discovery experiments and conclude a few
key experiences: (i) iteratively propose a hypothesis and
make observations from experimentation to correct theories
(Popper, 2005), (ii) divide the solutions into discrete com-
ponents, such as physics equations or molecule structures,
and continuous components, such as parameters for physics
and molecule properties (Wang et al., 2023), (iii) exploit the
existing knowledge while occasionally explore novel ideas
aggressively in pursuits of breakthrough (Wuestman et al.,
2020), (iv) follow a generic, universal principle for all types
of physical scientific discovery yet with specific nuance of
each discipline (Rosenberg & McIntyre, 2019).

Standing out as generalist tools with an extensive reposi-
tory of knowledge (AI4Science & Quantum, 2023), large
language models (LLMs) have recently risen to prominence
in scientific discovery for their expansive knowledge bases,
advanced reasoning capabilities, and human-friendly nat-
ural language interface. One line of research focuses on
fine-tuning LLMs with domain-specific data to align nat-
ural language with scientific information, such as chemi-
cal (Chithrananda et al., 2020) or drug (Liu et al., 2021)
structures; however, these methods are domain-bound and
demand extensive data for broader application. Another re-
search direction seeks to leverage the innate capabilities of
pre-trained LLMs, augmented by external resources like the
internet, programming, or documentation. LLMs serve as
optimizers or agents (Huang et al., 2023) for mathematical
problem-solving (Romera-Paredes et al., 2023), conducting
chemical experiments (Boiko et al., 2023), and advancing
molecular (Li et al., 2023) and drug discovery (Sharma &
Thakur, 2023). Nevertheless, these approaches are confined
to the computational capability of LLMs, a crucial factor
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Figure 1. The overall pipeline of Scientific Generative Agent (SGA). Taking the constitutive law searching problem as an example, the
input is an initial guess (a purely elastic material), and the output is another constitutive law optimized towards the ground-truth (weakly
compressible fluid). The initial guess first initialize a top-K heap for storing the solutions. In the outer-level optimization, an LLM takes
in top-K previously proposed solutions and generates a better one upon them with modified continuous parameterization Θ and discrete
expression E . In the inner-level optimization, a gradient-based optimization solves for optimal Θ via simulation and appends these
optimized solutions in the heap. After a few iterations of bilevel optimization, the heap returns the top-1 solutions as the final solution.

in physical science for tasks like calculating numerical re-
sults based on physics law hypotheses to predict natural
phenomena. To address this limitation, we propose to aug-
ment LLMs with physical simulation, hereby merging the
knowledge-driven, abstract reasoning abilities of LLMs with
the computational structures and accuracy of simulations.

To this end, inspired by the overarching philosophy of hu-
man scientists, we introduce Scientific Generative Agent
(SGA), a bilevel optimization approach wherein the outer-
level engages LLMs as knowledgeable and versatile thinkers
for generating and revising scientific hypothesis, while the
inner-level involves simulations as experimental platforms
for providing observational feedback. First, we employ
LLMs to generate hypotheses, which then guide the ex-
ecution of simulations. These simulations, in turn, yield
observational feedback that helps refine and improve the
proposed hypotheses. Secondly, we introduce a bilevel opti-
mization framework: one level performs search-based opti-
mization on discrete, symbolic variables like physics laws

or molecule structures via LLMs; the other level performs
gradient-based optimization via differentiable simulation for
continuous parameters like material stiffness or molecule
coordinates. Thirdly, we devise an exploit-and-explore strat-
egy for the hypothesis proposal by adjusting LLM’s gener-
ation temperature. Lastly, we demonstrate our pipeline is
generally applicable across scientific disciplines, with only
minimal modification such as altering the prompts.

For the empirical study, we focus on (i) molecular design
that aims to discover molecular structure and atoms’ coordi-
nates based on its conformation and quantum mechanical
properties and (ii) constitutive law discovery that aims to
discover material constitutive equations and its correspond-
ing mechanical properties directly from a recorded motion
trajectory. To provide a concrete example, let’s assume that
we initially have simply the code for a purely linear mate-
rial. We then task our model to uncover a more complex
representation by optimizing its code to fit a highly non-
linear trajectory. In this task, our method capitalizes on the
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strengths of bilevel optimization: the outer-level utilizes
LLMs to identify the correct symbolic material constitutive
equations and formulates a proposition for potentially bene-
ficial continuous parameterization (e.g., Young’s modulus
and Poisson’s ratio); and the inner-level refines the proposed
material parameters and provides informative feedback us-
ing differentiable simulation. Generally, our method can
discover the desired molecules and constitutive laws, out-
performing other LLM-based baselines; more interestingly,
it can propose well-performing solutions that are beyond
human expectation yet sensible under analysis by domain
experts. Overall, our contributions are concluded as:

• We present a generic framework for physical scientific
discovery that combines LLMs with physical simulations.

• We propose a bilevel optimization with LLMs for discrete-
space search-based optimization and differentiable simula-
tions for continuous-space gradient-based optimization.

• We conduct extensive experiments to demonstrate the ef-
fectiveness and generality of the proposed framework in
physics law discovery and molecular design; moreover,
we showcase novel molecules or constitutive laws, while
unexpected from a conventional perspective, are deemed
reasonable upon examination by domain experts.

2. Scientific Generative Agent
SGA is a bilevel optimization framework where the upper
level features LLMs as proposers of scientific solutions,
and the lower level utilizes simulations as experimental
platforms for validation. In Sec. 2.1, we describe a formal
definition of the bilevel optimization, followed by Sec. 2.2
for outer optimization and Sec. 2.3 for inner optimization.

2.1. Bilevel Optimization Pipeline

We formally describe the pipeline of our method, including
the input/output of the system and the underlying submod-
ules, and the overall optimization formulation. Suppose
we are given a metric to evaluate a physical phenomenon y
(e.g., a configuration of deformation) for a scientific problem
L (y) (e.g., reconstruction of a mechanistic behavior). First,
we describe the simulation (as an experimental platform) as,

y, z = Φ(θ; E) , (1)

where Φ is a simulator that takes in scientific expression E
(e.g., constitutive equations) and continuous components
θ (e.g., material parameters) as inputs and gives simulated
physical phenomenon y and additional observational feed-
back z (e.g., particles’ trajectories) as outputs. Next, the
LLM is prompted to act as a thinker to propose expressions
E based on past experimental results from simulation,

E ,Θ = LLM
(
{L (yk) , zk, ok, Ek,Θk}k∈[K] ;P

)
, (2)

Algorithm 1 Scientific Generative Agent
Input: Discrete expression and continuous param (E,θ ∈ Θ),

Num of exploiting Ml, Num of exploring Mh,
Exploiting temperature Tl, Exploring temperature Th

1: # Store ranked (solution,param) by heap
2: H ← heap()
3: # Continuous optimization
4: θ̂ ← optim(E,θ;Φ)
5: H.append((E,θ̂))
6: for i = 1, . . . , N do
7: # Generate Ml solutions from LLM
8: (E,Θ)[:Ml] ← LLM(H.topk(K),Tl)
9: # Generate Mh solutions from LLM

10: (E,Θ)[Ml:Ml+Mh] ← LLM(H.topk(K),Th)
11: for m = 1, . . . ,Ml +Mh do
12: # Continuous optimization
13: θ̂ ← optim(E,θ ∈ Θ;Φ)
14: H.append((E,θ̂))
15: end for
16: end for
Output: H.topk(1) # Return the best

where the set [K] summarizes the pointers to the past sim-
ulation results containing an evaluation of the scientific
problem L(yk), other physical feedback (zk, ok), and past
proposals (Ek,Θk); ok summarizes the intermediate results
of the inner optimization (later detailed in Sec. 2.3); Θ de-
termines the continuous parameterization for the decision
variables of the inner optimization (e.g., which variables
to be optimized within a proposed equation); P is prompt.
With these, we define the bilevel optimization problem as,

min
E,Θ

L
(
y
(
E ,Θ, θ̂; Φ

))
(3a)

s.t. G (E ,Θ;Φ) ≤ 0 (3b)

θ̂ ∈ argmin
θ∈Θ

L (y (θ; Φ, E)) , (3c)

where G (·) ≤ 0 refers to the validity of the simulation (i.e.,
whether an expression E is simulatable). The outer opti-
mization searches for (i) an expression E that defines what
experiments to be conducted Φ (·; E) and (ii) continuous
parametrization Θ that defines the search space of the inner
continuous optimization minθ∈Θ. With the dependencies
on the outer-level variables (E ,Θ), the inner optimization
searches for the optimal continuous parameters θ̂ given the
proposed expression via differentiable simulation.

2.2. LLM-Driven Outer-Level Search

We dive deeper into how we use LLMs (Eq. 2) and their
interaction with the simulation for outer-level search (Eq. 3).

LLM-driven Optimization LLMs have shown to be ef-
fective sequential decision makers for generic optimization,
providing proper guidance via prompting and sufficiently
informative contexts (Yang et al., 2024; Romera-Paredes
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et al., 2023). We craft prompts to direct LLMs in a structured
manner, enabling them to (i) perform analysis on past exper-
imental results from the simulation, e.g., the deviatoric parts
of stress tensor are likely correct based on the loss curve; (ii)
devise a high-level plan on how to formulate a hypothesis or
improve upon previous experiments, e.g., ensure numerical
stability with the usage of the determinant of deformation
gradient; (iii) suggest a solution that can be executed as ex-
periments via simulation for hypothesis testing; e.g., a code
snippet describing a constitutive equation. For Eq. 3a, in-
spired by (Ma et al., 2024), we adopt an evolutionary search
that generates multiple offspring {Em,Θm}m∈[M ] (M is
offspring size) in each iteration and retain the best selection.
Distinctively, our approach (Alg. 1) involves selecting sev-
eral high-performing candidates rather than the best only,
which (i) enhances the feasibility of hypotheses in simu-
lation (Eq. 3b) and (ii) facilitates evolutionary crossover,
with LLMs generating new hypotheses from various past
experiments (“breeds”) for better exploration, akin to the
findings in (Romera-Paredes et al., 2023).

Interfacing with Simulation The primary challenge in
integrating LLMs with simulation lies in devising a protocol
that enables efficient, structured, yet adaptable communi-
cation between the two modules. We observe that physical
scientific solutions are often represented as mathematical ex-
pressions or structured entities. Hereby, from LLMs to sim-
ulation, we consider two settings: equation searching and
entity searching, both unified as the abstraction (E ,Θ) in
Eq. 2. In equation searching, LLMs are allowed to propose
equations E along with the search space of the inner-level
continuous optimization Θ; for practitioners, an example
using PyTorch can be Θ as init that defines continu-
ous parameters via nn.Parameter and E as forward
that defines computation of equations (see Fig. 1). In entity
searching, LLMs propose descriptions of structures E (e.g.,
how atoms are connected to form a molecule) with Θ simply
reduced to constant (e.g., every atom has its 3D coordinates
to be optimized) and omitted from the optimization Eq. 3a
as decision variables. On the other hand, from simulation
to LLMs, we leverage domain experts’ knowledge to craft
functions for extracting compact, relevant information z as
observational feedback; this process is akin to an experi-
enced scientist offering guidance to a junior colleague on
how to document experimental findings effectively. For
instance, human experts often monitor the movements of
specific body regions to derive constitutive laws. Therefore,
to aid in this process, we include a function in the simulation
that records the particle trajectories. Lastly, the subsequent
section Sec. 2.3 will provide an in-depth explanation of the
inner optimization results denoted as o. These results serve
as feedback from the simulation to the LLMs.

Exploitation and Exploration Inspired by human scien-
tists achieving breakthroughs by skillfully balancing careful
progression with bold exploration, we devise an exploit-
and-explore strategy by tuning the LLMs’ decoding tem-
perature (Yang et al., 2024). When generating offspring
{Em,Θm}m∈[M ] in Eq. 3a, we divide them into two groups:
one (m ∈ Mexploit) consists of cautious followers that keep
the “gradient” and conservatively trails previous solutions,
while the other (m ∈ Mexplore) comprises daring adventur-
ers that take risks and suggest unique solutions. Empirically,
we observed that (i) Mexploit often contains repetitive so-
lutions from previous iterations, and (ii) Mexplore tends to
yield solutions too random to be informative for guiding op-
timization, or invalid (i.e., violating Eq. 3b), thus providing
little feedback signal. As a rule of thumb, we have found
that a 1:3 ratio between Mexploit and Mexplore is effective.

2.3. Differentiable Inner-Level Optimization

Under the search space Θ and expression for simulation E
from the outer level, inner optimization (Eq. 3c) involves a
gradient-based optimization that solves for optimal continu-
ous parameters θ̂ ∈ Θ via differentiable simulation (Eq. 1).
Essentially, the domain-specific knowledge is distilled via
gradients ∇θΦ(θ; E) from the simulation to the intermedi-
ate optimization results o (like loss curve). The (ŷ, o) are
then fed back to LLMs for revising solutions. Note that o
may involve the loss curve toward the target metric L and
other auxiliary recordings throughout optimization, carrying
information of how to improve solutions in various aspects;
for example, with L as displacement of position, o may
include velocities across the inner optimization iterations.

3. Experiments
3.1. Problem Definitions

Constitutive Law Discovery Identifying the constitutive
law from motion observations stands as one of the most dif-
ficult challenges in fields such as physics, material science,
and mechanical engineering. Here we follow the recent ad-
vances in physical simulation and formulate the constitutive
law discovery task as an optimization problem (Ma et al.,
2023) using differentiable Material Point Method (MPM)
simulators (Sulsky et al., 1995; Jiang et al., 2016). Note
that our method is not specifically tailored to MPM simula-
tors and applies to any physical simulation. The objective
of this task is to identify both the discrete expression and
continuous parameters in a constitutive law, specifically the
symbolic material models φ (·) and their corresponding ma-
terial parameters θ, from a ground-truth trajectory of particle
positions X̂t∈[1,...,T ] where T denotes the number of steps.
In this problem, we consider two types of constitutive laws,
φE (·; θE) and φP (·; θP ), for modeling elastic and plastic
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Table 1. Benchmark. We compare our method against 4 baselines and 2 variations of our method, while also noting the difference in
architecture or hyper-parameters. We use column #Iter. as the number of iterations, #Hist. as the K value for the top-k retrieval in the
historical optimization steps, #Exploit

#Explore as the number of offspring for exploitation versus exploration, Bilevel as if bilevel optimization is
enabled. Our experiments encompass 8 different tasks, which are divided into constitutive law search (a-d) and molecule design (e-h). A
lower loss value is preferable across all tasks. The best method with the lowest loss is highlighted in bold text.

Method #Iter. #Hist. #Exploit
#Explore Bilevel Constitutive Law Search Molecule Design

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓ (h) ↓
CoT 1 5 N/A ✗ 298.5 1462.3 150.0 384.1 3.0 32.1 18.6 6.0
FunSearch 20 2 0 / 4 ✗ 210.3 872.2 82.8 139.5 1.1 7.1 8.3 1.1
Eureka 5 1 0 / 16 ✗ 128.0 531.0 101.7 150.1 4.3 9.8 3.3 9.7e-1
OPRO 5 5 0 / 16 ✗ 136.2 508.3 99.2 128.8 2.4 9.4 3.1 1.3

Ours (no bilevel) 5 5 4 / 12 ✗ 90.2 517.0 83.6 68.4 8.6e-1 9.1 1.8 1.4
Ours (no exploit) 5 5 0 / 16 ✓ 3.0e-3 3.9e-1 6.6e-2 1.4e-12 4.0e-4 1.5e-1 6.1e-1 2.8e-5

Ours 5 5 4 / 12 ✓ 5.2e-5 2.1e-1 6.0e-2 1.4e-12 1.3e-4 1.1e-1 5.4e-1 3.6e-5

materials respectively, and they are formally defined as:

φE (F; θE) 7→ τ (4a)

φP (F; θP ) 7→ Fcorrected, (4b)

where F ∈ R3×3 is the deformation gradient, τ ∈ R3×3 is
the Kirchhoff stress tensor, Fcorrected ∈ R3×3 is the deforma-
tion gradient after plastic return-mapping correction, and θE
and θP are the continuous material parameters for elastic
and plastic constitutive laws respectively. Given a specific
constitutive law, we input it to the differentiable simulation
and yields a particle position trajectory:

Xt∈[1,...,T ] = sim (φ (·; θ)) , (5)

and we optimize the constitutive law by fitting the output
trajectory to the ground truth X̂t∈[1,...,T ].

Molecule Design In this study, we focus on a prevalent
task in molecule design: discovering molecules with spe-
cific quantum mechanical properties. Our objective is to
determine the optimal molecular structure and its 3D con-
formation to match a predefined target quantum mechanical
property. The design process involves both the discrete ex-
pression – the molecular structure represented by SMILES
strings (Weininger, 1988), and the continuous parameters
– the 3D coordinates of each atom in the molecule. The
methodology comprises two loops: In the outer loop, the
LLM generates the initial molecular structure as a SMILES
string, along with a preliminary guess for the 3D atom coor-
dinates. The inner loop involves simultaneous optimization
of both the molecule’s 3D conformation and quantum me-
chanical properties, both determined by 3D atom positions.

For the generation of 3D conformations, we utilize the
ETKGD algorithm (Riniker & Landrum, 2015) followed
by optimization using the Merck Molecular Force Field
(MMFF) (Halgren, 1996), both implemented within the RD-
Kit (Landrum et al., 2013). To get the quantum mechanical
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Figure 2. Loss trends comparison. Loss of the best solution aver-
aged across seeds at different iterations of LLM-driven optimiza-
tion, where the shading shows the min/max value.

property values, we employ UniMol (Zhou et al., 2023), a
pre-trained transformer-based large model, which has been
fine-tuned on the QM9 dataset (Ramakrishnan et al., 2014).

3.2. Experiment Setup

Task Design We design a diverse set of challenging tasks
for evaluation. For constitutive law discovery, we propose
4 tasks including: (a) fitting the non-linear elastic material
starting from a linear elastic material, (b) fitting the von
Mises plastic material starting from a purely elastic mate-
rial, (c) fitting the granular material starting from a purely
elastic material, and (d) fitting the weakly compressible
fluid starting from a purely elastic material. For molecular
design task, we consider 4 popular tasks, centering on 3
commonly evaluated quantum mechanical properties (Fang
et al., 2022; Zhou et al., 2023), each set to different target
values: (e) HOMO (Highest Occupied Molecular Orbital)
set to 0, (f) LUMO (Lowest Unoccupied Molecular Orbital)
set to 0, (g) the HOMO-LUMO energy gap set to 0, and
(h) the HOMO-LUMO energy gap set to -2. All these values
are normalized on all data in QM9 dataset.
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Table 2. Comparison with symbolic regression. We compare our
method against 5 most performant methods in SRBench (La Cava
et al., 2021) and 3 pre-trained symbolic regression methods. Sym.
denotes whether the result is symbolic or not.

Method R2 ↑ MSE ↓ MAE ↓ Sym.

FFX 0.9824 4.5e+5 3.7e+2 ✓
MLP 0.9876 3.2e+5 3.4e+2 ✗
FEAT 0.9964 9.2e+4 1.7e+2 ✓
DSO 0.9968 8.2e+4 9.2e+1 ✓
Operon 0.9988 2.8e+4 9.8e+1 ✓

SymbolicGPT 0.5233 6.9e+6 1.7e+3 ✓
NeSymReS N/A to >3 variables ✓
T-JSL N/A to >2 variables ✓

Ours 0.9990 1.7e+4 8.6e+1 ✓

Implementation Details We run all our experiments 5
times with different random seeds following previous prac-
tices (Ma et al., 2024). Due to the complexity of the task, we
provide a simple bootstrapping example of a valid design
to ensure the success rate. We use warp (Macklin, 2022)
for the differentiable MPM simulation, and we develop
our inner-level optimization upon PyTorch (Paszke et al.,
2019). In all our experiments, we use mean square error
as the criteria and Adam optimizer (Kingma & Ba, 2015).
We choose gpt-4-turbo-preview as the backbone
model for LLM and tentatively set the exploiting tempera-
ture Tl = 0.5 and exploring temperature Th = 1.0.

3.3. Physical Scientific Discovery

We consider 6 strong baselines for evaluation: (i) Chain-
of-Thoughts (CoT) prompting (Wei et al., 2022) solves the
problem by looking at step-by-step solutions from exam-
ples. We provide 5 examples with an explanation to CoT
as the initial solution. (ii) FunSearch (Romera-Paredes
et al., 2023) utilizes evolutionary strategy to avoid local
optimum. We adopt the given hyperparameters from the
original implementation with 2 optimization histories and 4
explorers. We set the number of iterations to 20, yielding the
same number of solutions evaluated, for a fair comparison
to other methods. (iii) Eureka (Ma et al., 2024) generates
multiple solutions in each iteration to improve the success
rate of the generated code. We keep the hyperparameters
from the original implementation. (iv) Optimization by
PROmpting (OPRO) (Yang et al., 2024) highlights the
advantages of involving a sorted optimization trajectory. We
set the hyperparameters to be equal to Eureka except for
the number of historical optimization steps. In all these
works (i-iv), we notice the temperatures for LLM inference
are all 1.0, which is equal to the exploring temperature in
our method, so we denote them with 0 exploiter. We also
consider 2 variants of our method: (v) Ours (no bilevel)

Table 3. Comparison with population-based molecule design.
We compare our method against a traditional population-based
molecule design method GhemGE (Yoshikawa et al., 2018) and
report the results of molecule design tasks (e-h).

Method (e) ↓ (f) ↓ (g) ↓ (h) ↓
GhemGE 4.8e-3 1.8 1.5 9.8e-5
Ours 1.3e-4 1.1e-1 5.4e-1 3.6e-5

Table 4. Experiment in imaginary constitutive law. We con-
struct an imaginary constitutive law to keep LLM from cheating by
memorization and report the results of our method and baselines.

Method FunSearch Eureka OPRO Ours

Loss 105.0 89.1 98.0 1.3e-3

removes the bilevel optimization by only searching with
LLM. (vi) Ours (no exploit) removes the exploitation by
setting the temperature to 1.0 all the time.

We present our experiments against the 8 designed tasks
and show the results in Table 1. Compared to baselines
(i-iv), our method is significantly better by a number of
magnitudes. When the bilevel optimization is removed from
our method, the performance drops dramatically, but still
statistically better than baselines (i-iv), indicating the choice
of hyperparameters and the integration of exploitation is
helpful for the task. When we remove the exploitation but
restore the bilevel optimization, we notice the performance
grows back. It has comparable performance compared to our
method in (d) or even better results in (h). However, in some
tasks, especially hard ones (e.g., (b) and (f)) that we care
more in reality, the performance gap is over 50%, indicating
the effectiveness of our exploit-and-explore strategy. We
also present the loss trend in task (a) in Figure 2, our method
outstands with a much lower loss and a converging trend.

We also compare our method with traditional methods in
each specific area to demonstrate the generalizability of our
method. First, we reformulate our constitutive law search
task (a) into a symbolic regression task by (i) capture the
ground-truth output (the stress tensors) as the supervision,
and (ii) separate the 9 output dimension into 9 independent
problems and ensemble them for evaluation. Note that these
modifications dramatically simplified the original task: we
removed back-propagation through time (BPTT) and di-
rectly discover the constitutive law without surrogate loss.
We evaluate 14 traditional baselines in SRBench (La Cava
et al., 2021) and 3 data-driven pre-trained baselines. We
select the top few baselines in Table 2 and show the rest
in the Appendix C.1. As shown the table, our method
topped on this task even with a much more challenging
setting. Also, since our method depends on the in-context
learning ability of LLMs, it has little constraint in the num-
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Figure 3. Ablation on bilevel optimization. We denote the opti-
mization trajectory with and without out bilevel optimization with
red dot and orange triangle respectively. We visualize the interme-
diate step of our method before the inner-level optimization using
orange cross. We also highlight the outer LLM optimization and
inner simulation optimization using orange and red arrows.

ber of variables than the data-driven pre-trained baselines.
For moledule design tasks, we also compare our method
with GhemGE (Yoshikawa et al., 2018), which employs a
population-based molecule design algorithm. As shown in
Table 3, our method presents a much lower loss, demonstrat-
ing the general effectiveness of our method.

3.4. Ablation Study

Generalization or Memorization In order to figure out
if the improvement introduced by our method is merely
because the LLM saw the solutions in its training phase,
we design an experiment ablating it by making it invent an
imaginary constitutive law that does not exist on the earth.
We mix the constitutive law of von Mises plasticity, granular
material, and weakly compressible fluid by 50%, 30%, and
20%, so that the new constitutive law represents an imag-
inary material whose behavior is extremely complex. We
repeat our experiment setup as in Figure 1. We compare our
method against the baselines and report the performances in
Table 4. As shown in the table, our method can still discover
the constitutive law with a low quantitative loss. From our
observation, there is very little visual difference between
the ground-truth material and the optimized constitutive law.
We show the discovered constitutive law in Appendix D.9.

Bilevel Optimization is the Key Here we evaluate the
importance of bilevel optimization in Figure 3 using the
task (h). Comparing the blue triangle curve and the red
dot curve, which represent the LLM-driven outer-level opti-
mization and the simulation-driven inner-level optimization,
it is easy to conclude that the loss performance with bilevel
optimization is better. Nevertheless, we are also interested
in how bilevel optimization works inside each optimization
step and how much LLMs and simulations help respectively.
As shown as a zigzag curve, we found that LLMs and sim-
ulations help each other over all optimization steps: the

(a)

(b)(c)

(d)

(e)

(f) (g)

(h)

GPT-3.5
Claude-3

Mixtral-8x7B
GPT-4

1

2

4

3

Figure 4. Ablation on the backbone LLM. We compare the per-
formances of 4 selected backbone LLMs and report the rank of
them. A outer curve indicates a better performance.

next proposal from LLMs will be better with simulation-
optimized results, and vice versa. We argue that LLMs and
simulations have different expertise: LLMs are generalist
scientists who have cross-discipline knowledge, while simu-
lations are domain experts who have specialized knowledge.

LLM Backbone In addition to GPT-4 (OpenAI, 2023),
we repeat the experiments in Table 1 using 3 additional LLM
backbones: (i) GPT-3.5 (Ouyang et al., 2022), (ii) Claude-
3-Sonnet (Anthropic, 2024), and (iii) Mixtral-8x7B (Jiang
et al., 2024), and report the rank of them in Figure 4. Indi-
cated by the largest area, GPT-4, as our choice, statistically
outperforms the other methods. Interestingly, we found
Claude-3-Sonnet is the second top method on most of con-
stitutive law search task, while Mixtral-8x7B even tops on 2
molecule design tasks. As a result, our workflow also works
for other LLMs, however, our suggestion for practitioners is
to try GPT-4 as the first choice but also consider open-source
model (e.g., Mixtral-8x7B) for budget or customizability.

Exploitation v.s. Exploration We visualize the statistics
of the simulation execution status in Figure 5 (a) using the
task (b), which is one of the most challenging tasks in our ex-
periments. When the exploitation is removed, the error rate
dramatically increases, as shown by a decrease in green bars.
It leads to a degeneration in the performance of the methods
with exploitation as shown in Figure 5 (b). However, even
though the success rate remains high, when exploration is
removed, the optimization result is still worse than keeping
them both. We argue that exploration is significant when the
optimization problem is challenging, especially in our case,
where the search space is highly non-linear and unstructured
and resulting in numerous local optimum.
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Figure 5. Ablation on exploration-exploitation. (a) Histogram of solutions that are valid for simulation (Eq. 3b) across iterations. (b)
Loss (L in Sec. 2.1) of the best solution averaged across seeds at different iterations, where the shading indicates the min/max values.

3.5. Case Study

Constitutive Law Search We provide a trimmed snippet
of our searched constitutive law in Figure 6 (a) for task
(a) where a highly non-linear material is provided as the
trajectory to fit. We reformat the code slightly to fit into
the text, where the complete example can be found in the
Appendix. Starting from a linear material, our method is
able to automatically generate the constitutive law with
a quadratic deviatoric term. Note that our method also
provides a concrete implementation of init function
that defines the continuous parameters in the computational
graph for later inner-level optimization.

Molecule Design When comparing the two molecules
with respect to their HOMO-LUMO energy gap based on
optimized results from the LLM as shown in Figure 6 (b),
we observe distinct characteristics in each: (i) Molecule
A (gap-0) includes sulfur and chlorine atoms attached to
a ring, coupled with a trifluoromethyl group, introducing
electron-withdrawing effects, and (ii) Molecule B (gap-2)
includes oxygen (notably in ethers) and sulfur within the
ring structures introducing localized non-bonding electron
pairs. Furthermore, the overall structure of Molecule B is
more complex than that of Molecule A, containing multiple
rings. An intriguing aspect of Molecule B, which might
initially defy expectations, is the presence of a single fluo-
rine atom. The high electronegativity of fluorine typically
leads to electron density withdrawal, influencing the gap
value. However, due to the complexity of Molecule B’s
structure, the impact of the fluorine atom is somewhat local-
ized, thereby not significantly altering the gap value.

4. Related Work
4.1. Automated Scientific Discovery

Automated scientific discovery, enhanced by machine learn-
ing methods, serves as a powerful accelerator for research,
enabling scientists to generate hypotheses, design experi-
ments, interpret vast datasets, and unearth insights that may

Molecule A Molecule B

C1CC(SC1Cl)C(C(F)(F)F)N C1OC2SC3C4OC(F)S4C13C2

(b)

(a)
class Physics(nn.Module): 
  def __init__(self, youngs_modulus_log: float = 13.03, 

                     poissons_ratio_sigmoid: float = -1.99): 
    super().__init__() 

    self.youngs_modulus_log = nn.Parameter( 
      torch.tensor(youngs_modulus_log))  # Log of Young's modulus 

    self.poissons_ratio_sigmoid = nn.Parameter( 
      torch.tensor(poissons_ratio_sigmoid))  # Sigmoid of Poisson's ratio 

  def forward(self, F: torch.Tensor) -> torch.Tensor: 
    youngs_modulus = self.youngs_modulus_log.exp() 

    poissons_ratio = torch.sigmoid(self.poissons_ratio_sigmoid) * 0.49 

    mu = youngs_modulus / (2 * (1 + poissons_ratio))  # Shear modulus 
    lam = youngs_modulus * poissons_ratio / ( 

      (1 + poissons_ratio) * (1 - 2 * poissons_ratio)) 
    # Deformation gradient determinant J 

    J = F.det().view(-1, 1, 1) 
    F_invT = F.inverse().transpose(1, 2) 

    # Volumetric part 
    P_vol = lam * (J - 1) * F_invT 

    # Deviatoric part 

    P_dev = mu * (F - (1 / J) * F_invT) 
    # Compute Kirchhoff stress tensor  

    kirchhoff_stress = P_vol + P_dev @ F.transpose(1, 2) 
    return kirchhoff_stress 

Figure 6. Case Study. (a) We give a concrete example of the
searched constitutive law. (b) We provide 2 novel molecules opti-
mized for different objectives with their SMILES stings.

elude traditional scientific methodologies (AI4Science &
Quantum, 2023; Kramer et al., 2023; Wang et al., 2023).
This multifaceted process unfolds through two synergisti-
cally linked stages: hypothesis formation and the collection
and analysis of experimental data. The integration of au-
tomated systems not only augments the scientific inquiry
process but also streamlines the discovery pipeline, from
conceptualization to empirical validation. This paper places
a particular emphasis on, but is not limited to, constitutive
law discovery and molecular design. These areas exemplify
the profound impact of automation in unraveling complex
material behaviors and in the innovative design of molecules
with tailored properties. Automatic identification of consti-
tutive material models has been a long-standing problem
and recent works utilizes differentiable simulation (Du et al.,
2021; Ma et al., 2023; 2021) to address it as a system identi-
fication problem. Leveraging machine learning and artificial
intelligence, researchers are able to predict molecular be-
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havior, optimize chemical structures for specific functions,
and thus, rapidly accelerate the development of new drugs,
materials, and chemicals (Jin et al., 2018; Zhou et al., 2019;
Schneider, 2018).

4.2. Large Language Models and Agents

The advancement of Large Language Models (LLMs) such
as ChatGPT and GPT-4 has sparked considerable interest in
their potential as autonomous agents (Brown et al., 2020;
OpenAI, 2022; 2023). Recent developments have shown
that LLMs can be enhanced to solve complex problems by
creating and utilizing their own tools, as demonstrated in the
LATM framework (Sumers et al., 2024), and by acting as
optimizers in the absence of gradients, as seen in the OPRO
methodology (Yang et al., 2024). These approaches signify
a shift towards more independent and versatile LLM-based
agents capable of generating solutions through self-crafted
tools and optimization techniques (Cai et al., 2024; Yao
et al., 2023b;a), showcasing their evolving problem-solving
capabilities. In the realm of scientific discovery, LLMs
have begun to make significant contributions, particularly in
mathematics and computational problems. The FunSearch
method (Romera-Paredes et al., 2023) pairs LLMs with
evaluators to exceed known results in extremal combina-
torics and online bin packing, illustrating LLMs’ ability to
discover new solutions to established problems. Similarly,
AlphaGeometry’s success (Trinh et al., 2024) in solving
olympiad-level geometry problems without human demon-
strations highlights the potential of LLMs in automating
complex reasoning tasks. These examples underline the
transformative impact of LLMs in pushing the boundaries
of scientific inquiry and automated reasoning.

4.3. Bilevel Optimization

Bilevel optimization involves a hierarchical structure with
two levels of optimization problems, where the solution to
the upper-level problem is contingent upon the outcome of
the lower-level problem (Colson et al., 2007). Bilevel opti-
mization problems are inherently more complex than their
single-level counterparts due to the nested nature of the opti-
mization tasks and the intricate interdependencies between
them. Recent advancements have focused on developing ef-
ficient algorithms, including evolutionary algorithms (Sinha
et al., 2017b), gradient-based approaches (Liu et al., 2022),
and approximation techniques (Sinha et al., 2017a), to tackle
the computational challenges presented by the non-convex
and non-differentiable characteristics of many bilevel prob-
lems. Among a wide span of application domains of bilevel
optimization, neural architecture search (NAS) (Liu et al.,
2019; Bender et al., 2018; Cai et al., 2019; Xue et al., 2021)
is prominent and close to the problem setting in this pa-
per: the upper level optimizes the discrete neural network
architecture while the lower level optimizes the continu-

ous weights of the neural network. However, typical NAS
methods require a predefined search space, constraining the
exploration of discrete network architectures to manually
specified boundaries. Our framework distinguishes itself by
employing LLM encoded with general knowledge and gets
rid of the limitations imposed by manual design constraints.

5. Conclusion
We consider a few limitations and future directions. (i)
Although we prompt the LLM to generate pseudo-code
plans and comments, it is generally hard to ensure the in-
terpretability of LLM-generated solutions. (ii) Since the
LLM-generated codes are executed directly without any
filtering in our application, there exists potential AI safety
risk that hazards the operating system. (iii) Our method
only utilizes the internal knowledge of LLMs as the prior,
where in reality people design manual constraints and rule
to regularize and improve the optimization (Udrescu et al.,
2020). We leave these domain-specific applications and
human feedback-based regularization methods as our future
work. (iv) The performance our method highly depends on
the differentiablity of the generated code. However, Zero-
order optimizers (Hansen, 2006) should also shine since the
number of continuous parameters is relatively limited. (v)
LLM inference requires large computational resources and
thus increases expense. For example, it spends around $10
for our method to complete one task using GPT-4, which
will be increasingly inacceptable when the number of iter-
ation grows. (vi) Due to the reuse of previously generated
solutions in our proposed top-k heap, the KV cache in LLM
will be highly similar between neighbor iterations. It opens
a gate for recent KV cache optimization methods (Zheng
et al., 2023) to speedup our method by KV cache reusing.

In conclution, we present Scientific Generative Agent, a bi-
level optimization framework: LLMs serve as knowledge-
able and adaptable thinkers, formulating scientific solutions
like physics equations or molecule structures; concurrently,
simulations operate as platforms for experimentation, of-
fering observational feedback and optimizing continuous
components like physical parameters. We focused on two
scientific problems: constitutive law search and molecular
design. Our approach outperforms other LLM-based bench-
mark methods, delivering consistent, robust, and nearly
monotonic improvement. Furthermore, it shows exceptional
ability in identifying unknown, true constitutive laws and
molecular structures. Remarkably, our system generates
innovative solutions that, despite being unconventional, are
deemed reasonable after being thoroughly analyzed by ex-
perts in their respective domains. We view our process
as a trailblazer, establishing a new paradigm for utilizing
LLMs and simulations as bilevel optimization to further
advancements in physical scientific discoveries.

9



Scientific Generative Agent

Acknowledgements
We would like to thank Bohan Wang, Ziming Liu, Zhuoran
Yang, Liane Makatura, Megan Tjandrasuwita, and Michael
Sun for the valuable discussion. The mesh “Stanford Bunny”
in Figure 1 is from The Stanford 3D Scanning Repository.
This work is supported by MIT-IBM Watson AI Lab.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
AI4Science, M. R. and Quantum, M. A. The impact of

large language models on scientific discovery: a prelimi-
nary study using gpt-4. arXiv preprint arXiv:2311.07361,
2023.

Anthropic. Introducing the next generation of claude,
2024. URL https://www.anthropic.com/
news/claude-3-family.

Arnaldo, I., Krawiec, K., and O’Reilly, U.-M. Multiple
regression genetic programming. In Proceedings of the
2014 Annual Conference on Genetic and Evolutionary
Computation, pp. 879–886, 2014.

Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and
Le, Q. Understanding and simplifying one-shot archi-
tecture search. In International conference on machine
learning, pp. 550–559. PMLR, 2018.

Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., and Paras-
candolo, G. Neural symbolic regression that scales. In
International Conference on Machine Learning, pp. 936–
945. Pmlr, 2021.

Boiko, D. A., MacKnight, R., Kline, B., and Gomes, G. Au-
tonomous chemical research with large language models.
Nature, 624(7992):570–578, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Cai, H., Zhu, L., and Han, S. ProxylessNAS: Direct neu-
ral architecture search on target task and hardware. In
International Conference on Learning Representations,
2019.

Cai, T., Wang, X., Ma, T., Chen, X., and Zhou, D. Large
language models as tool makers. In International Confer-
ence on Learning Representations, 2024.

Cava, W. L., Singh, T. R., Taggart, J., Suri, S., and Moore,
J. Learning concise representations for regression by
evolving networks of trees. In International Conference
on Learning Representations, 2019.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Chithrananda, S., Grand, G., and Ramsundar, B. Chemberta:
large-scale self-supervised pretraining for molecular prop-
erty prediction. arXiv preprint arXiv:2010.09885, 2020.

Colson, B., Marcotte, P., and Savard, G. An overview of
bilevel optimization. Annals of operations research, 153:
235–256, 2007.

Du, T., Wu, K., Ma, P., Wah, S., Spielberg, A., Rus, D., and
Matusik, W. Diffpd: Differentiable projective dynamics.
ACM Transactions on Graphics (TOG), 41(2):1–21, 2021.

Fang, X., Liu, L., Lei, J., He, D., Zhang, S., Zhou, J., Wang,
F., Wu, H., and Wang, H. Geometry-enhanced molecular
representation learning for property prediction. Nature
Machine Intelligence, 4(2):127–134, 2022.

Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A.,
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A. Full Prompts
System prompt for constitutive law discovery:

You are an intelligent AI assistant for coding, physical simulation, and scientific discovery.
Follow the user’s requirements carefully and make sure you understand them.
Your expertise is strictly limited to physical simulation, material science, mathematics, and coding.
Keep your answers short and to the point.
Do not provide any information that is not requested.
Always document your code as comments to explain the reason behind them.
Use Markdown to format your solution.
You are very familiar with Python and PyTorch.
Do not use any external libraries other than the libraries used in the examples.

System prompt for molecule design:
You are an intelligent AI assistant for coding, molecule design, and scientific discovery.
Follow the user’s requirements carefully and make sure you understand them.
Your expertise is strictly limited to physical simulation, material science, chemistry, molecule design, mathematics,
and coding.
Keep your answers short and to the point.
Do not provide any information that is not requested.
Always document your code as comments to explain the reason behind them.
Use Markdown to format your solution.
You are very familiar with PyTorch.
Your are very familiar with the SMILES notation (Simplified Molecular-Input Line-Entry System).
Do not use any external libraries other than the libraries used in the examples.

Coding format prompt for elastic constitutive law discovery:
## Format Requirements

### PyTorch Tips
1. When element-wise multiplying two matrix, make sure their number of dimensions match before the operation. For
example, when multiplying ‘J‘ (B,) and ‘I‘ (B, 3, 3), you should do ‘J.view(-1, 1, 1)‘ before the operation. Similarly,
‘(J - 1)‘ should also be reshaped to ‘(J - 1).view(-1, 1, 1)‘. If you are not sure, write down every component in the
expression one by one and annotate its dimension in the comment for verification.
2. When computing the trace of a tensor A (B, 3, 3), use ‘A.diagonal(dim1=1, dim2=2).sum(dim=1).view(-1, 1, 1)‘. Avoid
using ‘torch.trace‘ or ‘Tensor.trace‘ since they only support 2D matrix.

### Code Requirements

1. The programming language is always python.
2. Annotate the size of the tensor as comment after each tensor operation. For example, ‘# (B, 3, 3)‘.
3. The only library allowed is PyTorch. Follow the examples provided by the user and check the PyTorch documentation to
learn how to use PyTorch.
4. Separate the code into continuous physical parameters that can be tuned with differentiable optimization and the
symbolic constitutive law represented by PyTorch code. Define them respectively in the ‘__init__‘ function and the
‘forward‘ function.
5. The first output of the ‘forward‘ function is the updated deformation gradient. Always remember the second output of
the ‘forward‘ function is Kirchhoff stress tensor, which is defined by the matrix multiplication between the first
Piola-Kirchhoff stress tensor and the transpose of the deformation gradient tensor. Formally, ‘tau = P @ FˆT‘, where tau
is the Kirchhoff stress tensor, P is the first Piola-Kirchhoff stress tensor, and F is the deformation gradient tensor.
Do not directly return any other type of stress tensor other than Kirchhoff stress tensor. Compute Kirchhoff stress
tensor using the equation: ‘tau = P @ FˆT‘.
6. The proposed code should strictly follow the structure and function signatures below:

‘‘‘python
import torch
import torch.nn as nn

class Physics(nn.Module):

def __init__(self, param: float = DEFAULT_VALUE):
"""
Define trainable continuous physical parameters for differentiable optimization.
Tentatively initialize the parameters with the default values in args.

Args:
param (float): the physical meaning of the parameter.

"""
super().__init__()
self.param = nn.Parameter(torch.tensor(param))

def forward(self, F: torch.Tensor) -> torch.Tensor:
"""
Compute Kirchhoff stress tensor from deformation gradient tensor.

Args:
F (torch.Tensor): deformation gradient tensor (B, 3, 3).

Returns:
kirchhoff_stress (torch.Tensor): Kirchhoff stress tensor (B, 3, 3).

"""
return kirchhoff_stress

‘‘‘

### Solution Requirements
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1. Analyze step-by-step what the potential problem is in the previous iterations based on the feedback. Think about why
the results from previous constitutive laws mismatched with the ground truth. Do not give advice about how to optimize.
Focus on the formulation of the constitutive law. Start this section with "### Analysis". Analyze all iterations
individually, and start the subsection for each iteration with "#### Iteration N", where N stands for the index.
Remember to analyze every iteration in the history.
2. Think step-by-step what you need to do in this iteration. Think about how to separate your algorithm into a
continuous physical parameter part and a symbolic constitutive law part. Describe your plan in pseudo-code, written out
in great detail. Remember to update the default values of the trainable physical parameters based on previous
optimizations. Start this section with "### Step-by-Step Plan".
3. Output the code in a single code block "‘‘‘python ... ‘‘‘" with detailed comments in the code block. Do not add any
trailing comments before or after the code block. Start this section with "### Code".

Coding format prompt for plastic constitutive law discovery:
## Format Requirements

### PyTorch Tips
1. When element-wise multiplying two matrix, make sure their number of dimensions match before the operation. For
example, when multiplying ‘J‘ (B,) and ‘I‘ (B, 3, 3), you should do ‘J.view(-1, 1, 1)‘ before the operation. Similarly,
‘(J - 1)‘ should also be reshaped to ‘(J - 1).view(-1, 1, 1)‘. If you are not sure, write down every component in the
expression one by one and annotate its dimension in the comment for verification.
2. When computing the trace of a tensor A (B, 3, 3), use ‘A.diagonal(dim1=1, dim2=2).sum(dim=1).view(-1, 1, 1)‘. Avoid
using ‘torch.trace‘ or ‘Tensor.trace‘ since they only support 2D matrix.

### Code Requirements

1. The programming language is always python.
2. Annotate the size of the tensor as comment after each tensor operation. For example, ‘# (B, 3, 3)‘.
3. The only library allowed is PyTorch. Follow the examples provided by the user and check the PyTorch documentation to
learn how to use PyTorch.
4. Separate the code into continuous physical parameters that can be tuned with differentiable optimization and the
symbolic deformation gradient correction model represented by PyTorch code. Define them respectively in the ‘__init__‘
function and the ‘forward‘ function.
5. The proposed code should strictly follow the structure and function signatures below:

‘‘‘python
import torch
import torch.nn as nn

class Physics(nn.Module):

def __init__(self, param: float = DEFAULT_VALUE):
"""
Define trainable continuous physical parameters for differentiable optimization.
Tentatively initialize the parameters with the default values in args.

Args:
param (float): the physical meaning of the parameter.

"""
super().__init__()
self.param = nn.Parameter(torch.tensor(param))

def forward(self, F: torch.Tensor) -> torch.Tensor:
"""
Compute corrected deformation gradient from deformation gradient tensor.

Args:
F (torch.Tensor): deformation gradient tensor (B, 3, 3).

Returns:
F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).

"""
return F_corrected

‘‘‘

### Solution Requirements

1. Analyze step-by-step what the potential problem is in the previous iterations based on the feedback. Think about why
the results from previous constitutive laws mismatched with the ground truth. Do not give advice about how to optimize.
Focus on the formulation of the constitutive law. Start this section with "### Analysis". Analyze all iterations
individually, and start the subsection for each iteration with "#### Iteration N", where N stands for the index.
Remember to analyze every iteration in the history.
2. Think step-by-step what you need to do in this iteration. Think about if the plasticity is needed to improve
performance. Remember that plasticity is not necessary. If your analysis supports plasticity, think about how to update
deformation gradient using plasticity. Think about how to separate your algorithm into a continuous physical parameter
part and a symbolic deformation gradient correction model part. Describe your plan in pseudo-code, written out in great
detail. Remember to update the default values of the trainable physical parameters based on previous optimizations.
Start this section with "### Step-by-Step Plan".
3. Output the code in a single code block "‘‘‘python ... ‘‘‘" with detailed comments in the code block. Do not add any
trailing comments before or after the code block. Start this section with "### Code".

Coding format prompt for molecule design:
## Format Requirements

### Code Requirements

1. The programming language is always python.
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2. Annotate the size of the tensor as comment after each tensor operation. For example, ‘# (B, 3, 3)‘.
3. Separate the code into: (1) python string ‘SMILES‘: the SMILES string describing the molecular topology structure and
atomic types, and (2) matrix ‘coordinates‘ the 3D coordinates of all atoms. These representations should not include
hydrogens.
4. The SMILES string should be valid. Use your knowledge about Simplified Molecular-Input Line-Entry System to help you
design a valid one.
5. The number of atoms in the SMILES string should be no less than 8, which means the number of atoms should be >= 8.
Try to generate molecule with diverse atoms.
6. The 3D coordinates of the atoms should not be overlapping with each other. In another word, every row in the matrix
‘coordinates‘ should be distinct from each other.
7. The ‘coordinates‘ matrix is of shape ‘(N, 3)‘ where ‘N‘ stands for the number of atoms in the molecule. It should be
identical to the number of atoms that the proposed SMILES string represents. State out the shape of any matrix defined
in the comment as shown in the following example. State out the number of atoms that the SMILES string represents in the
comment as shown in the following example.
8. The discrete SMILES string is critical in this problem since it defines the structure and cannot be tuned using
differentiable optimization. Please propose different SMILES string from all examples or iterations above to discover
and evaluate more structure. This is very important.
9. The proposed code should strictly follow the structure and function signatures below:

‘‘‘python
SMILES: str # N atoms

coordinates: list[list[float]] # (N, 3)
‘‘‘

### Solution Requirements

1. Analyze step-by-step what the potential problem is in the previous iterations based on the feedback. Think about why
the results from previous molecule structure mismatched with the ground truth. Do not give advice about how to optimize.
Focus on the formulation of the SMILES string. Start this section with "### Analysis". Analyze all iterations
individually, and start the subsection for each iteration with "#### Iteration N", where N stands for the index.
Remember to analyze every iteration in the history.
2. Think step-by-step what you need to do in this iteration. Think about how to separate your algorithm into a
continuous 3D coordinate system part and a discrete SMILES string part. Remember the SMILES string proposed should
always be different from previous iterations. After propose the new SMILES string, compute and count step-by-step how
many atoms it contains. The continuous parameter should follow the number of atoms in the SMILES string. Describe your
plan in pseudo-code, written out in great detail. Start this section with "### Step-by-Step Plan".
3. Output the code in a single code block "‘‘‘python ... ‘‘‘" with detailed comments in the code block. After the SMILES
string, compute the number of atoms in it by counting. Remember that the number of atoms in the SMILES string should be
no less than 8, which means the number of atoms should be >= 8. Try to generate molecule with diverse atoms. Do not add
any trailing comments before or after the code block. Start this section with "### Code".

B. More Explanations
B.1. Data Workflow

The full input to LLM has 3 main parts: (i) system prompt, (ii) iteration information, and (iii) format prompt. For the system
prompt, we insert it into the LLM at the beginning or input it as a special instruction depending on the type of LLM. For the
iteration information, we first concatenate the code and its feedback and then simply stack the top K solutions. Finally, we
append the format prompt at the end of the prompt to regularize the expected output. From our experiments, it is important
to keep the order of prompts to ensure the performance and the successful parsing. More precisely, we show this process in
the following python-like code:

1 prompts = []
2 prompts.append(system_prompt)
3 for solution in reversed(solutions.topk()):
4 iteration_prompt = solution.code + ’\n’ + solution.feedback
5 prompts.append(iteration_prompt)
6 prompts.append(format_prompt)
7 full_prompt = ’\n’.join(prompts)

B.2. Differences to Symbolic Regression Task

• Our problem focuses on loss-guided general scientific discovery, which is a super-set of regular regression problems.
In the constitutive law search tasks, we do not directly feed the input/output pair to our method. Instead, we consider a
much more challenging task: apply the generated constitutive law recursively and use the overall loss as the performance
metric. Concretely, a classic SR methods solve argminf∥f(X) − y∥ given < X, y > pairs, whereas our method
solves argminf∥g(f(X))∥ given < X, g(f(X)) > pairs and g is a complex function like physical simulation. It is
easy to construct g to cover the former case using the later formulation, proving the generality of our problem setup.
We formulate our problem as such to reflect a more realistic scenario in scientific discovery, where direct supervision is
extremely sparse.

• Our method supports arbitrary number of input variables and output features, where most of SR methods (Valipour
et al., 2021) have limitation on the number of input and output. The input limitation strongly caps the complexity
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of tasks they can solve, and the output limitation forces them ignore the structural correlation between each output
dimension. In a comparison, our method supports arbitrary problem settings thanks to the code-based representation,
which enables multi-dimensional arrays and tensor operations.

• Our model adapts to multi-discipline application easily, while traditional SR methods typically incorporate with domain-
experts’ priors via hard-coded constraints and heuristic (Udrescu et al., 2020), which is limited, domain-specific, and
difficult to customize. Our method is built upon LLMs pre-trained on internet-level data that contains multi-discipline
natural languages, mathematical expressions, and codes. As a result, it is easy for users to customize it and adapt to
their own diverse applications via natural language guidance.

C. More Experiments
C.1. Symbolic Regression

We present the full results of the comparison to symbolic regression methods in Table 5

Table 5. Symbolic Regression

Method R2 ↑ MSE ↓ MAE ↓ Symbolic

AIFeynman (Udrescu et al., 2020) 0.05105 22814675.8 2520.0 ✓
DSR (Petersen et al., 2020) 0.57527 10966411.0 2045.0 ✓
BSR (Jin et al., 2019) 0.66526 8642965.0 1938.6 ✓
AdaBoost (Schapire, 2003) 0.75058 6439962.9 1777.7 ✗
GP-GOMEA (Virgolin et al., 2021) 0.77734 5749076.4 1580.1 ✓
SBP-GP (Virgolin et al., 2019) 0.81773 4706077.0 1367.5 ✓
LightGBM (Ke et al., 2017) 0.83368 4294433.7 1129.9 ✗
XGBoost (Chen & Guestrin, 2016) 0.87775 3156500.5 1109.2 ✗
MRGP (Arnaldo et al., 2014) 0.91074 2304682.5 950.5 ✓
EPLEX (La Cava et al., 2019) 0.91851 2104070.1 122.2 ✓
FFX (McConaghy, 2011) 0.93124 1775263.7 801.7 ✓
MLP 0.98240 454461.5 366.3 ✗
FEAT (Cava et al., 2019) 0.98761 319800.6 336.1 ✓
DSO (Mundhenk et al., 2021) 0.99642 92374.9 168.6 ✓
Operon (Kommenda et al., 2020) 0.99684 81577.9 92.4 ✓

SymbolicGPT (Valipour et al., 2021) 0.52333 6862154.7 1680.7 ✓
NeSymReS (Biggio et al., 2021) N/A to >3 variables ✓
T-JSL (Li et al., 2022) N/A to >2 variables ✓

Ours 0.99901 17424.6 86.4 ✓

C.2. Longer Iteration

In order to further investigate the potential of our method and ablate the hyper-parameters for practitioners, we add a new
study in terms of the number of iterations (question-answering cycles). We repeat our experiment in Table 1 with a prolonged
number of iterations to 20 and report the performance in Table 6.

Table 6. Longer Iteration

#Iterations (a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓ (h) ↓
5 5.2e-5 2.1e-1 6.0e-2 1.4e-12 1.3e-4 1.1e-1 5.4e-1 3.6e-5
20 4.2e-6 4.0e-4 2.5e-3 1.4e-12 1.3e-4 6.5e-2 1.2e-1 5.6e-6

Improvement +1138.1% +52400.0% +2300.0% 0.0% 0.0% +69.2% +350.0% +542.9%

As shown in the table, the number of iterations turns out to be a determining hyper-parameter with significant impart on
the performance. While it has little affect on relatively easier tasks, it dramatically improves the performance of the most
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challenging tasks including (b) and (c). For practitioners, the number of iteration should be first considered as the most
important hyper-parameter when adapting our method to their own tasks.

D. More Results
D.1. Constitutive Law Discovery (a)

The best solution on task (a) optimized by our method:
1 import torch
2 import torch.nn as nn
3
4 class Physics(nn.Module):
5 # Best values from the training curves
6 DEFAULT_YOUNGS_MODULUS_LOG = 13.03
7 DEFAULT_POISSONS_RATIO_SIGMOID = -1.99
8
9 def __init__(self, youngs_modulus_log: float = DEFAULT_YOUNGS_MODULUS_LOG, poissons_ratio_sigmoid: float =

DEFAULT_POISSONS_RATIO_SIGMOID):
10 """
11 Define trainable continuous physical parameters for differentiable optimization.
12 Initialize the parameters with the best values from previous feedback.
13 """
14 super().__init__()
15 # Initialize the parameters as trainable parameters
16 self.youngs_modulus_log = nn.Parameter(torch.tensor(youngs_modulus_log)) # Log of Young’s modulus
17 self.poissons_ratio_sigmoid = nn.Parameter(torch.tensor(poissons_ratio_sigmoid)) # Sigmoid of Poisson’s ratio
18
19 def forward(self, F: torch.Tensor) -> torch.Tensor:
20 """
21 Compute Kirchhoff stress tensor from deformation gradient tensor.
22
23 Args:
24 F (torch.Tensor): Deformation gradient tensor (B, 3, 3).
25
26 Returns:
27 kirchhoff_stress (torch.Tensor): Kirchhoff stress tensor (B, 3, 3).
28 """
29 # Convert the parameters to their actual values
30 youngs_modulus = self.youngs_modulus_log.exp() # (1,)
31 poissons_ratio = torch.sigmoid(self.poissons_ratio_sigmoid) * 0.49 # (1,)
32
33 # Lame parameters
34 mu = youngs_modulus / (2 * (1 + poissons_ratio)) # Shear modulus (1,)
35 lam = youngs_modulus * poissons_ratio / ((1 + poissons_ratio) * (1 - 2 * poissons_ratio)) # First Lame parameter

(1,)
36
37 # Deformation gradient determinant J and its reshape for operations (B,)
38 J = F.det().view(-1, 1, 1)
39
40 # Inverse transpose of F for stress computation (B, 3, 3)
41 F_invT = F.inverse().transpose(1, 2)
42
43 # Compute first Piola-Kirchhoff stress tensor P (B, 3, 3)
44 # Volumetric part
45 P_vol = lam * (J - 1) * F_invT
46
47 # Deviatoric part combining neo-Hookean behavior
48 # This accounts for the near incompressible nature of the material
49 P_dev = mu * (F - (1 / J) * F_invT)
50
51 # Compute Kirchhoff stress tensor tau by multiplying the first Piola-Kirchhoff with the transpose of F (B, 3, 3)
52 kirchhoff_stress = P_vol + P_dev @ F.transpose(1, 2)
53
54 return kirchhoff_stress

D.2. Constitutive Law Discovery (b)

The best solution on task (b) optimized by our method:
1 import torch
2 import torch.nn as nn
3
4 class Physics(nn.Module):
5
6 def __init__(self, gamma: float = -0.07): # Based on best value from iteration 5
7 """
8 Initialize gamma as a trainable parameter which will be used for scaling the soft
9 deformation correction.

10
11 Args:
12 gamma (float): scaling factor for the deformation correction.
13 """
14 super().__init__()
15 self.gamma = nn.Parameter(torch.tensor(gamma)) # Initialize gamma, (1,)
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16
17 def forward(self, F: torch.Tensor) -> torch.Tensor:
18 """
19 Compute corrected deformation gradient tensor F, by applying a soft correction
20 proportional to the deviation of its determinant from 1, effectively guiding the
21 gradient towards physically realistic states.
22
23 Args:
24 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
25
26 Returns:
27 F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).
28 """
29 # Compute determinant of F and create a condition based on its value, (B,)
30 J = torch.det(F) # (B,)
31
32 # Apply a smooth step function as a deviation condition, (B,)
33 J_deviation_condition = torch.tanh(J - 1) # (B,)
34
35 # Prepare for correction, taking into account the batch dimension (B,)
36 gamma_correction = self.gamma * J_deviation_condition.view(-1, 1, 1) # (B, 1, 1)
37
38 # Identity matrix, expanded for batch size (B, 3, 3)
39 I = torch.eye(3, device=F.device).repeat(F.size(0), 1, 1) # (B, 3, 3)
40
41 # Correct F by pulling towards identity matrix when determinant deviates from 1, (B, 3, 3)
42 F_corrected = F - gamma_correction * (F - I) # (B, 3, 3)
43
44 return F_corrected

D.3. Constitutive Law Discovery (c)

The best solution on task (c) optimized by our method:
1 import torch
2 import torch.nn as nn
3
4 # The default value for elastic_limit is set to the best from the last iteration, and
5 # we initialize a new parameter for capturing the hardening effect
6 DEFAULT_ELASTIC_LIMIT = 0.92
7 DEFAULT_HARDENING_FACTOR = 0.1
8
9 class Physics(nn.Module):

10
11 def __init__(self, elastic_limit: float = DEFAULT_ELASTIC_LIMIT,
12 hardening_factor: float = DEFAULT_HARDENING_FACTOR):
13 """
14 Define trainable continuous physical parameters for differentiable optimization.
15
16 Args:
17 elastic_limit (float): the parameter determining the initial yield strength.
18 hardening_factor (float): the parameter controlling the rate of hardening.
19 """
20 super().__init__()
21 self.elastic_limit = nn.Parameter(torch.tensor(elastic_limit)) # ()
22 self.hardening_factor = nn.Parameter(torch.tensor(hardening_factor)) # ()
23
24 def forward(self, F: torch.Tensor) -> torch.Tensor:
25 """
26 Compute corrected deformation gradient from deformation gradient tensor.
27
28 Args:
29 F (torch.Tensor): deformation gradient tensor (B, 3, 3).
30
31 Returns:
32 F_corrected (torch.Tensor): corrected deformation gradient tensor (B, 3, 3).
33 """
34 # Obtain the polar decomposed rotation (R) and stretch (S)
35 U, S, V = torch.svd(F) # U: (B, 3, 3), S: (B, 3), V: (B, 3, 3)
36 R = U @ V.transpose(-2, -1) # R: (B, 3, 3)
37
38 # Correct the S tensor with hardening
39 # Assuming hardening affects the elastic limit linearly with accumulated plastic strain
40 plastic_strain = torch.relu(S - self.elastic_limit) # Presumed plastic strain
41 hardening_adjustment = 1.0 + (self.hardening_factor * plastic_strain)
42
43 S_clamped = torch.min(S, self.elastic_limit * hardening_adjustment) # Clamp S with hardening
44 S_corrected = torch.diag_embed(S_clamped) # S_corrected: (B, 3, 3)
45
46 F_corrected = R @ S_corrected # (B, 3, 3) Corrected deformation gradient tensor
47
48 # Ensure volume preservation
49 J = torch.det(F).view(-1, 1, 1) # (B, 1, 1) Determinant of the input F for volume
50 J_corrected = torch.det(F_corrected).view(-1, 1, 1) # (B, 1, 1) Determinant of the corrected F
51 volume_ratio = (J / J_corrected) ** (1/3)
52 F_corrected = F_corrected * volume_ratio # (B, 3, 3) Volume-preserved F_corrected
53
54 return F_corrected
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D.4. Constitutive Law Discovery (d)

The best solution on task (d) optimized by our method:
1 import torch
2 import torch.nn as nn
3
4 class Physics(nn.Module):
5
6 DEFAULT_VALUE = 0.0 # Best guess based on previous behavior
7
8 def __init__(self, param: float = DEFAULT_VALUE):
9 """

10 Define trainable continuous physical parameters for differentiable optimization.
11 The parameter modulates corrections towards nearly isochoric behavior.
12 """
13 super().__init__()
14 self.param = nn.Parameter(torch.tensor([param])) # Scalar modulation parameter
15
16 def forward(self, F: torch.Tensor) -> torch.Tensor:
17 """
18 Symbolic deformation gradient correction model.
19 """
20 # Compute the determinant of the deformation gradient (volumetric change)
21 J = torch.det(F) # (B,)
22
23 # Compute the volumetric part of the deformation gradient: Jˆ(1/3)*I
24 I = torch.eye(3).to(F.device) # (3, 3)
25 # Expand the identity matrix to the entire batch
26 I = I.view(1, 3, 3).expand(F.size(0), -1, -1) # (B, 3, 3)
27 # Calculate volumetric part
28 vol_deform = torch.pow(J, 1.0 / 3.0).view(-1, 1, 1) * I # (B, 3, 3)
29
30 # Calculate the deviatoric part of F: divide F by Jˆ(1/3)
31 dev_deform = F / torch.pow(J, 1.0 / 3.0).view(-1, 1, 1) # (B, 3, 3)
32
33 # Modulate correction by self.param and construct the correction term
34 correction = self.param * (I - dev_deform) # (B, 3, 3)
35
36 # Combine the volumetric part with the deviatoric correction
37 F_corrected = vol_deform + correction # (B, 3, 3)
38
39 return F_corrected # (B, 3, 3)

D.5. Molecule Design (e)

The Top-20 solution on task (e) optimized by our method:

1. C1=CC=C(Br)C=C1C2=CN=CC=C2

2. C1=CC=C(I)C=C1C2=CC=NC=C2

3. C1=CN(C=C1)C2=CC(=CC(=C2)F)O

4. C1C2CC3CC(C1)C(C2)(C3)N

5. C1CC2OC1COC2=O

6. C1=CC=C(C=C1)C2=NC(Cl)=NC=C2

7. C1=CC=C(I)C=C1C2=NC(C(F)(F)F)=CN=C2

8. C1N2C3C4OC(C5)C13C24C5

9. C1=CC=C2N=CC=C(Br)C2=C1

10. C=CC1C(=O)NC(=S)N1C

11. C1=CC=CS1C2=NC=CC(Cl)=C2

12. C1OC2C(O)C3C(N)C1C23

13. O=C(NC1=CC=CC=C1)C2CCOCC2Cl

14. C1=CC=C2C(=C1)N=CN2C3=CC=CC=C3Br
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15. C1OC2C3N4C5C6C7C8C1C2C3C4C5C6C7C8

16. C1=CC=C(C=C1)C2=CN=CC=C2C=CCl

17. C1=CC=C(S1)C2=CC=C(O2)C(F)F

18. C1=CC=C2C(=C1)C(=NN2)C3=CC=CC=C3Br

19. C1=CC=C2N=C(C(=O)NC2=C1)C3=CC=CS3

20. C1=CC=C(C=C1)C2=NN=C(S2)Cl

D.6. Molecule Design (f)

The Top-20 solution on task (f) optimized by our method:

1. SC(F)(F)CC(Cl)(Cl)N

2. C1=CSC(=C1)NNC(=O)CF

3. C1C2C3CSC1N2OC3F

4. C1CSC(Cl)C(N)C1Cl

5. CC(C(=O)O)NC(F)(F)F

6. O=C(O)C(F)=C(Cl)C(Br)C=O

7. C1CSC(C(=O)O)N=C1F

8. C1=CC(=CS1)C2=CC=C(Br)C(F)=C2

9. O=S(=O)(N)C1=CC=C(Br)C=C1

10. CC(C(=O)O)C(Cl)C(Br)C(N)C(I)

11. C1SC(Cl)C(C1)C(=O)O

12. FC1=CC=C(C=C1)CS

13. C1CSC2C3CC(Cl)C1C23

14. C1=CC(=O)N(C2=CS1)C2=O

15. C1=CC=C(N)C(Cl)=C1Cl

16. C1SCC2C1C1=C(C=O)C=CC1C2Cl

17. C1=CC2=C(N=C(I)C=C2)C=C1

18. NC(CS)C(C(=O)O)Cl

19. C1=CC=NC2=C1C(=O)SC2=CCBr

20. C1=CC=C2C(=C1)C(=CS2)Cl
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D.7. Molecule Design (g)

The Top-20 solution on task (g) optimized by our method:

1. c1cc(sc1Cl)C(C(F)(F)F)N

2. C(C(Cl)Cl)C1=CSC(N)=N1

3. C1C2CC3NC1C3C2O

4. C1OC2C3NOC1C3C2

5. C1C(Cl)C2CNC1C2O

6. C1(=CC(=C(N1Cl)O)C#N)S

7. C1COC2C3CC4(NC2C34)O1

8. c1cc(c(c(c1)Cl)O)C(F)(F)F

9. O1CCN2CC(F)C2C1

10. N1CC2OC(F)C2C1

11. C1(O)C2C(NC2C1C)C

12. C1=CC2=C(S1)C(=CC(=C2)P)I

13. C1CC2NCC(C1)C2O

14. C1CC2SCC(C1)N2

15. C1=NC2=CS(=O)(=O)N=C12

16. C1OC2C3CC(S)C1C23

17. C1C2C(NC=O)C(Cl)C1OC2

18. O=S(=O)(c1ccccc1)N

19. C1C=CC(O1)(F)N2C=CC(Br)=C2Cl

20. O=N(=O)C=C(C)C=C(C)N=O

D.8. Molecule Design (h)

The Top-20 solution on task (h) optimized by our method:

1. CC(NC(=O)C(Cl)C(=O)O)CSC

2. C1=CC(=CC=C1)C2=NSN=C2

3. FC(F)Oc1ccccc1N

4. O=C1NC(=O)SC2=C1C=CC=C2

5. C1NOC2C1SC1C2N1Cl

6. C1CSCC(N)C1N=C(O)C2=CC=CS2

7. C1C2CC(NC1=O)C(Cl)C2I

8. C1OC2SC3C4OC(F)S4C13C2
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9. SC(Cl)(Cl)C1=CC=CC=C1O

10. C1=NOC(=C1)C2C(C(=O)NC2=O)Cl

11. C1OC2C3NCC4S1C23C4

12. C1C2C(N(C1Cl)C2=O)F

13. OC1C2C(O1)N=CS(=O)C2

14. C1OC2C3N4C1SC23N4

15. C1CSC(C2=NC=CS2)N1

16. C1CSCC(N1)C2=CC=CS2

17. O=P1(OP(=O)(OC1=O)C2=CN=CC=C2)I

18. C1CC2(CNC2)C(O1)C3=CN=CN3

19. O=C1SCCN(C1)C2=CN=CO2

20. C1=CC=NC2=C1C(=O)N=C(S2)Cl

D.9. Imaginary Constitutive Law

The best solution on the imaginary constitutive law invention task optimized by our method:
1 import torch
2 import torch.nn as nn
3
4 # Default values for the physical parameters based on previous iterations
5 DEFAULT_KAPPA = 0.08
6 DEFAULT_MU = 0.28
7
8 class Physics(nn.Module):
9 def __init__(self, kappa: float = DEFAULT_KAPPA, mu: float = DEFAULT_MU):

10 """
11 Initialize the continuous physical parameters kappa and mu for differentiable optimization.
12 """
13 super().__init__()
14 self.kappa = nn.Parameter(torch.tensor(kappa)) # Bulk modulus correction factor (scalar)
15 self.mu = nn.Parameter(torch.tensor(mu)) # Shear modulus correction factor (scalar)
16
17 def forward(self, F: torch.Tensor) -> torch.Tensor:
18 """
19 Compute the corrected deformation gradient from the deformation gradient tensor.
20 """
21 B = F.size(0) # Batch size (scalar)
22 I = torch.eye(3, device=F.device).unsqueeze(0).expand(B, -1, -1) # Identity matrix (B, 3, 3)
23 J = torch.det(F).view(-1, 1, 1) # Jacobian determinant (B, 1, 1)
24
25 # Volume correction factor (B, 1, 1)
26 vol_correction_factor = torch.clamp(self.kappa * (J - 1), min=0.0, max=1.0)
27 vol_correction = vol_correction_factor * I # Volume correction term (B, 3, 3)
28
29 # Compute trace of F for shape correction (B, 1, 1)
30 trace_F = F.diagonal(dim1=1, dim2=2).sum(dim=1).view(-1, 1, 1)
31 dev_F = F - (trace_F / 3) * I # Deviatoric part of F (B, 3, 3)
32
33 # Shape correction factor (scalar)
34 shape_correction_factor = torch.clamp(self.mu, min=0.0, max=1.0)
35 shape_correction = shape_correction_factor * dev_F # Shape correction term (B, 3, 3)
36
37 F_corrected = F - vol_correction - shape_correction # Corrected deformation gradient (B, 3, 3)
38 return F_corrected
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