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Abstract

High utility and rigorous data privacy are of the
main goals of a federated learning (FL) system,
which learns a model from the data distributed
among some clients. The latter has been tried
to achieve by using differential privacy in FL
(DPFL). There is often heterogeneity in clients’
privacy requirements, and existing DPFL works
either assume uniform privacy requirements for
clients or are not applicable when server is not
fully trusted (our setting). Furthermore, there is
often heterogeneity in batch and/or dataset size
of clients, which as shown, results in extra vari-
ation in the DP noise level across clients’ model
updates. With these sources of heterogeneity,
straightforward aggregation strategies, e.g., as-
signing clients’ aggregation weights proportional
to their privacy parameters (ϵ) will lead to lower
utility. We propose Robust-HDP, which efficiently
estimates the true noise level in clients’ model
updates and reduces the noise-level in the aggre-
gated model updates considerably. Robust-HDP
improves utility and convergence speed, while be-
ing safe to the clients that may maliciously send
falsified privacy parameter ϵ to server. Extensive
experimental results on multiple datasets and our
theoretical analysis confirm the effectiveness of
Robust-HDP. Our code can be found here.

1. Introduction
In the presence of sensitive information in the train data, FL
algorithms must be able to provide rigorous data privacy
guarantees against a potentially curious server or any third
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party (Hitaj et al., 2017; Rigaki & Garcı́a, 2020; Wang et al.,
2019b; Zhu et al., 2019; Geiping et al., 2020). Differential
Privacy (Dwork et al., 2006b;a; Dwork, 2011; Dwork &
Roth, 2014) has been used in DPFL systems to achieve
such formal privacy guarantees. When there is a trusted
server in the system, FL with central differential privacy
(CDP), which is operated by the server by adding controlled
noise to the aggregation of clients’ updates, is a solution
(McMahan et al., 2018; Geyer et al., 2017). When there is
no trusted server, which is more common, FL with local
differential privacy (LDP), where each client randomizes
its updates locally is also a solution (Zhao et al., 2021).
However, LDP is limited in the sense that achieving privacy
while preserving model utility is challenging, due to clients’
independent noise additions. Some solutions have been
proposed for improving utility in LDP, e.g., using a trusted
shuffler system (Liu et al., 2021b; Girgis et al., 2021), which
may be difficult to establish if the server itself is not trusted.

Clients often have heterogeneous privacy preferences com-
ing from their varying privacy policies. Furthermore, dataset
size usually varies a lot across clients. Additionally, depend-
ing on their computational budgets, some clients may use
relatively smaller batch sizes locally for running DPSGD
algorithm (Abadi et al., 2016). As we will show, a small
privacy parameter (ϵ) and/or a small batch size lead to a fast
increment of the noise level in a client’s model update. Ex-
isting heterogeneous DPFL works mostly either depend on
a trusted server, i.e., CDP (Chathoth et al., 2022; Zhou et al.,
2022), or suffer from suboptimal and vulnerable aggregation
strategies on an untrusted server (i.e., LDP) based on clients’
privacy parameters (Liu et al., 2021a). We consider local
heterogeneous DPFL systems with an untrusted server and
propose an efficient algorithm, which is aware of the noise
level in each client’s model update. We propose to employ
Robust PCA (RPCA) algorithm (Candes et al., 2009) by the
untrusted server to estimate the amount of noise in clients’
model updates, which we show depends strongly on mul-
tiple factors (e.g., their privacy parameter and their batch
size ratio), and assign their aggregation weights accordingly.
The use of this efficient strategy on the server, which is
independent of clients sending any privacy parameters to
the server or not, improves model utility and convergence
speed while being robust to potential falsifying clients. The
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highlights of our contributions are the followings:

• We show the effect of privacy parameter and
batch/dataset size on the noise level in clients’ updates.

• We propose “Robust-HDP”, a noise-aware robust algo-
rithm for local heterogeneous DPFL (untrusted server)

• As the first work assuming heterogeneous dataset sizes,
heterogeneous batch sizes, non-uniform and varying
aggregation weights and partial participation of clients
simultaneously, we prove convergence of our proposed
algorithm under mild assumptions on loss functions.

• In various heterogeneity scenarios across clients, we
show that Robust-HDP improves utility and conver-
gence speed while respecting clients’ privacy.

2. Related work
Differential privacy. In this work, we use the following
definition of differential privacy:

Definition 2.1 ((ϵ, δ)-DP (Dwork et al., 2006a)). A random-
ized mechanismM : D → R with domain D and rangeR
satisfies (ϵ, δ)-DP if for any two adjacent inputs d, d′ ∈ D,
which differ only by a single record, and for any measurable
subset of outputs S ⊆ R it holds that

Pr[M(d) ∈ S] ≤ eϵPr[M(d′) ∈ S] + δ.

Gaussian mechanism, which randomizes the output of a
non-private computation f on a dataset d as Gσf(d) ≜
f(d) + N (0, σ2), provides (ϵ, δ)-DP. The variance of the
noise, σ2, is calibrated to the sensitivity of f , i.e., the maxi-
mum amount of change in its output (measured in ℓ2 norm)
on two neighboring datasets d and d′. Gaussian mechanism
has been used in DPSGD algorithm (Abadi et al., 2016)
for private ML to randomize intermediate data-dependent
computations, e.g., gradients. Some prior works (Gur-Ari
et al., 2018) found that stochastic gradients stay in a low-
dimensional space during training with Stochastic Gradient
Descent (SGD). Inspired by this, Zhou et al. (2021) pro-
posed projection-based variant of the DPSGD (Abadi et al.,
2016) algorithm (projected DPSGD), which improves utility
by removing the unnecessary noise from noisy batch gradi-
ents by projecting them on a linear subspace obtained from
a public dataset. Personalized DP (PDP), which specifies
a separate privacy parameter ϵ for each data sample in a
dataset, was used for centralized settings in (Alaggan et al.,
2017; Jorgensen et al., 2015; Huang et al., 2020; Kotsogian-
nis et al., 2020; Yu et al., 2023), followed by some recent
works in (Boenisch et al., 2023; Heo et al., 2023). Another
similar work in (Niu et al., 2020) proposed “Utility Aware
Exponential Mechanism” (UPEM) to pursue higher utility
while achieving PDP. In the same direction of improving

Figure 1. Security model in local heterogeneous DPFL, where
client i has local train data Di and privacy parameters (ϵi, δi),
and does not trust any external parties.

utility, Shi et al. (2021) proposed “Selective DP” for improv-
ing utility by leveraging the fact that private information in
natural language is sparse.

Heterogeneous DPFL. Assuming the existence of a
trusted server, Chathoth et al. (2022) proposed cohort-level
privacy with privacy and data heterogeneity across cohorts
using ϵ-DP definition (Definition 2.1 with δ = 0). Also, the
work in (Zhou et al., 2022), adapted the non-uniform sam-
pling idea of (Jorgensen et al., 2015) to the FL settings with
a trusted server to get client-level DPFL (i.e., d and d′ differ
by one client’s whole data) against membership inference
attacks (Rigaki & Garcı́a, 2020; Wang et al., 2019b). In
contrast, we consider untrusted servers.

The output of an algorithmM, in the sense of Definition 2.1,
is all the information that the untrusted server, which we
want to protect against, observes. We consider heteroge-
neous local model of DPFL (Figure 1), where each client
i has its own desired privacy parameters (ϵi, δi), and sends
data-dependent computation resultsM(Di) (i.e., model up-
dates) to the server. Also, in the context of Definition 2.1,
the notion of neighboring datasets that we consider in this
work, refers to pair of federated datasets d = {D1, · · · ,Dn}
and d′ = {D1, · · · ,Dn}, differing by one data point of one
client (i.e., record-level DPFL). Liu et al. (2021a) adapted
a projection-based approach, similar to that of projected
DPSGD (Zhou et al., 2021), to the heterogeneous DPFL set-
ting to propose PFA and improve utility. Although assuming
an untrusted server, their proposed algorithm relies on the
assumption that the server knows the clients’ “true” pri-
vacy parameters {(ϵi, δi)} and uses them to cluster clients
to “public” (those with larger privacy parameters) and “pri-
vate”. As such, as we show, PFA is extremely vulnerable
to when clients share a falsified value of their privacy pa-
rameters (often larger than their true values) with server.
Also, they used aggregation strategy wi ∝ ϵi on server for
PFA and another algorithm called WeiAvg (see Table 1). As
we will show, even if the server knows clients’ true privacy
parameters, this information is not a perfect indication of
the “true” noise level in their model updates, especially
with heterogeneous privacy parameters and batch/dataset
sizes.
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Table 1. Features of different heterogeneous DPFL algorithms. ×: needed at server, ✓: not needed.

algorithm aggregation strategy {ϵi}ni=1 clients clustering PCA on clients updates

WeiAvg (Liu et al., 2021a, Alg. 2) wi ∝ ϵi × × ✓
PFA (Liu et al., 2021a) wi ∝ ϵi × × ×
DPFedAvg (Noble et al., 2021) wi ∝ Ni ✓ ✓ ✓
minimum ϵ (Liu et al., 2021a) wi ∝ Ni × ✓ ✓

Robust-HDP (Alg. 1) wi ∝ 1
σ2
i

✓ ✓ ✓

The current state of the art in local heterogeneous DPFL
calls for a robust algorithm that takes all the mentioned
potential sources of heterogeneity across clients into account
and achieves high utility and data privacy simultaneously.

3. The Robust-HDP algorithm for
heterogeneous DPFL

In this section, we will devise a new heterogeneous DPFL
algorithm, and we first explain the intuitions behind it. Used
notations are explained in Table 2 and Appendix A in details.
At the t-th gradient update step on a current model θ, client
i computes the following noisy batch gradient:

g̃i(θ) =
1

bi

[( ∑
j∈Bt

i

ḡij(θ)
)
+N (0, σ2

i,DPIp)
]
, (1)

where ḡij(θ) = clip(∇ℓ(h(xij ,θ), yij), c), and c is a
clipping threshold. For a given vector v, clip(v, c) =
min{∥v∥, c} · v

∥v∥ . Also, σi,DP = c · z(ϵi, δi, qi,Ki, E):
knowing E (global communication rounds), client i can
compute z(ϵi, δi, qi,Ki, E) locally, which is the noise scale
that it should use locally for DPSGD in order to achieve
(ϵi, δi)−DP with respect toDi at the end of E global rounds.
This can be done by client i using a privacy accountant, e.g.,
the moments accountant (Abadi et al., 2016). Therefore,
depending on its privacy preference (ϵi, δi), each client i
computes its required noise scale z, runs DPSGD locally
and sends its noisy model updates to the server at the end of
each round. Now, an important question is that what is an
efficient aggregation strategy for the server to aggregate the
clients’ noisy model updates? Intuitively, the server has to
pay more attention to the less noisy updates. The challenge
is that the server knows neither the noise added by each
client i nor its amount. To answer the above question, we
first analyze the behavior of the noise level in clients’ batch
gradients in Section 3.1, which is used in Section 3.2, for
a similar analysis of clients’ uploaded model updates. The
result of this analysis is an idea we propose for the server
to estimate the noise amount in each model update, which
leads to an efficient aggregation strategy in Section 3.4.

Table 2. Used notations (also see Appendix A)

n number of clients, which are indexed by i
xij , yij j-th data point of client i and its label
Di, Ni local train set of client i and its size
Bti the train data batch used by client i at the t-th

gradient update
bi batch size of client i: |Bti | = bi
qi batch size ratio of client i: qi = bi

Ni

ϵi, δi client i’s desired DP privacy parameters
E total number of global communication

rounds in the DPFL system, indexed by e
Se set of participating clients in round e
θe global model parameter, which has size p, at

the beginning of global round e
Ki number of local train epochs performed by

client i during each global round e
Ei number of batch gradient updates of client i

during each global round e: Ei = Ki · ⌈Ni

bi
⌉

h predictor function, e.g., CNN model, with
parameter θ

ℓ cross entropy loss
σ2
i,g̃ variance of the noisy stochastic batch gradi-

ent g̃i(θ) of client i
σ2
i conditional variance of the noisy model up-

date ∆θ̃e
i of client i: Var(∆θ̃e

i |θe)

3.1. Noise level in clients’ DP batch gradients

We consider two cases, which are easier to analyze. Our
analysis gives us an understanding of the parameters affect-
ing the noise level in clients’ batch gradients. Depending on
the value of the used clipping threshold c at the t-th gradient
update step, we consider two general indicative cases:

1. Effective clipping threshold for all samples: in this
case, from Equation (1), we have:

E[g̃i(θ)] =
1

bi

∑
j∈Bt

i

E[ḡij(θ)] =
1

bi

∑
j∈Bt

i

Gi(θ) = Gi(θ),

(2)

where the expectation is with respect to the stochasticity of
gradients and we have assumed that E[ḡij(θ)] is the same
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Figure 2. Left: 3D plot of noise variance σ2
i of a client i (Equation (7) with Ki = 1, Ni = 2400, ηl = 0.01, c = 3, p = 28939) based

on bi and the privacy budget ϵi. Right: the noise variances {σ2
i }ni=1 in a DPFL system with n = 20 clients, where {(ϵi, bi)}ni=1 are

randomly selected for each client. It clearly shows an approximately sparse pattern (14 of the clients have much smaller noise variance
than the other 6). Each bar plot in the right figure corresponds to a point in the left figure.

for all j and is denoted by Gi(θ). Now, for an arbitrary
random variable v = (v1, . . . , vp)

⊤ ∈ Rp×1, we define
Var(v) :=

∑p
j=1 E[(vj − E[vj ])2], i.e., variance of v is

the sum of the variances of its elements. Then, the variance
of the noisy stochastic gradient in Equation (1), which is
also random, can be computed as (see Appendix C):

σ2
i,g̃ := Var(g̃i(θ))

=
c2 −

∥∥Gi(θ)
∥∥2

bi
+

pc2z2(ϵi, δi, qi,Ki, E)

b2i

≈ pc2z2(ϵi, δi, qi,Ki, E)

b2i
, (3)

where, the estimation is valid because p≫ 1. For instance,
p ≈ 2× 107 for ResNet-34 for CIFAR100, and c = 3.

2. Ineffective clipping threshold for all samples: in
this case, we have a noisy version of the batch gradient
gi(θ) =

1
bi

∑
j∈Bt

i
gij(θ), which is unbiased with variance

bounded by σ2
i,g (see Assumption D.1). Hence:

E[g̃i(θ)] = E[gi(θ)] = ∇fi(θ), (4)

σ2
i,g̃ = Var(g̃i(θ)) = Var(gi(θ)) +

pσ2
i,DP

b2i

≤ σ2
i,g +

pc2z2(ϵi, δi, qi,Ki, E)

b2i
. (5)

z is a sub-linearly increasing function of qi (and equivalently
bi: see Theorem 3.1 and Figure 8 in the appendix). It is also
clear that z is a decreasing function of ϵi and δi. Hence,
σ2
i,g̃ is a decreasing function of bi (batch size), Ni (dataset

size) and ϵi, and also an increasing function of qi (batch
size ratio).

3.2. Noise level in clients’ DP model updates

Having found the parameters affecting σ2
i,g̃, we now inves-

tigate the parameters affecting the noise level in clients’
model updates. During each global communication round e,
a participating client i performs Ei = Ki ·⌈Ni

bi
⌉ = Ki ·⌈ 1

qi
⌉

batch gradient updates locally with step size ηl:

∆θ̃e
i = θe

i,Ei
− θe

i,0,

θe
i,k = θe

i,k−1 − ηlg̃i(θ
e
i,k−1), k = 1, . . . , Ei, (6)

where θe
i,0 = θe. In each update, it adds a Gaussian noise

from N (0, c2z2(ϵi,δi,qi,Ki,E)
b2i

Ip) to its batch gradients inde-
pendently (see Equation (1)). Hence:

σ2
i := Var(∆θ̃e

i |θe) = Ki · ⌈
1

qi
⌉ · η2l · σ2

i,g̃, (7)

where σ2
i,g̃ was computed in Equation (3) and Equation (5)

for two general indicative cases. This means that σ2
i heavily

depends on bi (e.g., when clipping is effective, bi appears
with power 3 in denominator. Recall 1

qi
= Ni

bi
). Hence,

σ2
i decreases quickly when bi increases. Similarly, σ2

i is a
non-linearly decreasing function of ϵi (see Figure 2, left).
However, note that Ni and qi appear twice in Equation (7)
with opposing effects. This makes the variation of σ2

i with
Ni and qi small (explained in details in Appendix G.3). An
important message of these important understandings is that
ϵi is not the only parameter of client i that determines σ2

i .

3.3. Optimum aggregation strategy

Assuming the set of participating clients Se in round e, we
have to solve the following problem to minimize the total
noise after the aggregation at the end of this round:
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min
wi≥0

Var
( ∑
i∈Se

wi∆θ̃e
i

∣∣θe
)
=

∑
i∈Se

wi
2σ2

i ,

s.t.
∑
i∈Se

wi = 1, (8)

which has a unique solution w∗
i ∝ 1

σ2
i

. Hence, the opti-
mum aggregation strategy weights clients directly based
on {σ2

i }ni=1, which as shown, not only depends on {ϵi}ni=1

non-linearly, but it also depends on {bi}ni=1 and {Ni}ni=1.
This point makes the aggregation strategy wi ∝ ϵi of PFA
and WeiAvg algorithms (Liu et al., 2021a) suboptimal, let
alone its vulnerability to a client i sharing a falsified ϵ′i > ϵi
with the server to either attack the system, to get a larger
aggregation weight, or to get a larger payment from a server
which incentivizes participation by payment to clients (Don-
ahue & Kleinberg, 2021; Karimireddy et al., 2022; Fallah
et al., 2023; Kang et al., 2023) (as a larger ϵi means a more
exploitable data from client i). The same vulnerability dis-
cussion applies to the clustering of clients based on their
shared privacy parameter ϵ (used in PFA). Having these
shortcomings of the existing algorithms as a motivation,
how can we implement the optimum aggregation strategy
when the untrusted server does not have any idea of the
clients noise addition mechanisms and {σ2

i }ni=1? We next
propose our idea for estimating {σ2

i }ni=1 and {w∗
i }ni=1.

3.4. Description of Robust-HDP algorithm

Assuming a DPFL system with n clients and full partici-
pation of clients for simplicity, at the end of each global
round e, the server gets the matrix M := [∆θ̃e

1| . . . |∆θ̃e
n].

Assuming an i.i.d or moderately heterogeneous data split,
and based on the findings in (Gur-Ari et al., 2018; Zhou
et al., 2021), we would expect M to have a low rank if
there was no DP/stochastic noise in {∆θ̃e

i }ni=1. So we can
think about writing M as the summation of an underlying
low-rank matrix L and a noise matrix S:

M = [∆θ̃e
1| . . . |∆θ̃e

n] = L+ S.

If the matrix S is sparse, not only can such a decomposition
problem be solved using RPCA, it can be solved by a very
convenient convex optimization program called Principal
Component Pursuit (Algorithm 3 in the appendix) without
imposing much computational overhead to the server (Can-
des et al., 2009). Surprisingly, the entries in S can have
arbitrarily large magnitudes. Theoretically, this is guaran-
teed to work even if rank(L) ∈ O(n/(log p)2), i.e., the
rank of L grows almost linearly in n (see Theorem 1.1 in
(Candes et al., 2009)). Hence, we expect to be able to do
such a decomposition as long as we have a moderately het-
erogeneous data distribution across a large enough number
of clients (also, see Appendix H for detailed discussion

Algorithm 1 Robust-HDP

Input: Initial parameter θ0, batch sizes {b1, . . . , bn},
dataset sizes {N1, . . . , Nn}, noise scales
{z1, . . . , zn}, gradient norm bound c, local
epochs {K1, . . . ,Kn}, global round E, number of
model parameters p, privacy accountant PA.

Output: θE , {ϵE1 , . . . , ϵEn }
1 Initialize θ0 randomly
2 for e ∈ [E] do
3 sample a set of clients Se ⊆ {1, . . . , n}
4 for each client i ∈ Se in parallel do
5 ∆θ̃e

i ←DPSGD (θe, bi, Ni,Ki, zi, c)
6 ϵei ← PA( bi

Ni
, zi,Ki, e)

7 M = [∆θ̃e
1| . . . |∆θ̃e

|Se|] ∈ Rp×|Se|

8 L,S = RPCA(M)
9 for i ∈ Se do

10 we
i ←

1/∥S:,i∥2
2∑

j∈Se
1/∥S:,j∥2

2

11 θe+1 ← θe +
∑

i∈Se
we

i∆θ̃e
i

on data heterogeneity, further experiments, and future di-
rections). Hence, L will be a low rank matrix, estimating
the “true” values of clients’ updates and S will capture the
noises in clients model updates {∆θ̃e

i }ni=1 induced by two
sources: DP additive Gaussian noise and batch gradients
stochastic noise. Therefore, we can use σ̂2

i := ∥S:,i∥22 (S:,i

is the i-th column of S, corresponding to client i) as an
estimate of σ2

i (Equation (7)). Indeed, we observed such
approximately sparse pattern for S in Figure 2 (right), where
each barplot corresponds to the ℓ2 norm of one column of
S. Thus, according to Equation (8), we assign the aggre-
gation weights as we

i =
1/σ̂2

i∑
j∈Se 1/σ̂2

j
, where σ̂2

i = ∥S:,i∥2

(see Algorithm 1). Interestingly, this estimation is indepen-
dent of clients’ shared ϵ parameter values, which makes our
Robust-HDP optimal, robust and vastly applicable.

3.5. Reliability of Robust-HDP

In order for Robust-HDP to assign the optimum aggregation
weights {w∗

i }, it suffices to estimate the set {σ2
i } up to a

multiplicative factor. Assuming participants Se in round
e, let si,j in matrix S represent the true value of noise in
the i-th element of ∆θ̃e

j (j ∈ Se). Then, assume that S′

is the matrix computed by Robust-HDP at the server with
bounded elements s′2i,j ≤ U , where E[s′i,j ] = rsi,j , for
some constant r > 0, and E[|s′i,j − rsi,j |2] ≤ α2

j (i.e.,
on average, Robust-HDP is able to estimate the true noise
values si,j up to a multiplicative factor r by using RPCA).
Then, from Hoeffding’s inequality, we have:

Pr(|σ̂2
j − (r2σ2

j + α2
j )| > ϵ) ≤ 2e

−2pϵ2

U2 , (9)
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meaning that estimating the entries of S up to a multiplica-
tive factor r with a small variance is enough for Robust-
HDP to estimate {σ2

i } up to a multiplicative factor r2 with
high probability. This probability increases with the num-
ber of model parameters p exponentially: the p noise el-
ements of S:,i are i.i.d, and larger p means having more
samples from the same distribution to estimate its vari-
ance (see also Theorem 1.1 in (Candes et al., 2009)). Also,
wj ∝ 1

σ̂2
j
≈ 1

r2σ2
j+α2

j
. Hence, as σ2

j ≫ 1 (it is the noise

variance in the whole model update ∆θ̃e
j . See the values in

Figure 2, right), a small deviation α2
j from r2σ2

j still results
in aggregation weights close to the optimum weights {w∗

i }.

3.6. Scalability of Robust-HDP with the number of model
parameters p

The computation time (precision) of RPCA algorithm in-
creases (decreases) when the number of model parameters
p grows. As such, in order to make the Robust-HDP scal-
able for large models, we perform the noise estimation of
Robust-HDP on sub-matrices of M with smaller rows:

M1 = M[0 : p′ − 1, :] = L1 + S1

M2 = M[p′ : 2p′ − 1, :] = L2 + S2

. . .

MQ = M[p− p′ : p− 1, :] = LQ + SQ,

where Q =
⌊

p
p′

⌋
. Then, we get a set of noise variance

estimates {Q · σ̂2
i }ni=1 from each Sj , j ∈ {1, . . . , Q}. Fi-

nally, we use the sets’ element-wise average for weight
assignment. For instance, for CIFAR10 and CIFAR100, we
perform RPCA on sub-matrcies of M with p′ = 200, 000
rows, and average their noise variance estimates. Our exper-
imental results show that this approach, even with Q = 1
(i.e., using just M1), still results in assigning aggregation
weights close to the optimum weights {w∗

i }. This idea
makes Robust-HDP scalable to large models with large p.

3.7. Privacy analysis of Robust-HDP

We have the following theorem about DP guarantees of our
proposed Robust-HDP algorithm.

Theorem 3.1. For each client i , there exist constants
c1 and c2 such that given its number of steps E · Ei,
for any ϵ < c1q

2
iE · Ei, the output model of Robust-

HDP satisfies (ϵi, δi)−DP with respect to Di for any

δi > 0 if zi > c2
qi
√

E·Ei·log 1
δi

ϵi
, where zi is the

noise scale used by the client i for DPSGD. The algo-
rithm also satisfies (ϵmax, δmax)-DP, where (ϵmax, δmax) =(
max({ϵi}ni=1),max({δi}ni=1)

)
.

Therefore, the model returned by Robust-HDP is (ϵi, δi)-DP
with respect to Di, satisfying heterogeneous DPFL.

3.8. The optimization side of Robust-HDP

We assume that f(θ) =
∑

i∈[n] λifi(θ), where λi =
Ni∑
i Ni

, has minimum value f∗ and minimizer θ∗. We also
make some mild assumptions about the loss functions fi
(see Assumptions D.1 and D.2 in the Appendix). We now
analyze the convergence of the Robust-HDP algorithm.

Theorem 3.2 (Robust-HDP). Assume that Assumptions D.1
and D.2 hold, and for every i, learning rate ηl satisfies:
ηl ≤ 1

6βEi
and ηl ≤ 1

12β

√
(1+

∑n
i=1 Ei)

(∑n
i=1 E4

i

) . Then,

we have:

min
0≤e≤E−1

E[∥∇f(θe)∥2]

≤ 12

11Emin
l − 7

(
f(θ0)− f∗

Eηl
+Ψσ +Ψp

)
, (10)

where Emin
l = mini Ei, i.e., the minimum number of lo-

cal SGD steps across clients. Also, Ψp and Ψσ are two
constants controlling the quality of the final model param-
eter returned by Robust-HDP, which are explained in the
following.

Discussion. Our convergence guarantees are quite general:
we allow for partial participation, heterogeneous number
of local steps {Ei}, non-uniform batch sizes {bi}, varying
and nonuniform aggregation weights {we

i }. When {fi} are
convex, Robsut-HDP solution converges to a neighborhood
of the optimal solution. The term Ψσ decreases when data
split across clients is more i.i.d, and variance of mini-batch
gradients {σ2

i,g̃} decrease (e.g., when clients are less privacy
sensitive). Similarly, Ψp decreases when clients participate
more often, and the set of local steps {Ei} is more uniform
(e.g., clients have similar dataset sizes and batch sizes). Also,
smaller local steps {Ei}, which can be achieved by having
smaller local epochs {Ki} and larger batch sizes {bi}, result
in reduction of both Ψp and Ψσ , and higher quality solutions
(Malekmohammadi et al., 2023). Compared to the results in
previous DPFLworks, we have the most general results with
more realistic assumptions. For instance, (Liu et al., 2021a)
(WeiAvg and PFA) assumes uniform number of local SGD
updates for all clients, or (Noble et al., 2021) (DPFedAvg)
assumes uniform aggregation weights and uniform number
of local updates. These assumptions may not be practical in
real systems. In a more general view, when we have no DP
guarantees, we recover the results for the simple FedAvg
algorithm (Zhang et al., 2023). When we additionally have
σ = 0 (i.e., FedAvg on i.i.d data), our results are the same
as those of SGD (Ghadimi & Lan, 2013):

min
e

E[∥∇f(θe)∥2] ≤ 12

11Emin
l − 7

f(θ0)− f∗

Eηl
+O(ηl),

which shows convergence rate 1√
E

with ηl = O( 1√
E
).
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Figure 3. Comparison of average test accuracy between studied algorithms. See Tables 12 to 15 in the appendix for detailed results.
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Figure 4. Convergence speed comparison on MNIST and Dist6. Minimum ϵ algorithm diverged in 1 out of 3 trials.

4. Experiments
See Appendix B for details of experimental setup and hy-
perparameter tuning used for evaluation of algorithms.

4.1. Experimental Setup

Datasets, models and baseline algorithms: We eval-
uate our proposed method on four benchamrk datasets:
MNIST (Deng, 2012), FMNIST (Xiao et al., 2017) and
CIFAR10/100 (Krizhevsky, 2009) using CNN-based mod-
els. Also, we compare four baseline algorithms: 1. WeiAvg
(Liu et al., 2021a) 2. PFA (Liu et al., 2021a) 3. DPFedAvg
(Noble et al., 2021) 4. minimum ϵ.
Privacy preference and batch size heterogeneity: We
consider an FL setting with 20 clients as explained in Ap-
pendix B.1, which results in homogeneous {Ni}ni=1. We
also assume full participation and one local epoch for each
client (Ki = 1 for all i). Batch size heterogeneity leads
to heterogeneity in the number of local steps {Ei}ni=1. We
sample {ϵi}ni=1 from a set of distributions, as shown in Ta-
ble 7 in the Appendix. We also sample batch sizes {bi}ni=1

uniformly from {16,32,64,128}. Therefore, we consider
heterogeneous {ϵi}ni=1, heterogeneous {bi}ni=1 and uniform
{Ni}ni=1 in this section. We have also considered various
other heterogeneity scenarios for clients and more experi-
mental results are reported in Appendix G and H.

4.2. Experimental Results

In this section, we investigate five main research questions
about Robust-HDP, as follows.

RQ1: How do various heterogeneous DPFL algorithms
affect the system utility? In Fig. 3, we have done a compar-
ison in terms of the average test accuracy across clients. We
observe that Robust-HDP outperforms the baselines (see ta-
bles 12 to 15 in the appendix for detailed results). It achieves
higher system utility by using an efficient aggregation strat-
egy, where it assigns smaller weights to the model updates
that are indeed more noisy and minimizes the noise level
in the aggregation of clients’ model updates. The aggrega-
tion strategy of PFA and WeiAvg is sub-optimal, as it can
not take the batch size heterogeneity and privacy parameter
heterogeneity into account simultaneously.

RQ2: How does Robust-HDP improve convergence speed
during training? We have also compared different algo-
rithms based on their convergence speed in Figure 4. While
the baseline algorithms suffer from high levels of noise in
the aggregated model update

∑
i∈Se we

i∆θ̃e
i (see Table 3),

Robust-HDP enjoys its efficient noise minimization, which
performs very close to the optimum aggregation strategy,
and not only results in faster convergence but also improves
utility. In contrast, based on our experiments, the base-
line algorithms have to use smaller learning rates to avoid
divergence of their training optimization. Note that fast
convergence of DPFL algorithms is indeed important, as
the privacy budgets of participating clients does not let the
server to run the federated training for more rounds.

RQ3: Is Robust-HDP indeed Robust? In Fig. 5, we com-
pare Robust-HDP with others based on clients’ desired pri-
vacy level and number of clients. As clients become more
privacy sensitive, they send more noisy updates to the server,
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Table 3. The average per parameter noise variance (Equation (7) and Equation (3)) normalized by used learning rate (
∑n

i=1 we
i
2σ2

i

pη2
l

) in the

aggregated model update (
∑n

i=1 w
e
i∆θ̃e

i ) at the end of first round (e = 1) on FMNIST with E = 200. Due to the projection used in PFA,
computation of its noise variance was not possible. Results for Robust-HDP are shown with std variation across three experiments.

alg
dist

Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9

WeiAvg 1.02 1.89 0.92 3.22 4.58 28.29 9.85 48.15 34.91

DPFedAvg 1.27 16.94 16.28 26.87 25.64 70.71 18.50 85.70 43.20

minimum ϵ 4.68 103.91 103.91 127.18 103.91 1868.45 74.41 241.37 87.15

Robust-HDP
0.27

± 1.9e-5

0.47
± 5.7e-5

0.07
± 2.9e-6

0.64
± 1.0e-4

0.39
± 9.3e-6

7.62
± 1.3e-3

2.25
± 5.5e-5

13.86
± 9.9e-4

5.95
± 2.7e-4

Oracle (Eq. 8) 0.27 0.47 0.07 0.64 0.39 7.60 2.25 13.81 5.93
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Figure 5. Performance comparison on MNIST. Left: effect of clients desired privacy on utility (detailed results in Table 16) Middle:
effect of number of existing clients (privacy parameters of clients are sampled from Dist6) on utility (detailed results in Table 17) Right:
Robustness of Robust-HDP when a random client (client 12 with a moderate ϵ value of 0.95) sends falsified version of its ϵ to the server
for aggregation (privacy parameters of other clients are sampled from Dist5). WeiAvg and PFA are much vulnerable to this falsification.

making convergence to better solutions harder. Robust-HDP
shows the highest robustness to the larger noise in clients’
updates and achieves the highest utility, especially in more
privacy sensitive scenarios, e.g., Dist8. Also, we observe
that it achieves the highest system utility when the number
of clients in the system increases. Furthermore, it is com-
pletely safe in scenarios that some clients report a falsified
privacy parameter to the server (Figure 5, right).

RQ4: How accurate Robust-HDP is in estimating {w∗
i }?

Figure 6 compares the weight assignment of Robust-HDP
with the optimum assignment (computed from Equations
8) for CIFAR10 dataset and Dist2. As the model used for
CIFAR10 is relatively large (with p ≈ 11× 106), we have
used the approximation method in Section 3.6 (with Q = 1
and p′ = 2×105). Figure 6 has sorted clients based on their
privacy parameter ϵ in ascending order. WeiAvg and PFA
assign smaller weights to more privacy sensitive clients,
while Robust-HDP assigns smaller weights to the clients
with less noisy model updates.

We have also studied the effect of parameter p′, on the
precision of the aggregation weights returned by Robust-
HDP. In Figure 7 and for CIFAR10, we have shown the
increasing precision of the weights returned by Robust-HDP
when p′ grows. The larger p′ gets, the more samples we have

Figure 6. Precision of Robust-HDP (red) compared to oracle opti-
mum strategy (blue) for CIFAR10 and Dist2, when using the ap-
proximation method in Section 3.6 with Q = 1 and p′ = 2× 105.

for estimating the noise variance in clients’ model updates,
hence more precise weight assignments. As explained in
Section 3.6, when p is already large, we also avoid using
too large values for p′, as the main point of Section 3.6 was
to feed a matrix with smaller number of rows to RPCA to
avoid its low precision and high computation time when the
number of rows (p) in the original input matrix M is large.
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Table 4. Comparison of different algorithms (on MNIST, E = 200) with heterogeneous data split (maximum 8 labels per client) and 60
clients in the system all using uniform batch size 128.

alg
distr

Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9

WeiAvg (Liu et al., 2021a) 81.14 81.21 84.44 71.64 81.45 72.27 80.55 71.28 72.07

PFA (Liu et al., 2021a) 81.29 77.40 80.65 74.45 81.89 64.48 81.40 73.39 72.97

DPFedAvg (Noble et al., 2021) 82.61 74.32 83.12 70.8 81.34 66.51 76.10 65.16 73.03

Robust-HDP 84.84 82.78 80.78 78.91 81.66 72.30 79.32 70.68 73.82

Figure 7. Effect of the parameter p′, used in the approximation
method explained in Section 3.6, on the precision of the weights
returned by Robust-HDP for CIFAR10 (with p ≈ 11× 106).

RQ5: What is the effect of data heterogeneity across
clients on the performance of Robust-HDP?

So far we assumed an i.i.d data distribution across clients.
What if the data distribution is moderately/highly hetero-
geneous? Assuming full participation of clients in round
e, in order to have a useful RPCA decomposition M =
[∆θ̃e

1| . . . |∆θ̃e
n] = L+ S at the end of the round, two con-

ditions should be met (Candes et al., 2009): 1. There should
be an underlying low-rank matrix L in M 2. The differ-
ence between the matrix L and M, i.e., the noise matrix S,
should be (approximately) sparse.

Whether the first condition is met or not mainly depends
on how much heterogeneous the data split across clients
is. Note that rank(L) should be low, and not necessarily
close to 1. If we assume that the second condition is met,
it was shown in Theorem 1.1 in (Candes et al., 2009) that
the decomposition is guaranteed to work even if rank(L) ∈
O(n/(log p)2), i.e., the rank of L grows almost linearly in n.
Therefore, even if the data split across clients is moderately
heterogeneous, we expect Robust-HDP to be successful in
at least the decomposition task and the following noise
estimation, given that the noise matrix S is sparse, and
there are large enough number of clients.

Whether the second condition is met or not, mainly depends
on how much variation exists in the amount of noise in
clients’ model updates, i.e., how (approximately) sparse
the set {σ2

1 , · · · , σ2
n} is. As shown in Equations 3, 5

and 7, this mainly depends on clients’ privacy parameters
({(ϵi, δi)}ni=1), and batch sizes ({bi}ni=1), and is indepen-
dent of whether the data split is i.i.d or not. The more the
variation in clients’ privacy parameters/batch sizes (similar
to what we saw in Figure 2), the better we can consider S as
an approximately sparse matrix, which validates our RPCA
decomposition.

So far, we assumed an i.i.d data distribution across clients,
which ensures that the underlying matrix L is indeed low-
rank. Also, we assumed heterogeneity in batch size and
privacy parameters of clients, which led to a sparse pat-
tern in the noise matrix S (as shown in Figure 2, right). In
order to evaluate Robust-HDP when the data split is moder-
ately heterogeneous, we run experiments on MNIST with
60 clients in total (compared to the 20 clients before) and
uniform batch size b = 128, and we split data such that
each client holds data samples of at maximum 8 classes.
The results obtained are reported in Table 4. As observed,
Robust-HDP still outperforms the baselines in most of the
cases. However, compared to the detailed results in Table 12,
which were obtained for i.i.d data split, its superiority to the
baseline algorithms has decreased. Detailed discussion of
these results along with scenarios with highly heterogeneous
data splits are reported in Appendix H.

5. Conclusion
In heterogeneous DPFL systems, heterogeneity in privacy
preference, batch/dataset size results in large variations
across the noise levels in clients’ model updates, which
existing algorithms can not fully take into account. To
address this heterogeneity, we proposed a robust heteroge-
neous DPFL algorithm that performs noise-aware aggrega-
tion on an untrusted server, and is independent of clients’ pri-
vacy parameter values shared with the server. The proposed
algorithm is optimal, robust, vastly applicable, scalable, and
improves utility and convergence speed.
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Appendix for Noise-Aware Algorithm for Heterogeneous differentially private
federated learning

A. Notations
We consider an FL setting with n clients. Let x ∈ X ⊆ Rd and y ∈ Y = {1, . . . , C} denote an input data point and its
target label. Client i holds dataset Di = {xij}Ni

j=1 with Ni samples from distribution Pi(x, y). Let h : X × θ → RC be the
predictor function, which is parameterized by θ ∈ Rp (p is the number of model parameters) shared among all clients. Also,
let ℓ : RC × Y → R+ be the loss function used (cross entropy loss). Following (McMahan et al., 2017), many existing
FL algorithms fall into the natural formulation that minimizes the (arithmetic) average loss f(θ) :=

∑n
i=1 λifi(θ), where

fi(θ) =
1
Ni

∑
(x,y)∈Di

[ℓ(h(x,θ), y)], with minimum value f∗
i . The weights λ = (λ1, . . . , λn) are nonnegative and sum to

1. At gradient update t, client i uses a data batch Bti with size bi = |Bti |. Let qi = bi
Ni

be batch size ratio of client i. There
are E global communication rounds indexed by e, and in each of them, client i runs Ki local epochs. We use boldface
letters to denote vectors.

B. Experimental setup
In this section, we provide more experimental details that were deferred to the appendix in the main paper.

B.1. Datasets and models

MNIST and FMNIST datasets: We consider a distributed setting with 20 clients. In order to create a heterogeneous
dataset, we follow a similar procedure as in (McMahan et al., 2017): first we split the data from each class into several
shards. Then, each user is randomly assigned a number of shards of data. For example, in some experiments, in order
to guarantee that no user receives data from more than 8 classes, we split each class of MNIST/FMNIST into 16 shards
(i.e., a total of 160 shards for the whole dataset), and each user is randomly assigned 8 shards of data. By considering 20
clients, this procedure guarantees that no user receives data from more than 8 classes and the data distribution of each user is
different from each other. The local datasets are balanced–all clients have the same amount of training samples. In this way,
each user has 2400 data points for training, and 600 for testing. We use a simple 2-layer CNN model with ReLU activation,
the details of which can be found in Table 5. To update the local models at each user using its local data, unless otherwise is
stated, we apply stochastic gradient descent (SGD).

Table 5. CNN model for classification on MNIST/FMNIST datasets
Layer Output Shape # of Trainable Parameters Activation Hyper-parameters

Input (1, 28, 28) 0
Conv2d (16, 28, 28) 416 ReLU kernel size =5; strides=(1, 1)
MaxPool2d (16, 14, 14) 0 pool size=(2, 2)
Conv2d (32, 14, 14) 12,832 ReLU kernel size =5; strides=(1, 1)
MaxPool2d (32, 7, 7) 0 pool size=(2, 2)
Flatten 1568 0
Dense 10 15,690 ReLU

Total 28,938

CIFAR10/100 datasets: We consider a distributed setting with 20 clients, and split the 50,000 training samples and the
10,000 test samples in the datasets among them. In order to create a dataset, we follow a similar procedure as in (McMahan
et al., 2017): For instance for CIFAR10, first we sort all data points according to their classes. Then, each class is split
into 20 shards, and each user is randomly assigned 1 shard of each class. We use the residual neural network (ResNet-18)
defined in (He et al., 2015), which is a large model with p = 11, 181, 642 parameters for CIFAR10. We also use ResNet-34
(He et al., 2015), which is a larger model with p = 21, 272, 778 parameters for CIFAR100. To update the local models at
each user using its local data, we apply stochastic gradient descent (SGD). In the reported experimental results, all clients
participate in each communication round.
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Table 6. Details of the experiments and the used datasets in the main body of the paper. ResNet-18/34 are the residual neural networks
defined in (He et al., 2015). CNN: Convolutional Neural Network defined in Table 5.

Datasets Train set size Test set size Data Partition method # of clients Model # of parameters

MNIST 48000 12000 sharding (McMahan et al., 2017) 20/40/60 CNN (Table 5) 28,938
FMNIST 50000 10000 sharding (McMahan et al., 2017) 20 CNN (Table 5) 28,938
CIFAR10 50000 10000 sharding (McMahan et al., 2017) 20 ResNet-18 (He et al., 2015) 11,181,642
CIFAR100 50000 10000 sharding (McMahan et al., 2017) 20 ResNet-34 (He et al., 2015) 21,272,778

Distribution Parameter setting
Dist1 Gaussian distribution N (2.0, 1.0)
Dist2 mixture of N (0.2, 0.01), N (1.0, 0.1) and N (5.0, 1.0) with weights (0.2, 0.6, 0.2)
Dist3 Uniform distribution U [0.2, 5]
Dist4 mixture of N (0.2, 0.01), N (0.5, 0.1) and N (2.0, 1.0) with weights (0.2, 0.6, 0.2)
Dist5 Uniform distribution U [0.2, 2]
Dist6 mixture of N (0.2, 0.01), N (0.5, 0.1) and N (1.0, 0.1) with weights (0.3, 0.5, 0.2)
Dist7 Uniform distribution U [0.2, 1]
Dist8 mixture of N (0.2, 0.01) and N (0.5, 0.1) with weights (0.6, 0.4)
Dist9 Uniform distribution U [0.2, 0.5]

Table 7. Distributions of privacy parameters (ϵ), from which we sample clients’ privacy parameters.

B.2. DP training parameters

For each dataset, we sample the privacy parameter ϵ of clients from different distributions, as shown in Table 7. In order to
get reasonable accuracy results for CIFAR100, which is a harder dataset compared to the other three datasets, we scale the
values of ϵ sampled for clients from the distributions above by a factor 10. For instance, we have N (20.0, 10.0) as ”Dist1”
for CIFAR100. This is only for getting meaningful accuracy values for CIFAR100, otherwise the test accuracy values will
be too low. We fix δ for all clients to 10−4. We also set the clipping threshold c equal to 3, as it results in better test accuracy,
as reported in (Abadi et al., 2016).

B.3. Algorithms to compare and tuning hyperparameters

We compare our Robust-HDP, which benefits from RPCA (Algorithm 3), with four baseline algorithms, including WeiAvg
(Liu et al., 2021a) (Algorithm 2), PFA (Liu et al., 2021a), DPFedAvg (Noble et al., 2021) and minimum ϵ (Liu et al., 2021a).
For PFA, we always use projection dimension 1, as in (Liu et al., 2021a). For each algorithm and each dataset, we find the
best learning rate from a grid: the one which is small enough to avoid divergence of the federated optimization, and results
in the lowest average train loss (across clients) at the end of FL training. Here are the grids we use for each dataset:

• MNIST: {1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2};

• FMNIST: {1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2};

• CIFAR10: {1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2};

• CIFAR100: {1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3}.

The best learning rates used for each dataset are reported in Table 8 to Table 11.
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Algorithm 2 WeiAvg (Liu et al., 2021a)
Input: Initial parameter θ0, Clients batch sizes {b1, . . . , bn}, Clients dataset sizes {N1, . . . , Nn},
Clients noise scales {z1, . . . , zn}, gradient norm bound c, local epochs {K1, . . . ,Kn}, global round E,
privacy parameter δ, number of model parameters p, privacy accountant PA.
Output: θE , {ϵ1, . . . , ϵn}

12 Initialize θ0 randomly.
13 for e ∈ [E] do
14 sample a set of clients Se ⊆ {1, . . . , n}
15 for each client i ∈ Se in parallel do
16 ∆θ̃e

i ←DPSGD (θe, bi, Ni,Ki, zi, c)
17 ϵei ← PA( bi

Ni
, zi,Ki, e)

18 for i ∈ Se do
19 we

i ← ϵi∑
j∈Se

ϵj

20 θe+1 ← θe +
∑

i∈Se
we

i∆θ̃e
i

Output: θE , {ϵE1 , . . . , ϵEn }

Algorithm 3 Principal Component Pursuit by Alternating Directions (Candes et al., 2009)
Input: matrix M , shrinkage operator Sτ [x] = sgn(x)max(|x| − τ, 0), singular value thresholding operator
Dτ (UΣV ∗) = USτ (Σ)V ∗

21 Initialize S0 = Y0 = 0, µ > 0.
while not converged do

22 compute Lk+1 = Dµ−1(M − Sk − µ−1Yk)
compute Sk+1 = Sλµ−1(M − Lk+1 + µ−1Yk)
compute Yk+1 = Yk + µ(M − Lk+1 − Sk+1)

Output: L, S

Table 8. The learning rates used for training with each algorithm on MNIST dataset

alg
dist

Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9

WeiAvg (Liu et al., 2021a) 1e-2 5e-3 1e-2 5e-3 5e-3 1e-3 1e-3 1e-3 1e-3

PFA (Liu et al., 2021a) 5e-3 5e-3 5e-3 5e-3 5e-3 1e-3 1e-3 1e-3 5e-4

DPFedAvg (Noble et al., 2021) 5e-3 1e-3 1e-3 1e-3 1e-3 5e-4 1e-3 1e-3 1e-3

minimum ϵ (Liu et al., 2021a) 5e-4 5e-4 5e-4 5e-4 1e-3 1e-4 1e-3 5e-4 1e-3

Robust-HDP 1e-2 1e-2 1e-2 1e-2 5e-3 2e-3 2e-3 2e-3 2e-3

Table 9. The learning rates used for training with each algorithm on FMNIST dataset

alg
dist

Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9

WeiAvg (Liu et al., 2021a) 5e-3 5e-3 5e-3 5e-3 2e-3 5e-4 5e-4 5e-4 5e-4

PFA (Liu et al., 2021a) 2e-3 2e-3 5e-3 5e-3 5e-3 5e-3 2e-3 1e-3 1e-3

DPFedAvg (Noble et al., 2021) 2e-3 1e-3 1e-3 1e-3 1e-3 5e-4 5e-4 5e-4 5e-4

minimum ϵ (Liu et al., 2021a) 1e-3 5e-4 5e-4 5e-4 5e-4 1e-4 5e-4 5e-4 5e-4

Robust-HDP 5e-3 5e-3 5e-3 5e-3 5e-3 1e-3 1e-3 1e-3 1e-3
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Table 10. The learning rates used for training with each algorithm on CIFAR10 dataset

alg
dist

Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9

WeiAvg (Liu et al., 2021a) 2e-3 1e-3 1e-3 5e-4 5e-4 2e-4 2e-4 2e-4 2e-4

PFA (Liu et al., 2021a) 2e-3 2e-3 2e-3 2e-3 2e-3 1e-3 5e-4 5e-4 2e-4

DPFedAvg (Noble et al., 2021) 1e-3 5e-4 2e-4 2e-4 2e-4 1e-4 1e-4 5e-5 1e-4

minimum ϵ (Liu et al., 2021a) 2e-3 1e-3 1e-3 1e-3 1e-3 1e-4 5e-4 2e-4 2e-4

Robust-HDP 2e-3 2e-3 2e-3 2e-3 2e-3 5e-4 1e-3 2e-4 2e-4

Table 11. The learning rates used for training with each algorithm on CIFAR100 dataset.

alg
dist

Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9

WeiAvg (Liu et al., 2021a) 1e-3 1e-3 1e-3 5e-4 5e-4 2e-4 2e-4 2e-4 2e-4

PFA (Liu et al., 2021a) 2e-3 2e-3 2e-3 1e-3 1e-3 5e-4 2e-4 2e-4 1e-4

DPFedAvg (Noble et al., 2021) 5e-4 5e-4 1e-4 1e-4 1e-4 5e-5 5e-5 2e-5 2e-5

minimum ϵ (Liu et al., 2021a) 2e-4 2e-4 1e-4 1e-4 1e-4 5e-5 5e-5 2e-5 2e-5

Robust-HDP 2e-3 2e-3 2e-3 2e-3 2e-3 1e-3 1e-3 1e-3 1e-3
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Figure 8. Plot of z v.s. q obtained from Moments Accountant (Abadi et al., 2016) in a centralized setting with E = 200. As observed, z
increases sub-linearly with q (or equivalently with b) and decreases with dataset size.
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C. Derivations
Computation of σ2

i,g̃ , when gradient clipping is effective for all samples: We know that the two sources of randomness
(i.e., minibatch sampling and Gaussian noise) are independent, thus the variance is additive. Assuming that E[ḡij(θ)] is the
same for all j and is Gi(θ), we have:

σ2
i,g̃ := Var(g̃i(θ)) = Var

(
1

bi

∑
j∈Bt

i

ḡij(θ)

)
+

pσ2
i,DP

b2i

=
1

b2i

(
E
[∥∥∥∥ ∑

j∈Bt
i

ḡij(θ)

∥∥∥∥2]− ∥∥∥∥E[ ∑
j∈Bt

i

ḡij(θ)

]∥∥∥∥2)+
pc2z2(ϵi, δi, qi,Ki, E)

b2i

=
1

b2i

(
E
[∥∥∥∥ ∑

j∈Bt
i

ḡij(θ)

∥∥∥∥2]− ∥∥∥∥ ∑
j∈Bt

i

Gi(θ)

∥∥∥∥2)+
pc2z2(ϵi, δi, qi,Ki, E)

b2i

=
1

b2i

(
E
[∥∥∥∥ ∑

j∈Bt
i

ḡij(θ)

∥∥∥∥2]− b2i
∥∥Gi(θ)

∥∥2)+
pc2z2(ϵi, δi, qi,Ki, E)

b2i
(11)

We also have:

E
[∥∥∥∥ ∑

j∈Bt
i

ḡij(θ)

∥∥∥∥2] =
∑
j∈Bt

i

E
[∥∥ḡij(θ)∥∥2]+

∑
m ̸=n∈Bt

i

2E
[
[ḡim(θ)]⊤[ḡin(θ)]

]

=
∑
j∈Bt

i

E
[∥∥ḡij(θ)∥∥2]+

∑
m ̸=n∈Bt

i

2E
[
ḡim(θ)

]⊤
E
[
ḡin(θ)

]

= bic
2 + 2

(
bi
2

)∥∥Gi(θ)
∥∥2, (12)

where the last equation has used Equation (2) and that we clip the norm of sample gradients ḡij(θ) with an “effective”
clipping threshold c. We can now plug eq. 12 into the parenthesis in eq. 11 and rewrite it as:

σ2
i,g̃ := Var(g̃i(θ)) =

1

b2i

(
E
[∥∥∥∥ ∑

j∈Bt
i

ḡij(θ)

∥∥∥∥2]− b2i
∥∥Gi(θ)

∥∥2)+
pc2z2(ϵi, δi, qi,Ki, E)

b2i

=
1

b2i

(
bic

2 +

(
2

(
bi
2

)
− b2i

)∥∥Gi(θ)
∥∥2)+

pc2z2(ϵi, δi, qi,Ki, E)

b2i

=
1

b2i

(
bic

2 − bi
∥∥Gi(θ)

∥∥2)+
pc2z2(ϵi, δi, qi,Ki, E)

b2i

=
c2 −

∥∥Gi(θ)
∥∥2

bi
+

pc2z2(ϵi, δi, qi,Ki, E)

b2i

≈ pc2z2(ϵi, δi, qi,Ki, E)

b2i
(13)
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D. Assumptions and lemmas
In this section, we formalize our assumptions and some lemmas, which we will use in our proofs.

Assumption D.1 (Lipschitz continuity, β-smoothness and bounded gradient variance). {fi}ni=1 are L0-Lipschitz
continuous and β-smooth: ∀ θ,θ′ ∈ Rp, i : ∥fi(θ) − fi(θ

′)∥ ≤ L0∥θ − θ′∥ and ∥∇fi(θ) − ∇fi(θ′)∥ ≤ β∥θ − θ′∥.
Also, the stochastic gradient gi(θ) is an unbiased estimate of ∇fi(θ) with bounded variance: ∀θ ∈ Rp : EBt

i
[gi(θ)] =

∇fi(θ), EBt
i

[
∥gi(θ) −∇fi(θ)∥2

]
≤ σ2

i,g. We also assume that for every i, j ∈ [n], fi − fj is σ-Lipschitz continuous:
∥∇fi(θ)−∇fj(θ)∥ ≤ σ.

Assumption D.2 (bounded sample gradients). There exists a clipping threshold C such that for all i, j:

∥gij(θ)∥2 := ∥∇ℓ(h(xij ,θ), yij)∥2 ≤ C (14)

Note that this condition always holds if ℓ is Lipschitz continuous or if h is bounded.

Lemma D.3 (Relaxed triangle inequality). Let {v1, . . . , vn} be n vectors in Rd. Then, the followings is true:

• ∥vi + vj∥2 ≤ (1 + a)∥vi∥2 + (1 + 1
a )∥vj∥

2 (for any a > 0)

• ∥
∑

i vi∥2 ≤ n
∑

i ∥vi∥2

Proof. The proof for the first inequality is obtained from identity:

∥vi + vj∥2 = (1 + a)∥vi∥2 + (1 +
1

a
)∥vj∥2 − ∥

√
avi +

1√
a
vj∥2 (15)

The proof for the second inequality is achieved by using the fact that h(x) = ∥x∥2 is convex:

∥ 1
n

∑
i

vi∥2 ≤
1

n

∑
i

∥vi∥2 (16)

Lemma D.4. Let {v1, . . . , vn} be n random variables in Rd, with E[vi] = Ei and E[∥vi − Ei∥2] = σ2
i . Then, we have the

following inequality:

E[∥
n∑

i=1

vi∥2] ≤ ∥
n∑

i=1

Ei∥2 + n

n∑
i=1

σ2
i . (17)

Proof. From the definition of variance, we have:

E[∥
n∑

i=1

vi∥2] = ∥
n∑

i=1

Ei∥2 + E[∥
n∑

i=1

(vi − Ei)∥2] (18)

≤ ∥
n∑

i=1

Ei∥2 + n

n∑
i=1

E[∥vi − Ei∥2] (19)

= ∥
n∑

i=1

Ei∥2 + n

n∑
i=1

σ2
i , (20)

(21)

where the inequality is based on the Lemma D.3.

Property D.5 (Parallel Composition (Yu et al., 2019)). Assume each of the randomized mechanisms Mi : Di → R for
i ∈ [n] satisfies (ϵi, δi)-DP and their domains Di are disjoint subsets. Any function g of the form g(M1, . . . ,Mn) satisfies
(maxi ϵi,maxi δi)-DP.
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E. Proofs
Theorem 3.1. For each client i , there exist constants c1 and c2 such that given its number of steps E · Ei, for any
ϵ < c1q

2
iE · Ei, the output model of Robust-HDP satisfies (ϵi, δi)−DP with respect to Di for any δi > 0 if zi >

c2
qi
√

E·Ei·log 1
δi

ϵi
, where zi is the noise scale used by the client i for DPSGD. The algorithm also satisfies (ϵmax, δmax)-DP,

where (ϵmax, δmax) =
(
max({ϵi}ni=1),max({δi}ni=1)

)
.

Proof. The proof for the first part follows the proof of DPSGD algorithm (Abadi et al., 2016). Also, in Robust-HDP, each
client i runs DPSGD locally to achieve (ϵi, δi)-DP independently. Hence, it satisfies heterogeneous DP with the set of
preferences {(ϵi, δi)}ni=1. Also, the clients datasets {Di}ni=1 are disjoint. Hence, as Robust-HDP runs RPCA on the clients
models updates, it satisfies

(
max({ϵi}ni=1),max({δi}ni=1)

)
-DP, according to parallel composition property above.

Theorem 3.2 (Robust-HDP). Assume that Assumptions D.1 and D.2 hold, and for every i, learning rate ηl satisfies:
ηl ≤ 1

6βEi
and ηl ≤ 1

12β

√
(1+

∑n
i=1 Ei)

(∑n
i=1 E4

i

) . Then, we have:

min
0≤e≤E−1

E[∥∇f(θe)∥2]

≤ 12

11Emin
l − 7

(
f(θ0)− f∗

Eηl
+Ψσ +Ψp

)
, (10)

where Emin
l = mini Ei, i.e., the minimum number of local SGD steps across clients. Also, Ψp and Ψσ are two constants

controlling the quality of the final model parameter returned by Robust-HDP, which are explained in the following.

Proof. From our assumption D.1 and that we use cross-entropy loss, we can conclude that Assumption D.2 also holds for
some C. In that case, we have:

g̃i(θ) =

∑
j∈Bt

i
gij(θ)

bi
+N (0,

σ2
i,DP

b2i
Ip) = gi(θ) +N (0,

σ2
i,DP

b2i
Ip) (22)

Therefore:

E[g̃i(θ)] = E[gi(θ)] = ∇fi(θ)

Var(g̃i(θ)) = Var(gi(θ)) +
pσ2

i,DP

b2i
≤ σ2

i,g̃ := σ2
i,g +

pσ2
i,DP

b2i
. (23)

i.e., the assumption of having unbiased gradient with bounded variance still holds (with a larger bound σ2
i,g̃ , due to adding

DP noise). Consistent with the previous notations, we assume that the set of participating clients in round e are Se, and for
every client i /∈ Se, we set we

i = 0. Using this, we can write the model parameter at the end of round e as:

θe+1 =

n∑
i=1

we
i θ

e
i,Ei

, (24)

where {Ei}ni=1 is the heterogeneous number of gradient steps of clients (depending on their dataset size and batch size).
From θe

i,k = θe
i,k−1 − ηlg̃i(θ

e
i,k−1), we can rewrite the equation above as:

θe+1 = θe − ηl
∑
i∈Se

we
i

Ei∑
k=1

g̃i(θ
e
i,k−1) = θe − ηl

n∑
i=1

we
i

Ei∑
k=1

g̃i(θ
e
i,k−1) = θe − ηl

n∑
i=1

we
i

Ei−1∑
k=0

g̃i(θ
e
i,k) (25)

Note that the second equality holds because we assumed above that if client i is not participating in round e (i.e., i /∈ Se),
we set we

i = 0. From β-smoothness of {fi}ni=1, and consequently β-smoothness of f , we have:
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f(θe+1) ≤ f(θe) + ⟨∇f(θe),θe+1 − θe⟩+ β

2
∥θe+1 − θe∥2

= f(θe)− ηl
〈
∇f(θe),

n∑
i=1

we
i

Ei−1∑
k=0

g̃i(θ
e
i,k)

〉
+

βη2l
2

∥∥ n∑
i=1

we
i

Ei−1∑
k=0

g̃i(θ
e
i,k)

∥∥2 (26)

Now, we use identity g̃i(θ
e
i,k) = ∇f(θe) + g̃i(θ

e
i,k)−∇f(θe) to rewrite the equation above as:

f(θe+1) ≤ f(θe)− ηl
〈
∇f(θe),

n∑
i=1

we
i

Ei−1∑
k=0

∇f(θe)
〉
− ηl

〈
∇f(θe),

n∑
i=1

we
i

Ei−1∑
k=0

(
g̃i(θ

e
i,k)−∇f(θe)

)〉
+

βη2l
2

∥∥ n∑
i=1

we
i

Ei−1∑
k=0

(
g̃i(θ

e
i,k)−∇f(θe)

)
+

n∑
i=1

we
iEi∇f(θe)

∥∥2
(27)

Hence,

f(θe+1) ≤ f(θe)− ηl
〈
∇f(θe),

n∑
i=1

we
i

Ei−1∑
k=0

∇f(θe)
〉
− ηl

〈
∇f(θe),

n∑
i=1

we
i

Ei−1∑
k=0

(
g̃i(θ

e
i,k)−∇f(θe)

)〉
+

βη2l
2

∥∥ n∑
i=1

we
i

Ei−1∑
k=0

(
g̃i(θ

e
i,k)−∇f(θe)

)
∥2 + βη2l

2
(

n∑
i=1

we
iEi)

2

︸ ︷︷ ︸
Ēe2

l

∥∥∇f(θe)
∥∥2

+ βη2l
〈 n∑

i=1

we
iEi∇f(θe),

n∑
i=1

we
i

Ei−1∑
k=0

(
g̃i(θ

e
i,k)−∇f(θe)

)〉
. (28)

Note that we denote
∑n

i=1 w
e
iEi with Ēe

l from now on. With doing some algebra we get to:

f(θe+1) ≤ f(θe)− ηlĒ
e
l (1−

β

2
ηlĒ

e
l )∥∇f(θe)∥2

− ηl(1− βηlĒ
e
l )
〈
∇f(θe),

n∑
i=1

we
i

Ei−1∑
k=0

(
g̃i(θ

e
i,k)−∇f(θe)

)〉
+

βη2l
2

∥∥∥∥ n∑
i=1

we
i

Ei−1∑
k=0

(
g̃i(θ

e
i,k)−∇f(θe)

)∥∥∥∥2. (29)

By taking expectation from both side (expectation is conditioned on θe) and using Cauchy-Schwarz inequality, we have:

E
[
f(θe+1)

]
≤ E

[
f(θe)

]
− ηlĒ

e
l (1−

βηl
2

Ēe
l )E

[
∥∇f(θe)∥2

]
+ ηl(1− βηlĒ

e
l )E

[
∥∇f(θe)∥ ×

∥∥∥∥ n∑
i=1

we
i

Ei−1∑
k=0

(
∇fi(θe

i,k)−∇f(θe)
)∥∥∥∥]

+
βη2l
2

E
[∥∥∥∥ n∑

i=1

we
i

Ei−1∑
k=0

(
g̃i(θ

e
i,k)−∇f(θe)

)∥∥∥∥2]. (30)
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Now, we use the inequality ab ≤ 1
2 (a

2 + b2) for the second line to get:

E
[
f(θe+1)

]
≤ E

[
f(θe)

]
+
(1
2
ηl(1− βηlĒ

e
l )− ηlĒ

e
l (1−

βηl
2

Ēe
l )
)

︸ ︷︷ ︸
≤−ηl

11Ēe
l
−6

12

E
[
∥∇f(θe)∥2

]

+
1

2
ηl(1− βηlĒ

e
l )E

[∥∥∥∥ n∑
i=1

we
i

Ei−1∑
k=0

(
∇fi(θe

i,k)−∇f(θe)
)∥∥∥∥2]

+
βη2l
2

E
[∥∥∥∥ n∑

i=1

we
i

Ei−1∑
k=0

(
g̃i(θ

e
i,k)−∇f(θe)

)∥∥∥∥2], (31)

where the constant inequality in the first line is achieved from our assumption that ηl ≤ 1
6βEi

(and consequently: ηl ≤ 1
6βĒe

l

):

1

2
ηl(1− βηlĒ

e
l )− ηlĒ

e
l (1−

βηl
2

Ēe
l ) = −ηl

(
Ēe

l −
1

2
− βηl

2
Ēe2

l +
βηlĒ

e
l

2

)
≤ −ηl

(
11Ēe

l − 6

12
+

βηlĒ
e
l

2

)
≤ −ηl

11Ēe
l − 6

12
. (32)

Therefore,

E
[
f(θe+1)

]
≤ E

[
f(θe)

]
− ηl

11Ēe
l − 6

12
E
[
∥∇f(θe)∥2

]
+

1

2
ηl(1− βηlĒ

e
l )E

[∥∥∥∥ n∑
i=1

we
i

Ei−1∑
k=0

(
∇fi(θe

i,k)−∇f(θe)
)∥∥∥∥2]

+
βη2l
2

E
[∥∥∥∥ n∑

i=1

we
i

Ei−1∑
k=0

(
g̃i(θ

e
i,k)−∇f(θe)

)∥∥∥∥2]. (33)

Now, we use the relaxed triangle inequality ∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2) for the last line above:

E
[
f(θe+1)

]
≤ E

[
f(θe)

]
− ηl

11Ēe
l − 6

12
E
[
∥∇f(θe)∥2

]
+

1

2
ηl(1− βηlĒ

e
l )E

[∥∥∥∥ n∑
i=1

we
i

Ei−1∑
k=0

(
∇fi(θe

i,k)−∇f(θe)
)∥∥∥∥2]︸ ︷︷ ︸

B

+ βη2l E
[∥∥∥∥ n∑

i=1

we
i

Ei−1∑
k=0

(
g̃i(θ

e
i,k)−∇fi(θe

i,k)
)∥∥∥∥2]︸ ︷︷ ︸

A

+βη2l E
[∥∥∥∥ n∑

i=1

we
i

Ei−1∑
k=0

(
∇fi(θe

i,k)−∇f(θe)
)∥∥∥∥2]︸ ︷︷ ︸

B
(34)

Now, we bound each of the terms A and B separately:
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A ≤ E
[( n∑

i=1

we
i

Ei−1∑
k=0

∥∥g̃i(θe
i,k)−∇fi(θe

i,k)
∥∥)2]

≤ E
[ n∑

i=1

(we
i )

2 ×
n∑

i=1

(Ei−1∑
k=0

∥∥g̃i(θe
i,k)−∇fi(θe

i,k)
∥∥)2]

= E
[
∥we∥2

n∑
i=1

(Ei−1∑
k=0

∥∥g̃i(θe
i,k)−∇fi(θe

i,k)
∥∥)2]

= E
[ n∑

i=1

(Ei−1∑
k=0

∥∥g̃i(θe
i,k)−∇fi(θe

i,k)
∥∥)2]

≤
n∑

i=1

Ei

Ei−1∑
k=0

E
[∥∥∥∥g̃i(θe

i,k)−∇fi(θe
i,k)

∥∥∥∥2] ≤ n∑
i=1

E2
i σ

2
i,g̃, (35)

where in the first and second inequalities, we used Cauchy-Schwarz inequality. In the last inequality, we used Equation (23).
Similarly, we can bound B:

B = E
[∥∥∥∥ n∑

i=1

we
i

Ei−1∑
k=0

(
∇fi(θe

i,k)−∇f(θe)
)∥∥∥∥2] = E

[∥∥∥∥ n∑
i=1

we
i

Ei−1∑
k=0

∇fi(θe
i,k)−

n∑
i=1

we
i

Ei−1∑
k=0

∇f(θe)

∥∥∥∥2]

= E
[∥∥∥∥ n∑

i=1

we
i

Ei−1∑
k=0

∇fi(θe
i,k)−

( n∑
i=1

we
iEi

)
︸ ︷︷ ︸

Ēe
l

∇f(θe)

∥∥∥∥2] = E
[∥∥∥∥( n∑

i=1

we
i

Ei−1∑
k=0

∇fi(θe
i,k)

)
− Ēe

l∇f(θe)

∥∥∥∥2]. (36)

Let us also define ∆e
i := we

i − λi for client i to be the difference between the aggregation weight of client i in round e
(we

i ) and its corresponding aggregation weights in the global objective function f(θ) (λi). With this definition and that
∇f(θe) =

∑n
i=1 λi∇fi(θe), we have:

B = E
[∥∥∥∥( n∑

i=1

∆e
i

Ei−1∑
k=0

∇fi(θe
i,k)

)
+

( n∑
i=1

λi

Ei−1∑
k=0

∇fi(θe
i,k)

)
−

( n∑
i=1

λiĒ
e
l∇fi(θe)

)∥∥∥∥2]

≤ 2E
[∥∥∥∥ n∑

i=1

∆e
i

Ei−1∑
k=0

∇fi(θe
i,k)

∥∥∥∥2]︸ ︷︷ ︸
C

+2E
[∥∥∥∥( n∑

i=1

λi

Ei−1∑
k=0

∇fi(θe
i,k)

)
−
( n∑

i=1

λiĒ
e
l∇fi(θe)

)∥∥∥∥2]︸ ︷︷ ︸
D

. (37)

Now, we bound each of the terms C and D, separately:

C = 2E
[∥∥∥∥ n∑

i=1

∆e
i

Ei−1∑
k=0

∇fi(θe
i,k)

∥∥∥∥2]

≤ 4E
[∥∥∥∥ n∑

i=1

∆e
i

Ei−1∑
k=0

(
∇fi(θe

i,k)−∇fi(θe)
)∥∥∥∥2]+ 4E

[∥∥∥∥ n∑
i=1

Ei∆
e
i∇fi(θe)

∥∥∥∥2]

≤ 4E
[
(

n∑
i=1

Ei)

n∑
i=1

Ei−1∑
k=0

|∆e
i |2∥∇fi(θe

i,k)−∇fi(θe)∥2
]
+ 4E

[
n

n∑
i=1

∥∥∥∥Ei∆
e
i∇fi(θe)

∥∥∥∥2]

≤ 4(

n∑
i=1

Ei)β
2

n∑
i=1

Ei−1∑
k=0

|∆e
i |2E[∥θe

i,k − θe∥2] + 4nL2
0

n∑
i=1

E2
i E[|∆e

i |2]

≤ 4β2(

n∑
i=1

Ei)

n∑
i=1

Ei−1∑
k=0

E[∥θe
i,k − θe∥2] + 4nL2

0

n∑
i=1

E2
i E[|∆e

i |2], (38)
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where in the third line, we have used relaxed triangle inequality, and in the fourth line, we have used β-smoothness and
L0-Lipschitz continuity of fi. Also, in the last line we used |∆e

i | ≤ 1. Similarly:

D = 2E
[∥∥∥∥ n∑

i=1

λi

(Ei−1∑
k=0

∇fi(θe
i,k)− Ēe

l∇fi(θe)

)∥∥∥∥2]

≤ 2∥λ∥2
n∑

i=1

E
[∥∥∥∥Ei−1∑

k=0

∇fi(θe
i,k)− Ēe

l∇fi(θe)

∥∥∥∥2]

≤ 2∥λ∥2
n∑

i=1

E
[∥∥∥∥Ei−1∑

k=0

(
∇fi(θe

i,k)−∇fi(θe)
)
+
(
Ei − Ēe

l

)
∇fi(θe)

∥∥∥∥2]

≤ 4∥λ∥2
n∑

i=1

E
[∥∥∥∥Ei−1∑

k=0

∇fi(θe
i,k)−∇fi(θe)

∥∥∥∥2 + (
Ei − Ēe

l

)2 ∥∥∇fi(θe)
∥∥2︸ ︷︷ ︸

≤L2
0

]

≤ 4β2∥λ∥2
n∑

i=1

Ei

Ei−1∑
k=0

E
[∥∥θe

i,k − θe
∥∥2]+ 4L2

0∥λ∥2
n∑

i=1

E[(Ei − Ēe
l )

2]. (39)

In the first inequality, we used convexity of the norm function, and Cauchy-Schwarz inequality. Hence, by plugging the
bounds above on C and D into Equation (37), we get:

B ≤ 4β2(1 +

n∑
i=1

Ei)

( n∑
i=1

Ei

Ei−1∑
k=0

E
[∥∥θe

i,k − θe
∥∥2])+ 4L2

0

(
n

n∑
i=1

E2
i E[|∆e

i |2] + ∥λ∥2
n∑

i=1

E[(Ei − Ēe
l )

2]

)
(40)

In the following, we first simplify Equation (34), and then, we plugg the bounds above on A and B in it. We have:

E
[
f(θe+1)

]
≤ E

[
f(θe)

]
− ηl

11Ēe
l − 6

12
E
[
∥∇f(θe)∥2

]
+ βη2l E

[∥∥∥∥ n∑
i=1

we
i

Ei−1∑
k=0

(
g̃i(θ

e
i,k)−∇fi(θe

i,k)
)∥∥∥∥2]︸ ︷︷ ︸

A

+ (βη2l +
1

2
ηl(1− βηlĒ

e
l ))︸ ︷︷ ︸

< 2
3ηl

E
[∥∥∥∥ n∑

i=1

we
i

Ei−1∑
k=0

(
∇fi(θe

i,k)−∇f(θe)
)∥∥∥∥2]︸ ︷︷ ︸

B

, (41)

where from the assumption ηl ≤ 1
6βEi

, we get to βη2
l

2 ≤
ηl

12 . Hence:

βη2l +
1

2
ηl(1− βηlĒ

e
l ) = βη2l (1−

Ēe
l

2
) +

ηl
2
≤ βη2l

2
+

ηl
2
≤ ηl

12
+

ηl
2

<
2ηl
3

. (42)

Therefore, by plugging in the bounds on A and B, we have:

E
[
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]
≤ E

[
f(θe)

]
− ηl

11Ēe
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12
E
[
∥∇f(θe)∥2

]
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i σ

2
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+

(
8

3
β2ηl(1 +

n∑
i=1

Ei)

( n∑
i=1

Ei

Ei−1∑
k=0

E
[∥∥θe

i,k − θe
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+

(
8

3
L2
0ηl

(
n

n∑
i=1

E2
i E[|∆e

i |2] + ∥λ∥2
n∑

i=1

E[(Ei − Ēe
l )

2]

))
. (43)

We now have the following lemma to bound local drift of clients during each communication round e:
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Lemma E.1 (Bounded local drifts). Suppose Assumption D.1 holds. The local drift happening at client i during
communication round e is bounded:

ξei :=

Ei−1∑
k=0

E
[∥∥θe

i,k − θe
∥∥2] ≤ (cte− 2)E2

i η
2
l

(
σi,g̃2 + 6Eiσ

2 + 6EiE[∥∇f(θe)∥2]
)
, (44)

where cte is the mathematical constant e.

Proof. From θe
i,0 = θe, we only need to focus on Ei ≥ 2. We have:

E∥θe
i,k − θe∥2 = E[∥θe

i,k−1 − ηlg̃i(θ
e
i,k−1)− θe∥2]

≤ E[∥θe
i,k−1 − ηl∇fi(θe

i,k−1)− θe∥2] + η2l σ
2
i,g̃ (45)

where the inequality comes from Lemma D.4. The first term on the right side of the above inequality can be bounded as:

E[∥θe
i,k−1 − ηl∇fi(θe

i,k−1)− θe∥2] ≤
(
1 +

1

2Ei − 1

)
E[∥θe

i,k−1 − θe∥2] + 2Eiη
2
l E∥[∇fi(θe

i,k−1)∥2], (46)

where we have used Lemma D.3. Now, we bound the last term in the above inequality. We have:

∇fi(θe
i,k−1) = (∇fi(θe

i,k−1)−∇fi(θe)) + (∇fi(θe)−∇f(θe)) +∇f(θe), (47)

By using relaxed triangle inequality (Lemma D.3) and Assumption D.1, we get:

∥∇fi(θe
i,k−1)∥2 = 3∥∇fi(θe

i,k−1)−∇fi(θe)∥2 + 3∥∇fi(θe)−∇f(θe)∥2 + 3∥∇f(θe)∥2

≤ 3β2∥θe
i,k−1 − θe∥2 + 3σ2 + 3∥∇f(θ)∥2. (48)

Now, we can rewrite Equation (46) and then Equation (45):

E∥θe
i,k − θe∥2 ≤

(
1 +

1

2Ei − 1
+ 6Eiβ

2η2l
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2 + σ2

i,g̃) + 6Eiη
2
l E[∥∇f(θe)∥2] (49)

From the inequality above and that E∥θe
i,0 − θe∥2 = 0, we have:

E∥θe
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E∥θe
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1

Ei
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E∥θe
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1
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where γ = η2l (6Eiσ
2 + σ2

i,g̃) + 6Eiη
2
l E[∥∇f(θe)∥2]. By using 1 + q + · · ·+ qn−1 = qn−1

q−1 , we get:

E∥θe
i,k − θe∥2 ≤ Ei

((
1 +

1

Ei

)k − 1

)(
η2l (6Eiσ

2 + σ2
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2
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)
. (51)

Therefore, we have:
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Ei−1∑
k=0

E∥θe
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i
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1 +

1

Ei
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)
, (52)

where Ei ≥ 2 and cte above is the mathematical constant e.

We can now plug the bound on local drifts into Equation (43) and get:
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where we have used the second condition on ηl in the first line to bound the multiplicative factor.

Hence, we have:
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Remind that Ēe
l =

∑n
i=1 w

e
iEi is a weighted average of clients’ number of local gradient steps. From above, we have:

ηl(
11Ēe

l − 7

12
)E∥∇f(θe)∥2 ≤ E[f(θe)− f(θe+1)] + (Ψσ +Ψp)ηl. (55)

We can now replace Ēe
l , which is a weighted average of {Ei}ni=1 in round e, with Emin

l = mini{Ei}ni=1, and the inequality
still holds:

ηl(
11Emin

l − 7

12
)E∥∇f(θe)∥2 ≤ E[f(θe)− f(θe+1)] + (Ψp +Ψσ)ηl. (56)

By summing both sides of the above inequality over e = 0, . . . , E − 1 and dividing by E, we get:

min
0≤e≤E−1

E[∥∇f(θe)∥2] ≤ 12

11Emin
l − 7

(
f(θ0)− f∗

Eηl
+Ψσ +Ψp

)
, (57)

which completes the proof.
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F. Detailed results
F.1. Test accuracy comparison

In Table 12 to 15, we report the detailed test accuracy values for all algorithms, on all datasets and privacy distributions we
study in this work. The results show that Robust-HDP is consistently outperforming the state-of-the-art algorithms across
various datasets.

Table 12. Comparison of different algorithms (on MNIST, E = 200). FedAvg achieves 98.6%.

alg
distr

Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9

WeiAvg (Liu et al., 2021a) 90.08 88.29 89.74 88.20 84.94 81.40 84.43 78.71 81.38

PFA (Liu et al., 2021a) 88.24 87.93 88.35 88.32 85.65 82.16 83.71 80.25 78.51

DPFedAvg (Noble et al., 2021) 84.24 82.84 83.50 80.43 83.02 75.69 85.71 70.58 80.49

minimum ϵ (Liu et al., 2021a) 77.80 74.86 74.86 71.75 68.42 34.32 77.62 56.10 68.44

Robust-HDP 89.83 90.71 89.83 89.38 87.52 84.60 84.03 81.19 81.52

Table 13. Comparison of different algorithms (on FMNIST, E = 200). FedAvg achieves 90.28%.

alg
distr

Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9

WeiAvg (Liu et al., 2021a) 77.65 78.30 75.92 77.10 72.38 64.15 66.80 66.86 64.79

PFA (Liu et al., 2021a) 75.03 74.85 72.90 77.10 72.44 71.08 66.30 67.89 64.69

DPFedAvg (Noble et al., 2021) 74.12 71.68 71.97 68.10 70.20 62.46 64.15 65.87 65.50

minimum ϵ (Liu et al., 2021a) 73.15 64.26 64.26 62.60 64.35 28.66 65.13 58.44 66.36

Robust-HDP 75.13 76.25 75.04 76.19 73.80 71.30 66.85 68.32 66.96

Table 14. Comparison of different algorithms (on CIFAR10, E = 200). FedAvg achieves 73.55%.

alg
distr

Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9

WeiAvg (Liu et al., 2021a) 31.18 31.18 29.65 27.74 24.25 19.91 21.93 18.91 20.64

PFA (Liu et al., 2021a) 26.91 32.68 25.19 29.21 21.63 18.93 20.63 16.27 15.75

DPFedAvg (Noble et al., 2021) 31.51 21.51 22.28 20.50 21.25 15.19 18.27 16.45 18.63

minimum ϵ (Liu et al., 2021a) 26.20 16.71 16.45 15.86 14.23 10.51 13.35 13.32 14.11

Robust-HDP 31.97 31.70 32.0 30.60 24.86 23.61 24.10 19.02 22.05

F.2. ablation study on privacy level and number of clients

The results in Table 16 and Table 17 show the detailed results for the ablation study on privacy level and number of clients,
reported in Figure 5 (left and middle figures, respectively). The values are the mean and standard deviation of average test
accuracy across clients over three different runs.

26



Noise-Aware Algorithm for Heterogeneous Differentially Private Federated Learning

Table 15. Comparison of different algorithms (on CIFAR100, E = 200). FedAvg achieves 61.80%.

alg
distr

Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9

WeiAvg (Liu et al., 2021a) 35.91 36.23 32.61 30.92 29.42 27.37 27.26 27.03 26.57

PFA (Liu et al., 2021a) 34.21 35.86 30.12 29.45 26.95 31.27 24.35 21.29 18.05

DPFedAvg (Noble et al., 2021) 31.34 31.30 25.01 26.74 24.96 21.27 21.72 17.36 17.71

minimum ϵ (Liu et al., 2021a) 27.61 27.25 24.91 25.02 25.07 21.21 21.46 17.42 17.50

Robust-HDP 33.35 33.38 33.46 35.03 31.58 31.33 30.27 30.71 29.21

Table 16. Detailed results for ablation study on the privacy level of clients in Figure 5, left.

alg
distr

Dist2 Dist4 Dist6 Dist8

WeiAvg (Liu et al., 2021a) 88.29±0.67 88.20±0.52 81.60±0.58 78.71±0.67

PFA (Liu et al., 2021a) 88.32±0.85 86.91±0.97 82.16±0.99 79.92±0.86

DPFedAvg (Noble et al., 2021) 82.84±0.65 80.43±1.72 74.02±1.54 70.58±1.43

Robust-HDP 90.71±0.65 89.38±0.76 85.13±0.68 81.19±0.97

Table 17. Detailed results for ablation study on number of clients in Figure 5, middle.

alg
distr

n = 20 n = 40 n = 60

WeiAvg (Liu et al., 2021a) 81.60±0.58 75.20±0.67 63.12±0.78

PFA (Liu et al., 2021a) 82.16±0.99 73.15±1.02 66.0±0.98

DPFedAvg (Noble et al., 2021) 74.02±1.54 62.98±1.85 58.49±1.67

Robust-HDP 85.13±0.68 76.85±0.75 72.77±0.78

F.3. Precision of Robust-HDP

In this section, we investigate the precision of Robust-HDP in estimating {σ2
i }ni=1 and {w∗

i }ni=1. We also check the
performance of RPCA algorithm used by Robust-HDP. Figure 9 shows the eigen values of the matrices M and L on MNIST
at the end of the first global communication round for when clients’ privacy parameters are sampled from Dist3 (inducing
less DP noise) and Dist9 (inducing more DP noise) from Table 7. We can clearly observe that most of the eigen values of L
returned by RPCA are close to 0, especially for Dist3, i.e., RPCA has returned a low-rank matrix as the underlying low-rank
matrix in M for both Dist3 and Dist9.

In Figure 10, we have shown the noise variance estimates {σ̂2
i }ni=1 and the aggregation weights {wi}ni=1 returned by

Robust-HDP, and compared them with their true (optimum) values. We have also shown the weights assigned by other
baseline algorithms. Having both privacy and batch size heterogeneity, Robust-HDP assigns larger weights to clients with
smaller ϵ and larger batch size (e.g., client 10, which has the largest batch size, has the largest assigned aggregation weight
from Robust-HDP). The weight assignment of Robust-HDP is based on the noise estimates {σ̂2

i }ni=1: the larger the σ̂2
i , the

smaller the assigned weight wi. Also, as observed, the weight assignment of Robust-HDP is very close to the optimum
wights {w∗

i }ni=1. In contrast, WeiAvg and PFA assign weights just based on the privacy parameters ϵi of clients, which is
suboptimal. Similarly, DPFedAvg assings weights just based on the train set size of clients, which we assumed are uniform
for the experiments in the main body of the paper and Figure 10. We have done similar comparisons in the next section
(Appendix G) for other heterogeneity scenarios.
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Figure 9. Comparison of the eigen values of matrices M (left) and L (right) on MNIST dataset. The concentration of eigen values in the
right figures around 0 shows that the matrix L returned by Robust PCA, is indeed low rank, while M is not, due to the noise existing in
clients model updates. The results for these experiments were reported in Table 12 (Robust-HDP, Dist3 and Dist9).
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Figure 10. Comparison of weight assignments for Dist8 and MNIST with the data split in Table 6. The assigned weights by baseline
algorithms show that their weight assignment strategies are not based on the noise variance in clients model updates, hence suboptimal.
The results for this experiment were reported in Table 12 (Robust-HDP, Dist8).
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G. Additional Experiments
So far, we assumed heterogeneous batch sizes {bi}ni=1, heterogeneous privacy parameters {ϵi}ni=1 and uniform dataset sizes
{Ni}ni=1. Now, we report and discuss some extra experimental results in this section. We consider three cases:

• uniform batch sizes {bi = b}, heterogeneous privacy parameters {ϵi} and dataset sizes {Ni}

• uniform privacy parameters {ϵi = ϵ}, heterogeneous batch sizes {bi} and dataset sizes {Ni}

• uniform batch sizes {bi = b} and uniform privacy parameters {ϵi = ϵ}, heterogeneous dataset sizes {Ni} (correspond-
ing to regular homogeneous DPFL setting, which is well-studied in the literature as a separate topic)

We run experiments on CIFAR10, as it uses a large size model and is more challenging. Unless otherwise stated, we use
Dirichlet allocation (Wang et al., 2019a) to get label distribution heterogeneity for the experiments in this section. For all
samples in each class k, denoted as the set Sk, we split Sk = Sk,1 ∪ Sk,2 ∪ · · · ∪ Sk,n into n clients (n = 20) according to a
symmetric Dirichlet distribution Dir(1). Then we gather the samples for client j as S1,j ∪ S2,j ∪ · · · ∪ SC,j , if we have C
classes in total. This results in different dataset sizes (Ni) for different clients. After splitting the data across the clients, we
fix it and run the following experiments.

G.1. uniform batch sizes {bi = b}, heterogeneous privacy parameters {ϵi} and heterogeneous dataset sizes {Ni}

Despite the haterogeneity that may exist in the memory budgets and physical batch sizes of clients, they may use gradient
accumulation (see Appendix G.5) to implement DPSGD with the same logical batch size. However, such a synchronization
can happen only when the untrusted server asks clients to all use a specific logical batch size. Otherwise, if every client
decides about its batch size locally, the same batch size heterogeneity that we considered in the main body of the paper
will happen again. In the case of such a batch size synchronization by the server, there will be some discrepancy between
the upload times of clients’ model updates (as some need to use gradient accumulation with smaller physical batch sizes),
which should be tolerated by the server. Having these points in mind, in this subsection, we assume such a batch size
synchronization exists and we fix the logical batch size of all clients to the same value of b = 32 by using gradient
accumulation. We also sample their privacy preference parameters {ϵi} from Table 7. In this case, our analysis in Section 3
can be rewritten as follows (as before, we use the same δi = δ and Ki = K for all clients):

1. Effective clipping threshold: when the clipping is indeed effective for all samples, the variance of the noisy stochastic
gradient in Equation (1) can be computed as:

E[g̃i(θ)] =
1

b

∑
j∈Bt

i

E[ḡij(θ)] =
1

b

∑
j∈Bt

i

Gi(θ) = Gi(θ), (58)

σ2
i,g̃ := Var(g̃i(θ)) =

c2 −
∥∥Gi(θ)

∥∥2
b

+
pc2z2(ϵi, δ,

b
Ni

,K,E)

b2
≈

pc2z2(ϵi, δ,
b
Ni

,K,E)

b2
, (59)

2. Ineffective clipping threshold: when the clipping is ineffective for all samples, we have:

E[g̃i(θ)] = E[gi(θ)] = ∇fi(θ), (60)

σ2
i,g̃ = Var(g̃i(θ)) = Var(gi(θ)) +

pσ2
i,DP

b2
≤ σ2

i,g +
pc2z2(ϵi, δ,

b
Ni

,K,E)

b2
, . (61)

Finally:

σ2
i := Var(∆θ̃e

i |θe) = K · ⌈Ni

b
⌉ · η2l · σ2

i,g̃. (62)
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Table 18. Comparison of different algorithms on CIFAR10 with uniform batch sizes {bi = b}, heterogeneous privacy parameters {ϵi}
and heterogeneous dataset sizes {Ni}. FedAvg (E = 200) achieves 77.58%. We have dropped the ”minimum ϵ” algorithm due to its
very low performance.

alg
distr

Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9

WeiAvg (Liu et al., 2021a) 31.99 31.18 29.59 25.97 24.66 16.61 23.13 17.01 14.34

PFA (Liu et al., 2021a) 32.12 32.2 30.11 28.48 25.09 16.85 23.34 17.11 15.12

DPFedAvg (Noble et al., 2021) 33.89 24.16 24.62 17.50 22.71 16.76 19.52 13.81 16.27

Robust-HDP 34.94 33.78 31.34 32.50 26.05 17.98 23.13 17.97 15.79

We observe that, the amount of noise in model updates (σ2
i ) varies across clients depending on their privacy parameter ϵi

and dataset size Ni. Also, as observed in Figure 2, noise variance σ2
i does not change linearly with ϵi. These altogether

show that aggregation strategy wi ∝ ϵi is suboptimal. In contrast, Robust-HDP takes both of the sources of heterogeneity
into account by assigning aggregation weights based on an estimation of {σ2

i } directly. With these settings, we got the
results in Table 18 on CIFAR10, which shows superiority of Robust-HDP in this heterogeneity scenario.

G.2. Heterogeneous batch sizes {bi}, uniform privacy parameters {ϵi = ϵ} and heterogeneous dataset sizes {Ni}

In this section, we assume the same values for privacy parameters (ϵi = ϵ), but different batch and dataset sizes. Therefore,
we have:

1. Effective clipping threshold:

E[g̃i(θ)] =
1

b

∑
j∈Bt

i

E[ḡij(θ)] =
1

b

∑
j∈Bt

i

Gi(θ) = Gi(θ), (63)

σ2
i,g̃ := Var(g̃i(θ)) =

c2 −
∥∥Gi(θ)

∥∥2
b

+
pc2z2(ϵ, δ, bi

Ni
,K,E)

b2
≈

pc2z2(ϵ, δ, bi
Ni

,K,E)

b2i
. (64)

2. Ineffective clipping threshold:

E[g̃i(θ)] = E[gi(θ)] = ∇fi(θ), (65)

σ2
i,g̃ = Var(g̃i(θ)) = Var(gi(θ)) +

pσ2
i,DP

b2
≤ σ2

i,g +
pc2z2(ϵ, δ, bi

Ni
,K,E)

b2i
, (66)

and

σ2
i := Var(∆θ̃e

i |θe) = K × ⌈ 1
qi
⌉ · η2l · σ2

i,g̃ ≈ K · Ni

bi
· η2l · σ2

i,g̃. (67)

Hence, σ2
i varies across clients as a function of both bi and Ni and heavily depends on bi (bi appears with power 3). Despite

this heterogeneity in the set {σ2
i }ni=1, WeiAvg assigns the same aggregation weights to all clients, due to their privacy

parameters being equal, which is clearly inefficient. In contrast, Robust-HDP estimates the values in {σ2
i }ni=1 directly and

assigns larger weights to clients with larger batch sizes. With these settings and the Dirichlet data allocation mentioned
above, we got the results in Table 19, which shows superiority of Robust-HDP in this case as well. We have used the mean
values of the distributions Dist1, Dist3, Dist5, Dist7 and Dist9 from Table 7 for ϵ, i.e., ϵ ∈ {2.6, 2.0, 1.1, 0.6, 0.35}. Also,
as before, we have fixd δi to 1e− 4.
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Table 19. Comparison of different algorithms on CIFAR10 with heterogeneous batch sizes {bi}, uniform privacy parameters {ϵi = ϵ} and
heterogeneous dataset sizes {Ni}. FedAvg (E = 200) achieves 73.55%. ”minimum ϵ” algorithm is equivalent to DPFedAvg in this case.

alg
distr

ϵ = 2.6 ϵ = 2.0 ϵ = 1.1 ϵ = 0.6 ϵ = 0.35

WeiAvg and PFA (Liu et al., 2021a) 35.86 33.50 29.21 24.49 18.40

DPFedAvg (Noble et al., 2021) 37.00 32.89 29.32 23.06 19.14

Robust-HDP 37.45 34.93 29.78 23.15 19.54

G.3. uniform batch sizes {bi = b}, uniform privacy parameters {ϵi = ϵ} and heterogeneous dataset sizes {Ni}

In this section, other than using the same values for clients batch sizes (bi = b), we fix the privacy parameter of all clients to
the same value ϵ (i.e., we have homogeneous DPFL, for which DPFedAvg has been proposed). Therefore, we have:

1. Effective clipping threshold:

E[g̃i(θ)] =
1

b

∑
j∈Bt

i

E[ḡij(θ)] =
1

b

∑
j∈Bt

i

Gi(θ) = Gi(θ), (68)

σ2
i,g̃ := Var(g̃i(θ)) =

c2 −
∥∥Gi(θ)

∥∥2
b

+
pc2z2(ϵ, δ, b

Ni
,K,E)

b2
≈

pc2z2(ϵ, δ, b
Ni

,K,E)

b2
. (69)

2. Ineffective clipping threshold:

E[g̃i(θ)] = E[gi(θ)] = ∇fi(θ), (70)

σ2
i,g̃ = Var(g̃i(θ)) = Var(gi(θ)) +

pσ2
i,DP

b2
≤ σ2

i,g +
pc2z2(ϵ, δ, b

Ni
,K,E)

b2
, (71)

and

σ2
i := Var(∆θ̃e

i |θe) = K · ⌈ 1
qi
⌉ · η2l · σ2

i,g̃ ≈ K · Ni

b
· η2l · σ2

i,g̃. (72)

Hence σ2
i varies across clients as a function of only Ni. In the next paragraph, we show that this variation with Ni is

small. This means that when clients hold the same privacy parameter and also use the same batch size, the amount of noise
in their model updates sent to the server are almost the same, i.e., σ2

i ≈ σ2
j , i ̸= j. Hence, in this case the problem in

Equation (8) has solution wi ≈ 1
n . In the following, we show what is the difference between the solutions provided by

different algorithms for this case.

G.3.1. PERFORMANCE PARITY IN DPFL SYSTEMS

Before proceeding to the experimental results, we draw your attention to the weight assignments by Robust-HDP in this
setting, where both privacy parameters and batch sizes are uniform. Robust-HDP aims at approximating {σ2

i } and:

w∗
i ∝

1

σ2
i

≈ b

Kη2l
· 1

Niσ2
i,g̃

≈ b3

Kpc2η2l
· 1

Niz2(ϵ, δ,
b
Ni

,K,E)
=

b3

Kpc2η2l
· 1

H(Ni, b, ϵ, δ,K,E)
(73)

where we have used Equation (3) (with b and ϵ) and H(Ni, b, ϵ, δ,K,E) := Niz
2(ϵ, δ, b

Ni
,K,E). Now note that z

decreases with Ni sublinearly (see Figure 8. Remember that qi = bi
Ni

). We have plotted the behavior of the function
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Table 20. Comparison of different algorithms on CIFAR10 with uniform batch sizes {bi = 32}, uniform privacy parameters {ϵi = ϵ} and
heterogeneous dataset sizes {Ni}. FedAvg (E = 200) achieves 73.55%. ”minimum ϵ” algorithm is equivalent to DPFedAvg in this case.

alg
distr

ϵ = 2.6 ϵ = 2.0 ϵ = 1.1 ϵ = 0.6 ϵ = 0.35

WeiAvg and PFA (Liu et al., 2021a) 37.24 34.90 27.80 23.22 19.01

DPFedAvg (Noble et al., 2021) 38.52 32.78 30.42 23.50 20.26

Robust-HDP 37.68 32.54 27.51 22.58 20.52

H(Ni, b, ϵ, δ,K,E) as a function of Ni in Figure 11. Hence, when Ni decreases, w∗
i increases slowly. This means that

Robust-HDP tries to minimize the noise in the aggregated model parameter (problem 8) and also assigns slightly larger
weights to the clients with smaller datasets. Similarly, WeiAvg assigns uniform weights to all clients. In contrast, the
solution provided by DPFedAvg focuses more on clients with larger train sets (wi ∝ Ni). Considering the point that {σ2

i } is
almost uniform, this way it exploits clients with larger train sets during training. In the following, we discuss how this is
related to performance fairness across clients.

Figure 11. The behavior of function 1/H(N, b, ϵ, δ,K,E) as a function of N (dataset size) for an instance value of ϵ = 3 and batch size
b = 32. Oscillations in the curves are due to finding z empirically.

There have been multiple works in the literature , showing that DP has adverse effects on fairness in ML systems making it
impossible to achieve both fairness and DP simultaneously (Cummings et al., 2019; Fioretto et al., 2022; Matzken et al.,
2023). The work in (Bagdasaryan & Shmatikov, 2019) showed that accuracy of DP models drops much more for the
underrepresented classes and subgroups, which yields to fairness issues. Interestingly, our Robust-HDP takes care of clients
with minority data (i.e., those with small Ni) by assigning slightly larger weights to them at aggregation time, as shown
in Equation (73) and Figure 11. Similarly, WeiAvg assigns uniform weights to clients. Hence, when both batch size and
privacy parameters are uniform across clients (i.e., homogeneous DPFL), we expect the weight assignments of Robust-HDP
and WeiAvg to yield to a higher performance fairness across clients, while we expect DPFedAvg - which was designed for
homogeneous DPFL - to improve system utility. Our experimental results further clarifies this. We use the mean values of
the distributions Dist1, Dist3, Dist5, Dist7 and Dist9 from Table 7 for ϵ, i.e., ϵ ∈ {2.6, 2.0, 1.1, 0.6, 0.35}. Also, as before,
we fix δi to 1e − 4. With these settings and using the Dirichlet data allocation mentioned before, we got the results in
Table 20 and Table 21.

G.4. Conclusion: when to use Robust-HDP?

We now summarize our understandings from the theories and experimental results in previous sections to conclude when to
use Robust-HDP in DPFL settings. From our experimental results, heterogeneity in either of the privacy parameters {ϵi}ni=1

and batch sizes {bi}ni=1, results in a considerable heterogeneity in noise variances {σ2
i }ni=1. Hence, using Robust-HDP

in this cases will be beneficial in the system overall utility. However, if both {ϵi}ni=1 and {bi}ni=1 are homogeneous, and
the only potential heterogeneity is in {Ni}ni=1 (i.e., homogeneous DPFL), then using DPFedAvg will be slightly better in
terms of the system overall utility, as it assigns larger weights to the clients with larger dataset sizes. Despite this, using

33



Noise-Aware Algorithm for Heterogeneous Differentially Private Federated Learning

Table 21. Comparison of different algorithms on CIFAR10 with uniform batch sizes {bi = 32}, uniform privacy parameters {ϵi = ϵ} and
heterogeneous dataset sizes {Ni} in terms of the std of clients’ test accuracies and test accuracy of the client with the smallest train set (in
parentheses). ”minimum ϵ” algorithm is equivalent to DPFedAvg in this case.

alg
distr

ϵ = 2.6 ϵ = 2.0 ϵ = 1.1 ϵ = 0.6 ϵ = 0.35

WeiAvg and PFA (Liu et al., 2021a) 4.24 (32.95) 4.11 (30.68) 4.95 (25.01) 3.89 (27.84) 5.70 (17.04)

DPFedAvg (Noble et al., 2021) 4.92 (34.69) 4.71 (29.54) 4.95 (25.41) 6.78 (14.77) 6.86 (11.36)

Robust-HDP 4.77 (34.09) 4.59 (34.91) 4.66 (26.13) 6.01 (15.34) 3.89 (18.97)

Robust-HDP will alightly improve the performance of clients with smaller dataset sizes.

G.5. Gradient accumulation

When training large models with DPSGD, increasing the batch size results in memory exploding during training or finetuning.
This might happen even when we are not using DP training. On the other hand, using a small batch size results in larger
stochastic noise in batch gradients. Also, in the case of DP training, using a small batch size results in fast increment
of DP noise (as explained in 3.2 in details). Therefore, if the memory budget of devices allow, we prefer to avoid using
small batch sizes. But what if there is a limited memory budget? A solution for virtually increasing batch size is “gradient
accumulation”, which is very useful when the available physical memory of GPU is insufficient to accommodate the
desired batch size. In gradient accumulation, gradients are computed for smaller batch sizes and summed over multiple
batches, instead of updating model parameters after computing each batch gradient. When the accumulated gradients
reach the target logical batch size, the model weights are updated with the accumulated batch gradients. The page in
https://opacus.ai/api/batch_memory_manager.html shows the implementation of gradient accumulation
for DP training.

H. Limitations and Future works
In this section, we investigate the potential limitations of our proposed Robust-HDP, and look at the future directions for
addressing them. As before, we assume full participation of clients for simplicity. Specifically, we are curious about what
happens if the data distribution across clients is not completely i.i.d, but rather is moderately/highly heterogeneous. We
investigate Robust-HDP in these two scenarios in Appendix H.1 and Appendix H.2, respectively.

H.1. Robust-HDP with moderately heterogeneous data distribution

In order to evaluate Robust-HDP when the data split is moderately heterogeneous, we run experiments on MNIST. In order
to simulate a controlled higher data heterogeneity, we use the sharding data splitting method described in Appendix B.1 and
Table 6, and we let each client to hold data samples of at maximum 8 classes, with 60 clients in total. We consider two cases:

All 60 clients use the same batch size 128: the results obtained for this case, i.e., heterogeneous data with uniform
batch sizes 128, were reported in Table 4. As we observed, Robust-HDP still outperforms the baselines in most of the
cases. However, compared to the results in Table 12, which were obtained when the data split was i.i.d, its superiority has
decreased. In order to get an understanding why this is the case, lets have a look at the aggregation weight assignments
by different algorithms for this setting in Figure 12. Remember that, we have assumed uniform batch size of 128 for all
clients. Therefore, the only parameter that makes variation in {σ2

i } is the clients’ privacy parameters {ϵi} being different.
There are multiple points in Figure 12. First, the accuracy of RPCA decomposition in estimating {σ2

i } has decreased
(compare the difference between {σ2

i } and their estimates in Figure 12 with that in Figure 10 which was on a i.i.d data
split). Second, despite this, the aggregation weights returned by Robust-HDP are very close to the optimum weights. This is
the case because, as explained in Section 3.5, estimating the noise variances {σ2

i } up to a multiplicative factor suffices for
Robust-HDP to get to the optimum aggregation weights {w∗

i }. Lastly, compared to the aggregation weights returned by
WeiAvg, Robust-HDP has smoothly assigned larger weights to the clients with larger privacy parameters {ϵi}. Note that, as
we have assumed uniform batch size for all clients, having a larger privacy parameter ϵ is equivalent to having a less noisy
model update sent to the server.
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Table 22. Comparison of different algorithms (on MNIST, E = 200) with heterogeneous data split (maximum 8 labels per client) and 60
clients in the system with heterogeneous batch sizes.

alg
distr

Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9

WeiAvg (Liu et al., 2021a) 84.60 78.00 83.70 78.42 77.3 75.23 78.01 66.10. 68.12

PFA (Liu et al., 2021a) 79.07 75.72 83.23 76.54 78.06 64.00 79.10 68.08 71.74

DPFedAvg (Noble et al., 2021) 83.41 74.95 82.69 70.85 77.45 74.32 74.92 62.07 67.25

Robust-HDP 83.65 79.38 82.88 77.13 83.53 71.14 80.41 61.75 71.76

From the points mentioned above and the results in Figure 12, we conclude that, despite the moderate data heterogeneity,
Robust-HDP is still successful in assigning the aggregation wights {wi}ni=1 such that the noise the aggregated model update
is minimized. But considering the heterogeneity in clients’ data, is this good for the accuracy of the model too? More
specifically, with data heterogeneity, does assigning larger weights to the clients with less noisy model updates necessarily
result in higher utility too? From the results in Table 4, we observe that when the data is slightly heterogeneous and batch
sizes are uniform, this is the case most of the times. However, as we will show next, this seems to be not the case when we
also consider an additional heterogeneity in clients’ batch sizes.

The batch sizes of the 60 clients are randomly selected from {16,32,64,128}: we recall Equation (7), which showed
the considerable effect of batch size of a client on the noise variance in its model updates. When batch size decreases, its
noise variance increases fast. Hence, unlike the previous case with uniform batch sizes, it is now both the batch sizes and
privacy parameters of clients that determine the noise variance in their model updates. The results in Table 22 are obtained
in this case. Also, Figure 13 compares the weight assignments by different algorithms.

As observed, Robust-HDP no longer outperforms the baselines. To get a better understanding, lets have a look at the
aggregation weight assignments by different algorithms for this setting in Figure 13. First, the accuracy of RPCA
decomposition in estimating {σ2

i } has again decreased compared to that in Figure 10, which was on a i.i.d data split. Second,
despite this, the aggregation weights returned by Robust-HDP are still close to the optimum weights. However, the plot
of assigned weights by Robust-HDP are more spiky than that in Figure 12: compared to the aggregation weights returned
by WeiAvg, Robust-HDP has assigned larger weights to the clients with larger privacy parameters {ϵi} and larger batch
sizes. Batch size of clients has a larger effect on the aggregation weights assigned to them. For instance client 59, which
has batch size 128 and the second largest privacy parameter, has been assigned aggregation weight close to 0.18, while the
same client got aggregation weight close to 0.05 when all clients used the same batch size (Figure 12). There are 6 clients
whose aggregation weights sum to more than 0.5, i.e., these only 6 clients contribute to the aggregated model parameter
more than the other 54 clients altogether. The reason behind this is that Robust-HDP aims at minimizing the noise level in
the aggregated model update at the end of each round, and it has been successful in that. But the question is that, in this
scenario with data heterogeneity, is this strategy beneficial for the utility of the final trained model too? Although, this
strategy results in maximizing the trained model utility when the data split is i.i.d, it is not the case when we have data
heterogeneity and batch size heterogeneity simultaneously, and the results in Table 22 confirm this. This is a limitation for
Robust-HDP. However, we can provide a solution for it. Heterogeneity in batch sizes usually happens when clients have
different memory budgets. Clients with low memory budgets can not use large batches, especially when training privately
with DPSGD (Abadi et al., 2016). As observed, when having data heterogeneity, this batch size heterogeneity deteriorates
the performance of Robust-HDP. Despite the heterogeneity that may exist in clients’ memory budgets, they can use gradient
accumulation explained in Appendix G.5 to virtually increase their batch sizes to a uniform batch size (e.g., 128). In this
case, we get back to the results in Table 4, in which Robust-HDP works well most of the times. The cost that we pay is that
clients with limited physical memory sizes have to spend more time locally during each global round, and the server should
wait longer for these clients before performing each aggregation.
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Figure 12. Comparison of weight assignments by different algorithms on MNIST, Dist1 and 60 clients with heterogeneous data distribution
(maximum 8 labels per client) and uniform batch size (bi = 128). The weight assignments by Robust-HDP are very close to the optimal
weight assignment strategy, despite the heterogeneity in the data split. Also, the first 40 (last 20) clients, which have the smallest (largest)
ϵ privacy parameters, get assigned smaller (larger) weights by Robust-HDP than by PFA and WeiAvg, showing the suboptimality of
aggregation strategy of PFA and WeiAvg. The results for this experiment were reported in Table 4 (Robust-HDP, Dist1).
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Figure 13. Comparison of weight assignments by different algorithms on MNIST, Dist1 and 60 clients with hetrogeneous data distribution
(maximum 8 labels per client) and heterogeneous batch sizes. The weight assignments by Robust-HDP are close to the optimal weight
assignment strategy, despite the heterogeneity in the data split. The results for this experiment were reported in Table 22 (Robust-HDP,
Dist1).
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H.2. Local DPFL with highly heterogeneous data split across clients (future work)

Having studied Robust-HDP in scenarios with i.i.d and slightly heterogeneous data splits, we are curious about the
scenarios with highly heterogeneous data splits. In non-private FL systems, high data heterogeneity is usually addressed
by personalized FL (Li et al., 2020) and clustered FL (Sattler et al., 2019). In the former case, each client learns a model
specifically for itself by fine-tuning the common model obtained from FL on its local data. In the latter case, clients with
similar data are first grouped into a cluster by the server, followed by federated training of a model for each cluster. In highly
heterogeneous data distributions, clustered FL is more common (Sattler et al., 2019; Werner et al., 2023).

On the other hand, we have DPFL systems with highly heterogeneous data splits. In the existence of a trusted server
(CDP), an idea was proposed by Chathoth et al. (2022) for clustering clients with cohort-level privacy with privacy and data
heterogeneity across cohorts, using ϵ-DP definition (Definition 2.1 with δ = 0). When there is no trusted server (LDP), we
can follow a similar direction of clustered DPFL to address scenarios with highly heterogeneous data splits: clients are first
clustered by the server such that the data distribution of clients in a cluster are more similar to each other, and then, a model
is learned for each cluster. However, the DP noise in clients’ model updates makes clustering of clients harder. A recent
work in (Malekmohammadi et al., 2024) has addressed this scenario by proposing an algorithm, which is robust to the DP
noise existing in clients’ model updates, for clustering clients in DPFL system with local differential privacy.
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