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Abstract
Large language models display remarkable ca-
pabilities in logical and mathematical reasoning,
allowing them to solve complex tasks. Interest-
ingly, these abilities emerge in networks trained
on the simple task of next-token prediction. In
this work, we present a theoretical framework
for studying auto-regressive next-token predictors.
We demonstrate that even simple models such as
linear next-token predictors, trained on Chain-of-
Thought (CoT) data, can approximate any func-
tion efficiently computed by a Turing machine.
We introduce a new complexity measure—length
complexity—which measures the number of in-
termediate tokens in a CoT sequence required
to approximate some target function, and analyze
the interplay between length complexity and other
notions of complexity. Finally, we show experi-
mentally that simple next-token predictors, such
as linear networks and shallow Multi-Layer Per-
ceptrons (MLPs), display non-trivial performance
on text generation and arithmetic tasks. Our re-
sults demonstrate that the power of today’s LLMs
can be attributed, to a great extent, to the auto-
regressive next-token training scheme, and not
necessarily to a particular choice of architecture.

1. Introduction
Large language models have achieved tremendous progress
in various NLP tasks, such as machine translation, logi-
cal reasoning, coding and natural language understanding.
These models, like GPT-3, GPT-4 and LaMDA (Brown et al.,
2020; OpenAI, 2023; Thoppilan et al., 2022), are trained
on massive amounts of text data and learn to generate co-
herent and contextually relevant responses to input prompts.
Amazingly, such language models are mostly trained with a
single objective: predicting the next token. While this objec-
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tive seems extremely simplistic, auto-regressive next-token
predictors trained on rich enough data are able to solve strik-
ingly complex tasks (Bubeck et al., 2023). This raises the
question of whether such next-token predictors are merely
“glorified” autocomplete models, which happened to memo-
rize the entire internet, or are they truly performing novel
logical reasoning. To this end, it has been shown that the
ability of language models to compute complex functions
can be greatly enhanced by using Chain-of-Thought (CoT)
and scratchpad techniques (Wei et al., 2022b; Kojima et al.,
2022; Lightman et al., 2023; Nye et al., 2021), allowing the
models to perform unrestricted intermediate computations
before arriving at a final answer.

In this work, we introduce a theoretical framework for study-
ing auto-regressive next-token predictors. We demonstrate
that much of the power of today’s language models in log-
ical reasoning can be attributed to the nature of the auto-
regressive learning, and not to a particular choice of archi-
tecture. We show theoretically that very simple models
trained to only predict the next token in an auto-regressive
fashion can be used to solve extremely complex tasks when
utilizing CoT techniques. In particular, we show that even
linear predictors—models where the next-token probability
is a linear function of the input sequence—are already pow-
erful enough to compute any Turing computable function.
The main theoretical result in the paper is captured in the
following informal statement:

Theorem 1.1 (informal). For any function f that can be
efficiently computed using a Turing machine, there exists a
dataset D such that training a (linear) next-token predictor
on D results in a predictor that approximates f .

That is, any computer program or intelligent agent that can
be simulated by a computer, can be learned, given the right
dataset, by a simple next-token predictor.

To understand the power of auto-regressive learning, ob-
serve that a result equivalent to Theorem 1.1 is not possi-
ble in the classical supervised learning setting, where the
learner is given access only to the input sequence and the
target label. It is well-known that no learning algorithm
can efficiently learn the class of all (efficient) Turing com-
putable functions (Valiant, 1984), given only the input and
the output of the function (without access to intermediate
supervision). In fact, in classical supervised learning, there
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are only a few function classes that are known to be effi-
ciently learnable—function classes for which there exists
a learning algorithm that can efficiently recover the target
function given a labeled dataset. Learnable function classes
are known to have fundamental limitations to their computa-
tional capacity. For example, the class of linear predictors is
efficiently learnable in many settings, e.g. using the Percep-
tron algorithm (Rosenblatt, 1958). However, a famous result
in (Minsky & Papert, 2017) shows that linear predictors can-
not compute simple functions such as the XOR function.
Auto-regressive learning, however, presents a striking differ-
ence. While linear next-token predictors are still efficiently
learnable using simple algorithms such as SGD, their com-
putational capacity greatly surpasses the capacity of their
classical counterparts. Since auto-regressive inference intro-
duces a sampling function1 after each step, it allows linear
next-token predictors to compute non-linear functions. As
implied by Theorem 1.1, linear next-token predictors can
implement practically any target function of interest.

While next-token predictors have the capacity to generate
highly proficient learners, this does not come without a cost.
One significant expense is the requirement to provide the
learning model with potentially long sequences of tokens
that detail the internal computations of the target. This re-
quirement can be resource-intensive and often impractical.
As such, it prompts the introduction of a new measure of
learning complexity, analogous to sample complexity or
run-time complexity: the length complexity. This type of
complexity measures the quantity of intermediate tokens
in a CoT necessary for the model to learn a particular con-
cept class. We explore this complexity in the context of
the parity learning problem, an extension of the XOR prob-
lem that is known to be computationally hard to learn in
some settings. We demonstrate how traditional forms of
complexity, such as sample or run-time complexity, can be
traded off with length complexity when learning parities.
Specifically, we show that an increase in the complexity of
the hypothesis class—and therefore in sample or computa-
tional complexity—leads to a decrease in length complexity.
This opens up a new path for the theoretical investigation of
auto-regressive learning, by studying the interplay between
these different complexity measures.

To substantiate our theoretical results, we experimentally
illustrate the power of auto-regressive learning in enhanc-
ing the performance of simple models. We train a linear
next-token prediction network on the TinyStories dataset
(Eldan & Li, 2023), a collection of short stories composed of
simple words. We observe that linear models, once trained
on this dataset, frequently generate plausible and grammat-
ically sound stories. Next, we demonstrate that a shallow

1In our analysis we focus on the zero-temperature/argmax sam-
pling, which acts as an explicit non-linearity.

Multi-Layer Perceptron (MLP) with 775M parameters (no
attention layers), can learn to correctly multiply two 4-digit
numbers, given CoT data. Our MLP achieves comparable
results to Goat, a 7B-parameter transformer trained to solve
arithmetic tasks (Liu & Low, 2023).
Remark 1.2. We use the term chain-of-thought to refer to
situations where a language model, when given some input
question, outputs a sequence of intermediate steps before ar-
riving at the final answer. In general, this behavior may arise
due to training on data with chain-of-thought demonstra-
tions, or by prompting the model to “think step by step”. Our
theoretical results imply that linear auto-regressive models
can compute complex functions using a chain of intermedi-
ate calculations, and that they learn to do so when trained
on data with such chain-of-thought sequences. The study of
chain-of-thought “prompting” of language models trained
on a large corpus of data is beyond the scope of this paper.

2. Related Work
CoT Reasoning The proposition of supervising interme-
diate logical steps as an effective approach for problem-
solving is well established, predating the advent of Trans-
former models. The technique was found to be particu-
larly beneficial in solving arithmetic problems (Roy & Roth,
2016). This idea became very popular with the introduction
of the Chain-of-Thought (CoT) approach, where models are
prompted to elucidate their thought process prior to yield-
ing a final outcome (Wei et al., 2022b; Kojima et al., 2022;
Lightman et al., 2023). Recent developments have further
demonstrated the efficacy of the CoT method in the training
of smaller student models (Li et al., 2023; 2022; Magister
et al., 2022). Another method that bears similarity to CoT is
the “scratchpad” technique, which allows models to record
intermediate computations that subsequently aid in deriving
the final answer (Nye et al., 2021). Such techniques have
been shown to enhance performance across a variety of log-
ical reasoning and arithmetic tasks. The research presented
in this paper aims to contribute to the theoretical understand-
ing of CoT reasoning in auto-regressive models. Our work
illustrates how the employment of CoT can significantly
amplify the capabilities of simple models. Furthermore, we
introduce a novel complexity measure, the length complex-
ity, that allows us to study the influence of the length of the
intermediate sequence of tokens within CoT on the difficulty
of the learning problem.

Language Models for Arithmetic Tasks Leveraging
large language models to tackle mathematical reasoning
and arithmetic tasks has gained significant interest, a trend
that is discussed at length in a recent survey (Lu et al., 2022).
While these models have demonstrated a promising capacity
for solving an array of mathematical problems, they often en-
counter difficulties in executing straightforward arithmetic
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operations, such as the multiplication and addition of large
numbers (Nogueira et al., 2021; Qian et al., 2022). Previ-
ous studies have suggested that the efficiency of language
models in arithmetic tasks can be dramatically enhanced
by structuring them to perform calculations using an algo-
rithmic pipeline, facilitating step-by-step execution (Muffo
et al., 2023). A notable contribution in this realm is the
recent work by (Liu & Low, 2023), where they fine-tuned
a moderately sized (7B-parameter) transformer employing
the CoT method to perform complex arithmetic operations,
including the multiplication of large numbers—a challenge
even for advanced models like GPT-4. A very recent work
studies the ability of small transformers trained from scratch
to solve arithmetic tasks (Lee et al., 2023). In our study, we
further substantiate this claim by demonstrating that a small
MLP, devoid of any attention mechanism, can match the per-
formance of the transformer in (Liu & Low, 2023) in 4-digit
multiplication, provided that it receives appropriate inter-
mediate supervision. This highlights that the capability of
language models for arithmetic and mathematical reasoning
is largely attributable to the CoT and next-token prediction
techniques, rather than the specific architectural choice.

Beyond Transformers Although the transformer archi-
tecture (Vaswani et al., 2017) currently stands as the leading
approach in language modeling, it is noteworthy that a di-
verse range of other architectures have served this purpose
over time. A notable instance is the application of Recur-
rent Neural Networks (RNNs) (Hochreiter & Schmidhuber,
1997), a model highly popular for language modeling only
a few years back, due to its efficient and inherent sequence
processing capabilities (Mikolov et al., 2010). Furthermore,
convolutions have also been explored for language model-
ing tasks (Dauphin et al., 2017). A work more related to
our own leveraged linear dynamical systems to model text
(Belanger & Kakade, 2015). Recent years have witnessed
an emerging interest in substituting the attention layer of
transformers, primarily due to its high computational cost,
with simpler and more efficient alternatives. In this vein, the
work of (Katharopoulos et al., 2020) introduced the linear
transformer, where the attention layer was replaced with a
more computationally-friendly linear layer. Concurrently,
(Zhai et al., 2021) advanced an Attention-Free Transformer.
More recent advancements include the RWKV architecture
(Peng et al., 2023), a modern variant of the RNN architec-
ture inspired by transformers, which exhibits competitive
performance when trained on large datasets. Some studies
have proposed the use of simpler MLP-based architectures
as feasible alternatives to transformers (Tolstikhin et al.,
2021; Liu et al., 2021). Our work contributes to this ongo-
ing discourse by conducting both theoretical and empirical
investigations into the potential of very simple models, such
as linear models and small MLPs, training them to solve
complex tasks by leveraging the power of next-token auto-

regressive learning.

Related Theoretical Work Despite the rapid pace of prac-
tical advancements in the realm of language models and
transformers, the theoretical underpinning remains compar-
atively unexplored. Early investigations have established
the universality of transformers (i.e., their ability to emulate
any Turing machine) given the incorporation of a recurrent
module (Yun et al., 2019; Wei et al., 2022a). More recently,
it has been demonstrated that transformers can simulate
universal computers when incorporated into an execution
loop (Giannou et al., 2023). The work of (Liu et al., 2022)
shows that Transformers can simulate Automata, which are
equivalent to bounded-memory programs, using surprisingly
few layers. Turing universality extends to other language
modeling architectures, such as RNNs (Siegelmann & Son-
tag, 1992). A study by (Edelman et al., 2022) underscores
the inductive biases of self-attention, demonstrating that
bounded-norm Transformer networks can represent sparse
functions with logarithmically scaling sample complexity.
The work of (Feng et al., 2023) theoretically demonstrates
the importance of CoT for solving mathematical problems
with transformers. Of particular relevance to our study is
the work of (Wies et al., 2022), which delves into how sub-
task decomposition and the CoT technique can facilitate the
learning of computationally challenging problems. Simi-
larly to our study, (Wies et al., 2022) also explores parity
learning with intermediate supervision and demonstrates
that arbitrary Turing machines can be efficiently learned by
language models trained with CoT. Our work extends these
findings, introducing a theoretical framework that enables
broader examination of auto-regressive learning. We show
that even linear predictors can efficiently learn Turing com-
putable functions. In addition, our results offer improved
length complexity bounds for learning parities, indicating
that parities can be learned using O(log n) intermediate to-
kens, a marked reduction from theO(n) intermediate tokens
in (Wies et al., 2022).

3. Theory
The key principle in our theoretical results is the differen-
tiation between “classical” supervised learning and Auto-
Regressive (AR) learning. In supervised learning, there is
a clear separation between the input and the label (or tar-
get). The learner gets a dataset of inputs with their labels,
and needs to find a model that correctly predicts the label
of a new input example. While supervised learning tasks
can sometimes be easy (e.g., when the label is given by a
linear function of the input features), this task becomes very
hard, or even impossible, when the function used for gener-
ating the labels requires a complex computational process
(Valiant, 1984). This hardness stems from the fact that the
internal computation is not available to the learner, who only
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observes the input and the corresponding final output.

In AR learning, on the other hand, the situation is different.
AR learners get a sequence of tokens, and treat every token
both as an input (for predicting future tokens) and as a label
(for sequences of previous tokens). Coupling AR learning
with the CoT technique results in a learning paradigm where
the internal computations required for reaching the final
answer become available to the learner both as inputs and
as labels. This naturally allows supervision on intermediate
steps in the computation/reasoning process, which greatly
simplifies the learning task.

In the following sections we detail our theoretical results. In
Section 3.1 we formally define the framework of AR Learn-
ing and Learnability, in an analogous way to classical PAC
Learning. We then show how PAC Learnable hypothesis
classes can be used for constructing AR Learnable classes,
and discuss the special case of linear classes (which are
known to be efficiently PAC Learnable). In Section 3.2 we
discuss approximation results, namely understanding what
types of function a given AR model can compute. To this
end, we consider the function computed by the model to be
the function mapping the input tokens to the final token(s),
allowing the model to arbitrarily use internal computations
in a chain-of-thought manner. Following this, we show that
even linear AR models can compute very complex functions,
for example emulating arbitrary Turing machines. Finally,
in Section 3.3 we introduce length complexity, which mea-
sures how many intermediate tokens are required in order to
learn to compute a given function. We show that using more
intermediate tokens, i.e. increasing the length complexity,
can reduce time/sample complexity, and vice-versa.

Remark 3.1. It is important to note that in AR learning
there is a crucial difference between the “training mode”
and “inference mode” of the model. During training we
use “teacher forcing”: training the model to predict the next
token given an input from the ground truth data. During
inference, however, we feed the model with some input and
let it generate auto-regressively, predicting the next token
given the sequence of tokens that were generated by the
trained model itself. In our theoretical analysis we prove
results in both the training mode setting (e.g., Theorem
3.3) and the inference mode (Theorem 3.8). These results,
while seeming independent, can be viewed as two parts of
the same proof, giving guarantees on the inference-time
behavior of some predictor trained with teacher forcing.

3.1. Learnability Results

Let D be a finite set of tokens, let X = Dn be the space
of contexts of n tokens, and let Z = D∗ be a space of
strings of tokens. For some t, we denote Zt = Dt. An Auto-
Regressive (AR) function h is a mapping X × Z → D (we
assume a deterministic function). An AR hypothesis class

H is a set of AR functions. Fix some T ∈ N.2 For some
distribution D over X × ZT , we say that D is realizable by
the AR class H if there exists a function h ∈ H such, with
probability 1 over (x, z) ∼ D, we have h(x, z<t) = zt for
all t ≤ T (where z<t denotes the first t− 1 coordinates of
z). In other words, the pair (x, z) is realizable by h if h
accurately predicts the next token for all prefixes z<t of z.
We now define Learnability in the AR framework:

Definition 3.2. We say that H is AR Learnable if there
exists a function m : (0, 1)2 → N and an algorithm such
that for every ϵ, δ ∈ (0, 1) and distribution D realizable
by H, given a sample of size m(ϵ, δ) from D, returns
with probability (w.p.) ≥ 1 − δ a function ĥ ∈ H s.t.
Pr

[
∃t ≤ T s.t. ĥ(x, z<t) ̸= zt

]
≤ ϵ. Furthermore, we say

that H is efficiently AR Learnable if it is AR Learnable with
an algorithm running in polynomial time.

That is, a class H is (efficiently) AR Learnable if there
exists an (efficient) algorithm that finds, w.h.p., a next-token
predictor with low error.

We now show that hypothesis classes that are learnable in
the classical sense (i.e., by supervised learning), naturally
induce hypothesis classes that are AR Learnable. Let H
be some AR hypothesis class. We assume that H can be
decomposed into “standard” hypothesis classes in the fol-
lowing sense. Let {Ht}∞t=1 be a sequence of classes, where
Ht is a class of functions X × Zt−1 7→ D. We assume that
H = H1 ×H2 × . . . . Namely, we associate every h ∈ H
with a sequence (h1, h2, . . . ), where hi ∈ Hi, s.t. for every
x ∈ X and z ∈ Zt−1 we have h(x, z<t) = ht(x, z<t).
While we define H on arbitrarily long sequences, when
we study learnability we limit ourselves to discussing se-
quences of length at most T . In particular, we can assume
H = H1 × · · · × HT . The following result shows that PAC
Learnability of the underlying hypothesis classes (as defined
e.g. in (Shalev-Shwartz & Ben-David, 2014)) implies AR
Learnability of the class H:

Theorem 3.3. If H1, . . . ,HT are (efficiently) PAC Learn-
able with sample complexity m(ϵ, δ), then H = H1 × · · · ×
HT is (efficiently) AR Learnable with sample complexity
m(ϵ/T, δ/T ).

The proof (in Appendix A) is a simple reduction using the
standard notion of PAC Learnability.

Linear Decoder

From Theorem 3.3, efficiently learnable classes induce
classes that are efficiently learnable in the Auto-Regressive
setting. For example, by letting Ht be a class of linear func-
tions, we can use known results on learning linear classifiers

2In Section 3.3 we study how the choice of T affects the com-
plexity of the learning problem, but for now we treat T as a fixed
parameter of the learning problem.
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to show that the induced AR hypothesis class is efficiently
learnable. We define the linear AR hypothesis class as fol-
lows.
Definition 3.4. Let ψ : D → Rd be some embedding of the
dictionary. With some abuse of notations, for z ∈ Dt we
define ψ(z) = [ψ(z1), . . . , ψ(zt)] ∈ Rd×t. Fix some t, let
W ∈ RD×d×(n+t), and for all x ∈ X and z ∈ Zt define
hW (x, z) = argmaxD∈D ⟨WD, ψ([x, z])⟩. Denote the
function class of all linear predictors HLin

t = {hW : W ∈
RD×d×(n+t)}.

Observe that the class HLin
t is PAC-learnable in polynomial

time. Under some margin conditions and using a convex sur-
rogate loss function, this class is in fact learnable using SGD
(Shalev-Shwartz & Ben-David, 2014). Therefore, for the
linear AR hypothesis class HLin = HLin

1 × · · · × HLin
T , we

get that HLin is efficiently learnable in the Auto-Regressive
setting.

3.2. Approximation Results

We showed that when the AR hypothesis class H is induced
from a sequence of (efficiently) learnable hypothesis classes,
then H is also (efficiently) AR learnable. In particular, HLin

is efficiently AR learnable, as a product of linear classes. We
now show that while learnability transfers from the classical
setting to the AR setting, in AR learning we can get much
stronger approximation guarantees. In fact, while linear
classes are relatively limited in the standard setting, we
show that the linear AR class HLin is extremely powerful.
Namely, we show that linear AR functions can efficiently
approximate any Turing computable function.

We first need a proper definition of what are the functions
that AR hypotheses “compute”. For some AR hypothesis
h, define the output of the auto-regression process at time
t to be h(t)(x), defined recursively by: h(1)(x) = h(x, ∅),
and h(t)(x) = h

(
x,

(
h(1)(x), . . . , h(t−1)(x)

))
. For now,

we focus on AR hypotheses that are evaluated for T steps,
for some fixed T ∈ N. In Section 3.3 we discuss how
the choice of T (length complexity) interacts with different
measures of complexity. We define the function computed
(approximated) by h as follows:
Definition 3.5. Fix some target f : Dn → D and some AR
hypothesis h. Then, we say that h computes f , if for every
input x ∈ Dn we have h(T )(x) = f(x). Additionally, for
some distribution D over Dn, we say that h ϵ-approximates
f w.r.t. D, if PrD

[
h(T )(x) ̸= f(x)

]
≤ ϵ.

In other words, we say that h computes f if after running
auto-regression for T steps, it outputs a value that agrees
with f . Note that we ignore all the intermediate outputs of
h and observe only the final output. This is in alignment
with common practice, where we let language models use
arbitrarily long chain-of-thought/scratchpad before arriving

at the final answer3.

Next, we show that if some AR class H is learnable, then
auto-regressive learning of distributions realizable by h ∈ H
returns an approximator for the function computed by h:

Theorem 3.6. Assume that H is (efficiently) AR Learnable
with sample complexity m(ϵ, δ). Then, there is an (efficient)
algorithm s.t. for any ϵ, δ and distribution D realizable by
some h ∈ H, given a sample of size m(ϵ, δ), returns w.p.
≥ 1− δ a function ĥ s.t. ĥ(T ) ϵ-approximate h(T ) w.r.t. D.

The proof follows by induction from the definitions (see
Appendix A). Theorem 3.6 shows that using AR learning,
we can learn to approximate the function computed by the
underlying AR function h.

Approximation Capacity of Linear Hypotheses

We now limit ourselves to a dictionary with only two tokens
D = {0, 1}, to be compatible with standard analysis of
computations with Boolean inputs/outputs. We will show
that linear AR functions can approximate a very large class
of functions—namely, the class of linear threshold circuits.

Definition 3.7. A linear threshold function is a func. of the
form x 7→ σ(⟨w, x⟩+ b) for σ(x) = 1x≥0. A linear thresh-
old circuit is a Boolean circuit where every gate computes a
linear threshold function.

The following result shows that linear AR functions can
approximate any linear threshold circuit:

Theorem 3.8. Assume that f : {0, 1}n → {0, 1} can be
computed by a linear threshold circuit with at most T gates.
Then, f can be computed by a linear AR function h ∈ HLin.

The proof of the above result uses the fact that a linear
threshold function can be implemented using argmax over
a linear function, in the case where D = {0, 1} (full proof
in Appendix A).

We note that any Turing computable function can be com-
puted by a linear threshold circuit of some size T that scales
polynomially with the runtime of the Turing machine (see
e.g. (Arora & Barak, 2009)). Therefore, we get that linear
AR functions can compute any Turing computable function,
with only polynomial blow-up in run-time. This leads to the
following result:

Corollary 3.9. For any function f that is Turing computable
in time T (n), and for any distribution D over inputs of
size n, there exists a dataset of strings of tokens, each of
size poly(T (n)), s.t. training a linear AR model over this

3Here we assume that f outputs a single token in D, and there-
fore observe only the last token produced by the auto-regression.
However, we note that this can be extended to the case where f
outputs multiple tokens, and we observe a sequence of tokens at
the end of the auto-regression.
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dataset efficiently recovers a function that approximates f
w.r.t. D.

To prove the above, we consider a dataset generated by a
linear model simulating the target Turing machine which
computes f .

3.3. Length Complexity

We showed that even simple classes like linear AR pre-
dictors can approximate any Turing computable function.
Since linear predictors can be learned efficiently, we get
a learning scheme that can efficiently learn virtually any
function of interest. This is in contrast with the standard
supervised learning setting, where efficiently learnable func-
tion classes are typically very limited in their expressive
power. However, we note that the complexity of learning
did not magically “disappear”. To make learning possible,
we require that the learner has, during learning, access to
a sequence of tokens representing the internal CoT gener-
ated by the target it aims to imitate. While the length of
this sequence is still reasonable (polynomial in the problem
parameters), acquiring data with such long sequences might
be costly, or even impossible.

In this section we introduce length complexity, a new notion
of learning complexity that quantifies the number of inter-
mediate tokens required for learning some concept class, i.e.
the length of the CoT supervision provided to the model
during training. The length complexity complements com-
mon complexity measures such as sample and run-time
complexity, and we show that in some cases we can trade
off sample/computational complexity for length complexity,
and vice versa.

We begin with a formal definition of length complexity. Fix
some distribution over Dn, some AR hypothesis class H
and some target concept class F of functions Dn → D. The
definition below extends Definition 3.5 to function classes,
which allows an explicit discussion on length complexity.
Definition 3.10. We say that H computes F with length
complexity T , if T is the minimal number satisfying that for
every f ∈ F there exists some h ∈ H such that, for all x ∈
Dn we have h(T )(x) = f(x). Additionally, we say that H
ϵ-approximates F with length complexity T if for every f ∈
F there exists some h ∈ H s.t. PrD

[
h(T )(x) ̸= f(x)

]
≤ ϵ.

From Theorem 3.8 we get that the class of linear threshold
circuits of size T can be ϵ-approximated using linear AR
functions with length complexity T . For small circuits this
might not be an issue, but otherwise this dependence may be
problematic. We expect that taking a richer AR hypothesis
class H would result in reduction of the length complexity.
In the rest of this section, we discuss the interplay between
the choice of the AR hypothesis class and the different
measures of complexity that it induces: sample complexity,

computational complexity and length complexity.

Length Complexity of Parities

To demonstrate a concrete analysis of length complexity,
we consider the well-studied problem of learning parities, a
natural extension of the XOR problem (Minsky & Papert,
2017). In the parity learning problem, the inputs are se-
quences of n bits, and the label is determined by the parity
of the sum of an unknown subset of bits from the input.
This problem is known to be computationally hard in some
settings. For example, Statistical Query (SQ) algorithms
and variants of gradient-descent need Ω(2n) steps to solve
the problem (Kearns, 1998; Shalev-Shwartz et al., 2017;
Abbe & Sandon, 2018; Malach & Shalev-Shwartz, 2022),
and it is hard to solve with limited memory (Raz, 2018).

We now formally define the set of parity functions. Assume
D = {0, 1} (Boolean inputs). For some subset A ⊆ [n],
define the parity function over A by χA(x) =

∑
i∈A xi

mod 2. Let Pn be the class of all parity functions, Pn =
{χA : A ⊆ [n]}. It is known that parities can be com-
puted using O(log n) size linear threshold circuit (Kautz,
1961). So, Theorem 3.8 implies that a linear AR model
can compute any parity function with logarithmic length
complexity:

Theorem 3.11. The class Pn can be computed using HLin,
with length complexity O(log n).

Since we showed that linear AR functions are efficiently
learnable (Theorem 3.3), the above theorem implies that
parities become efficiently learnable given O(log n) inter-
mediate tokens. This is in contrast to the standard supervised
learning setting, where linear functions cannot approximate
parities (Daniely & Malach, 2020). We note that a similar
result on learning parities with intermediate tokens appears
in (Wies et al., 2022), but with O(n) length complexity
(instead of O(log n)).

We next show that by taking more complex hypothesis
classes we can reduce the length complexity of comput-
ing Pn. However, this comes at a cost of increasing either
the sample or the computational complexity. We define a se-
quence of AR classes of growing complexity for computing
Pn. For every k ≤ n, let Pn,k be the class of parities over

subsets of size ≤ k, namely Pn,k =
{
χA : A ∈

(
[n]
≤k

)}
.

The larger n and k are, the harder it is to learn Pn,k (via
supervised learning). In particular, there are known lower
bounds on learning Pn,k using Statistical Query (SQ) al-
gorithms, a large family of algorithms that include vari-
ants of gradient-based learning algorithms (Blum et al.,
2003). Roughly speaking, learning Pn,k using SQ al-
gorithms requires run-time of

(
n
≤k

)
= O((n/k)k), and

the sample complexity of O(k log n). We define H(k) =
Pn,k × Pn+1,k × . . . , and show the following:
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Figure 1. Illustration of the linear network and the MLP used in
our experiments.

Theorem 3.12. H(k) can compute Pn with length complex-
ity Θ(n/k).

To prove the above result, we show that any parity over n
bits can be computed by constructing a “tree” of k-order
parities, which reduces the length complexity by a factor
of k (see Appendix A). This decrease in length complexity
comes at the cost of increasing the computational complex-
ity of the learning exponentially with k (for SQ algorithms
and variants of GD). While the exact interplay between com-
putational and length complexity depends on the learning
problem, this result shows that sometimes decreasing the
length complexity makes the problem computationally hard
to learn. We believe that a fundamental understanding of
the length complexity of different problems will allow us to
better understand AR predictors. For example, discovering
an intrinsic complexity measure for hypothesis classes (anal-
ogous to VC dimension or SQ dimension) that can be used
to derive length complexity bounds is of particular interest.
We leave such an investigation to future research.

4. Experiments
We now turn to empirically validate our theoretical results,
showing that very simple models perform surprisingly well
when trained auto-regressively to perform next-token pre-
diction. We start by training a simple linear model on a
dataset of short stories, and then evaluate the performance
of a small MLP on a task of arithmetic computations.
4.1. Tiny Stories

We test the efficiency of linear AR models on the TinySto-
ries dataset (Eldan & Li, 2023), a synthetic dataset of short
stories containing simple words. We train a linear model
with context length of T = 64 on this dataset. The model
has only three layers: 1) a standard (linear) embedding layer,

Prompt #1: He was very scared
Output: He was very scared. He cried out loud, but then he

heard a voice. He was afraid of the dark monster.
He ran to the bear. He had a pain in his hand. He
screamed and ran away. He was never seen again.
He was scared of the monster and he went on. He
never. . .

Prompt #2: Adam was hungry, so
Output: Adam was hungry, so he wanted to eat the dessert.

But he knew it was not a good at his sister . He
thought, “Maybe I can eat this food, but I don’t
want to share with you.”

Prompt #3: Alice was tired, so

Output #1: Alice was tired, so she decided to take a nap .
She put a blanket on the ground and started to
cry. Then, she heard a noise. It was a nearby tree.

Output #2: Alice was tired, so she decided to go on an

adventure . She hopped on the way to go home
and look for her...

MODEL GRAMMAR CREATIVITY CONSISTENCY PLOT
GPT-4 / LT GPT-4 GPT-4 GPT-4

TS-33M 8.0 ± 0.8 / 62% 7.2 ± 0.5 7.0 ± 1.2 6.9 ± 0.8
TS-1M 6.9 ± 0.9 / 59% 6.7 ± 1.0 6.0 ± 1.5 5.6 ± 1.3
LINEAR 6.3 ± 2.0 / 64% 6.2 ± 1.8 5.9 ± 1.8 5.2 ± 1.8

Figure 2. Top: Example prompts and outputs for Linear model
trained on TinyStories (grammatical/conceptual errors in red). Bot-
tom: Comparison between Transformer-and Linear models, aver-
age grades from GPT-4.

mapping tokens into a vector of dimension d = 256; 2) a
linear layer mapping d×T to d×T (using standard masking
for next-token prediction during training); 3) an output em-
bedding layer mapping vectors of dimension d = 256 back
into the output space of all tokens (see Figure 1). To allow
next-token prediction training, we apply masking on the sec-
ond linear layer, so that each output token only has access to
previous tokens in the sequence. While the resulting classi-
fier is linear, we note that this model is not exactly the linear
AR model analyzed previously, as we allow sharing some
parameters (namely, the input/output embedding parame-
ters) across the different sequence positions. However, this
is a close proxy to the idealized linear model. The model
is optimized with the cross-entropy loss, using a softmax
operation applied to the outputs. Altogether, the resulting
model has roughly 162M active parameters. The model is
trained for 51/2 hours on a single A100 machine.

We use our model to generate story paragraphs, given some
initial sentence. Similarly to Eldan & Li (2023), we use
GPT-4 to grade 50 output examples based on grammar, cre-
ativity, consistency with the story’s beginning and whether
the plot makes sense (see Appendix C for further details).
We also evaluate the grammar of the generated text using
the LanguageTool (LanguageTool, 2024) grammar checker,
and report the percentage of generations that had no gram-
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Prompt: 1394×8618=
MLP: (4×1+9×10+3×100+1×1000)×

(8×1+1×10+6×100+8×1000)=
...
12013492

GPT-4: The multiplication of 1394 and 8618
equals 12 , 01 4 , 05 2 .

Answer: 12013492

MODEL ACC. (EXACT/PER-DIGIT)

MLP-775M 96.9% / 99.5%
GPT-3.5 1.2% / 61.9%
GPT-4* 5.3% / 61.8%
GOAT-7B* 96.9% / 99.2%

Figure 3. Left: Output of the MLP and GPT-4 on the 4-digit multiplication task (full output in Appendix B). Right: Performance of GPT
vs. MLP model on the 4-digit multiplication task. *For GPT-4 and Goat-7B, we use the numbers as repored in (Liu & Low, 2023).

matical errors (generating 5 outputs per story). While the
results are certainly inferior in quality to transformer-based
language models, we note that the linear predictor often
does produce coherent and grammatically correct text. In
Figure 2 we show some example of prompts and the result-
ing output of the model. We emphasize that our goal is not
to claim that linear models are better or even comparable to
transformers, but rather to show that these extremely simple
models achieve non-trivial language modeling capabilities
when trained on high-quality data.

4.2. Multiplication

We now turn to demonstrate the power of next-token pre-
diction with CoT reasoning for arithmetic tasks. We focus
on the task of multiplying two 4-digit numbers, which has
been shown to be challenging even for huge language mod-
els such as GPT-4 (Liu & Low, 2023). For this task, we
train a simple Multi-Layered Perceptron (MLP) with four
layers: 1) a standard (linear) embedding layer, from tokens
to dimension d = 128; 2) a linear layer with a ReLU ac-
tivation, applied across all the context window, mapping
the input of d × T to an output of d × T (where we use a
context length of T = 307); 3) a linear layer with a ReLU
activation applied per token, mapping from d to d; 4) a final
output embedding, mapping back to the space of all tokens
(see Figure 1). Similarly to the linear network, we mask
future positions in the second layer. We note that while this
network has non-linearity (unlike the previous model), it is
still very simple compared to standard transformer-based
networks (e.g., we use no attention mechanism). Altogether,
our MLP has 775M active parameters.

Recently, a paper by (Liu & Low, 2023) instrodced Goat,
a relatively small transformer fine-tuned from the LLaMA
model that was able to outperform GPT-4 in various arith-
metic tasks, when trained on data with intermediate cal-
culations. We follow a similar procedure for training our
model on 4-digit multiplication, with some key differences.
First, we give more intermediate steps than in (Liu & Low,
2023), essentially unfolding the multiplication algorithm in
the training sequences (see Figure 4.1). Second, we use a

custom tokenization scheme, where we tokenize separately
single digits (1, 2, 3, . . . ), signs (×,+,=) and also pairs of
digits with multiplication sign (1× 2, 3× 5, etc). This tok-
enization allows the model to quickly solve the single-digit
multiplication task (by mapping pairs of multiplied digits to
their product), which is a crucial tool in the multiplication
algorithm. Finally, we also add zero-padding to some of the
numbers, to get all strings to have the same length.

We split all pairs of 4-digit numbers arbitrarily, use 75% for
training, and keep the rest for validation. The network is
trained from scratch for 17 hours on a single A100 GPU,
going over 100M sequences (307M tokens) sampled uni-
formly from the training set. In Table 4.1 we compare the
performance of our simple MLP (evaluated on 1000 val-
idation examples) with GPT-3.5 (evaluated on the same
examples), as well as to GPT-4 and Goat-7B on the same
task (as reported in (Liu & Low, 2023)). We report both
accuracy of the exact match of the final answer, as well as
accuracy of individual digits in the final number. We note
that the performance of our MLP matches the performance
of the much larger fine-tuned transformer in (Liu & Low,
2023)4, and outperforms both GPT-3.5 and GPT-4 on this
task. This demonstrates again that a lot of the power of
language models can be attributed to the next-token auto-
regressive training on high-quality data, and not necessarily
to a particular architectural choice.

5. Discussion
The emerging capabilities of large language models has
triggered an ongoing debate about their potential and im-
plications. Certain proponents assert that we are close to
achieving Artificial General Intelligence (AGI), pointing to
models such as GPT-4 which have already demonstrated per-

4We also trained a small 70M transformer using our tokeniza-
tion and CoT scheme. This transformer achieved only 72% per-
digit accuracy, far worse than the MLP or the 7B transformer of
Liu & Low (2023). That said, it is possible that a bigger trans-
former can achieve more competitive results, but needs far more
compute compared to our MLP.
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ceived “sparks of AGI” (Bubeck et al., 2023). They argue
that AGI is just a matter of scaling up—creating larger mod-
els, feeding them with more data, and increasing training
time. In stark contrast, others dismiss these large mod-
els as merely sophisticated autocomplete systems, voicing
concerns about their propensity to potentially absorb and
perpetuate biased and harmful data (Bender et al., 2021).

While this debate is far from settled, we hope that our work
sheds light on the theoretical possibilities inherent in train-
ing auto-regressive next-token predictors. Our findings indi-
cate that, given suitable data, simple next-token predictors
can be trained to effectively learn virtually any function
of interest. Consequently, if there exists some computer
program capable of realizing AGI, then it is theoretically
plausible to attain AGI through training simple next-token
predictors, given the appropriate data. Admittedly, these
assertions, in their current form, are somewhat theoretical,
with practical application requiring data composed of po-
tentially very long sequences of intermediate computations.
However, we show that by modifying the choice of the
hypothesis class we can possibly shorten the required se-
quence length, making our results more realistic. Therefore,
we believe that our research can contribute towards a better,
more nuanced understanding of both the capabilities and
constraints associated with next-token predictors.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proofs
Proof of Theorem 3.3. Let D be some distribution over X × ZT realizable by H, and let Dt be the distribution over
(X ×Zt−1)×D, where we sample (x, z) ∼ D and observe ((x, z<t), zt). Therefore, Dt is a labeled distribution realizable
by Ht, and so we can use a learner for Ht to find using m(ϵ/T, δ/T ) samples, with probability 1− δ/T , a hypothesis ĥt s.t.
PrD

[
ĥt(x, z<t) ̸= zt

]
≤ ϵ/T . Therefore, using the union bound, with probability at least 1− δ, we get:

Pr
[
∃t ≤ T s.t. ĥt(x, z<t) ̸= zt

]
≤

∑
t≤T

Pr
[
ĥt(x, z<t) ̸= zt

]
≤ ϵ

Proof of Theorem 3.6. By the definition of AR Learnability, we can find a hypothesis ĥ s.t., with probability at least 1− ϵ
over x ∼ D, we get

ĥ(x, h(1)(x), . . . , h(t)(x)) = h(x, h(1)(x), . . . , h(t)(x))

for all t. So, for such x we get
ĥ(1)(x) = ĥ(x, ∅) = h(x, ∅) = h(1)(x)

and by induction:

ĥ(t)(x) = ĥ(x, ĥ(1)(x), . . . , ĥ(t−1)(x))

= ĥ(x, h(1)(x), . . . , h(t−1)(x))

= h(x, h(1)(x), . . . , h(t−1)(x)) = h(t)(x)

Proof of Theorem 3.8. Let f be some target circuit, and we define the depth of some gate in the circuit to be the maximal
number of nodes in a path connecting the gate to some input variable. We sort the gates in the circuit by their depth, and let
f (1), . . . , f (T ) be the functions computed by the gates in the circuit (where f (T ) = f is the output function). Observe that
every gate f (t) can be computed by the argmax of a linear function of the inputs and previous gates, and therefore we can
define some linear hypothesis h s.t. h(x, f (1)(x), . . . , f (t−1)) = f (t)(x). By induction, we get that for every t we have
h(t) = f (t) and therefore the required follows.

Proof of Theorem 3.12. To show that the length complexity is O(n/k), observe that it is enough to construct a Boolean
circuit of size O(n/k), where every gate computes a parity over at most k input bits (similarly to the proof of Theorem 3.8).
This circuit has the structure of a tree, where each node has in-degree at most k. It is easy to see that such a tree, with depth
logk(n) and O(n/k) internal nodes can compute the parity over any subset of bits from the input.

We now show that the length complexity is lower bounded by Ω(n/k). Assume, for the sake of contradiction, that Pn can be
computed with length complexity T ≤ n/2k, and particularly this implies that the parity over all input bits (namely, χ[n]) can
be computed with T ≤ n/2k. Observe that, by the choice of the function class, at every step t we have h(t)(x) = χAt

(x)
for some subset At ⊆ [n]. Additionally, at every step t, the size of At can increase by at most k. Therefore, after T ≤ n/2k
steps, h(T )(x) = χAT

for some AT ⊊ [n], and therefore h(T )(x) does not compute (or even approximate) χ[n].
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B. Additional Figures

Prompt: 1394×8618=
Output (MLP): (4×1+9×10+3×100+1×1000)×

(8×1+1×10+6×100+8×1000)=
4×8×1×1+4×1×1×10+4×6×1×100+
4×8×1×1000+9×8×10×1+9×1×10×10+
9×6×10×100+9×8×10×1000+3×8×100×1+
3×1×100×10+3×6×100×100+
3×8×100×1000+1×8×1000×1+
1×1×1000×10+1×6×1000×100+
1×8×1000×1000=
32+040+2400+32000+720+0900+54000+
720000+2400+03000+180000+2400000+
08000+010000+0600000+08000000=
12013492

Output (GPT-3.5): The multiplication of 1394 by 8618 is equal
to 12 , 013 , 6 92 .

Output (GPT-4): The multiplication of 1394 and 8618 equals
12 , 01 4 , 05 2 .

Correct Answer: 12013492

Figure 4. Comparison between the output of our MLP, GPT-3.5 and GPT-4 on the 4-digit multiplication task.

C. TinyStories GPT-4 Evaluation
To evaluate the models trained on the TinyStories dataset, we give all models a beginning of a sentence from a list of 50
sentences (generated by GPT-4). We then let the models complete the sentence, generating up to 64 tokens. We sample all
models with temperature 0.5. We use the following prompt to GPT-4 to grade the quality of the produced text (this prompt is
taken, with small modifications, from (Eldan & Li, 2023)):

The following exercise, the student is given a beginning of a sentence from a story. The student needs to complete it into
a paragraph from the story. The exercise tests the student´s language abilities and creativity. The symbol *** marks the
separator between the prescribed beginning and the student’s completion:

Once upon a time, in an ancient house,*** there lived a little girl named Mia. Mia loved to play with her toys and have fun
with her friends. One day, Mia found a big box in her room. It was very pretty and shiny.

Please provide your general assessment about the part written by the student (the one after the *** symbol). Is it
gramatically correct? Is it consistent with the beginning of the story? Pay special attention to whether the student
manages to complete the sentence which is split in the middle by the separator ***. The student’s completion of the story
is mostly consistent with the beginning of the story. It maintains the focus on Lily and her family, and the sentence split
by the separator is completed correctly. However, the student’s addition does not fully integrate the shiny decorations
found in the attic, which were a significant part of the beginning. The grammar is generally correct, but there are a few
minor errors: 〈list omitted〉. Overall, the student’s completion of the story demonstrates adequate language abilities and
creativity, but could benefit from better integration of the shiny decorations and minor grammar improvements. Now,
grade the student’s completion in terms of grammar, creativity, consistency with the story’s beginning and whether the
plot makes sense. Use numbers from 1 to 10.

Output example: Grammar: 8, Creativity: 7, Consistency:5, Plot: 6

We report the average score for all models. Below is the list of sentences that we use:

• “Once upon a time, in a colorful garden, there lived a tiny caterpillar named Charlie who...”

• “In the big, blue sky, Lucy the little bird was learning how to...”
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• “Under the warm, shining sun, Benny the playful puppy found a...”

• “In the quiet, cozy barn, Millie the cow was dreaming about...”

• “On a bright, sunny morning, Oliver the curious kitten saw a...”

• “Deep in the green forest, Harry the little hedgehog was searching for...”

• “Near the sparkling river, Daisy the duck was making friends with...”

• “In the tall, whispering grass, Freddy the frog was hopping towards...”

• “Up in the fluffy white clouds, Peter the plane was flying over...”

• “Beneath the twinkling stars, Luna the owl was watching...”

• “Along the sandy beach, Sammy the crab was building a...”

• “In the busy, buzzing meadow, Bella the bee was collecting nectar from...”

• “On top of the snowy mountain, Eddie the eagle was soaring above...”

• “Inside the colorful coral reef, Wendy the fish was swimming with...”

• “At the edge of the mysterious jungle, Zoe the zebra was looking at...”

• “In the middle of the big city, Max the mouse was exploring...”

• “Under the bright rainbow, Ruby the rabbit was playing with...”

• “On the quiet farm, Ollie the ox was helping to...”

• “In the vast, open field, Ellie the elephant was trumpeting to...”

• “Next to the cool pond, Darcy the dragonfly was zooming around...”

• “In the old, wise tree, Timmy the squirrel was collecting nuts for...”

• “Around the busy bee hive, Polly the butterfly was fluttering near...”

• “Underneath the cozy blanket, Lily the lamb was dreaming of...”

• “Beside the gentle stream, Finley the fish was hiding from...”

• “In the dark, spooky cave, George the bat was hanging upside down and...”

• “Atop the ancient castle, Fiona the falcon was guarding...”

• “Within the enchanted forest, Greta the gnome was casting spells to...”

• “Behind the colorful rainbow, Nora the nymph was playing tricks on...”

• “Among the tall sunflowers, Sunny the sunbird was singing to...”

• “On the quiet moonlit night, Marvin the moth was flying towards...”

• “In the golden wheat field, Will the weasel was sneaking through...”

• “Along the sparkling coastline, Coral the seagull was searching for...”

• “Under the large oak tree, Oakley the owl was preparing for...”

• “In the middle of the pumpkin patch, Patty the pumpkin was waiting to...”

• “At the bottom of the deep ocean, Oscar the octopus was discovering...”

• “On the windy hilltop, Hannah the hawk was watching for...”

• “Inside the bustling anthill, Andy the ant was working hard to...”

• “Near the rosy apple tree, Amy the aardvark was sniffing around...”

• “At the edge of the shimmering lake, Leah the loon was diving for...”
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• “In the shade of the big palm tree, Parker the parrot was chatting with...”

• “Beneath the golden sun, Gary the grasshopper was leaping towards...”

• “Along the bubbling brook, Brooke the beaver was building a...”

• “Under the cool, leafy canopy, Carl the caterpillar was munching on...”

• “In the soft, fluffy clouds, Claire the cloud was changing shapes to...”

• “On the bright, colorful rainbow, Roy the robin was hopping along...”

• “At the foot of the tall mountain, Monty the mountain goat was climbing up...”

• “Inside the warm, sunny greenhouse, Grace the gardener was planting...”

• “Near the quiet, sleepy village, Victor the vulture was soaring high above...”

• “Around the bustling city park, Paula the pigeon was pecking at...”

• “Under the starry night sky, Stella the starfish was dreaming about...”
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