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Abstract
We study the contextual bandits with knapsack
(CBwK) problem under the high-dimensional set-
ting where the dimension of the feature is large.
We investigate how to exploit the sparsity struc-
ture to achieve improved regret for the CBwK
problem. To this end, we first develop an online
variant of the hard thresholding algorithm that per-
forms the optimal sparse estimation. We further
combine our online estimator with a primal-dual
framework, where we assign a dual variable to
each knapsack constraint and utilize an online
learning algorithm to update the dual variable,
thereby controlling the consumption of the knap-
sack capacity. We show that this integrated ap-
proach allows us to achieve a sublinear regret that
depends logarithmically on the feature dimension,
thus improving the polynomial dependency estab-
lished in the previous literature. We also apply
our framework to the high-dimension contextual
bandit problem without the knapsack constraint
and achieve optimal regret in both the data-poor
regime and the data-rich regime.

1. Introduction
Introduced in the seminal paper (Badanidiyuru et al., 2013),
the bandit with knapsacks problem (BwK) is defined by
solving an online knapsack problem with global size con-
straints. This kind of problem is a special but important case
of the online allocation problem, which imposes a reward-
agnostic assumption on resource allocations. The bandit
with knapsacks problem has been broadly applied to many
scenarios, e.g., ad allocation, dynamic pricing, repeated
auctions, etc. In fact, in several applications like online
recommendation or online advertising, many contexts (or
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features, covariates) of rewards that we can observe are pos-
sibly high-dimensional, which significantly contribute to the
decision-making and motivate us to consider a variant of the
BwK problem, i.e., the contextual bandit with knapsacks
problem (Badanidiyuru et al., 2014). However, although the
contextual bandit with knapsacks problem has been exten-
sively studied under different settings (Agrawal & Devanur,
2014; 2016; Immorlica et al., 2022; Liu et al., 2022), previ-
ous studies largely neglect the inherent high dimensionality
of covariates, and in turn, incur regrets that depend polyno-
mially on the large dimension d, making these methods less
feasible in the high-dimensional setting. This motivates us
to explore further the BwK problem in the high-dimensional
case, which is an emergent topic in online learning.

In this paper, we address this challenge by proposing effi-
cient methods to solve the high-dimensional linear contex-
tual bandit with knapsacks problem. Our method consists of
two parts, primal estimation and dual-based allocation. We
will show that our online method in primal estimation can
achieve exact sparse recovery with optimal statistical error,
which is comparable with the renowned LASSO method but
with less computational cost. Together with dual allocation,
our primal-dual method can effectively control the regret of

BwK problem in the order Õ
(

V UB

Cmin

√
T +

(
V UB

Cmin

) 1
3

T
2
3

)
,

which is logarithmically dependent on the dimension d.
Moreover, we also show that the regret can be further im-
proved to Õ

(
V UB

Cmin

√
T
)

with additional diverse covariate
condition.

Our method also brings new insights into the general online
sparse estimation and sparse bandit problems. For the sparse
bandit problems, most of the existing literature heavily relies
on LASSO, which explores sparsity by regularized sample
average approximation. Although LASSO guarantees good
theoretical results, it is hard to perform in an online fashion.
In this paper, we solve the sparse recovery problem through
a novel stochastic approximation approach with hard thresh-
olding, which is more aligned with online learning and is
also statistically optimal. This estimation algorithm leads to
a by-product, i.e., a unified sparse bandit algorithm frame-
work that reaches desired optimal regrets Õ(s

2/3
0 T 2/3) and

Õ(
√
s0T ), in both data-poor and data-rich regimes respec-

tively, which satisfies the so-called “the best of two worlds”
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(Hao et al., 2020).

1.1. Main Results and Comparison to Literature

We summarize our main results and contributions.

First, we develop a new online sparse estimation algorithm,
named Online HT, that performs the sparse estimation in
an online manner. Note that previous methods for sparse
estimation, like LASSO (e.g. (Hao et al., 2020; Li et al.,
2022; Ren & Zhou, 2023)) and iterative hard thresholding
(Blumensath & Davies, 2009; Nguyen et al., 2017), per-
form the offline estimation and thus require us to store the
entire historical data set, on the size of O(d · T ), which
can be costly when T is large. In contrast, our algorithm,
featuring gradient-averaging with online hard thresholding
that only requires us to store the average of the previous
estimations, on the size of O(d2), instead of the entire data
set. Moreover, the computation complexity of the sparse
estimation step can be reduced by our approach. To be spe-
cific, the computational complexity of Online HT is O(d2)
per iteration and O(d2T ) in total, while the computational
complexity of classical LASSO solution is O(d3 + d2t) per
iteration (Efron et al., 2004), and O(d3T + d2T 2) in total
if we require constant updates of the estimation, e.g., (Kim
& Paik, 2019; Ren & Zhou, 2023). In this way, our online
estimator enjoys a greater computational benefit than the
offline estimator established in the previous literature.

Second, we show that the online update of our Online HT
algorithm can be naturally combined with a primal-dual
framework to solve the high dimensional CBwK problem.
Specifically, for each resource constraint, we introduce a
dual variable. Though previous work (e.g. (Badanidiyuru
et al., 2013; Agrawal & Devanur, 2016)) on BwK and CBwK
problem has shown that a sublinear regret can be achieved
by applying online learning algorithms to update the dual
variables and control the resource consumption, these re-
gret bounds depend polynomially on the feature dimension,
for example, the O(d ·

√
T ) regret bound in (Agrawal &

Devanur, 2016) and the O(
√
d · T ) regret bound in (Han

et al., 2023b). The difference in our approach is that we
use the output of the Online HT algorithm at the current
step to serve as the primal estimation for the dual update. In
this way, we consecutively update the primal estimation by
Online HT and update the dual variable by the online mirror
descent algorithm in each iteration. We show that this inte-
grated approach can effectively exploit the sparsity structure
of our problem and achieve a regret that depends logarith-
mically on both the dimension d and constraints number m.
Thus, our approach performs the online allocation of the
CBwK problem more efficiently when d is relatively large.

Finally, our Online HT algorithm framework can be broadly
applied to many other high-dimensional problems to achieve
the statistically optimal estimation rate. For example, we

applied the Online HT to the high-dimensional contextual
bandit problem, which can be regarded as a special case of
the high-dimensional contextual CBwK problem where the
resource constraints are absent. We show that our algorithm
reaches the desired optimal regrets Õ(s

2/3
0 T 2/3) for the

data-poor regime and Õ(
√
s0T ) for the general data-rich

regimes under the extra diverse covariate condition. In this
way, we achieve the so-called “the best of two worlds” (Hao
et al., 2020) without additional phase splitting and signal
requirements (Hao et al., 2020; Jang et al., 2022). We further
review other papers on BwK problems and online sparse
estimation problems in the appendix.

2. Notations
Throughout the paper, we use Õ(·) to denote the big-O rate
that omits the logarithmic terms. We write [K] as the set of
positive integers from 1 to K, i.e., {1, 2, . . . ,K}. We shall
denote the scalas by normal symbols and vectors/matrices
by bold symbols. For the matrix norms, we use ∥·∥max to
represent the maximum absolute value of entries, and use
∥·∥2,max to represent the maximum ℓ2 norm of all the rows,
i.e., ∥M∥2,max = maxi

∥∥e⊤i M∥∥
2
.

3. High-dimensional Contextual BwK
We consider the high-dimensional contextual bandit with the
knapsack problem over a finite horizon of T periods. There
are m resources and each resource i ∈ [m] has an initial
capacity Ci. The capacity vector is denoted by C ∈ Rm.
We normalize the vector C such that Ci/T ∈ [0, 1] for each
i ∈ [m]. We denote Cmin = mini∈[m]{Ci}. There are K
arms and a null arm that generate no reward and consume
no resources to perform void action. At each period t ∈ [T ],
one query arrives, denoted by query t, and is associated
with a feature xt ∈ Rd. We assume that the feature xt

is drawn from a distribution F (·) independently at each
period t. For each arm a ∈ [K], query t is associated
with an unknown reward rt(a,xt) and an unknown size
b(a,xt) = (b1(a,xt), . . . , bm(a,xt)) ∈ Rm

≥0. Note that
the reward r(a,xt) and the size b(a,xt) depends on the
feature xt and the arm a. For each arm a ∈ [K], we assume
that the size b(a,xt) follows the following relationship

b(a,xt) = W ⋆
axt + ωt, (1)

where W ⋆
a ∈ Rm×d is a weight matrix and is assumed to be

unknown, specified for each arm a ∈ [K]. ωt ∈ Rm is a m-
dimensional random noise vector independently for each t,
and each entry ωt,i following sub-Gaussian distribution with
parameter σ and mean 0. The reward r(a,xt) is stochastic
and is assumed to follow the relationship

r(a,xt) = (µ⋆
a)

⊤xt + ξt, (2)
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where µ⋆
a ∈ Rd is an unknown weight vector, specified for

each arm a ∈ [m], and ξt is a random noise following a sub-
Gaussian distribution with parameter σ independently, with
expectation equals 0. In the following discussion, we will
sometimes write the reward r(a,xt) as rt for simplicity.

After seeing the feature xt, a decision maker must decide
online which arm to pull. If arm at is pulled for query t,
then each resource i ∈ [m] will be consumed by bi(at,xt)
units and a reward rt(at,xt) will be collected. The realized
value of rt(at,xt) is also observed. Note that query t is
only feasible to be served if the remaining capacities exceed
b(at,xt) component-wise. The decision maker’s goal is to
maximize the total collected reward subject to the resource
capacity constraint.

The benchmark is the offline decision maker that is aware
of the value of µ⋆

a and xt for all a ∈ [K], t ∈ [T ] and
always makes the optimal decision in hindsight. We denote
by {yoff

a,t,∀a ∈ [K]}Tt=1 the offline decision of the offline
optimum, which is an optimal solution to the following
offline problem:

V Off(I) = max
ya,t

T∑
t=1

∑
a∈[K]

((µ⋆
a)

⊤xt · ya,t + ξt)

s.t.

T∑
t=1

 ∑
a∈[K]

W ⋆
axt · ya,t + ωt

 ≤ C

ya,t ∈ {0, 1},
∑

a∈[K]

ya,t = 1, ∀t ∈ [T ]

For any feasible online policy π, we use regret to measure
its performance, which is defined as follows:

Regret(π) := EI∼F [V
Off(I)]− EI∼F [V

π(I)] (3)

where I = {(xt, ξt)}Tt=1 ∼ F denotes that xt follows
distribution F (·) independently for each t ∈ [T ], and V π(I)
denotes the total value collected under the policy π. A
common upper bound of EI∼F [V

off(I)] can be formulated
as follows:

V UB = max

T∑
t=1

∑
a∈[K]

Ext∼F

[
(µ⋆

a)
⊤xt · ya,t(xt)

]
s.t.

T∑
t=1

∑
a∈[K]

Ext∼F [W ⋆
axt · ya,t(xt)] ≤ C,

ya,t(xt) ∈ [0, 1],
∑

a∈[K]

ya,t(xt) = 1, ∀t ∈ [T ],∀xt

The following result is standard in the literature, which
formally establishes the fact that V UB can be used to upper
bound the regret of any policy π.

Lemma 3.1 (folklore). We have EI∼F [V
Off(I)] ≤ V UB.

Therefore, in what follows, we benchmark against V UB and
we exploit the structures of V UB to derive our online policy
and bound the regret.

3.1. High-dimensional features and sparsity structures

We consider the case where the dimension of the feature d
is very large, and a sparsity structure exists for the weight
vector µ⋆

a. Specifically, we assume that there exists s0 such
that the uniform sparsity level can be bounded: ∥µ⋆

a∥0 ≤ s0
for each a ∈ [K], given s0 ≪ d, and a bound on the gen-
eral range of arms: ∥µ⋆

a∥∞ ≤ 1. Accordingly, we assume
that W ⋆

a are also row-wise sparse with each row satisfying
maxa∈[K],i∈[m]

∥∥W ⋆
a,i·
∥∥
0
≤ s0, with maximum entry sat-

isfying maxa∈[K] ∥W ⋆
a ∥max ≤ 1. To establish the theory

of online learning, one must ensure that the information of
each µ⋆

a and W ⋆
a can be retrieved statistically based on the

observation. The following basic assumptions are necessary
for such sparse learning.

Assumption 3.2. We make the following assumptions
throughout the paper.

(a). There exists a constant D such that the covariate xt is
uniformly bounded: ∥xt∥∞ ≤ D.

(b). There exists a constant D′ such that for any arm a
covariate x, it holds that ∥b(a,xt)∥∞ ≤ D′.

(c). For any s, the covariance matrix Σ := Extx
⊤
t has

the 2s-sparse minimal eigenvalue ϕmin(s) and 2s-
sparse maximal eigenvalue ϕmax(s) (Meinshausen &
Yu, 2008), where ϕmin(s) is defined as:

ϕmin(s) = min
β:∥β∥0≤⌈2s⌉

β⊤Σβ

β⊤β
.

ϕmax(s) is also correspondingly defined. Then the
condition number can be denoted by κ = ϕmax(s)

ϕmin(s)
.

The sparse minimal eigenvalue condition essentially shares
the same idea as the restrict eigenvalue conditions that have
been broadly used in the high-dimensional sparse bandit
problem (Hao et al., 2020; Oh et al., 2021; Li et al., 2022).
It ensures that the sparse structure can be detected from the
sampling.

4. Optimal Online Sparse Estimation
The primal task for our online learning problem is to es-
timate the high-dimensional arms during the exploration,
which serves as the foundation of our learning strategies.
To this end, we focus on estimating one specific arm in
this section, say, estimating µ⋆

a for one a ∈ [K] with the
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observation xt and rt. Estimating W ⋆
a can be similarily con-

ducted by treating bi(a,xt) as the response of each W ⋆
a,i·.

Since ∥µ⋆
a∥0 ≤ s0 for s0 ≪ d, for the linear problem, re-

covering µ⋆
a is equivalent to the following ℓ0 constrained

optimization problem:

min
∥µ∥0≤s0

f(µ) := E(rt−µ⊤xt)
2 = ∥µ− µ⋆

a∥
2
Σ+σ2. (4)

To solve (4), LASSO is massively used in the literature.
Despite its statistical optimality, such a method heavily re-
lies on the accumulated data to perform the ℓ1-regularized
optimization, which can not be easily adapted to the online
setting, especially sequential estimations. Thus, in high-
dimensional online learning, finding a sparse estimation
algorithm that runs fully online and still achieves optimal
statistical rate is imperative. We describe our proposed opti-
mal online sparse estimation algorithm in Algorithm 1 in the
context of ϵ-greedy sampling strategy. To ease the notation,
we define the sparse projection Hs(x) as the hard thresh-
olding operator that zeros out all the signals in x except
the largest (in absolute value) s entries. Here we denote
ρ = s0/s as the relative sparsity level.

Algorithm 1 Online Hard Thresholding with Averaged Gra-
dient (Online HT)

1: Input: T , step size ηt, sparsity level s, s0, arm a,
µa,0 = 0

2: for t = 1, . . . , T do
3: Sample the reward according to the decision variable

ya,t ∼ Ber(pa,t), where pa,t ∈ σ(Ht−1,xt)
4: if pa,t = 0 then
5: Treat ya,t/pa,t = 0
6: end if
7: Compute the covariance matrix

Σ̂a,t = 1/t ·
(
(t− 1)Σ̂a,t−1 + ya,txtx

⊤
t /pa,t

)
8: Get averaged stochastic gradient:

ga,t = 2Σ̂a,tµa,t−1 − 2
t

∑t
j=1 ya,jxjrj/pa,j

9: Gradient descent with hard thresholding:
µa,t = Hs(µa,t−1 − ηtga,t)

10: Exact s0-sparse estimation: µs
a,t = Hs0(µa,t)

11: end for
12: Output: {µs

t}, t ∈ [T ]

Theorem 4.1. Define pj = inf pa,j as the lower bound

of each pa,j and suppose pj ≥ Ω(j−
1
3 ). If we take the

relative sparsity level satisfying ρ := s0/s = 1
9κ4 , and

ηt =
1

4κϕmax(s)
, then under Assumption 3.2, the output of

Algorithm 1 satisfies

E
∥∥µs

a,t − µ⋆
a

∥∥2
2
≲

σ2D2s0
ϕ2
min(s)

log d

t2

 t∑
j=1

1

pj

 ,

and the high-probability bound

∥∥µs
a,t − µ⋆

a

∥∥2
2
≲

σ2D2s0
ϕ2
min(s)

log(dT/ε)

t2

 t∑
j=1

1

pj

 ,

which holds for all t with probability at least 1− ε.

Algorithm 1 serves as an online counterpart of the classic
LASSO method. It achieves the statistically optimal rate of
sparse estimation in the sense that, if we force pa,j = 1 for

each j, then we obtain the estimation error O
(

s0σ
2 log d

ϕ2
min(s)t

)
,

which matches the well-known optimal sparse estimation
error rate (Ye & Zhang, 2010; Tsybakov & Rigollet, 2011).
Algorithm 1 needs to continuously maintain an empiri-
cal covariance matrix Σ̂a,t, which takes up O(d2) storage
space; however, all the updates of Σ̂a,t and stochastic gra-
dients ga,t can be computed linearly, which leads to the
fast O(d2T ) total computational complexity. Moreover, our
bound can be easily extended to the uniform bound over
all arms Emaxa∈[K]

∥∥µs
a,t − µ⋆

a

∥∥2
2
, with only an additional

logK term on the error rate. See the supplementary materi-
als for details. The pj here is used to adapt our algorithm to
the ϵ-greedy exploration strategy. If for each j, the arm a
can be sampled with minimum probability ϵj , then we have
pa,j = 1 − (K − 1)ϵj or pa,j = ϵj for arm a, implying
that pj = ϵj . The inverse probability weight 1/pa,j we use
in Algorithm 1 serves to correct the empirical covariance
matrix and the gradients of each iteration by importance
sampling(Chen et al., 2021), making the gradient estimation
consistent. Actually, the error rate in Theorem 4.1 also ap-
plies to s-sparse estimator µa,t. Thus, when s0 is unknown,
we can just use µa,t instead.

For the hard-thresholding type method, the major challenge
for the online algorithm design is the gradient information
loss caused by truncation. In the online update, the hard
thresholding operator will zero out all the small signals,
which contain valuable gradient information for the next
update (Murata & Suzuki, 2018; Zhou et al., 2018). More-
over, the missing information will accumulate during the
online iteration, rendering it difficult for previous methods
to recover a sparse structure (Nguyen et al., 2017; Murata
& Suzuki, 2018; Zhou et al., 2018). To tackle this issue,
we choose a slightly larger sparsity level that allows us to
preserve more information on the gradient. We show that a
larger sparsity level (which depends on the condition num-
ber κ) allows us to keep enough information so that the
truncation effect is negligible.

The fundamental cause of the gradient averaging in Algo-
rithm 1 is actually the poor smoothness property of the hard
thresholding operator, i.e., projection onto ℓ0-constraint
space. Unlike the convex projection or higher-order low-
rank projection, the projection onto the ℓ0-constraint space
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exhibits an inflating smoothness behavior. To be specific,
the projection onto the convex space shares the nice prop-
erty ∥P(x+∆)− x∥2 ≤ ∥∆∥2, with no inflation on the
error. The projection onto the low-rank space (e.g., SVD
or HOSVD on low-rank matrix or tensor) also satisfies
∥P(x+∆)− x∥F ≤ ∥∆∥F + C∥∆∥2F if ∆ is in the tan-
gent space of the manifold (Kressner et al., 2014; Cai et al.,
2022), which leads to tiny inflation in online tensor learning
(Cai et al., 2023). However, the projection onto ℓ0-constraint
space can only ensure ∥P(x+∆)− x∥2 ≤ (1 + δ)∥∆∥2,
where δ is a non-zero parameter depending on the rela-
tive sparsity level and is unimprovable (Shen & Li, 2017),
which causes trouble for online sparse recovery. To mitigate
the inevitable inflation, gradient averaging is employed to
decrease the variance, thereby enabling us to achieve the
optimal convergence rate.

For the BwK problem, since b(a,xt) are also unknown for
decision-makers, we need to consecutively estimate the size,
or equivalently, W ⋆

a . To this end, we can treat each row
W ⋆

a,i· as a sparse vector (substituting µ⋆
a) with bi(a,xt)

as the response (substituting rt), and estimate them using
Algorithm 1. The error of estimating W ⋆

a,i· shares the same
order as estimating µ⋆

a. See the supplementary materials for
the exact error bound of the estimation Ŵa,t.

5. Online Allocation: BwK Problem
In this section, we handle the BwK problem described in
Section 3. Our algorithm adopts a primal-dual framework,
where we introduce a dual variable to reflect the capacity
consumption of each resource. The dual variable can be
interpreted as the Lagrangian dual variable for V UB, with
the dual function:

L(η) =

T∑
t=1

Ext∼F

[
max

yt(xt)∈∆K

{ ∑
a∈[K]

(µ⋆
a)

⊤xt · ya,t(xt)

−Z · (W ⋆
axt)

⊤η · ya,t(xt)
}]

+C⊤η,

where ∆K denotes the unit simplex ∆K = {y ∈ RK :
ya ≥ 0,∀a ∈ [K], and

∑
a∈[K] ya = 1} and Z is a scaling

parameter that we will specify later. Note that if the weight
vector µ⋆

a, cost W ⋆
a are given for each arm a ∈ [K] and

the distribution F (·) is known, one can directly solve the
dual problem minη L(η) to obtain the optimal dual variable
η∗ and then the primal variable ya,t(xt) can be decided by
solving the inner maximization problem in the definition
of the dual function L(η). However, since they are all un-
known, one cannot directly solve the dual problem. Instead,
we will employ an online learning algorithm and use the
information we obtained at each period as the feedback to
the online learning algorithm to update the dual variable
ηt. Then, we plug in the dual variable ηt, as well as esti-
mates of µ⋆

a and W ⋆
a for each a ∈ [K], to solve the inner

maximization problem in the definition of the dual function
L(η) to obtain the primal variable ya,t(xt). Note that this
primal-dual framework has been developed previously in
the literature (e.g. (Badanidiyuru et al., 2013; Agrawal &
Devanur, 2016)) of bandits with knapsacks for UCB algo-
rithms. The innovation of our algorithm is that, instead
of using UCB in the primal selection, we use ϵ-greedy for
exploration with a finer estimate of µ⋆

a and W ⋆
a via Algo-

rithm 1, which enables us to exploit the sparsity structure of
the problem and obtain improved regret bound. Our formal
algorithm is presented in Algorithm 2.

Algorithm 2 Primal-Dual High-dimensional BwK Algo-
rithm

1: Input: Z, ϵ-greedy probability ϵt for each t, δ.
2: In the first m rounds, pull each arm once and initialize

ηm = 1
m1m. Set µs

a,m = 0, Ŵa,m = 0
3: for t = m+ 1, ..., T do
4: Observe the feature xt.
5: Estimate EstCost(a) = x⊤

t Ŵ
⊤
a,t−1ηt−1 for each

arm a ∈ [K].
6: Sample a random variable νt ∼ Ber(Kϵt),
7: if νt = 0 then
8: yt = arg max

a∈[K]
{(µs

a,t−1)
⊤xt − Z · EstCost(a)}

9: else
10: yt is uniformly selected from [K]
11: end if
12: Receive rt and b(yt,xt). If one of the constraints is

violated, then EXIT.
13: Update for each resource i ∈ [m],

αt(i) = αt−1(i) · (1 + δ)(bi(yt,xt)−
Ci
T )·(1−νt)

and project αt into the unit simplex {η : ∥η∥1 ≤
1,η ≥ 0} to obtain ηt as follows:

ηt(i) =
αt(i)∑

i′∈[m] αt(i′)
, ∀i ∈ [m].

14: For each arm a ∈ [K], obtain the estimate µs
a,t and

Ŵa,t from Algorithm 1.
15: end for

5.1. Regret analysis

In this section, we conduct regret analysis of Algorithm 2.
We first show how regret depends on the choice of ϵt, for
each t ∈ [T ], as well as the estimation error of our estimator
of µ⋆

a, W ⋆
a for each a ∈ [K]. We then specify the exact

value of ϵt and utilize the estimation error characterized in
Theorem 4.1 to derive our final regret bound.

Theorem 5.1. Denote by π the process of our Algorithm 2,
and τ the stopping time of Algorithm 2. If Z satisfies Z ≥
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V UB

Cmin
, then, under Assumption 3.2, the regret of the policy π

can be upper bounded as follows

Regret(π) ≤ Z ·O
(√

TD′ · logm
)

+ E

[
τ∑

t=1

max
a

∣∣〈xt,µ
⋆
a − µs

a,t−1

〉∣∣+D
∥∥∥Ŵa,t −W ⋆

a

∥∥∥
∞

]

+ (4Rmax + 2D′Z) ·
T∑

t=1

Kϵt,

by setting δ = O

(√
logm
TD′

)
, where Rmax =

supx,a∈[K] |⟨x,µ⋆
a⟩| and D′ denotes an upper bound of

bi(yt,xt) as specified in Assumption 3.2.

The three terms in Theorem 5.1 exhibit distinct components
of Algorithm 2 that contribute to the final regret bound. The
first term represents the effect of the dual update using the
Hedge algorithm (Freund & Schapire, 1997). While the
last two terms arise from online sparse estimation and ϵ-
greedy exploration, both of which can be categorized as
consequences of the primal update. Given that the estima-
tion error is confined by Corollary B.1 and Proposition B.2,
we can establish the following regret bound:

Theorem 5.2. Under Assumption 3.2, if Z satisfies V UB

Cmin
≤

Z ≤ O
(

V UB

Cmin
+ 1
)

, then the regret of Algorithm 2 can be
upper bounded by

Regret(π) ≤ O

(
V UB

Cmin
+ 1

)
·
√
D′T · logm

+ Õ

(
ϕ
− 2

3

min(s) ·
(
Rmax +D′ V

UB

Cmin

) 1
3

K
1
3 s

2
3
0 T

2
3

)

by setting δ = O

(√
logm
TD′

)
, and ϵt = Θ

(
t−

1
3 ∧ 1/K

)
.

The result generally shows a two-phase regret of
high-dimensional BwK problem, i.e., Regret(π) =

Õ

(
V UB

Cmin

√
T +

(
V UB

Cmin

) 1
3

T
2
3

)
, which reveals the leading

effects of primal or dual updates on the regret under different
situations. That is, if V UB

Cmin
= O(T

1
4 ), then our constraints

are sufficient enough for decision-making such that learning
the primal information will be the barrier of the problem,

which leads to Regret(π) = Õ

((
V UB

Cmin

) 1
3

T
2
3

)
; however

when V UB

Cmin
≥ ω(T

1
4 ), our constraints are considered scarce,

positioning the dual information as the bottleneck of the
problem, and thus Regret(π) = Õ

(
V UB

Cmin

√
T
)

. Most no-
tably, our regret only shows logarithmic dependence on the
dimension d, which improves the polynomial dependency

on d in previous results (Agrawal & Devanur, 2016) and
makes the algorithm more feasible for high-dimensional
problems.

5.2. Estimating reward-constraint ratio

The Algorithm 2 require an estimation of reward-constraint
ratio Z. Such an estimation can be obtained from linear
programming similar to that in (Agrawal & Devanur, 2016).
However, different from (Agrawal & Devanur, 2016), we
will use the estimators obtained in Algorithm 1 to construct
a relaxed linear programming. To be specific, we choose
a parameter T0 and use the first T0 periods to obtain an
approximation of V UB , i.e., V̂ , by uniform sampling. We
show that as long as T0 = Õ

(
s20 · T 2

C2
min

)
, we will have Z =

O( V
UB

Cmin
+1) with high probability. If further the constraints

grow linearly, i.e., Cmin = Ω(T ), we only require T0 =

Õ (1) in general. See the appendix for details.

5.3. Improved regret with diverse covariate

In Theorem 5.2, it is shown that the primal update may be-
come the bottleneck of the regret. This happens because we
have to compromise between exploration and exploitation.
However, in some cases, when the covariates are diverse
enough, our dual allocation algorithm will naturally explore
sufficient arms, leading to significant improvement in the
exploitation. We now describe such a case with the notion
of diverse covariate condition (Ren & Zhou, 2023).

Assumption 5.3 (Diverse covariate). There are (possibly
K-dependent) positive constants γ(K) and ζ(K), such that
for any unit vector v ∈ Rd, ∥v∥2 = 1 and any a ∈ [K],
conditional on the history Ht−1, there is

P
(
v⊤xtx

⊤
t v · 1 {yt = a} ≥ γ(K)

∣∣Ht−1

)
≥ ζ(K),

where yt = argmaxa∈[K]{(µs
a,t−1)

⊤xt −Z · EstCost(a)}

Such a diverse covariate condition states that when we per-
form the online allocation task, our dual-based algorithm
can ensure sufficient exploration. This can be viewed as a
primal-dual version of the diverse covariate condition for
greedy algorithms (Han et al., 2020; Ren & Zhou, 2023). If
our covariate is diverse enough, we can just set ϵt = 0 in
Algorithm 2 to obtain a good performance of primal explo-
ration. We present the primal behavior of our algorithms in
the following Theorem 5.4.

Theorem 5.4. Denote κ1 = ϕmax(s)
γ(K)ζ(K) If we take ρ = 1

9κ4
1

,

and ηt =
1

4κ1ϕmax(s)
, then under Assumption 3.2 and 5.3,

setting ϵt = 0, the output of Algorithm 1 satisfies

E∥µa,t − µ⋆
a∥

2
2 ≲

σ2D2s0
γ2(K)ζ2(K)

· log d
t

,
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and the high-probability bound

∥µa,t − µ⋆
a∥

2
2 ≲

σ2D2s0
γ2(K)ζ2(K)

· log(dTK/ε)

t
,

holds with probability at least 1− ε.

Theorem 5.4 suggests that under the diverse covariate con-
dition, our algorithm can recover the sparse arms with a
statistical error rate that is optimal for t. This greatly im-
proves the primal performance of our algorithm and thus
leads to a sharper regret bound for the BwK problem. We
describe this improved regret in Theorem 5.5.

Theorem 5.5. If Z satisfies V UB

Cmin
≤ Z ≤ c V UB

Cmin
+ c′, then

the regret of the Algorithm 2 can be upper bounded by:

Regret(π) ≤ O

((
V UB

Cmin
+ 1

)√
TD′ logm

+
s0
√
T logK log(mdK)

γ(K)ζ(K)

)

by setting δ = O

(√
logm
T ·D′

)
, and ϵt = 0 for each t ∈ [T ].

The rationale behind setting ϵt = 0 in Algorithm 2 is
that, when our covariate vectors exhibit sufficient diver-
sity, our strategy will automatically explore enough arms
while simultaneously optimizing regret. This condition is
typically met in the online allocation problem where the
optimal strategy is often a distribution within arms, rather
than a single arm (Badanidiyuru et al., 2018). This starkly
contrasts with the classical multi-armed bandit problem,
where the optimal solution is typically confined to a sin-
gle arm. Theorem 5.5 significantly reduces the impact of

primal update on the regret from Õ

((
V UB

Cmin

) 1
3

T
2
3

)
to a

sharper Õ
(
s0
√
T
)

, which makes the impact of the dual
update the dominating factor of regret, giving the bound
Regret(π) = Õ

(
V UB

Cmin

√
T
)

.

6. Optimal High-dimensional Bandit
Algorithm

An important application of our Algorithm 1 is the high-
dimensional bandit problem (Carpentier & Munos, 2012;
Hao et al., 2020), where we do not consider the knap-
sacks but only focus on reward maximization (or, we can
treat the bandit problem as a special BwK problem where
the constraints are always met). Here we associate our
algorithm with ϵ-greedy strategy and show that our high-
dimensional bandit algorithm by Online HT can achieve
both the Õ(s

2
3
0 T

2
3 ) optimal regret in the data-poor regime,

and the Õ(
√
s0T ) optimal regret in the data-rich regime,

which enjoys the so-called “the best of two worlds”.

Algorithm 3 High Dimensional Bandit by Online HT

1: ϵ-greedy sampling probability ϵt for each t. µs
a,0 = 0,

step size ηt.
2: for t = 1, ..., T do
3: Observe the feature xt.
4: Sample a random variable νt ∼ Ber(Kϵt).
5: Pull the arm yt with ϵt-greedy strategy defined as

follows:

yt =

 arg max
a∈[K]

〈
xt,µ

s
a,t−1

〉
, if νt = 0

a, w.p. 1/K for each a ∈ [K] if νt = 1

and receive a reward rt.
6: For each a ∈ [K], update the sparse estimate µs

a,t by
Algorithm 1 with each pa,t = (1−Kϵt)ya,t + ϵt

7: end for

Theorem 6.1. Let Rmax = sup |⟨xt,µ
a
⋆⟩|. Choosing

ϵt = σ
2
3D

4
3 s

2
3
0 (log(dK))

1
3 t−

1
3 / (RmaxK)

2
3 ∧ 1/K, our

Algorithm 3 incurs the regret

Regret(π) ≲
R

1
3
maxK

1
3σ

2
3D

4
3 s

2
3
0 T

2
3 (log(dK))

1
3

ϕmin(s)
2
3

Theorem 6.1 states the optimality of our high-dimensional
bandit algorithm under minimal assumptions, which
matches the Ω

(
ϕ
−2/3
min s

2/3
0 T 2/3

)
lower bound (Jang et al.,

2022) in the data-poor regime d ≥ T
1
3 s

4
3
0 . We further show

that, we can use the same algorithm framework to achieve
better regret given the diverse covariate condition, which
will match the regret lower bound for data-rich regimes. We
present our result in Theorem 6.2.

Theorem 6.2. Suppose xt is further sparse marginal sub-
Gaussian:

E exp
(
u⊤xt

)
≤ exp

(
cϕmax(s0)∥u∥22/2

)
,

for any 2s0-sparse vector u. Assume the following diverse
covariate condition (Ren & Zhou, 2023) holds: There are
positive constants γ(K) and ζ(K), such that for any unit
vector v ∈ Rd, and any a ∈ [K], there is

P
(
v⊤xtx

⊤
t v · 1 {a⋆t = a} ≥ γ(K)

∣∣Ht−1

)
≥ ζ(K),

where a⋆t = maxa∈[K]

〈
xt,µ

s
a,t−1

〉
is selected greedily.

Denote κ1 = ϕmax(s)
γ(K)ζ(K) . Setting ϵt = 0, we have the follow-

ing regret bound for Algorithm 3:

Regret(π) ≤ Õ


(
κ1 ∧ s0D

2

γ(K)ζ(K)

) 1
2

σD
√
s0T√

γ(K)ζ(K)

 .
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The regret of our bandit algorithm indeed matches the
known low bound of high-dimensional bandit problems
Ω(

√
s0T ) (Chu et al., 2011; Ren & Zhou, 2023). Compared

with previous LASSO-based frameworks, no additional as-
sumption on the range of arms (e.g., ℓ2-norm bound of µ⋆

a

(Ren & Zhou, 2023)) or the minimum signal strength (Hao
et al., 2020; Jang et al., 2022) is needed for our algorithm
to achieve the optimal regret in the data-rich regime, as
long as the diverse covariate condition holds. The sparse
marginal sub-Gaussian assumption here is used to yield a
more precise characterization of errors w.r.t s0. If without
this assumption, there will be no κ1 term in the regret bound.

7. Numerical Results
7.1. Sparse recovery

We first examine the feasibility of our primal algorithm in
the sparse recovery problem. To check the performance
of Algorithm 1, suppose now we only consider one arm
µ⋆, and we want to estimate it in an online process. To
this end, we always choose yt = 1 and thus pt = 1. At
each t, we measure the sparse estimation error ∥µs

t − µ⋆∥22,
and the support recovery rate |supp(µs

t) ∩ Ω⋆|/s0, which
indicates the ratio of the support set we have detected. The
result is presented in Figure 1. Here we set d = 1000, s0 =
10, σ = 0.5, and Σ to be the power decaying covariance
matrix: Σij = α|i−j|, where α = 0.5. Compared with the
prevalent LASSO method used in online high dimensional
bandit problem (Kim & Paik, 2019; Hao et al., 2020; Ren
& Zhou, 2023), our method shares efficient computational
cost while achieving better estimation error. See Figure
1 for the arm estimation and support set recovery of our
method. To be specific, the computational cost of Online
HT is O(d2) per iteration and O(d2T ) in total, while the
computational cost of classical LASSO solution is O(d3 +
d2t) per iteration (Efron et al., 2004), and O(d3T + d2T 2)
in total if we require constant updates of the estimation,
e.g., (Kim & Paik, 2019; Ren & Zhou, 2023). Here in the

LASSO, we select the regularization level λ = c ·
√

log(dt)
t ,

where c is selected to be {5, 1, 0.1} respectively. One huge
advantage that distinguishes our method from LASSO or
soft thresholding method (Han et al., 2023a) is that we can
achieve a guaranteed exact s0-sparse estimation without
parameter tuning.

7.2. Online bandit problem

We then apply our Algorithm 3 to the high-dimensional
linear bandit problem, and Primal-dual based Algorithm 2
to the linear BwK problem to corroborate our study on the
regret.

For the bandit problem, we choose d = 100, s0 = 10,
K = 5. The covariates are still generated following Section

Figure 1. Primal performance of Online HT vs LASSO.

7.1. We study the regret accumulation for a fixed T and
regret growth with respect to different T s, respectively. The
result is presented in Figure 2. Here, we mainly compare our
ϵ-greedy Online HT method with LASSO bandit algorithm
(Explore-Then-Commit method) in, e.g., (Hao et al., 2020;
Li et al., 2022; Jang et al., 2022). In our simulation, we try
different lengths of exploration phases t1 as t1 = 0.3T

2
3

and t1 = 0.5T
2
3 for LASSO bandit algorithm. The greedy

Online HT means we simply treat each ϵt = 0. It can be
observed that our method outperforms the LASSO bandit
algorithm in the regret growth, and the greedy Online HT
shows far slower regret growth than other algorithms.

Figure 2. Regret of Online HT vs LASSO Bandit.

7.3. High-dimensional BwK

We now focus on the linear BwK problem with high-
dimensional sparse arms. We show the performance of our
algorithm, together with the classic UCB-based linear BwK
algorithm, i.e., the linCBwK (Agrawal & Devanur, 2016), to
demonstrate the feasibility of the Online HT method. Notice
that, in the original paper of (Agrawal & Devanur, 2016),
the linCBwK algorithm is designed for Model-C bandit
problem, but it can be easily generalized to our Model-P
setting by computing the UCB of multiple arms at the same
time. We set d = 200, s0 = 10, K = 5, with generated
following Section 7.1. The constraints are randomly gener-
ated following uniform distribution with m = 5, and each
row of W ⋆

a is also sparse with the support set same as µ⋆
a.

We present our methods’ regret and relative regret control
in Figure 3. The relative regret is defined by Regret

OPT . It can
be observed that when T is small, linCBwK fails to control

8
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the cumulative regret due to the high dimensionality of the
problem. As T grows larger, the impact of high dimension-
ality is decreased and thus two methods behave comparably.
The relative regret curves also show this phenomenon. Our
Online HT methods share faster convergence rates for the
relative regret in the data-poor regime.

Figure 3. Regret of Online HT vs linCBwK for CBwK problem.

Impact Statement
This paper derives a new online sparse estimator and devel-
ops a unified approach to solve the online allocation problem
with high-dimensional covariates. The work presented by
this paper advances the field of Machine Learning. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here
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Supplement to “High-dimensional Linear Bandits with Knapsacks”

A. Further Related Literature
A.1. Related Literature

Bandit with knapsacks problem (Badanidiyuru et al., 2013; Agrawal & Devanur, 2014) can be viewed as a special case
of online allocation problem, where reward functions are unknown for decision-makers. Unlike other resource allocation
problems (Jiang et al., 2020; Balseiro et al., 2023; Ma et al., 2022), the BwK problem poses strong demands on balancing
exploration and exploitation. In the face of uncertainty, this trade-off is mainly handled by, e.g., elimination-based algorithms
(Badanidiyuru et al., 2013; 2018), or UCB (Agrawal & Devanur, 2014), or primal-dual algorithms (Badanidiyuru et al., 2013;
Li et al., 2021). In the contextual BwK problem (CBwK), some well-established methods have been proposed, including
policy elimination (Badanidiyuru et al., 2014) and UCB-type algorithm (Agrawal & Devanur, 2016). Recently, (Slivkins
et al., 2023) summarized a general primal-dual framework for contextual BwK with a regression-based primal algorithm.
However, the currently well-known CBwK methods (Badanidiyuru et al., 2014; Agrawal & Devanur, 2016; Slivkins et al.,
2023) all suffer from O(

√
d) dependence on the dimension in the regret, which hugely confines their applicants to the

low-dimensional case. The failure of classic CBwK methods for large d strongly motivates us to explore the CBwK problem
with high-dimensional contexts, which is frequently encountered in the real world, like user-specific recommendations and
personalized treatments (Bastani & Bayati, 2020).

To study high-dimensional CBwK problems, naturally, we may think of learning experiences from high-dimensional
contextual bandit problems. As the origin of the CBwK problem, the contextual bandit problem has been more actively
studied in high-dimensional settings. Based on the LASSO method, many sampling strategies have been devised. Noticeable
force-sampling strategy in (Bastani & Bayati, 2020) achieves a regret O

(
s20 · (log d+ log T )

2
)

under the margin condition,

and has been improved by (Wang et al., 2018) to a sharper minimax rate O
(
s20 · (log d+ s0) · log T

)
. (Kim & Paik, 2019)

has constructed a doubly-robust ε-greedy sampling strategy by re-solving LASSO, yielding a regret of order Õ(s0
√
T ).

(Hao et al., 2020; Li et al., 2022; Jang et al., 2022) introduced an Explore-then-Commit LASSO bandit framework with regret
Õ(s

2/3
0 T 2/3). As is shown in (Jang et al., 2022), the regret lower bound of sparse bandit problem is Ω

(
ϕ
−2/3
min s

2/3
0 T 2/3

)
in

the data-poor regime d ≥ T
1
3 s

4
3
0 . However, another stream of work showed that, for the general data-rich regime, the optimal

regret is of order Ω(
√
s0T ) (Chu et al., 2011; Ren & Zhou, 2023) and can be obtained with additional covariate conditions,

for example, diverse covariate condition (Ren & Zhou, 2023), and balanced covariance condition, (Oh et al., 2021; Ariu
et al., 2022), etc. The two-phase optimal regret of the sparse bandit problem leads to an open question, i.e., can we achieve
“the best of two worlds” of sparse bandit problem in both data-poor and data-rich regimes with a unified framework (Hao
et al., 2020)? In our paper, we will answer this question affirmatively by providing our Online HT algorithm in the sparse
bandit setting.

The idea of hard thresholding is applied in our methodology for the consecutive online estimation. Hard thresholding finds
its application in sparse recovery primarily for the iterative hard thresholding methods (Blumensath & Davies, 2009). One
of the most intriguing properties of hard thresholding is that it can return an exact sparse estimation given any sparsity level.
Nonetheless, the poor smoothness behavior inhered in the hard thresholding projector (Shen & Li, 2017) makes it difficult to
analyze the error for iterative methods, especially for stochastic gradient descent methods with large variances. Therefore,
current applications of hard thresholding mainly focus on batch learning (Nguyen et al., 2017; Yuan & Li, 2021) or hybrid
learning (Zhou et al., 2018), while hard thresholding methods for online learning are still largely unexplored.

B. Addidtional Results
B.1. Estimation errors

Corollary B.1 is for the uniform error bound of estimating µ⋆
a.

Corollary B.1. Under the same condition as Theorem 4.1, we have the following uniform bound for the estimations over all
arms

E max
a∈[K]

∥∥µs
a,t − µ⋆

a

∥∥2
2
≲

σ2D2s0
ϕ2
min(s)

log(dK)

t2

 t∑
j=1

1

pj


12
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Moreover, the exact uniform error bound for estimating W ⋆
a is given in the following proposition:

Proposition B.2. Under the same conditions as Theorem 4.1, using Algorithm 1 to estimate W ⋆
a will lead to the uniform

error bound:

E max
a∈[K]

∥∥∥Ŵa,t −W ⋆
a

∥∥∥2
2,max

≲
σ2D2s0
ϕ2
min(s)

log(mdK)

t2

 t∑
j=1

1

pj

 .

B.2. Obtain parameter Z

We now show the procedure for computing the parameter Z to serve as an input to Algorithm 2. The procedure is similar to
that in (Agrawal & Devanur, 2016), however, we will use the estimator obtained in Algorithm 1. To be specific, we specify a
parameter T0 and we use the first T0 periods to obtain an estimate of V UB. Then, the estimate can be obtained by solving
the following linear programming.

V̂ = max
T

T0
·

T0∑
t=1

∑
a∈[K]

(µs
a,T0

)⊤xt · ya,t (5a)

s.t.
T

T0
·

T0∑
t=1

∑
a∈[K]

W ⋆
axt · ya,t ≤ C + δ (5b)

ya,t ∈ [0, 1],
∑

a∈[K]

ya,t = 1,∀t ∈ [T0]. (5c)

We have the following bound regarding the gap between the value of V UB and its estimate V̂ .

Lemma B.3. If setting δ ≥ 2TD ·maxa∈[K] ∥W ⋆
a − Ŵa,T0∥∞ ∨ ∥µ⋆

a − µs
a,T0

∥1, then with probability at least 1− β, it
holds that

∣∣∣V̂ − V UB
∣∣∣ ≤ C

V UB

Cmin

(
δ +

δ2

Cmin
+ (1 + δ)TD′

√
1

T0
log

1

β
+

T 2D′2

CminT0
log

1

β

)
+ Cδ

Therefore, by uniform sampling from time 1 to T0, we can simply set Z = O
(

V̂
Cmin

)
, and as long as T0 =

O
(
s20 · T 2

C2
min

· log 1
β

)
, we get that Z = O( V

UB

Cmin
+ 1) with probability at least 1 − β from the high probability bound

of our sparse estimator in Theorem 4.1. If further the constraints grow linearly, i.e., Cmin = Ω(T ), we only require
T0 = O

(
s20 log

1
β

)
in general.

C. Proofs of Main Results
C.1. Proof of Theorem 4.1

Proof. We first denote µ̃t = µt−1 − ηtgt, and the support Ω = Ωt ∪ Ωt−1 ∪ Ω⋆ as the union of the support set of
µt, µt−1, and µ⋆. We shall use PΩ(x) to represent the projection onto the support Ω. In the following proof, we will
mainly focus on the s-sparse estimation µt rather than the exact s0-sparse estimation µs

t since µs
t = Hs0(µt) and thus

∥µs
t − µ⋆∥2 ≤ 2∥µt − µ⋆∥2 by (Shen & Li, 2017). For the iterative method, we have

∥µt − µ⋆∥22 = ∥Hs(PΩ(µ̃t))− µ⋆∥22 ≤

(
1 +

ρ+
√

ρ(4 + ρ)

2

)
∥PΩ(µ̃t)− µ⋆∥22,

13
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by the tight bound of hard thresholding operator (Shen & Li, 2017). Here ρ = s0/s is the relative sparsity level. By selecting
a small enough ρ (e.g., ρ ≤ 1

4 ), it is clear that

∥µt − µ⋆∥22 ≤
(
1 +

3

2

√
ρ

)
∥PΩ(µ̃t)− µ⋆∥22

=

(
1 +

3

2

√
ρ

)(
∥µt−1 − µ⋆∥22 − 2ηt ⟨PΩ(gt),µt−1 − µ⋆⟩+ η2t ∥PΩ(gt)∥22

)
≤
(
1 +

3

2

√
ρ

)(
∥µt−1 − µ⋆∥22 − 2ηt ⟨∇f(µt−1),µt−1 − µ⋆⟩+ 2η2t ∥PΩ(gt −∇f(µt−1))∥22

+2η2t ∥PΩ(∇f(µt−1))∥22 + 2ηt∥PΩ(gt −∇f(µt−1))∥2∥µt−1 − µ⋆∥2
)
,

where we use the fact that ⟨∇f(µt−1),µt−1 − µ⋆⟩ = ⟨PΩ(∇f(µt−1)),µt−1 − µ⋆⟩ by the definition of PΩ(·). Now,
applying the restricted strong convexity and smoothness condition from Assumption 3.2:

⟨∇f(µt−1),µt−1 − µ⋆⟩ ≥ 2ϕmin(s)∥µt−1 − µ⋆∥22
∥PΩ(∇f(µt−1))∥ ≤ 2ϕmax(s)∥µt−1 − µ⋆∥2,

We can show that

∥µt − µ⋆∥22 ≤
(
1 +

3

2

√
ρ

)(
1− 4ϕmin(s)ηt + 8η2t ϕ

2
max(s)

)
∥µt−1 − µ⋆∥22

+ 6η2t ∥PΩ(gt −∇f(µt−1))∥22 + 6ηt∥PΩ(gt −∇f(µt−1))∥2∥µt−1 − µ⋆∥2

≤
(
1 +

3

2

√
ρ

)(
1− 4ϕmin(s)ηt + 8η2t ϕ

2
max(s)

)
∥µt−1 − µ⋆∥22

+ 18sη2t max
i∈[d]

|⟨gt −∇f(µt−1), ei⟩|2 + 18ηt
√
smax

i∈[d]
|⟨gt −∇f(µt−1), ei⟩|∥µt−1 − µ⋆∥2

(6)

The following lemma quantifies the variation of the stochastic gradient:

Lemma C.1. Define {ei}d1 as the canonical basis of Rd. The variance of stochastic gradient gt at the point µt−1 can be
bounded by the following inequality:

Emax
i∈[d]

|⟨gt −∇f(µt−1), ei⟩|2 ≤ C
sD2 log(dt)

t2

 t∑
j=1

1/pj

E∥µt−1 − µ⋆∥22 + C
σ2D2(

∑t
j=1 1/pj) log d

t2
. (7)

Moreover, the following inequality also holds with probability at least 1− ϵ

max
i∈[d]

|⟨gt −∇f(µt−1), ei⟩|2 ≤ CsD2 log(d/ϵ)

t2

 t∑
j=1

1

pj

 ∥µt−1 − µ⋆∥22 + C
σ2D2(

∑t
j=1 1/pj) log(d/ϵ)

t2

With Lemma C.1, we are able to derive the expectation bound and probability bound respectively. For the expectation bound,
we have

E∥µt − µ⋆∥22 ≤
(
1 +

3

2

√
ρ

)(
1− 4ϕmin(s)ηt + 8η2t ϕ

2
max(s)

)
E∥µt−1 − µ⋆∥22

+ 18sη2tEmax
i∈[d]

|⟨gt −∇f(µt−1), ei⟩|2

+ 18ηt
√
s
√
Emax

i∈[d]
|⟨gt −∇f(µt−1), ei⟩|2

√
E∥µt−1 − µ⋆∥22
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We set ρ = 1
9κ4 , and ηt =

1
4κϕmax(s)

. Plugging in the expectation bound in Lemma C.1, we have

E∥µt − µ⋆∥22 ≤

1− 1

4κ4
+ C

s0D
√
log(dt)

ϕmin(s)t

√√√√ t∑
j=1

1/pj

E∥µt−1 − µ⋆∥22

+ C
s0σ

2D2(
∑t

j=1 1/pj) log d

ϕ2
min(s)t

2
+ C

√
s0σ2D2(

∑t
j=1 1/pj) log d

ϕ2
min(s)t

2
E∥µt−1 − µ⋆∥22.

When t is sufficiently large, essentially we have

E∥µt − µ⋆∥22 ≤
(
1− 1

5κ4

)
E∥µt−1 − µ⋆∥22

+ C
s0σ

2D2(
∑t

j=1 1/pj) log d

ϕ2
min(s)t

2
+ C

√
s0σ2D2(

∑t
j=1 1/pj) log d

ϕ2
min(s)t

2
E∥µt−1 − µ⋆∥22.

This instantly gives us the expectation bound

E∥µt − µ⋆∥22 ≲
σ2D2s0
ϕ2
min(s)

log d

t2

 t∑
j=1

1

pj

 ,

which proves the first claim. Following a similar fashion, we can also prove the high-probability bound: with probability at
least 1− ϵ, we have

∥µt − µ⋆∥22 ≤

1− 1

4κ4
+ C

s0D
√

log(dT/ϵ)

ϕmin(s)t

√√√√ t∑
j=1

1/pj

 ∥µt−1 − µ⋆∥22

+ C
s0σ

2(
∑t

j=1 1/pj) log(dT/ϵ)

ϕ2
min(s)t

2
+ C

√
s0σ2(

∑t
j=1 1/pj) log(dT/ϵ)

ϕ2
min(s)t

2
∥µt−1 − µ⋆∥2,

for all the t ∈ [T ]. When t is sufficiently large, essentially we have

∥µt − µ⋆∥22 ≤
(
1− 1

5κ4

)
∥µt−1 − µ⋆∥22

+ C
s0σ

2D2(
∑t

j=1 1/pj) log(dT/ϵ)

ϕ2
min(s)t

2
+ C

√
s0σ2D2(

∑t
j=1 1/pj) log(dT/ϵ)

ϕ2
min(s)t

2
∥µt−1 − µ⋆∥2.

It is therefore clear that

∥µt − µ⋆∥22 ≲
σ2D2s0
ϕ2
min(s)

log(dT/ε)

t2

 t∑
j=1

1

pj


holds for all t ∈ [T ] with probability at least 1− ϵ. Thus, we finish the proof.

C.2. Proof of Lemma C.1

Proof. Define {ei}d1 as the canonical basis of Rd. Since

gt = 2Σ̂tµt−1 −
2

t

t∑
j=1

yjxjrj/pt =
2

t

t∑
j=1

(
yjxjx

⊤
j

pj

)
(µt−1 − µ⋆)−

2

t

t∑
j=1

yjxjξj/pt,

= 2Σ̂t(µt−1 − µ⋆)−
2

t

t∑
j=1

yjxjξj/pt
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we have

|⟨gt −∇f(µt−1), ei⟩| =

∣∣∣∣∣∣
〈
2
(
Σ̂t −Σ

)
(µt−1 − µ⋆)−

2

t

t∑
j=1

yjxjξj/pt, ei

〉∣∣∣∣∣∣
≤ 2
∣∣∣〈(Σ̂t −Σ

)
(µt−1 − µ⋆), ei

〉∣∣∣︸ ︷︷ ︸
Part 1

+2

∣∣∣∣∣∣1t
t∑

j=1

yjxj,iξj/pt

∣∣∣∣∣∣︸ ︷︷ ︸
Part 2

We consider the two parts separately. Notice that, in the first part, µt−1 −µ⋆ is at most 2s-sparse, which means that the first
part can be bounded by

max
i∈[d]

∣∣∣〈(Σ̂t −Σ
)
(µt−1 − µ⋆), ei

〉∣∣∣ ≤2 max
i,j∈[d]

∣∣∣Σ̂t,ij −Σij

∣∣∣∥µt−1 − µ⋆∥ℓ1

≤2
√
2s max

i,k∈[d]

∣∣∣∣∣∣1t
t∑

j=1

yjxj,ixj,k/pj −Σik

∣∣∣∣∣∣∥µt−1 − µ⋆∥2.

Here we use the Hölder’s inequality. The concentration of maxi,k∈[d]

∣∣∣ 1t ∑t
j=1 yjxj,ixj,k/pj −Σik

∣∣∣ implies that:

P

 max
i,k∈[d]

∣∣∣∣∣∣1t
t∑

j=1

yjxj,ixj,k/pj −Σik

∣∣∣∣∣∣ ≥ z

 ≤ d2 max
i,k∈[d]

P

∣∣∣∣∣∣1t
t∑

j=1

yjxj,ixj,k/pj −Σik

∣∣∣∣∣∣ ≥ z

 ,

By the martingale structure of 1
t

∑t
j=1 yjxj,ixj,k/pj −Σik:

E [yjxj,ixj,k/pj −Σik|Hj−1] = 0, |yjxj,ixj,k/pj −Σik| ≤ 2D2/pj ,

We can use the Bernstein-type martingale concentration inequality in Lemma C.2 to derive the following bound:

P

∣∣∣∣∣∣1t
t∑

j=1

yjxj,ixj,k/pj −Σik

∣∣∣∣∣∣ ≥ z

 ≤ 2 exp

(
− cz2

D4(
∑t

j=1 1/pj)/t
2 + 2D2z/(tpt)

)
,

where we select v2 = D4(
∑t

j=1 1/pj)/t
2, and b = 2D2/(tpt). Thus, with the probability at least 1− ϵ, we can control the

concentration at the level:∣∣∣∣∣∣1t
t∑

j=1

yjxj,ixj,k/pj −Σik

∣∣∣∣∣∣ ≤ CD2 1

t

√√√√ t∑
j=1

1

pj

√
log(1/ϵ) + CD2 1

tpt
log(1/ϵ).

For simplicity, we only consider pj = j−α. Then, when α ≤ 1
3 , the tail can be controlled by the level

∣∣∣∣∣∣1t
t∑

j=1

yjxj,ixj,k/pj −Σik

∣∣∣∣∣∣ ≤ CD2 1

t

√√√√ t∑
j=1

1

pj

√
log(1/ϵ) = Lϵ

For the bound on the expectation, we have

Emax
i∈[d]

∣∣∣〈(Σ̂t −Σ
)
(µt−1 − µ⋆), ei

〉∣∣∣2 ≤ 8sE max
i,k∈[d]

∣∣∣∣∣∣1t
t∑

j=1

yjxj,ixj,k/pj −Σik

∣∣∣∣∣∣
2

∥µt−1 − µ⋆∥22
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Define µ̄ as an upper bound of the ∥µ⋆∥2 which can as large as O(Poly(d)). We choose ϵ = σ2

s2d2(
∑t

j=1 1/pj)µ̄2D2 . It follows

that

Emax
i∈[d]

∣∣∣〈(Σ̂t −Σ
)
(µt−1 − µ⋆), ei

〉∣∣∣2
≤ E8s1

 max
i,k∈[d]

∣∣∣∣∣∣1t
t∑

j=1

yjxj,ixj,k/pj −Σik

∣∣∣∣∣∣ ≤ Lϵ

L2
ϵ∥µt−1 − µ⋆∥22

+ CEs1

 max
i,k∈[d]

∣∣∣∣∣∣1t
t∑

j=1

yjxj,ixj,k/pj −Σik

∣∣∣∣∣∣ > Lϵ

 sµ̄2D4

1

t

t∑
j=1

1/pj

2

≤ CsL2
ϵE∥µt−1 − µ⋆∥22 + C

σ2

t2
(

t∑
j=1

1/pj)

≤ Cs
D2

t2
(

t∑
j=1

1/pj)

(
log(dt) + log

(
µ̄D2

σ

))
E∥µt−1 − µ⋆∥22 + C

σ2D2

t2
(

t∑
j=1

1/pj)

(8)

This gives the upper bound of Part 1. We now proceed to control Part 2 analogously. Invoke Lemma C.2 again, we select
v2 = σ2D2(

∑t
j=1 1/pj)/t

2, and b = σD/(tpt). We then have the concentration bound:

P

∣∣∣∣∣∣1t
t∑

j=1

yjxj,iξj/pt

∣∣∣∣∣∣ ≥ z

 ≤ 2 exp

(
− cz2

σ2(
∑t

j=1 1/pj)/t
2 + 2σz/(tpt)

)

≤ 4 exp

(
− cz2

2σ2D2(
∑t

j=1 1/pj)/t
2

)
+ 4 exp

(
− cz

4σD/(tpt)

)

and the tail on the maximum:

P

max
i∈[d]

∣∣∣∣∣∣1t
t∑

j=1

yjxj,iξj/pt

∣∣∣∣∣∣ ≥ z

 ≤ 4d exp

(
− cz2

2σ2D2(
∑t

j=1 1/pj)/t
2

)
+ 4d exp

(
− cz

4σD/(tpt)

)

= 4 exp

(
− cz2

2σ2D2(
∑t

j=1 1/pj)/t
2
+ log d

)
+ 4d exp

(
− cz

4σD/(tpt)
+ log d

)

According to the tail-to-expectation formula: EX2 = 2
∫
zP(|X| > z)dz, we have

Emax
i∈[d]

∣∣∣∣∣∣1t
t∑

j=1

yjxj,iξj/pt

∣∣∣∣∣∣
2

≤8

∫ ∞

0

z exp

(
− cz2

2σ2D2(
∑t

j=1 1/pj)/t
2
+ log d

)
dz

+ 8

∫ ∞

0

z exp

(
− cz

4σD/(tpt)
+ log d

)
dz

≤8

∫ z1

0

zdz + 8

∫ ∞

z1

z exp

(
− cz2

2σ2D2(
∑t

j=1 1/pj)/t
2
+ log d

)
dz

+ 8

∫ z2

0

zdz + 8

∫ ∞

z2

z exp

(
− cz

4σD/(tpt)
+ log d

)
dz

≲
σ2D2(

∑t
j=1 1/pj) log d

t2
+

σD log d

tpt
+

σ2D2 log d2

t2p2t

≤C
σ2D2(

∑t
j=1 1/pj) log d

t2
.
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Here in the second inequality we choose z1 =
√

cσ2D2(
∑t

j=1 1/pj) log d/t
2, and z2 = cσD log d/(tpj), and compute

the integration by substitution. Combining Part 1 and Part 2, we have

Emax
i∈[d]

|⟨gt −∇f(µt−1), ei⟩|2 ≤ 8Emax
i∈[d]

∣∣∣〈(Σ̂t −Σ
)
(µt−1 − µ⋆), ei

〉∣∣∣2 + 8Emax
i∈[d]

∣∣∣∣∣∣1t
t∑

j=1

yjxj,iξj/pt

∣∣∣∣∣∣
2

≤ Cs
D2

t2
(

t∑
j=1

1/pj)

(
log(dt) + log

(
µ̄D2

σ

))
E∥µt−1 − µ⋆∥22

+ C
σ2D2(

∑t
j=1 1/pj) log d

t2
.

≤ C
sD2 log(dt)

t2
(

t∑
j=1

1/pj)E∥µt−1 − µ⋆∥22 + C
σ2D2(

∑t
j=1 1/pj) log d

t2
,

which gives us the first claim, the expectation bound. For the second claim, the probability bound, we only need to apply the
aforementioned tail bound to Part 1 and 2 again. With Lemma C.2, it is clear that with probability at least 1− ϵ,

max
i,k∈[d]

∣∣∣∣∣∣1t
t∑

j=1

yjxj,ixj,k/pj −Σik

∣∣∣∣∣∣ ≤ CD2 1

t

√√√√ t∑
j=1

1

pj

√
log(d/ϵ),

and with probability at least 1− ϵ,

max
i∈[d]

∣∣∣∣∣∣1t
t∑

j=1

yjxj,iξj/pt

∣∣∣∣∣∣ ≤ σD log(d/ϵ)

tpt
+ C

σD

t

√√√√ t∑
j=1

1

pj

√
log(d/ϵ) ≤ C

σD

t

√√√√ t∑
j=1

1

pj

√
log(d/ϵ).

Therefore, with probability at least 1− ϵ, the variation can be controlled by

max
i∈[d]

|⟨gt −∇f(µt−1), ei⟩|2 ≤ CsD2 log(d/ϵ)

t2

 t∑
j=1

1

pj

 ∥µt−1 − µ⋆∥22 + C
σ2D2(

∑t
j=1 1/pj) log(d/ϵ)

t2

Lemma C.2 (Bernstein-type Martingale Concentration for Heterogeneous Variables). Suppose {Dt}Tt=1 are martingale
differences that are adapted to the filtration {Ft}T−1

t=0 , i.e., E[Dt|Ft−1] = 0. If {Dt}Tt=1 satisfies

1.
∑T

t=1 Var(Dt|Ft−1) ≤ v2,

2. E
[
|Dt|k

∣∣∣Ft−1

]
≤ k!bk−2, for any k ≥ 3.

Then, there exists a universal constant c such that the following probability bound holds

P

(∣∣∣∣∣
T∑

t=1

Dt

∣∣∣∣∣ ≥ z

)
≤ 2 exp

(
− cz2

v2 + bz

)

This is a general version of Bernstein-type martingale concentration inequality (Freedman, 1975). The Lemma C.2 can be
easily justified by applying the martingale argument to the classic Bernstein inequality (see, for example, (Boucheron et al.,
2013), (Wainwright, 2019)). The key idea is to show that, conditional on the history Ft−1, the moment-generating function
of each Dt can be bounded by exp

(
− λ2σ2

t

1−b|λ|

)
(up to some constant factor) with the individual variance σ2

t .
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C.3. Proof of Corollary B.1

Proof. From the proof of Theorem 4.1, we can easily derive the following bound from equation (6):

max
a

∥µa,t − µ⋆
a∥

2
2 ≤

(
1 +

3

2

√
ρ

)(
1− 4ϕmin(s)ηt + 8η2t ϕ

2
max(s)

)
max

a
∥µa,t − µ⋆

a∥
2
2

+ 18sη2t max
i∈[d],a

|⟨ga,t −∇fa(µa,t−1), ei⟩|2 + 18ηt
√
s max
i∈[d],a

|⟨ga,t −∇fa(µa,t−1), ei⟩|max
a

∥µa,t−1 − µ⋆
a∥2.

(9)

Analogous to the proof of Lemma C.1, we can also prove that

Lemma C.3. We have

E max
i∈[d],a

|⟨ga,t −∇fa(µa,t−1), ei⟩|2 ≤ C
sD2 log(dKt)

t2

 t∑
j=1

1/pj

Emax
a

∥µa,t − µ⋆
a∥

2
2

+ C
σ2D2(

∑t
j=1 1/pj) log(dK)

t2
.

Here, we have an extra logK term compared with Lemma C.1 because we take the maximum overall arms. Together with
(9), we can essentially show that

Emax
a

∥∥µs
a,t − µ⋆

a

∥∥2
2
≲

σ2D2s0
ϕ2
min(s)

log(dK)

t2

 t∑
j=1

1

pj

 ,

C.4. Proof of Proposition B.2

Proof. The proof is analogous to the proof of Corollary B.1. Notice that, if we substitute µ⋆
a with W ⋆

a,i· and substitute rt
with bi(a,xt), then for each i we will have

max
a

∥∥Wa,i·,t −W ⋆
a,i·
∥∥2
2
≤
(
1 +

3

2

√
ρ

)(
1− 4ϕmin(s)ηt + 8η2t ϕ

2
max(s)

)
max

a

∥∥Wa,i·,t −W ⋆
a,i·
∥∥2
2

+ 18sη2t max
j∈[d],a

∣∣〈gi
a,t −∇f i

a(Wa,i·,t−1), ej
〉∣∣2

+ 18ηt
√
s max
j∈[d],a

∣∣〈gi
a,t −∇f i

a(Wa,i·,t−1), ej
〉∣∣max

a

∥∥Wa,i·,t−1 −W ⋆
a,i·
∥∥
2
.

(10)

Here Wa,i·,t is the s-sparse estimation of W ⋆
a,i·, and Ŵa,i·,t = Hs0(Wa,i·,t) is the exact s0-sparse estimation. gi

a,t means
the corresponding averaged stochastic gradient for estimating W ⋆

a,i·. Taking maximum over i ∈ [m] on both sides of (10),

we can derive that the 2,max-norm, i.e., maxa ∥Wa,t −W ⋆
a ∥

2
2,max = maxi∈[m],a

∥∥Wa,i·,t −W ⋆
a,i·
∥∥2
2
, can be controlled

by the variance in the gradient:

E max
i∈[m],j∈[d],a

∣∣〈gi
a,t −∇f i

a(Wa,i·,t−1), ej
〉∣∣2 ≤ C

sD2 log(dKmt)

t2

 t∑
j=1

1/pj

E max
i∈[m],a

∥∥Wa,i·,t −W ⋆
a,i·
∥∥2
2

+ C
σ2D2(

∑t
j=1 1/pj) log(dKm)

t2
.

This, similar to Lemma C.3, can be derived from the proof of Lemma C.1 by just changing the number of elements when
taking the maximum. This leads to the expectation bound for estimating W ⋆

a :

E max
a∈[K]

∥Wa,t −W ⋆
a ∥

2
2,max ≲

σ2D2s0
ϕ2
min(s)

log(mdK)

t2

 t∑
j=1

1

pj

 .
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Using the property of the hard thresholding operator (Shen & Li, 2017) we can conclude our proof of the bound on

Emaxa∈[K]

∥∥∥Ŵa,t −W ⋆
a

∥∥∥2
2,max

.

C.5. Proof of Theorem 5.1

Proof . For simplicity, we just write the sparse estimations of all µs
a,t as Mt ∈ Rd×K collectively in the following regret

analysis of the BwK problem, with the corresponding optimal value M⋆ ∈ Rd×K . We denote by τ the time period that one
of the resources is depleted or let τ = T if there are remaining resources at the end of the horizon. Note that by the decision
rule of the algorithm, for each t, with probability 1−Kϵt, we have

(M⊤
t−1xt)

⊤yt(xt)− Z · η⊤
t

∑
a∈[K]

Ŵa,txtya,t(xt) ≥ (M⊤
t−1xt)

⊤y∗(xt)− Z · η⊤
t

∑
a∈[K]

Ŵa,txty
∗
a(xt) (11)

where we denote by y∗ ∈ RK one optimal solution to V UB. On the other hand, with probability Kϵt, we pull an arm
randomly in the execution of Algorithm 2, which implies that

(M⊤
t−1xt)

⊤yt(xt)− Z · η⊤
t

∑
a∈[K]

Ŵa,txtya,t(xt)

≥(M⊤
t−1xt)

⊤y∗(xt)− Z · η⊤
t

∑
a∈[K]

Ŵa,txty
∗
a(xt)− 2Rmax − 2D′Z

(12)

since (M⊤
t−1xt)

⊤yt(xt) − Z · η⊤
t

∑
a∈[K] Ŵa,txtya,t(xt) ≥ −Rmax − D′Z and (M⊤

t−1xt)
⊤y∗(xt) − Z ·

η⊤
t

∑
a∈[K] Ŵa,txty

∗
a(xt) ≤ Rmax +D′Z. Then, we take expectations on both sides of (11) and sum up t from t = 1 to

t = τ to obtain

E

 τ∑
t=1

(M⊤
t−1xt)

⊤yt(xt)− Z · η⊤
t

∑
a∈[K]

Ŵa,txtya,t(xt)


≥E

 τ∑
t=1

(M⊤
t−1xt)

⊤y∗(xt)− Z · η⊤
t

∑
a∈[K]

Ŵa,txty
∗
a(xt)

− 2(Rmax +D′Z) ·
T∑

t=1

Kϵt.

(13)

We can substitute Mt−1, Ŵa,t with their true values M⋆, W ⋆
a by the following inequalities:

E
τ∑

t=1

[
(M⊤

t−1xt)
⊤y∗(xt)

]
≥ E

τ∑
t=1

[
((M⋆)⊤xt)

⊤y∗(xt)
]
− E

τ∑
t=1

max
a

∣∣〈xt,µ
⋆
a − µs

a,t−1

〉∣∣
= E

τ

T
· V UB − E

τ∑
t=1

max
a

∣∣〈xt,µ
⋆
a − µs

a,t−1

〉∣∣, and

E
τ∑

t=1

·η⊤
t

∑
a∈[K]

Ŵa,txty
∗
a(xt) ≤ E

τ∑
t=1

·η⊤
t

∑
a∈[K]

W ⋆
axty

∗
a(xt) +DE

τ∑
t=1

max
a

∥∥∥Ŵa,t −W ⋆
a

∥∥∥
∞
.

(14)

And notice that y∗ ∈ RK is the optimal solution to V UB, which means that

E

 ∑
a∈[K]

W ⋆
axty

∗
a(xt)

 ≤ C

T
. (15)

Moreover, from the dual update rule, we have the following result:

Lemma C.4. For any η, it holds that
τ∑

t=1

η⊤
t

(
b(yt,xt)−

C

T

)
≥ η⊤

τ∑
t=1

(
b(yt,xt)−

C

T

)
−R(T )− 2Rmax ·

τ∑
t=1

1νt=1,
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where R(T,η) denotes the regret of the Hedge algorithm given any η.

R(T,η) :=

T∑
t=1

η⊤
t

(
b(yt,xt)−

C

T

)
−

T∑
t=1

η⊤
(
b(yt,xt)−

C

T

)
.

For simplicity, we shall write the regret as R(T ) in the following discussion. Therefore, from Lemma C.4, we know that

E

 τ∑
t=1

η⊤
t

 ∑
a∈[K]

W ⋆
axtya,t(xt)−

∑
a∈[K]

W ⋆
axty

∗
a(xt)

 ≥ E
τ∑

t=1

η⊤
t

 ∑
a∈[K]

W ⋆
axtya,t(xt)−

C

T


≥E

η⊤
τ∑

t=1

 ∑
a∈[K]

W ⋆
axtya,t(xt)−

C

T

−R(T )− 2Rmax ·
τ∑

t=1

1νt=1

 .

(16)

Here we use the fact that Eη⊤
t b(a,xt) = Eη⊤

t

∑
a∈[K] W

⋆
axtya,t(xt) because ηt ∈ σ(Ht−1). We now bound the last

formula in (16). We consider two cases:

(I) If τ < T which implies that
∑τ

t=1

∑
a∈[K] W

⋆
a xt,iya,t(xt) ≥ Ci for some resource i ∈ [m], we set η = ei in (16) and

we have

E1 {τ < T}

η⊤
τ∑

t=1

 ∑
a∈[K]

W ⋆
axtya,t(xt)−

C

T


≥ E1 {τ < T}

[
Ci ·

T − τ

T
−R(T, ei)− 2Rmax ·

τ∑
t=1

1νt=1

]

≥ E1 {τ < T}

[
Cmin · T − τ

T
−R(T, ei)− 2Rmax ·

τ∑
t=1

1νt=1

]
.

(17)

(II) If τ = T which implies T−τ
T = 0, we set η = 0 in (16) and we have

E1 {τ = T}

η⊤
τ∑

t=1

 ∑
a∈[K]

W ⋆
axtya,t(xt)−

C

T

 ≥ E1 {τ = T}

[
−R(T, 0)− 2Rmax ·

τ∑
t=1

1νt=1

]

= E1 {τ = T}

[
Cmin · T − τ

T
−R(T, 0)− 2Rmax ·

τ∑
t=1

1νt=1

]
.

(18)
where Cmin = mini∈[m]{Ci}. Therefore, combining (17) and (18) as the lower bound of (16), we obtain

E

 τ∑
t=1

η⊤
t

 ∑
a∈[K]

W ⋆
axtya,t(xt)−

∑
a∈[K]

W ⋆
axty

∗
a(xt)


≥ E

[
Cmin · T − τ

T
− 2Rmax ·

τ∑
t=1

1νt=1

]
− E

[
sup
η

R(T,η)

]
.

(19)

Plugging (14) and (19) into (13), we obtain

E
τ∑

t=1

[
(M⊤

t−1xt)
⊤yt(xt)

]
≥ E

[
τ

T
· V UB + Z · Cmin · T − τ

T

]
− Z · E

[
sup
η

R(T,η)

]

− E

[
τ∑

t=1

max
a

∣∣〈xt,µ
⋆
a − µs

a,t−1

〉∣∣+D
∥∥∥Ŵa,t −W ⋆

a

∥∥∥
∞

]
− (4Rmax + 2D′Z) ·

T∑
t=1

Kϵt.

(20)
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Note that Z ≥ V UB

Cmin
. We have

E
τ∑

t=1

[
(µ⊤

t xt)
⊤yt(xt)

]
≥ V UB − Z · E

[
sup
η

R(T,η)

]

− E

[
τ∑

t=1

max
a

∣∣〈xt,µ
⋆
a − µs

a,t−1

〉∣∣+D
∥∥∥Ŵa,t −W ⋆

a

∥∥∥
∞

]

− (4Rmax + 2D′Z) ·
T∑

t=1

Kϵt.

(21)

Finally, we plug in the regret bound of the Hedge algorithm (from Theorem 2 of (Freund & Schapire, 1997), see also,
multiplicative weights update method (Arora et al., 2012)), which is the algorithm used to update the dual variable ηt, and
we obtain that

E
[
sup
η

R(T,η)

]
≤
√

D′ · T · logm

by setting δ =
√

logm
T ·D′ , where D′ denotes an upper bound of bi(yt,xt) for each i ∈ [m], t ∈ [T ] and every yt, xt. Therefore,

our proof is completed.

C.6. Proof of Lemma C.4

Proof. We denote by T the number of periods from t = 1 to t = τ such that νt = 0. Then, from the regret bound of the
embedded OCO algorithm, we know that

τ∑
t=1

1νt=0 · η⊤
t

(
b(yt,xt)−

C

T

)
≥ η⊤

τ∑
t=1

1νt=0 ·
(
b(yt,xt)−

C

T

)
−R(T ) (22)

≥ η⊤
τ∑

t=1

1νt=0 ·
(
b(yt,xt)−

C

T

)
−R(T ).

Moreover, from the boundedness of ηt and xt, we know that

τ∑
t=1

η⊤
t

(
b(yt,xt)−

C

T

)
≥

τ∑
t=1

1νt=0 · η⊤
t

(
b(yt,xt)−

C

T

)
−Rmax ·

τ∑
t=1

1νt=1 (23)

and

η⊤
τ∑

t=1

1νt=0 ·
(
b(yt,xt)−

C

T

)
≥ η⊤

τ∑
t=1

(
b(yt,xt)−

C

T

)
−Rmax ·

τ∑
t=1

1νt=1. (24)

Therefore, plugging (23) and (24) into (22), we have that

τ∑
t=1

η⊤
t

(
b(yt,xt)−

C

T

)
≥ η⊤

τ∑
t=1

(
b(yt,xt)−

C

T

)
− 2Rmax ·

τ∑
t=1

1νt=1 −R(T ),

which completes our proof.

C.7. Proof of Lemma B.3

Proof. The proof follows from (Agrawal & Devanur, 2016). We define an intermediate benchmark as follows.

V̄ (δ/2) = max
T

T0
·

T0∑
t=1

∑
a∈[K]

(µ⋆
a)

⊤xt · ya,t (25a)

s.t.
T

T0
·

T0∑
t=1

∑
a∈[K]

W ⋆
axt · ya,t ≤ C +

δ

2
(25b)
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a∈[K]

ya,t = 1,∀t ∈ [T0] (25c)

ya,t ∈ [0, 1],∀a ∈ [K],∀t ∈ [T0]. (25d)

The only difference between V̄ (δ) in (25) and V̂ is that the estimation µs
a,T0

and Ŵa,T0
are replaced by the true value µ⋆

a,
W ⋆

a for all a ∈ [K]. Then, we can bound the gap between V̂ and V UB by bounding the two terms |V UB − V̄ (δ/2)| and
|V̄ (δ/2)− V̂ | separately.

Bound the term |V̄ (δ/2)− V UB|: We denote by L(η) the dual function of V UB as follows:

L(η) = (C)⊤η +

T∑
t=1

Ext∼F

 max∑
a∈[K] ya,t(xt)=1

 ∑
a∈[K]

[
(µ⋆

a)
⊤xt · ya,t(xt)− (η)⊤W ⋆

axt · ya,t(xt)
]


= (C)⊤η + T · Ex∼F

 max∑
a∈[K] ya(x)=1

 ∑
a∈[K]

[
(µ⋆

a)
⊤x · ya(x)− (η)⊤W ⋆

ax · ya(x)
]
 .

(26)

We also denote by L̄(η) the dual function of V̄ (δ/2) as follows:

L̄(η) =

(
C +

δ

2

)⊤

η +
T

T0
·

T0∑
t=1

max∑
a∈[K] ya,t=1

 ∑
a∈[K]

[
(µ⋆

a)
⊤xt · ya,t

]
−
∑

a∈[K]

(η)⊤ [W ⋆
axt · ya,t]

 . (27)

Then, the function L̄(η) can be regarded as a sample average approximation of L(η). We then proceed to bound the range
of the optimal dual variable for V UB and V̂ . Denote by η∗ an optimal dual variable for V UB. Then, it holds that

(C)⊤η∗ ≤ V UB

which implies that

η∗ ∈ Ω∗ :=

{
η ≥ 0 : ∥η∥1 ≤ V UB

Cmin

}
.

Similarly, denote by η̄∗ an optimal dual variable for V̄ (δ/2) and we can obtain that

η̄∗ ∈ Ω̄∗ :=

{
η ≥ 0 : ∥η∥1 ≤ V̄ (δ/2)

Cmin + δ/2

}
.

Note that

V UB = L(η∗) ≥ L̄(η∗)− |L(η∗)− L̄(η∗)| ≥ L̄(η̄∗)− |L(η∗)− L̄(η∗)| = V̄ (δ/2)− |L(η∗)− L̄(η∗)| (28)

and

V̄ (δ/2) = L̄(η̄∗) ≥ L(η̄∗)− |L̄(η̄∗)− L(η̄∗)| ≥ L(η∗)− |L̄(η̄∗)− L(η̄∗)| = V UB − |L̄(η̄∗)− L(η̄∗)|. (29)

Define a random variable H(x) = max∑
a∈[K] ya(x)=1

{[
(µ⋆

a)
⊤x · ya(x)− (η∗)⊤W ⋆

ax · ya(x)
]}

where x ∼ F . It is

clear to see that |H(x)| ≤ (Rmax +
V UB

Cmin
·D′) where D′ denotes an upper bound on W ⋆

ax for every a ∈ [K] and x. Then,
we have

|L̄(η∗)− L(η∗)| = δ

2
· ∥η∗∥1 +

∣∣∣∣∣Ex∼F [H(x)]− T

T0
·

T0∑
t=1

H(xt)

∣∣∣∣∣
≤ δ

2
· V

UB

Cmin
+ T · (Rmax +

V UB

Cmin
·D′) ·

√
1

2T0
· log 4

β

(30)
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holds with probability at least 1− β
2 , where the inequality follows from the standard Hoeffding’s inequality. Similarly, we

have

|L̄(η̄∗)− L(η̄∗)| ≤ δ

2
· ∥η̄∗∥1 + T · (Rmax +

V̄ (δ/2)

Cmin + δ/2
·D′) ·

√
1

2T0
· log 4

β

≤ δ

2
· V̄ (δ/2)

Cmin + δ/2
+ T · (Rmax +

V̄ (δ/2)

Cmin
·D′) ·

√
1

2T0
· log 4

β

≤ δ

2
· V̄ (δ/2)

Cmin
+ T · (Rmax +

V̄ (δ/2)

Cmin
·D′) ·

√
1

2T0
· log 4

β

(31)

holds with probability at least 1− β
2 . From the union bound, we know that with probability at least 1− β, both (30) and

(31) hold. Therefore, from (28) and (29), we have the following two inequalities

V̄ (δ/2)− V UB ≤ δ

2
· V

UB

Cmin
+ T · (Rmax +

V UB

Cmin
·D′) ·

√
1

2T0
· log 4

β
(32)

and

V UB − V̄ (δ/2) ≤ δ

2
· V̄ (δ/2)

Cmin
+ T · (Rmax +

V̄ (δ/2)

Cmin
·D′) ·

√
1

2T0
· log 4

β
(33)

holds with probability at least 1− β.

Bound the term |V̄ (δ/2)− V̂ |: We first denote by ȳ an optimal solution to V̄ (δ/2). Note that∥∥∥∥∥∥ T

T0
·

T0∑
t=1

∑
a∈[K]

(W ⋆
a )xt · ȳa,t −

T

T0
·

T0∑
t=1

∑
a∈[K]

(Ŵa,T0)xt · ȳa,t

∥∥∥∥∥∥
∞

≤ T ·D · max
a∈[K]

∥W ⋆
a − Ŵa,T0∥∞. (34)

Since δ
2 ≥ T ·D ·maxa∈[K] ∥W ⋆

a − Ŵa,T0
∥∞, we know that ȳ is a feasible solution to V̂ . Also, note that∣∣∣∣∣∣ TT0

·
T0∑
t=1

∑
a∈[K]

(µ⋆
a)

⊤xt · ȳa,t −
T

T0
·

T0∑
t=1

∑
a∈[K]

(µs
a,T0

)⊤xt · ȳa,t

∣∣∣∣∣∣ ≤ T ·D · max
a∈[K]

∥µ⋆
a − µs

a,T0
∥1. (35)

Therefore, we know that

V̄ (δ/2) ≤ T

T0
·

T0∑
t=1

∑
a∈[K]

(µs
a,T0

)⊤xt · ȳa,t + T ·D · max
a∈[K]

∥µ⋆
a − µs

a,T0
∥1 ≤ V̂ + T ·D · max

a∈[K]
∥µ⋆

a − µs
a,T0

∥1. (36)

On the other hand, we denote by ŷ an optimal solution to V̂ . Then, note that∥∥∥∥∥∥ T

T0
·

T0∑
t=1

∑
a∈[K]

(W ⋆
a )xt · ŷa,t −

T

T0
·

T0∑
t=1

∑
a∈[K]

(Ŵa,T0)xt · ŷa,t

∥∥∥∥∥∥
∞

≤ T ·D · max
a∈[K]

∥W ⋆
a − Ŵa,T0∥∞. (37)

We have

T

T0
·

T0∑
t=1

∑
a∈[K]

(W ⋆
a )xt · ŷa,t ≤

T

T0
·

T0∑
t=1

∑
a∈[K]

(Ŵa,T0
)xt · ŷa,t + T ·D · max

a∈[K]
∥W ⋆

a − Ŵa,T0
∥∞ ≤ C + δ.

Thus, we know that ŷ is a feasible solution to V̄ ( 32δ) and again, from (35), it holds that

V̂ ≤ T

T0
·

T0∑
t=1

∑
a∈[K]

(µs
a,T0

)⊤xt · ŷa,t + T ·D · max
a∈[K]

∥µ⋆
a − µs

a,T0
∥1 ≤ V̄ (

3

2
δ) + T ·D · max

a∈[K]
∥µ⋆

a − µs
a,T0

∥1. (38)

Therefore, combining (32) and (38), we have

V̂ ≤ V UB +
3

2
δ · V

UB

Cmin
+ T · (Rmax +

V UB

Cmin
·D′) ·

√
1

2T0
· log 4

β
+ T ·D · max

a∈[K]
∥µ⋆

a − µs
a,T0

∥1. (39)
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Also, combining (33) and (36), we have

V UB ≤ V̂ +
δ

2
· V̄ (δ/2)

Cmin
+ T · (Rmax +

V̄ (δ/2)

Cmin
·D′) ·

√
1

2T0
· log 4

β
+ T ·D · max

a∈[K]
∥µ⋆

a − µs
a,T0

∥1. (40)

We further use the bound on V̄ (δ/2)− V UB in (32) to plug in (40), and we obtain that∣∣∣V̂ − V UB
∣∣∣ ≤ C

V UB

Cmin

(
δ +

δ2

Cmin
+ (1 + δ)TD′

√
1

2T0
log

4

β
+ T 2D′2 1

2T0
log

4

β

1

Cmin

)
+ δ

which completes our proof.

C.8. Proof of Theorem 6.1 and 6.2

Proof. Our proof essentially follows the basic ideas of regret analysis for ϵ-greedy algorithms, with a fine-grained process
on the estimation error. For the ϵ-greedy algorithm, we have

Regret = E

[
T∑

t=1

⟨xt,µopt(xt)⟩ −
T∑

t=1

〈
xt,µ

⋆
yt

〉]

= E

[
T∑

t=1

〈
xt,µopt(xt)− µs

opt,t−1(xt)
〉
−

T∑
t=1

〈
xt,µ

s
y∗
t ,t−1 − µs

opt,t−1(xt)
〉

+
〈
xt,µ

s
y∗
t ,t−1 − µ⋆

y∗
t

〉
+
〈
xt,µ

⋆
y∗
t
− µ⋆

yt

〉]
≤

T∑
t=1

E∥xt∥∞
(∥∥µopt(xt)− µs

opt,t−1(xt)
∥∥
1
+
∥∥∥µs

y∗
t
− µ⋆

y∗
t ,t−1

∥∥∥
1

)
+ 2

T∑
t=1

KϵtRmax

where y∗t means the greedy action y∗t = argmaxa∈[K]

〈
xt,µ

s
a,t−1

〉
, and µs

opt,t−1(xt) indicates the estimation of the
optimal arm µopt(xt). The inequality uses the fact of greedy action, and the uniform risk bound. This leads to the
regret-bound

Regret ≤ 2D

T∑
t=1

E
√
s0 max

a

∥∥µs
a,t − µ⋆

a

∥∥
2
+ 2

T∑
t=1

KϵtRmax

≲
σD2s0

√
log(dK)

ϕmin(s)

T∑
t=1

1

t

√√√√ t∑
j=1

1

ϵj

+

T∑
t=1

KϵtRmax.

Choosing ϵt = σ
2
3D

4
3 s

2
3
0 (log(dK))

1
3 t−

1
3 / (KRmax)

2
3 ∧ 1/K, the statement in Theorem 6.1 can be justified. For the

Theorem 6.2, since it can be viewed as a special case of ϵ-greedy strategy (with ϵ = 0), we have

Regret ≤ 2D

T∑
t=1

Emax
a

∣∣〈xt,µ
s
a,t−1 − µ⋆

a

〉∣∣,
where the estimation error can be guaranteed by

Emax
a

∥∥µs
a,t − µ⋆

a

∥∥2
2
≲

σ2D2s0
γ2(K)ζ2(K)

log(dK)

t
. (41)

This error bound can be easily derived from the proof of Theorem 5.4. Here each term maxa
∣∣〈xt,µ

s
a,t−1 − µ⋆

a

〉∣∣ in the
regret can be controlled by two ways:

Emax
a

∣∣〈xt,µ
s
a,t−1 − µ⋆

a

〉∣∣ ≤ DEmax
a

∥µa,t−1 − µ⋆
a∥1, (42)

and
E
[
max

a

∣∣〈xt,µ
s
a,t−1 − µ⋆

a

〉∣∣− E
∣∣〈xt,µ

s
a,t−1 − µ⋆

a

〉∣∣]
≤
∫ ∞

0

P
(
max

a

∣∣〈xt,µ
s
a,t−1 − µ⋆

a

〉∣∣− E
∣∣〈xt,µ

s
a,t−1 − µ⋆

a

〉∣∣ ≥ z
)
dz

(43)
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Combining (41) with (42), it is easy to show that the regret bound:

Regret ≤ 2D

T∑
t=1

Emax
a

∣∣〈xt,µ
s
a,t−1 − µ⋆

a

〉∣∣ ≲ σD2s0
√
log(dK)T

γ(K)ζ(K)
.

We use (43) to give another bound. Notice that xt is independent of the history Ht−1, which implies that, conditional on the
history Ht−1,

E
∣∣〈xt,µ

s
a,t−1 − µ⋆

a

〉∣∣ ≤√E
(
µs

a,t−1 − µ⋆
a

)⊤
xtx⊤

t

(
µs

a,t−1 − µ⋆
a

)
≤
√∥∥µs

a,t−1 − µ⋆
a

∥∥2
Σ
.

≤
√
ϕmax(s0)

∥∥µs
a,t−1 − µ⋆

a

∥∥
2
.

Since xt is marginal sub-Gaussian, the
∣∣〈xt,µ

s
a,t−1 − µ⋆

a

〉∣∣ has a tail behavior by Chernoff bound:

P
(∣∣〈xt,µ

s
a,t−1 − µ⋆

a

〉∣∣− E
∣∣〈xt,µ

s
a,t−1 − µ⋆

a

〉∣∣ ≥ z
)
≤ exp

(
− cz2

ϕmax(s0)
∥∥µs

a,t−1 − µ⋆
a

∥∥2
2

)
,

and also
P
(
max

a

∣∣〈xt,µ
s
a,t−1 − µ⋆

a

〉∣∣− E
∣∣〈xt,µ

s
a,t−1 − µ⋆

a

〉∣∣ ≥ z
)

≤ 1 ∧ exp

(
logK − cz2

ϕmax(s0)maxa
∥∥µs

a,t−1 − µ⋆
a

∥∥2
2

)
.

This instantly gives rise to the maxima inequality by (43)

E
[
max

a

∣∣〈xt,µ
s
a,t−1 − µ⋆

a

〉∣∣− E
∣∣〈xt,µ

s
a,t−1 − µ⋆

a

〉∣∣]
≤
∫ ∞

0

1 ∧ exp

(
logK − cz2

ϕmax(s0)maxa
∥∥µs

a,t−1 − µ⋆
a

∥∥2
2

)
dz

≲
√
logKϕmax(s0)max

a

∥∥µs
a,t−1 − µ⋆

a

∥∥
2

We thus have

Emax
a

∣∣〈xt,µ
s
a,t−1 − µ⋆

a

〉∣∣
≤ E

[
max

a

∣∣〈xt,µ
s
a,t−1 − µ⋆

a

〉∣∣− E
∣∣〈xt,µ

s
a,t−1 − µ⋆

a

〉∣∣]+max
a

E
∣∣〈xt,µ

s
a,t−1 − µ⋆

a

〉∣∣
≲
√
logKϕmax(s0)max

a

∥∥µs
a,t−1 − µ⋆

a

∥∥
2
,

conditional on the history Ht−1. Together with the estimation error (41), we can derive another regret bound:

Regret ≤ 2D

T∑
t=1

Emax
a

∣∣〈xt,µ
s
a,t−1 − µ⋆

a

〉∣∣ ≲√logKϕmax(s0)
σD
√
s0 log(dK)T

γ(K)ζ(K)

≲
√
κ1σD

√
s0 logK log(dK)T√
γ(K)ζ(K)

Associate these two regret bounds, we finish the proof.

C.9. Proof of Theorem 5.4

Proof. The proof shares a similar fashion with the proof of Theorem 4.1. The key difference is that, instead of
focusing on the concentration of the gradient ga,t to the population version ∇fa(µa,t−1), we consider a series
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of new objective functions {fa
t } that is changing over time, and derive the concentration of ga,t to ∇fa

t (µt−1).
To this end, we defined the history-dependent covariance matrices E

[
xtx

⊤
t · 1 {yt = a}

∣∣Ht−1

]
, and their average:

Σ̄a,t =
∑t

j=1 E
[
xjx

⊤
j · 1 {yj = a}

∣∣Hj−1

]
/t. We write the corresponding objective function that Σ̄a,t represents as

fa
t (µ) = ∥µ− µ⋆

a∥
2
Σ̄a,t

. In the following proof, since we will mainly focus on one arm, we will write µt, µ⋆, gt, ft, Σ̂t,

Σ̄t etc instead of µa,t, µ⋆
a, ga,t, fa

t , Σ̂a,t and Σ̄a,t, etc to easy the notation. An argument analog to the proof of Theorem
4.1 gives that:

∥µt − µ⋆∥22 ≤
(
1 +

3

2

√
ρ

)(
∥µt−1 − µ⋆∥22 − 2ηt ⟨PΩ(gt),µt−1 − µ⋆⟩+ η2t ∥PΩ(gt)∥22

)
≤
(
1 +

3

2

√
ρ

)(
∥µt−1 − µ⋆∥22 − 2ηt ⟨∇ft(µt−1),µt−1 − µ⋆⟩+ 2η2t ∥PΩ(gt −∇ft(µt−1))∥22

+2η2t ∥PΩ(∇ft(µt−1))∥22 + 2ηt∥PΩ(gt −∇ft(µt−1))∥2∥µt−1 − µ⋆∥2
)
,

where we use the fact that ⟨∇ft(µt−1),µt−1 − µ⋆⟩ = ⟨PΩ(∇ft(µt−1)),µt−1 − µ⋆⟩ by the definition of PΩ(·). Because
we are interested in the new objective function ft(µ) = ∥µ− µ⋆∥2Σ̄t

, we need to check the sparse eigenvalue of Σ̄t. Since
for any β such that ∥β∥0 ≤ ⌈2s⌉, we have β⊤E

[
xtx

⊤
t · 1 {yt = a}

∣∣Ht−1

]
β ≤ β⊤E

[
xtx

⊤
t

∣∣Ht−1

]
β ≤ ϕmax(s)∥β∥22,

then it is clear that the 2s-sparse maximal eigenvalue of Σ̄t =
∑t

j=1 E
[
xjx

⊤
j · 1 {yj = a}

∣∣Hj−1

]
/t is bounded by

ϕmax(s). For the minimum eigenvalue, it follows by Assumption 5.3 that given any unit vector v,

v⊤E
[
xtx

⊤
t 1 {yt = a}

∣∣Ht−1

]
v ≥ E

[
v⊤xtx

⊤
t v1 {yt = a}1

{
v⊤xtx

⊤
t v1 {yt = a} ≥ γ(K)

}∣∣Ht−1

]
≥ E

[
γ(K)1

{
v⊤xtx

⊤
t v1 {yt = a} ≥ γ(K)

}∣∣Ht−1

]
≥ γ(K)ζ(K).

(44)

It is clear that the 2s-sparse minimum eigenvalue of Σ̄t can be lower bounded by γ(K)ζ(K). We therefore take the
condition number of Σ̄t as κ1 = ϕmax(s)

γ(K)ζ(K) . The eigenvalues of Σ̄t also imply:

⟨∇ft(µt−1),µt−1 − µ⋆⟩ ≥ 2γ(K)ζ(K)∥µt−1 − µ⋆∥22,
∥PΩ(∇ft(µt−1))∥ ≤ 2ϕmax(s)∥µt−1 − µ⋆∥2.

We can show that

∥µt − µ⋆∥22 ≤
(
1 +

3

2

√
ρ

)(
1− 4γ(K)ζ(K)ηt + 8η2t ϕ

2
max(s)

)
∥µt−1 − µ⋆∥22

+ 6η2t ∥PΩ(gt −∇ft(µt−1))∥22 + 6ηt∥PΩ(gt −∇ft(µt−1))∥2∥µt−1 − µ⋆∥2

≤
(
1 +

3

2

√
ρ

)(
1− 4γ(K)ζ(K)ηt + 8η2t ϕ

2
max(s)

)
∥µt−1 − µ⋆∥22

+ 18sη2t max
i∈[d]

|⟨gt −∇ft(µt−1), ei⟩|2 + 18ηt
√
smax

i∈[d]
|⟨gt −∇ft(µt−1), ei⟩|∥µt−1 − µ⋆∥2

(45)

The following lemma, which echoes with aforementioned Lemma C.1, quantifies the variation of the averaged stochastic
gradient under the diverse covariate condition without ε-greedy strategy:

Lemma C.5. Define {ei}d1 as the canonical basis of Rd. Under Assumption 3.2, 3.2 and 5.3, the variance of stochastic
gradient gt at the point µt−1 given in Algorithm 1 can be bounded by the following inequality:

Emax
i∈[d]

|⟨gt −∇ft(µt−1), ei⟩|2 ≤ C
sD2 log(dt)

t
E∥µt−1 − µ⋆∥22 + C

σ2D2 log d

t
. (46)

Moreover, the following inequality also holds with probability at least 1− ϵ

max
i∈[d]

|⟨gt −∇ft(µt−1), ei⟩|2 ≤ CsD2 log(d/ϵ)

t
∥µt−1 − µ⋆∥22 + C

σ2D2 log(d/ϵ)

t
.
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We defer the proof of Lemma C.5 to the next section.

We set ρ = 1
9κ4

1
, and ηt =

1
4κ1ϕmax(s)

. Plugging in the expectation bound in Lemma C.5, we have

E∥µt − µ⋆∥22 ≤

(
1− 1

4κ4
1

+ C
s0D

√
log(dt)

γ(K)ζ(K)
√
t

)
E∥µt−1 − µ⋆∥22

+ C
s0σ

2D2 log d

γ2(K)ζ2(K)t
+ C

√
s0σ2D2 log d

γ2(K)ζ2(K)t
E∥µt−1 − µ⋆∥22.

When t is sufficiently large, essentially we have

E∥µt − µ⋆∥22 ≤
(
1− 1

5κ4
1

)
E∥µt−1 − µ⋆∥22

+ C
s0σ

2D2 log d

γ2(K)ζ2(K)t
+ C

√
s0σ2D2 log d

γ2(K)ζ2(K)t
E∥µt−1 − µ⋆∥22.

This instantly gives us the expectation bound

E∥µt − µ⋆∥22 ≲
σ2D2s0

γ2(K)ζ2(K)

log d

t
,

which proves the first claim. Apply Lemma C.5 again to the recursive relationship in (45), we also have the second claim:

∥µt − µ⋆∥22 ≲
σ2D2s0

γ2(K)ζ2(K)

log(dT/ε)

t

holds for all t ∈ [T ] with probability at least 1− ϵ

C.10. Proof of Lemma C.5

Proof. The idea essentially follows the proof of Lemma C.1, with some modifications in the martingale concentration
argument. Notice that, in Algorithm 1, for any arm a ∈ [K], we have

gt = 2Σ̂tµt−1 −
2

t

t∑
j=1

1 {yt = a}xjrj =
2

t

t∑
j=1

(
1 {yj = a}xjx

⊤
j

)
(µt−1 − µ⋆)−

2

t

t∑
j=1

1 {yt = a}xjξj ,

= 2Σ̂t(µt−1 − µ⋆)−
2

t

t∑
j=1

1 {yj = a}xjξj .

Still, we can write

|⟨gt −∇ft(µt−1), ei⟩| =

∣∣∣∣∣∣
〈
2
(
Σ̂t − Σ̄t

)
(µt−1 − µ⋆)−

2

t

t∑
j=1

yjxjξj/pt, ei

〉∣∣∣∣∣∣
≤ 2
∣∣∣〈(Σ̂t − Σ̄t

)
(µt−1 − µ⋆), ei

〉∣∣∣︸ ︷︷ ︸
Part 1

+2

∣∣∣∣∣∣1t
t∑

j=1

1 {yj = a}xj,iξj

∣∣∣∣∣∣︸ ︷︷ ︸
Part 2

We consider the two parts separately.

In Part 1, for any i, k ∈ [d], by the martingale structure of 1
t

∑t
j=1 1 {yj = a}xj,ixj,k − Σ̄t,ik:

E
t∑

j=1

[1 {yj = a}xj,ixj,k|Hj−1]− tΣ̄t,ik = 0, |1 {yj = a}xj,ixj,k − E [1 {yj = a}xj,ixj,k|Ht−1]| ≤ 2D2,
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We can use the Bernstein-type martingale concentration inequality in Lemma C.2 to derive the following bound:

P

∣∣∣∣∣∣1t
t∑

j=1

1 {yj = a}xj,ixj,k − Σ̄t,ik

∣∣∣∣∣∣ ≥ z

 ≤ 2 exp

(
− cz2

D4/t+ 2D2z/t

)
,

where we select v2 = D4/t, and b = 2D2/t. This leads to the concentration that with probability at least 1− ϵ,

max
i,k∈[d]

∣∣∣∣∣∣1t
t∑

j=1

1 {yj = a}xj,ixj,k − Σ̄t,ik

∣∣∣∣∣∣ ≤ CD2

√
log(d/ϵ)

t
.

It follows from the process in (8) that

Emax
i∈[d]

∣∣∣〈(Σ̂t − Σ̄t

)
(µt−1 − µ⋆), ei

〉∣∣∣2
≤ Cs

D2

t

(
log(dt) + log

(
µ̄D2

σ

))
E∥µt−1 − µ⋆∥22 + C

σ2D2

t

We now proceed to control Part 2 analogously. Invoke Lemma C.2 again by selecting v2 = σ2D2/t, and b = σD/t. We
then have the concentration bound:

P

∣∣∣∣∣∣1t
t∑

j=1

1 {yj = a}xj,iξj

∣∣∣∣∣∣ ≥ z

 ≤ 2 exp

(
− cz2

σ2D2/t+ 2σDz/t

)

≤ 4 exp

(
− ctz2

2σ2D2

)
+ 4 exp

(
− ctz

4σD

)
,

which gives the tail bound with probability at least 1− ϵ:

max
i∈[d]

∣∣∣∣∣∣1t
t∑

j=1

1 {yj = a}xj,iξj

∣∣∣∣∣∣
2

≤ CσD

√
log(d/ϵ)

t
.

and also the expectation bound for the maxima:

Emax
i∈[d]

∣∣∣∣∣∣1t
t∑

j=1

1 {yj = a}xj,iξj

∣∣∣∣∣∣
2

≤ C
σ2D2 log d

t
.

Combining Part 1 and Part 2 gives us the first claim on the expectation bound:

Emax
i∈[d]

|⟨gt −∇ft(µt−1), ei⟩|2 ≤ C
sD2 log(dt)

t
E∥µt−1 − µ⋆∥22 + C

σ2D2 log d

t
.

The high probability bound in Part 1 and Part 2 directly leads to the probability bound: with a probability at least 1− ϵ, the
variation can be controlled by

max
i∈[d]

|⟨gt −∇ft(µt−1), ei⟩|2 ≤ CsD2 log(d/ϵ)

t
∥µt−1 − µ⋆∥22 + C

σ2D2 log(d/ϵ)

t
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D. Figures
To better show the results of experiments, we present all the figures in the main text here with a larger size:

Figure 4. Primal performance of Online HT vs LASSO.

Figure 5. Regret of Online HT vs LASSO Bandit.

Figure 6. Regret of Online HT vs linCBwK for CBwK problem.
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