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Abstract

Multimodal alignment between language and vi-
sion is the fundamental topic in current vision-
language model research. Contrastive Captioners
(CoCa), as a representative method, integrates
Contrastive Language-Image Pretraining (CLIP)
and Image Caption (IC) into a unified framework,
resulting in impressive results. CLIP imposes a
bidirectional constraints on global representations
of entire images and sentences. Although IC con-
ducts an unidirectional image-to-text generation
on local representation, it lacks any constraint on
local text-to-image reconstruction, which limits
the ability to understand images at a fine-grained
level when aligned with texts. To achieve mul-
timodal alignment from both global and local
perspectives, this paper proposes Symmetrizing
Contrastive Captioners (SyCoCa), which intro-
duces bidirectional interactions on images and
texts across the global and local representation
levels. Specifically, we expand a Text-Guided
Masked Image Modeling (TG-MIM) head based
on ITC and IC heads. The improved SyCoCa
further leverages textual cues to reconstruct con-
textual images and visual cues to predict textual
contents. When implementing bidirectional lo-
cal interactions, the local contents of images tend
to be cluttered or unrelated to their textual de-
scriptions. Thus, we employ an attentive masking
strategy to select effective image patches for in-
teraction. Extensive experiments on five vision-
language tasks, including image-text retrieval,
image-captioning, visual question answering, and
zero-shot/finetuned image classification, validate
the effectiveness of our proposed method.
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1. Introduction
In recent years, the dramatic progress of multimodal align-
ment between vision and language has reshaped computer
vision research in some sense. The availability of large-
scale datasets and powerful computational resources has led
to many seminal works and impressive results in this field.
Most methods use a contrastive objective to constrain global
representations between modalities as shown in Figure 1
(a), such as CLIP (Radford et al., 2021; Yang et al., 2022a),
ALBEF (Li et al., 2021), mPLUG (Li et al., 2022a; Xu
et al., 2023). BEiT-v3 (Wang et al., 2023a) treats image as a
foreign language and uses a mask-then-predict strategy for
pre-training. This pretraining method requires separate fine-
tuning for each downstream task and the pretrained model
cannot be directly used across tasks. CoCa (Yu et al., 2022a)
combines Image-Text Contrastive (ITC) and Image Caption
(IC), resulting in a pretrained model that can be directly
applied for both retrieval and IC tasks. It is a promising
architecture and works well on multiple vision-language
tasks.

However, in terms of local interaction between image
patches and text tokens, the IC head in CoCa only uti-
lizes the visual cues to generate textual descriptions, yet
disregarding the visual context reconstruction from textual
cues. From vision pre-training works, such as SimMIM
(Xie et al., 2022) and MAE (He et al., 2022), we learn that
the image reconstruction can learn a strong content repre-
sentation. Therefore, in the multimodal scenario, when the
text cue is introduced into the image reconstruction task and
local interaction is performed, the representation of texts
and images can be unified into one space, thereby further
enhancing multimodal alignment.

In this paper, we propose a novel framework called Sym-
metrizing Contrastive Captioners (SyCoCa) that incorpo-
rates both local image-to-text generation and text-to-image
reconstruction in addition to the global constractive objec-
tive. In addition to ITC head and IC head, we introduce a
text-guided masked image modeling (TG-MIM) head. The
difference between CoCa and our method is illustrated in
Figure 1. CoCa only achieved undirectional interaction be-
tween image and text as shown in Figure 1 (b). Further, in
Figure 1 (c), our TG-MIM introduces text for image recon-
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Figure 1. Comparison of the pipelines in vision-language pretraining frameworks. (a) CLIP: aligning global features across modalities
through contrastive learning. (b) CoCa: introducing image captioning to construct unidirectional fine-grained interaction. (c) Our SyCoCa:
bidirectional local interation with attentive masking to enhance comprehensive cross-modal understanding.

struction, which enhances the fine-grained representation
ability of images. In this way, SyCoCa has the bidirectional
global and local interactions between modalities.

During the actual multimodal alignment process, although
an image is worth one thousand words, people seldom write
one thousand words to describe the image content. Instead,
text descriptions or image captions are often highly abstract
just focusing on the main character, object, or event in an im-
age. For example, the caption of a picture about the family
dinner of Thanksgiving would rarely delineate the furniture
in the room in details. Moreover, even short text descrip-
tions may imply rich and abundant image contents. e.g.,. a
football match may well imply a vivid scene of a grass field,
multiple palyers, and croweded audience, etc. Therefore, it
is necessary to choose appropriate local regions and repre-
sentation for alignment. To select effective image patches
for text, we employ an attentive masking strategy. Specifi-
cally, we calculate the similarity between image tokens and
text tokens to determine the relevance of image patches. For
the IC task, the most pertinent image patches are selected to
aid in generating textual descriptions by considering their
semantic similarity with text descriptions. In contrast, we
choose the least relevant image patches with the text on
the TG-MIM task, aiming to leverage the text tokens to
assist in recovering image content. Extensive experiments
demonstrate the effectiveness of our proposed method on
five downstream tasks.

In summary, the main contributions of our work are listed
as follows:

• We first propose symmetrizing contrastive captioners
for multimodal alignment, which improves the un-
derstanding between images and sentences from both
global and local perspectives.

• To promote bidirectional local interactions, we adopt
an attentive masking strategy to select appropriate im-
age patches for IC and TG-MIM heads respectively.

• Thorough experiments validate that our proposed
SyCoCa outperforms CoCa on several downstream
tasks, e.g., image-text retrieval, image-captioning, vi-
sual question answering and image classification. For
example, we obtained +5.1%/3.7% in mTR/mIR on
Flicker-30k compared to CoCa in image-text retrieval
tasks.

2. Related Work
Vision-Language Pretraining. In recent years, there has
been tremendous progress in multimodal alignment, espe-
cially between vision and language. Extensive researchers
have dedicated their efforts to exploring vision-language
pretraining. Early works (Tan & Bansal, 2019; Chen et al.,
2020b; Zhang et al., 2021) prefixed a pretrained object de-
tection modules to extract visual representations, which
were then aligned with textual representations to achieve
multimodal alignment. Later efforts focused on training
multimodal transformers from scratch, such as ViLT (Kim
et al., 2021) and VLMo (Bao et al., 2022). Pre-training of a
foundation model on gigantic data with tremendous compu-
tation led to the breakthrough of multimodal alignment of
images and texts. CLIP (Radford et al., 2021) and ALIGN
(Jia et al., 2021) trained a dual-encoder on large-scale noisy
image-text pairs using contrastive loss, obtaining generic
image and text representations for crossmodal alignment
and zero-shot image classification tasks. Florence (Yuan
et al., 2021) used a unified contrastive learning for various
vision and image-text benchmarks. BLIP-2 (Li et al., 2023a)
trained a Q-former to align a frozen vision encoder and
language encoder. To enhance local interaction of images
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and texts, CoCa (Yu et al., 2022a) introduced a decoder for
image caption based on CLIP.

In this paper, we symmetrize CoCa with an attentive TG-
MIM task to further achieve bidirectional local interactions
and enhances fine-grained alignment capabilities between
modalities. The major difference between SyCoCa against
bidirectional generation methods (Kim et al., 2022; You
et al., 2023), which employ discrete auto-encoders to gener-
ate images from text, lies in our model’s attentive TG-MIM
task. This task enforces multimodal alignment constraints
on patches that are paired with precise descriptions, since
the abstract nature of image captions.

Masked Image Modeling. Beyond contrastive learning,
masked image modeling (MIM) (Chen et al., 2020a; Doer-
sch et al., 2015; Pathak et al., 2016; Trinh et al., 2019)
emerges as another promising technique in vision pre-
training. Recently, iGPT (Chen et al., 2020a), ViT (Doso-
vitskiy et al., 2020) and BEiT (Bao et al., 2021) recalled
this learning approach on the modern vision transformers,
which show great potential in representation learning by
introducing special designs, such as clustering on pixels
(Chen et al., 2020a), prediction of mean color (Dosovit-
skiy et al., 2020), and tokenization via an additional dVAE
network with a block-wise masking strategy (Bao et al.,
2021). SimMIM (Xie et al., 2022) predicted RGB values
of raw pixels by direct regression. MAE (He et al., 2022)
used an asymmetric encoder-decoder architecture, where
the encoder operates only on the visible subset of patches,
then a lightweight decoder reconstructs the original image
from the latent representation and mask tokens. To enrich
the joint representation learning in a multimodal context,
BEiT-v3 (Wang et al., 2023a), EVE (Chen et al., 2023),
MAMO (Zhao et al., 2023) and MaskVLM (Kwon et al.,
2023) adopted the MIM task in multimodal pre-training and
trained models to predict randomly masked image patches
or text tokens.

Inspired by MAE, we propose a TG-MIM head to improve
fine-grained multimodal alignment. The main distinction
between SyCoCa against the masked multimodal modeling
methods (e.g., BEiT-v3) encompasses: 1) we adopt IC to
amplify the prominence of visual clues within the cross-
modal textual representation; 2) we augment IC with the
attentive masking mechanism refined the model’s ability
of comprehending the image from key perspectives; 3) we
also apply attentive masking with TG-MIM to focus recon-
struction efforts on appropriate patches that are contextually
aligned with the description.

3. Method
We are interested in leveraging bidirectional cross-modal
interactions to learn fine-grained visual and textual represen-

tations within an aligned latent space. Contrastive Captioner
(CoCa) proposes to incorporate an image captioning task
alongside the contrastive task, which learns fine-grained
representation and establishes a stronger alignment across
modalities than CLIP. It is worth noting that the modal-
ity interaction in CoCa is unidirectional and asymmetric,
focusing solely on genetating text from images.

To enhance vision-language alignment, we introduce a novel
framework called SyCoCa, which expands the existing
CoCa model by incorporating bidirectional local interac-
tions with attentive masking. Our framework comprises of
three objectives: (i) image-text contrasting (ITC), (ii) image
captioning (IC), and (iii) text-guided masked image mod-
eling (TG-MIM). Figure 2 shows the overall framework of
SyCoCa.

The goal of SyCoCa is to further explore the potential of
cross-modal interactive prediction tasks. Building upon
CoCa, SyCoCa incorporates TG-MIM to establish predic-
tions from text to image, aiming to compensate for the inher-
ent asymmetry in CoCa. This establishes bidirectional pre-
diction between modalities, promoting fine-grained vision-
language understanding. Furthermore, we design a novel
attentive masking procedure that enables the bidirectional
cross-modal interactions to focus on different regions of
images, guided by the accompanying texts.

3.1. Model Architecture

As shown in Figure 2, the overall model architecture consists
of four key components: the image encoder, text encoder,
(text-to-)image decoder, and (image-to-)text decoder. Here,
we provide a detailed explanation to each one.

Image Encoder. We employ vision transformer as the im-
age encoder to model an input image. The image encoder
takes image patches as input and encodes them into a se-
quence of embeddings {vcls, v1, ..., vP } where each embed-
ding corresponds to a specific image patch. Additionally,
an extra [CLS] embedding is included to provide a global
representation of the image.

Text Encoder. As the text encoder, we adopt a causal
masked transformer encoder to model text inputs. This en-
coder takes the simple BPE tokenized input text and converts
it into a sequence vector represented as {w1, ..., wS , wcls},
in which the embedding of the [CLS] token summarizes the
global text feature. The purpose of adopting causal atten-
tion mask is to prevent any potential information leakage
from future tokens to past tokens during the text encoding
process.

Image / Text Decoder. To further capture the interaction be-
tween image-text pairs, we use an image decoder and a text
decoder. Each decoder utilizes cross-attention transformer
modules to deeply fuse image and text information, enabling
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Figure 2. The detailed illustration of our proposed method. The framework of our method consist of four modules: an image encoder, a
(causal) text encoder, a (text-to-)image decoder, a (image-to-)text decoder. Our method focuses on three pretraining objectives: image-text
contrasting (ITC), text-guided masked image modeling (TG-MIM) and image captioning (IC).

bidirectional local interaction. The cross-modality multi-
head attention module uses the representations of one modal-
ity as the query and the other modality’s representations as
the key and value. More specifically, the image decoder pre-
dicts the pixel values of masked image patches, leveraging
cross-attention to incorporate relevant text. Similarly, the
text decoder predicts the logits of the next token, utilizing
cross-attention to integrate relevant image information. This
bidirectional fusion mechanism ensures a comprehensive
mutual understanding of the image-text pairs.

3.2. Training Objectives

We start from an image-text pair dataset consisting of pairs
(Ii, Ti), where Ii represents an image and Ti is the cor-
responding text caption. The image encoder EI and text
encoder ET are responsible for encoding the image and text,
respectively, yielding the embeddings:

{vclsi , v1i , ..., v
P
i } = EI(Ii) and (1)

{w1
i , ..., w

S
i , w

cls
i } = ET (Ti). (2)

P refers to the number of patches, and S is the length of to-
kenized text sequence. Here, we present the applied training
objectives in details.

Image Text Contrasting (ITC). In the training process, we
consider a batch of N image-text pairs {Ii, Ti}Ni=1 and their
corresponding global representations {vclsi , wcls

i }Ni=1. It is
assumed that these representations have been normalized to
have a unit ℓ2 norm. The contrasive objective is designed to

align the image and text representations:

LITC = − 1

2N

[
N∑
i

log

(
exp(⟨vclsi , wcls

i ⟩/τ)∑N
j=1 exp(⟨vclsi , wcls

j ⟩/τ)

)]

− 1

2N

[
N∑
i

log

(
exp(⟨wcls

i , vclsi ⟩/τ)∑N
j=1 exp(⟨wcls

i , vclsj ⟩/τ)

)]
,

(3)

where ⟨·, ·⟩ refers to the inner product, and τ is the tempera-
ture to scale the logits. The contrastive objective that pulls
the representations of paired image-text close together while
pushing apart unmatched pairs, promoting alignment in a
shared semantic space.

Image Captioning. Image captioning objective requires the
model to generate tokenized texts Ti with precise details
in an autoregressive manner, compared with ITC treating
the inputs as single entities. We use the image encoder EI

to encode image representations and train the text decoder
DT to maximize the conditional likelihood of the text Ti by
utilizing forward autoregressive factorization:

LIC = −
|Ti|∑
j=1

logDT

(
T j
i |T

<j
i , EI(Ii)

)
. (4)

The text decoder is trained using parallel computation for
enhanced learning efficiency. This training objective en-
ables the model to learn fine-grained representations with
a strong alignment through cross-modal prediction, foster-
ing the acquisition of joint-modality representations useful
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for various multimodal understanding and generation tasks.
Nonetheless, this interaction is unidirectional and asymmet-
rical, primarily focusing on understanding visual elements
in language, without exploiting the comprehension of tex-
tual elements in the visual context.

Text-Guided Masked Image Modeling. To address the
inherent imbalance in cross-modal interaction within the
image captioning task, we design a novel training ob-
jective called text-guided masked image modeling. Our
SyCoCa framework utilizes the image decoder, denoted
as DI , to reconstruct the masked image by predicting the
pixel values for each masked patch. The output linear
projection and reshape process is similar to that of the
MAE. For a given image I = {p1, ..., pP } consisting of
P patches, we employ patch-wise masking using a mask-
ing map M = {m1, ...,mP }, where mi ∈ {0, 1} indicates
whether the patch is masked. The TG-MIM loss is com-
puted as the L1 loss between the masked patches and their
reconstructed counterparts in the pixel space:

{p̂1, ..., p̂P } = DI(EI(I ⊕M), ET (T )), (5)

LTM =

P∑
i=1

mi· ∥ pi − p̂i ∥1, (6)

where p̂i refers to the reconstructed patches. Note that the
TG-MIM objective, proposed in this paper, distinguishes
itself from the image-pretraining objective MIM by dedi-
cated efforts on the guidance offered by the cross-attended
text representation. The text-guided modeling focuses on
the interaction between visual and textual representations,
with the goal of enhancing the fine-grained understanding
of textual elements within the visual context through re-
construction process. The introduction of this objective
complements the uni-directional prediction of image cap-
tioning.

3.3. Attentive Masking

Intuitively, the reconstruction of image regions that reveal
the same semantics or show highly related contents to the
text shall be a more effective and robust cross-modal in-
teraction, rather than reconstructing those irrelevant image
regions. Therefore, we suggest generating masking maps
that eliminate image patches that are relevant to language
captions, and subsequently reconstruct these patches based
on the text captions.

A straightforward idea to evalaute the correlation is by mea-
suring the similarity between each patch embedding vi and
the global text embedding wcls. However, wcls provides a
coarse-grained summary of the entire sentence. To mask
the vision elements mentioned in the caption as accurately
as possible, we propose to calculate the token-wise maxi-
mum similarity between image and text embeddings. This

method is effective in modeling fine-grained cross-modal
similarities in a previous study (Yao et al., 2021). Formally,
for the i-th embedding vi of an image, we calculate its sim-
ilarities with all text embeddings {w1, ..., wS} and select
the highest similarity

si = maxSj=1⟨vi, wj⟩ (7)

to represent its correlation with the text.

Image patches to be masked are selected based on their
scores {s1, ..., sP }. To ensure stable training in TG-MIM,
a fixed ratio rh of top scoring patches (represented by the
high attn mask in Figure 2) in the input image are masked.
Conversely, in the caption task, the patches with the lowest
scores (represented by the low attn mask in Figure 2) in the
input image are masked at a fixed ratio rl. The purpose is to
enhance cross-modal interaction by encouraging the model
to prioritize visually salient regions that play a significant
role in understanding and representing the image for caption
generation.

3.4. Overall Objective

Finally, we pretrain SyCoCa with all these losses combined:

L = LITC + λICLIC + λTMLTM , (8)

where λIC and λTM are the hyper-parameters weighting
between IC and TG-MIM. All the modules of SyCoCa are
trained from scratch.

4. Experiments
To demonstrate the effectiveness of our proposed SyCoCa,
we conduct extensive experiments on 5 downstream tasks.
Initially, we present the experimental setup, including the
model architecture, pretraining datasets, downstream tasks,
and implementation details. Subsequently, we compare
SyCoCa with the baseline model, CoCa, on image-text re-
trieval, image classification, image captioning and visual
question answering tasks. Finally, we perform a series of
ablation studies to further analyze and evaluate our model.

4.1. Experimental Setup

Model Architecture. To ensure a fair comparison, we
conduct our experiment using the open-source implementa-
tion of CoCa1. Both SyCoCa and the baseline model utilize
the same CoCa-Base configuration for the image encoder,
text encoder, and text decoder. Furthermore, in SyCoCa,
we introduce a new image decoder that shares the same ar-
chitecture as the text decoder yet with minor modifications.
Specifically, we replace the token-prediction head with a

1https://github.com/mlfoundations/open_
clip
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Table 1. Zero-shot image-text retrieval evaluation results on Flickr30K and MSCOCO dataset.

Flickr30K MSCOCO

Image → Text Text → Image Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CoCa 44.2 72.4 81.7 31.3 59.7 70.8 16.3 37.1 48.9 15.3 35.8 47.0
Ours 46.6 76.3 83.6 35.9 64.6 75.6 18.7 41.0 53.6 17.2 39.7 51.6

%Gains +5.4 +5.4 +2.3 +14.7 +8.2 +6.8 +14.7 +10.5 +9.6 +12.4 +10.9 +9.8

Table 2. Comparison with CoCa on image captioning (MSCOCO, NoCaps) and vision question answering (VQA). B: BLEU@4. M:
METEOR. C: CIDEr. S: SPICE.

Image Captioning

MSCOCO NoCaps-Test VQA

B@4 M C S B@4 M C S val dev test

CoCa 21.3 22.6 71.1 16.2 12.7 22.4 53.4 10.4 43.0 39.1 39.6
Ours 22.4 23.6 75.6 16.8 12.9 22.8 54.8 10.5 46.9 42.6 42.9

%Gains +5.2 +4.4 +6.3 +3.7 +1.6 +1.8 +2.6 +1.0 +9.1 +9.0 +8.3

pixel-prediction head. All model parameters are initialized
using a Gaussian distribution with a mean of 0 and a stan-
dard deviation of 0.01, allowing the training process to start
from scratch.

Pretraining Data. We use the Conceptual Captions
12M (Changpinyo et al., 2021) (CC12M) dataset with 12
million image-caption pairs, as the multi-modal pretrain-
ing data for all models. Although this dataset is smaller in
scale compared to the large custom datasets employed by
the state-of-the-art pretraining models, such as 400M pairs
in CLIP (Radford et al., 2021) and 3B pairs in CoCa (Yu
et al., 2022a), it is a good match to the computation re-
sources available to us. Moreover, CC12M has been widely
adopted for benchmark evaluations in various studies on
vision-language pretraining (Mu et al., 2022; Singh et al.,
2022; Goel et al., 2022; Li et al., 2022c; Zhai et al., 2022).
Additionally, we conduct a evaluation of our SyCoCa using a
large-scale image-text dataset to enable a direct comparison
with state-of-the-art methods. Detailed results and discus-
sions of these supplementary experiments are provided in
Appendix A.

Downstream Tasks. We evaluate SyCoCa on 3 downstream
vision-language tasks and 2 classification tasks, including
image-text retrieval, image captioning, visual question an-
swering, zero-shot image classification, and fine-tuned im-
age classification.

Implementation Details. We conduct our model training on
two machines, each equipped with 8 NVIDIA A100 GPUs,
for a total of 20 epochs. The batch size during training is
set to 2048, and the resolution of pretraining images is set
to 224×224. We use the AdamW optimizer (Loshchilov &

Hutter, 2017) with an initial learning rate of 1e − 4. The
learning rate schedule follows a cosine decay, including a
warm-up period of 5000 steps. In terms of hyperparameters,
we simply set λIC = 2 following CoCa and λTM = 1. The
masking ratios rh and rl are both empirically set to 50%.

4.2. Results on Downstream Vision-Language Tasks

We compare the performance of SyCoCa and CoCa on
downstream vision-language tasks, including image-text
retrieval, image captioning, and vision question answering.

Image-Text Retrieval. In this task, the models are required
to find the sample that best matches the input across modali-
ties without finetuning. We conduct evaluation on standard
image-text retrieval datasets, namely Flickr30K (Plummer
et al., 2015) and MSCOCO (Lin et al., 2014), and report the
results in Table 1. We can find that SyCoCa consistently
outperforms CoCa showcasing the gains in the range of
5%-15% for R@1. Here, ’%Gains’ denotes the percentage
of performance improvement over CoCa, namely:

%Gains =
(improved perf. - original perf.)

original perf.
× 100% (9)

Image Captioning. In this task, the models are required
to generate textual descriptions for input images. We fine-
tune both SyCoCa and CoCa using cross-entropy loss on
the MSCOCO Captioning (Lin et al., 2014) dataset. Sub-
sequently, we report the BLEU@4, METEOR, CIDEr, and
SPICE scores on the Karparthy test split of MSCOCO, as
well as the test split of the NoCaps (Agrawal et al., 2019)
dataset. The results shown in Table 2 demonstrate that
SyCoCa outperforms CoCa across all metrics. Specifically,
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Table 3. Zero-shot image classification evaluation results on 8 coarse-grained datasets: ImageNet (Deng et al., 2009), ImageNet-V2 (Recht
et al., 2019), ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al., 2021a), CIFAR-10 (Krizhevsky & Hinton, 2009),
CIFAR-100 (Krizhevsky & Hinton, 2009), STL-10 (Coates et al., 2011) and Caltech101 (Fei-Fei et al., 2004).

IN-1K IN-V2 IN-A IN-R C-10 C-100 STL-10 Caltech Avg.

CoCa 26.1 22.4 6.5 31.7 65.9 29.7 88.1 64.5 41.9
Ours 27.8 23.9 7.0 32.3 62.0 29.8 89.2 65.6 42.2

%Gains +6.5 +6.7 +7.7 +1.9 -5.9 +0.3 +1.2 +1.7 +2.5

Table 4. Fine-tuned image classification evaluation results on 6 fine-grained datasets: DTD (Cimpoi et al., 2014), Stanford Dogs (Khosla
et al., 2011), CUB-200 (Wah et al., 2011), Flowers102 (Nilsback & Zisserman, 2008), MNIST (LeCun et al., 2010), Food101 (Bossard
et al., 2014). Both models are transfered using linear probing.

DTD Dogs CUB Flowers MNIST Food Avg.

CoCa 58.1 49.0 40.6 69.1 93.3 69.1 63.2
Ours 60.5 51.2 41.3 70.6 94.5 71.1 64.9

%Gains +4.1 +4.5 +1.7 +2.2 +1.3 +2.9 +2.7

SyCoCa improves by 4%-6% on MSCOCO and 1%-3% on
NoCaps compared to CoCa.

Vision Question Answering. In this task, the models are
required to predict an answer based on both an image and
a question. To apply SyCoCa and CoCa to this task, we
modify the text encoder to a multi-modal decoder, which
allows for the fusion of image representation and question
input. We adapt the text decoder to generate answers in
an autoregressive manner, derived from the output of the
multi-modal decoder. To finetune the models, we utilize
the VQA (Goyal et al., 2017) dataset. During inference, we
constrain the decoder to generate answers only from a set
of 3,128 candidate answers to make a fair comparison. The
results in Table 2 clearly indicate that SyCoCa surpasses
CoCa in all cases, where SyCoCa achieves remarkable im-
provements of 8%-9% on the validation, test-dev, and test
splits of VQA.

Our evaluation on downstream vision-language tasks has
confirmed the advancements achieved by SyCoCa in terms
of multi-modal alignment and cross-modal understanding.
On one hand, our zero-shot retrieval experiments have
demonstrated the importance of bidirectional mutual in-
teraction in enhancing the performance of CoCa in terms of
modality alignment. On the other hand, the experimental re-
sults presented in Table 2 highlight the critical role played by
the bidirectional interaction mechanism in fostering mutual
understanding and capturing fine-grained elements across
different modalities.

4.3. Results on Image Classification Tasks

We conduct a comparison between CoCa and SyCoCa re-
garding their classification performance on both zero-shot

and fine-tuned image classification tasks. For zero-shot
image classification, we evaluate the models on 8 coarse-
grained image classification datasets that include common
categories like airplanes and dogs. The results are presented
in Table 3. SyCoCa outperforms CoCa in 7 out of 8 cases, re-
sulting in an average accuracy improvement of 2.5%. These
findings highlight the effectiveness of bidirectional under-
standing in bridging the gap between visual and textual
representations.

In case of the fine-tuned image classification tasks, we use
6 fine-grained image classification datasets that encompass
subcategories within a specific categorie, such as differ-
ent breeds of dogs (Khosla et al., 2011) like Border Collie
and Golden Retriever. During the fine-tuning process, we
employ linear probing to gauge the image encoders’ capa-
bility to discern intricate details within images. We report
our results in Table 4. The results indicate that SyCoCa
outperforms CoCa in all datasets, resulting in an average
performance improvement of 2.7%. This demonstrates the
effectiveness of incorporating bidirectional prediction to en-
hance the understanding and differentiation of fine-grained
elements within the visual representation domain.

4.4. Qualitive Analysis of SyCoCa

To obtain an intuitive comprehension of the advantages
of SyCoCa, we use Grad-CAM (Selvaraju et al., 2017), a
commonly used ”visual explanation” toolkit, to generate
attention location maps for the patch embedding layer in the
image encoder. As shown in Figure 3, compared with CoCa,
the improved version SyCoCa can capture fine-grained vi-
sual elements related to informative words in text. For in-
stance, in the case of Image 1, SyCoCa exhibits the attention
towards regions that are pertinent to the words ”holding”,
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A man is holding a cell phone in front of a mountain.

Image 1 CoCa SyCoCa

A few pieces of luggage sitting on top of 
a chair in an airport.

Image 2 CoCa SyCoCa

A wooden park bench with a remote control on top of it. That small plane looks like it is ready for takeoff.

The hull of a boat that is producing a wake

A bird that is playing in the snow.

Image 3 CoCa SyCoCa

Image 4 CoCa SyCoCa Image 5 CoCa SyCoCa Image 6 CoCa SyCoCa

Figure 3. Qualitative analysis of the proposed SyCoCa. We visualize the attention localization map of the first convolution layer in image
encoder by the toolkit Grad-CAM.

Table 5. Ablation study on training objectives. ITC: image-text contrasting IC: image captioning. MIM: masked image modeling.
TG-MIM: text-guided masked image modeling. RM: applying random masking in IC and MIM/TG-MIM. AM: applying attentive
masking in IC and MIM/TG-MIM. mIR/mTR refers to the corresponding mean value of R@1, R@5 and R@10.

zero-shot retrieval zero-shot classification

Flickr30K MSCOCO IN-1K C-10 STL-10 Caltech
ITC IC MIM TG-MIM RM AM mTR mIR mTR mIR Avg.

✓ 32.0 24.4 13.5 14.8 10.7 41.0 68.4 36.7 30.2
CoCa ✓ ✓ 37.5 28.7 16.1 16.0 10.4 39.6 69.2 37.8 31.9

✓ ✓ ✓ 41.1 31.4 17.5 18.3 11.4 40.0 71.7 39.1 33.8
✓ ✓ ✓ ✓ 36.0 27.1 15.8 16.3 11.8 46.6 71.5 38.5 33.0
✓ ✓ ✓ ✓ 37.7 27.8 15.2 16.2 11.6 43.5 72.1 35.9 32.5
✓ ✓ ✓ ✓ 35.8 26.4 14.4 15.2 11.9 44.8 71.4 39.2 32.4

Ours ✓ ✓ ✓ ✓ 42.6 32.4 18.3 18.4 11.6 51.1 73.6 39.5 35.9 (+12.5%)

”cell phone” and ”mountain” whereas CoCa neglects these
essential details. In contrast, in the case of Image 2, SyCoCa
successfully identifies the objects ”luggage” and ”chair”,
as well as the scenario ”airport”, whereas CoCa falls short
in recognizing these elements. This enhanced performance
is attributed to the fine-grained cross-modal understanding
ability enabled by bidirectional local interaction and atten-
tive masking, which proves advantageous for downstream
tasks such as image captioning and vision language answer-
ing.

4.5. Ablation Study

We conduct a series of experiments to evalute the impact of
training objectives and hyper-parameter settings of SyCoCa.
Due to limited computing resources, we train the models
on Conceptual Captions 3M (CC3M) (Sharma et al., 2018),
which is a small dataset consisting of filtered image-text
pairs. This dataset has been widely used for evaluations
of vision-language pretraining (Yang et al., 2022b; Zhong

et al., 2022; Wang et al., 2023b; Dong et al., 2023).

Objective Analysis. To analyze the impact of individual
training objectives in SyCoCa, we conduct a series of exper-
iments. We compare the performance of different variants
on image-text retrieval and classification tasks, as presented
in Table 5. We can observe that:

• By incorporating bidirectional cross-modal interaction
tasks namely IC and TG-MIM, our proposed SyCoCa
achieves an average improvement of 12.5% compared
to CoCa on CC3M dataset.

• When applying a random masking mechanism to both
IC and TG-MIM, the performance of models using
TG-MIM slightly decreases compared to those using
MIM. That is because the randomly masked patches
may not be relevant to the text description, thereby
introducing additional noise in the modal interaction
and consequently affecting the performance of TG-
MIM.
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Table 6. Comparison of different masking ratios. mIR/mTR refers to the corresponding mean value of R@1, R@5 and R@10.

zero-shot retrieval zero-shot classification

Flickr30K MSCOCO IN-1K C-10 STL-10 Caltech
rl rh mTR mIR mTR mIR Avg.

25% 75% 40.1 31.0 17.5 17.8 11.1 49.7 73.3 39.4 35.0
(a) 50% 50% 42.6 32.4 18.3 18.4 11.6 51.1 73.6 39.5 35.9

75% 25% 40.7 31.1 17.5 17.3 11.1 47.6 72.2 39.8 34.7

25% 50% 42.5 32.4 18.3 18.3 11.1 48.0 73.9 39.4 35.5
(b) 50% 50% 42.6 32.4 18.3 18.4 11.6 51.1 73.6 39.5 35.9

75% 50% 42.8 32.6 18.4 18.4 11.9 48.3 72.7 40.1 35.6

50% 25% 42.4 32.3 18.3 18.3 11.5 49.9 74.1 36.5 35.4
(c) 50% 50% 42.6 32.4 18.3 18.4 11.6 51.1 73.6 39.5 35.9

50% 75% 43.2 33.3 18.6 18.8 11.7 51.2 73.1 39.0 36.1

Table 7. Comparison of different weights for the TG-MIM objective. mIR/mTR refers to the corresponding mean value of R@1, R@5
and R@10.

zero-shot retrieval zero-shot classification

Flickr30K MSCOCO IN-1K C-10 STL-10 Caltech
λTM mTR mIR mTR mIR Avg.

0.1 42.1 32.4 18.3 18.2 11.3 46.5 73.2 39.8 35.2
0.5 42.8 32.2 18.2 18.2 11.5 46.1 73.6 38.6 35.1
1.0 42.6 32.4 18.3 18.4 11.6 51.1 73.6 39.5 35.9
2.0 40.5 31.3 17.7 17.8 11.3 47.3 72.2 40.0 34.8

• Introducing TG-MIM alone, without the presence of
AM, has little impact on performance. This is because
attention masking is essential for TG-MIM to rely on
text information in order to reconstruct highly corre-
lated visual areas, thereby enhancing the cross-modal
interaction between the vision and text modalities.

Impact of Masking Ratio. We train SyCoCa with different
high/low masking ratios to evaluate their impact on model
performance. Our evaluation is designed from three aspects:
(a) dividing all image patches into high or low attentive
masking, (b) maintaining a fixed low masking ratio while
varying the high masking ratio, and (c) vice versa. The
results are presented in Table 6. From Table 6 (a), we can
observe that dividing the image patches evenly yields better
results compared to biased partitioning, as it balances the
visual information used in objectives in terms of image cap-
tioning and Tg-MIM. Moreover, in Table 6 (b)-(c) SyCoCa
is not sensitive to changes in the mask ratio.

Training Objective Weights. We also investigate the im-
pact of different weights for the TG-MIM, by varying the
weights λTM assigned to the TG-MIM loss while keeping
other objectives’ weights fixed. The results in Table 7 indi-
cate that within the specific range of [0.1, 1.0], the variation
of λTM has minimal impact on the performance. We select
λTM = 1.0 for training our model.

5. Conclusion
In this paper, we introduce a novel vision-language pretrain-
ing method called SyCoCa, which aims to further enhance
multi-modal alignment. Our approach focuses on improving
the fine-grained understanding between vision and language
modalities by introducing the text-guided masked image
modeling (TG-MIM) training objective. By incorporating
the TG-MIM training objective into the CoCa framework,
we establish bidirectional local interaction, which leads to
a precise and fine-grained alignment between the vision
and language modalities. Additionally, we propose a new
attentive masking approach for TG-MIM, which selectively
masks image patches that have strong correlations with the
text caption. By focusing on these highly relevant patches,
we enhance the cross-modal interaction and significantly
improve overall performance. Through extensive experi-
ments on five vision-language tasks, we demonstrate the
effectiveness and generalization ability of our SyCoCa.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Comparison with Other Methods
To verify the effectiveness of our proposed Text-Guided
Masked Image Modeling (TG-MIM) and attentive mask-
ing (AM) strategy, the experiments are conducted under
the same settings of CoCa and SyCoCa in the main paper.
Especially for the training dataset, we used CC12M, a small
dataset with 12 million image-text pairs. As we all know,
the amount of training dataset has a crucial impact on model
performance. To control data factors and reflect the superi-
ority of our algorithm, we use a large-scale image-text pairs
dataset for pre-training. Specifically, we collect Laion-2B
(Schuhmann et al., 2022) and COYO-700M (Byeon et al.,
2022). In addition, the number of parameters will also af-
fect the model performance. To train the collected datasets,
we use a total parameter size of 930M. Tab 8 summarizes
the pre-training model configurations of the related meth-
ods. The comparison results between our SyCoCa and other
methods are shown in Tab 9 and Tab 10.

Image-Text Retrieval. For the image-text retrieval task,
the comparison results are shown in Tab 9. Specifically, we
conduct this comparison using the dual-encoder configu-
ration to appropriately reveal the performance of encoders.
Our SyCoCa achieves the best results in terms of text-to-
image retrieval on the Flickr30K dataset, as well as text-
to-image/image-to-text retrieval on the MSCOCO dataset.
It is worth noting that, SyCoCa outperforms ALIGN (Jia
et al., 2021) in 11 out of 12 cases, despite both models hav-
ing similar model parameter sizes and pre-training dataset
sizes. In addition, even though some models (such as CoCa,
BEiT-3, and SigLIP) employ larger parameter sizes and
datasets, our SyCoCa still achieves comparable results. For
instance, the mean text-to-image/image-to-text recall results
for SyCoCa are 96.0/90.5/82.3/69.8, while for CoCa, they
are 97.3/91.3/81.4/69.1.

Image Caption. For image caption task, the comparison
results are shown in Tab 10. On MSCOCO dataset, our
SyCoCa is slightly lower than the best method on BLEU@4
and SPICE, but outperforms CoCa on all metrics. On No-
Caps dataset, our method achieves the best performance,
which shows that our attentive mask strategy has certain
advantages in the caption task.

B. Discussion
B.1. Classification Performance

We note that, in Table 3, the improvements SyCoCa brings
to classification tasks are subtler compared to its impact
on vision-language tasks. We surmise that this could be
attributed to the resolution of the test images. To investigate
this, we randomly selected 100 images from the test subsets
of each evaluation dataset and computed their average pixel
count. The results are reported in Table 11.

Moreover, we have noted from Table 3 that SyCoCa ex-
hibits a negative gain on CIFAR-10. To delve into this
phenomenon, we constructed confusion matrices of classi-
fication results when applying both SyCoCa and CoCa to
CIFAR-10, alongside their application to STL-10, which
shares similar image categories. As depicted in Figure 4,
SyCoCa tends to conflate visually akin categories (like
trucks and automobiles) in the lower resolution (32×32) im-
ages of CIFAR. However, in the higher resolution (96×96)
images of STL-10, SyCoCa demonstrates an enhanced abil-
ity to discriminate between visually similar categories.

The aforementioned outcomes suggest that SyCoCa’s per-
formance gains are constrained on low-resolution images.
We conjecture that the image modeling task heightens the
model’s sensitivity to the loss of detail within image regions.
Future work will be dedicated to further investigating this
effect and enhancing the model’s robustness to variations in
input image resolution.

B.2. Training Cost

The training and inference costs for SyCoCa and CoCa,
utilizing the CoCa-Base configuration, are depicted in Ta-
ble 12. In the training stage, SyCoCa’s adoption of an
image decoder increases its parameter count by 30% rel-
ative to that of CoCa. Concurrently, the introduction of
the TG-MIM task, along with the computations for atten-
tive masked bidirectional local interactions, leads to a 67%
uptick in the duration of training. While in the inference
stage, it is noteworthy that SyCoCa maintains parity with
CoCa in terms of parameter count and time consumption.
This is because that the principal objective of SyCoCa is to
enhance the encoder’s efficacy in downstream tasks via en-
riched cross-modal interaction. In our future work, we aim
to investigate light-weight decoder designs and optimize the
training procedure to alleviate the training complexity.
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Table 8. Pre-training model configurations. † WebLI is a private multilingual dataset conducted by Google, which consists of 10 billion
images and 12 billion alt-texts.

Model total #param. precision dataset image size

CLIP (Radford et al., 2021) 430M fp16 WIT-400M 3362

OpenCLIP (Cherti et al., 2022) 430M bf16 LAION-2B 2242

ALIGN (Jia et al., 2021) 820M - ALIGN-1.8B 2892

FILIP (Yao et al., 2021) 430M fp16 FILIP-340M 2242

Florence (Yuan et al., 2021) 890M - FLD-900M 2242

CoCa (Yu et al., 2022b) 2.1B - JFT-3B+ALIGN-1.8B 2882

CoCa-Large (Yu et al., 2022b) 790M - JFT-3B+ALIGN-1.8B 2882

BEiT-v3 (Wang et al., 2022) 1.9B - 15M images+160GB documents+21M pairs 2242

L-Verse (Kim et al., 2022) 600M fp16 ImageNet+MSCOCO+CC3M 2562

CoBIT (You et al., 2023) 1.0B - JFT-4B+ALIGN-1.1B+WebLI-162M 2562

EVA-CLIP-02 (Sun et al., 2023) 430M - LAION-2B+COYO-700M 2242

SigLIP (Zhai et al., 2023) 430M - WebLI† 2242

CLIPA-v2 (Li et al., 2023b) 1.0B - DataComp-1B 3362

SyCoCa (ours) 930M bf16 LAION-2B+COYO-700M 2242

Table 9. Zero-shot image-text retrieval comparisons on Flickr30K (Plummer et al., 2015) and MSCOCO (Lin et al., 2014). Results of
models that use significantly larger parameter sizes or dataset sizes are indicated in gray.

Flickr30K MSCOCO

Image → Text Text → Image Image → Text Text → Image

Model R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP (Radford et al., 2021) 88.0 98.7 99.4 68.7 90.6 95.2 58.4 81.5 88.1 37.8 62.4 72.2
OpenCLIP (Cherti et al., 2022) 88.7 98.4 99.2 75.0 92.5 95.6 62.1 83.4 90.3 46.1 70.7 79.4
ALIGN (Jia et al., 2021) 88.6 98.7 99.7 75.7 93.8 96.8 58.6 83.0 89.7 45.6 69.8 78.6
FILIP (Yao et al., 2021) 89.8 99.2 99.8 75.0 93.4 96.3 61.3 84.3 90.4 45.9 70.6 79.3
Florence (Yuan et al., 2021) 90.9 99.1 - 76.7 93.6 - 64.7 85.9 - 47.2 71.4 -
CoCa (Yu et al., 2022b) 92.5 99.5 99.9 80.4 95.7 97.7 66.3 86.2 91.8 51.2 74.2 82.0
BEiT-v3 (Wang et al., 2022) 94.9 99.9 100.0 81.5 95.6 97.8 - - - - - -
CoBIT (You et al., 2023) 91.5 99.1 - 79.9 95.3 - 65.1 85.5 - 50.3 74.2 -
EVA-CLIP-02 (Sun et al., 2023) 89.7 98.6 99.2 77.3 93.6 96.8 63.7 84.3 90.4 47.5 71.2 79.7
SigLIP (Zhai et al., 2023) - - - - - - 70.2 - - 52.0 - -
CLIPA-v2 (Li et al., 2023b) 89.1 - - 73.0 - - 64.1 - - 46.3 - -

SyCoCa (ours) 89.2 99.1 99.6 78.7 95.4 97.4 67.2 87.5 92.1 50.7 75.7 82.9

Table 10. Image captioning comparisons on MSCOCO (Lin et al., 2014) and NoCaps (Agrawal et al., 2019). B@4: BLEU@4, M:
METEOR, C: CIDEr, S: SPICE.

MSCOCO NoCaps

val test

Model B@4 M C S C S C S

CLIP-ViL (Shen et al., 2021) 40.2 29.7 134.2 23.8 - - - -
BLIP (Li et al., 2022b) 40.4 - 136.7 - 113.2 14.8 - -
VinVL (Zhang et al., 2021) 41.0 31.1 140.9 25.4 105.1 14.4 103.7 14.4
SimVLM (Wang et al., 2021) 40.6 33.7 143.3 25.4 112.2 - 110.3 14.5
LEMON (Hu et al., 2022) 41.5 30.8 139.1 24.1 117.3 15.0 114.3 14.9
L-Verse (Kim et al., 2022) 39.9 31.4 102.2 23.3 - - - -
CoBIT (You et al., 2023) - - 139.5 - - - - -
CoCa (Yu et al., 2022b) 40.9 33.9 143.6 24.7 122.4 15.5 120.6 15.5

SyCoCa (ours) 41.4 34.1 143.7 25.3 122.6 15.8 121.1 15.6
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Table 11. Average image pixel count across datasets and the corresponding zero-shot classification performance gain of SyCoCa trained
on CC12M.

Dataset avg. #pixel %Gains

ImageNet-1K 210843 +6.5
ImageNet-V2 207852 +6.7
ImageNet-A 188165 +7.7
ImageNet-R 212758 +1.9
CIFAR-10 1024 -5.9
CIFAR-100 1024 +0.3
STL-10 9126 +1.2
Caltech101 69410 +1.7

Table 12. Comparison of training and inference costs with CoCa-Base configuration. For inference, we report the parameter count and
time consuming of image-text retrieval task.

Training Inference

Method #params. sec./batch #params. sec./pair

CoCa 252M 0.50 151M 0.12
SyCoCa 328M (+30%) 0.83 (+67%) 151M 0.12

(a) SyCoCa, CIFAR-10 (b) CoCa, CIFAR-10 (c) SyCoCa, STL-10 (d) CoCa, STL-10

Figure 4. Confusion matrices for classification results: (a) SyCoCa applied to CIFAR-10, (b) CoCa applied to CIFAR-10 (c) SyCoCa
applied to STL-10, and (d) CoCa applied to STL-10.
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