
Measures of diversity and space-filling designs for categorical data

Cedric Malherbe 1 Emilio Domı́nguez-Sánchez Merwan Barlier Igor Colin 2 Haitham Bou-Ammar 3 4

Tom Diethe 1

Abstract
Selecting a small subset of items that represent the
diversity of a larger population lies at the heart of
many data analysis and machine learning applica-
tions. However, when it comes to items described
by categorical features, the lack of natural order-
ing and the combinatorial nature of the search
space pose significant challenges to the current
selection techniques and make existing methods
ill-suited. In this paper, we propose to make a
step in that direction by proposing novel methods
to select subsets of diverse categorical data based
on the advances in combinatorial optimization.
First, we start to cast the subset selection prob-
lem through the lens of the optimization of three
diversity metrics. We then provide novel bounds
for this problem and present exact solvers that
unfortunately come with a high computational
cost. To overcome this bottleneck, we go on and
show how to employ tools from linear program-
ming and submodular optimization by introducing
two computationally plausible methods that still
present approximation guarantees about the diver-
sity metrics. Finally, a numerical assessment is
provided to illustrate the potential of the designs
with respect to state-of-the-art methods.

1. Introduction
The diversity of data is essential in machine learning. In-
deed, whenever it comes to applications where we wish to
display a limited number of items to a user (Lin & Bilmes,
2011; Malherbe & Scaman, 2022) or from collecting train-
ing examples for learning algorithms (Durakovic, 2017), it
is crucial to have a set of items as diverse as possible to ei-
ther efficiently represents the diversity of the data or to have

1DS&AI, BioPharmaceuticals R&D, AstraZeneca, UK 2LTCI,
Télécom Paris 3University College London 4Huawei Noah’s Ark
Lab. Correspondence to: <cedric.malherbe@astrazeneca.com,
haitham.bou-ammar@huawei.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

a rich training set that captures all the information spread out
across the space of possibilities (Pronzato & Müller, 2012).
When facing such problems, one can generally employ two
routes by either randomly subsampling the space or by us-
ing space-filling methods (Mead, 1990; Pronzato, 2008;
Joseph, 2016) such as quasi-Monte Carlo methods (Johnson
et al., 1990; Niederreiter, 1992; Sobol, 1967; Faure, 1982).
Nonetheless, it has long been known that random sampling
provides suboptimal results for these tasks (Mead, 1990)
and space-filling methods, on the other hand, rely on the
strong assumption that the data live in a continuous space.
Moreover, in many application domains, we often encounter
categorical data such as hyperparameters in deep architec-
ture crafting, words in natural language, atoms in molecules
or job categories in demographic data that do not satisfy the
continuous assumption and thus create a gap between exist-
ing techniques and practical settings. Additionally, although
the diversity problem is rather fundamental, almost nothing
is known from a theoretical perspective as soon as the conti-
nuity assumption does not hold. In this paper, we propose
to address both these issues by providing new theoretical
insights and novel subset selection methods that are guar-
anteed to preserve diversity for categorical data. The main
difficulty of designing such methods stems from the fact
that, in categorical spaces, one can only rely on the minimal
information that two items are different from one another
without any possible ordering, which drastically limits the
possibility to adapt existing techniques that rely on ordering
the data space. In this paper, we propose to tackle these
challenges and show how to employ tools from both the
combinatorial and greedy optimization literature to develop
methods to generate diverse designs. More precisely, our
contribution can be summarized as follows:

1. we formulate the problem of optimal categorical de-
signs by using three notions of diversity in categorical
spaces: the average covering, packing, and covering
radii (Section 2);

2. we provide theoretical results for the construction of
optimal categorical designs concerning diversity met-
rics (Proposition 3.1, 3.2 and 3.3) and novel exact
formulation of the problems using linear programming
(Proposition 3.4), which allows to generate exact de-
signs for small spaces due to their computational cost;

1

Measures of diversity and space-filling designs for categorical data

3. to overcome the computational bottleneck, we propose
two novel approximation algorithms based on greedy
schemes (GRIPPR and GAC, Section 4) to create de-
signs that are less computationally intensive than exact
solvers but still present approximation guarantees with
regard to the diversity metrics (Theorems 4.3 and 4.7);

4. we provide numerical evidence showing that the meth-
ods introduced outperform standard baselines for vari-
ous downstream tasks such as diversity sampling, pa-
rameter tuning and active learning (Section 5).

Related continuous works. Due to the generic nature of
the problem and the capacity of these methods to outper-
form random selection in a wide variety of tasks (Fang et al.,
2005; Santner et al., 2003), there is an abundant literature
dedicated to the construction of diverse designs for continu-
ous data (see, e.g., (Pronzato & Müller, 2012; Joseph, 2016)
for specific reviews on the topic). Perhaps, the most famous
methods include Latin Hypercube Sampling (McKay et al.,
2000), Halton (Halton & Smith, 1964), Hammersley (Ham-
mersley, 1960), Sobol (Sobol, 1967), Faure (Faure, 1982),
Korobov and Neiderreiter (Niederreiter, 1992) sequences,
minimax and maxmin designs (Johnson et al., 1990). How-
ever, most of these methods rely on specific constructions
that either divide each continuous unit of the hypercube
along each dimension (Kenny et al., 2000) or involve con-
tinuous sequences (Chi et al., 2005) which makes them
impracticable for non-continuous data, and it is not clear
whether discretizing those designs preserve their guaran-
tees. Nonetheless, among these approaches, the closest
works related to ours is the series of work of (Pronzato,
2017; Gómez et al., 2021) where they propose methods to
construct designs that are optimal with regard to various
statistical measures similar to the one considered in the pa-
per. For instance, they show that they can construct optimal
designs using Delaunay triangulation (Pronzato & Müller,
2012) or Voronoı̈ tessellation which restricts their use to con-
tinuous spaces. Our contribution follows this line of works
by showing that one can still construct optimal designs for
data that are non-continuous by using adequate tools from
both the linear programming and submodular optimization
literatures. As a byproduct, we also show that their con-
struction methods differ and the associated performance
guarantees are discrete by nature. Finally, note also that
some other approaches focus on information maximization
using Kullback-Leibler (Jourdan & Franco, 2009), Entropy
(Jones & Johnson, 2009) or Chaining (Contal et al., 2015)
and create designs for an underlying system f over which
we have a prior knowledge (linear, quadratic, gaussian pro-
cess). Here, we follow the line of optimal designs where
we do not have specific underlying systems but focus on
diversity criteria, hence a different goal (covering a space
instead of maximizing the knowledge of a system).

Related discrete works. On top of the continuous methods
presented above, there is also a body of combinatorial liter-
ature related to our work. First, the metric k-center problem
(Hochbaum & Shmoys, 1985; Lim et al., 2005), which is a
theoretical combinatorial optimization problem, consists of
finding a subset of k nodes in a graph for which the largest
distance of a node in the graph to the subset is minimal.
It has been known to be an NP-hard problem (Hochbaum,
1984) and that iteratively constructing the set of k nodes by
adding the node the farthest away from the current centers
(which is proved to be NP-hard in (Lanctot et al., 2003))
provides an approximation algorithm (Gonzalez, 1985). In
particular, the GIPPR algorithm we propose builds upon this
scheme by proposing an exact method for categorical data
that relies on linear programming. Moreover, it is worth
mentioning that determinantal point processes (DPPs) that
were originally proposed to model repulsions of particle
distributions in physics (Macchi, 1975) also propose prob-
abilistic models that can be used to select a small diverse
subset out of a large collection of categorical items (see, e.g.,
k-DPP in Section 5 of (Kulesza et al., 2012)). With regards
to this literature, our approach is orthogonal in the sense that
we approach this problem from an optimality perspective
and provide results for novel criteria while DPPs provide
probabilistic models. Finally, it is also worth mentioning
that greedy optimization schemes similar to the one we use
in the GAC algorithm have been used in a wide variety of
similar tasks such as diversity in the news feed and doc-
ument summarization (Malherbe & Scaman, 2022; Lin &
Bilmes, 2011).

2. Categorical designs: problem statement and
diversity measures

2.1. Problem statement and notations

Setup. In this paper, we focus on the problem of construct-
ing space-filling designs for data described by a collection
of categorical variables. More precisely, we consider the
problem of constructing designs in the boolean hypercube,
denoted here by X = {0, 1}d for any dimension d ≥ 2.
Given a set of size n ≥ 1 as input, we aim at constructing a
subset Dn = (x1, . . . , xn) of n points in X , called a design,
that preserves the diversity of the space X suitably. Since
the notion of diversity does not admit a unique definition, we
will focus on designs solutions to the following problems:

find D∗
n := (x1, . . . xn) ∈ Xn

such that ℓ(D∗
n) = minDn∈Xn ℓ(Dn)

(1)

where ℓ : Xn → R is a fixed measure of the diversity of a de-
sign Dn. To be more precise, we focus on creating designs
optimizing three different diversity measures which are fur-
ther defined below: the covering radius, the packing radius,
and the average covering (i.e., ℓ ∈ {CR(·),−PR(·),AC(·)}).

2

Measures of diversity and space-filling designs for categorical data

Packing Radius Covering Radius Average Covering
E

xi
st

in
g

M
et

ho
ds

PR

CR

T
hi

s
Pa

pe
r [0,0,0,0,0,0,0,0]

[0,0,1,1,1,1,1,1]
[1,0,0,1,0,1,0,1]
[1,1,1,1,1,0,0,1]
[1,1,1,1,0,1,1,0]

[0,1,1,1,0,0,1,0]
[1,1,0,0,1,0,0,1]
[0,0,1,0,1,0,0,0]
[1,1,0,0,0,0,1,1]
[0,1,0,1,0,1,0,1]

[0,1,1,1,0,0,1,0]
[1,1,0,0,1,0,0,1]
[0,0,1,0,1,0,0,0]
[1,1,0,0,0,0,1,1]
[0,1,0,1,0,1,0,1]

Figure 1. Top: Designs of n = 7 points that respectively optimize
the Packing Radius, Covering Radius, and Average Covering in
the continuous space X = [0, 1]2. The PR and CR radii are plotted
in grey as well as the level sets of the function x 7→ d(x,Dn).
Bottom: Designs of n = 5 points provided in this paper which
optimize the same diversity metrics when X8 = {0, 1}8 is a
categorical space.

As an example, three designs satisfying these optimality
conditions are displayed in Figure 1. Lastly, we point out
that the methods presented in the paper can also be extended
to non-binary variables (see Appendix D).

Notations. In the remainder of the paper, we denote by I{·}
the standard indicator function taking values in {0, 1}. For
any x = (x1, . . . , xd) ∈ X and x′ = (x′

1, . . . , x
′
d) ∈ X , we

denote the vectorized XOR operator as follows x ⊕ x′ =
(x1 ⊕ x′

1, . . . , xd ⊕ x′
d) where xi ⊕ x′

i = I{xi ̸= x′
i} for

all i ∈ {1, . . . , d}. With a slight abuse of notation, we
denote by ∥x∥1 =

∑d
i=1 xi the standard ℓ1-norm. For any

finite set V , its number of elements is denoted by |V |, and
its power set by 2V . For any set function F : 2V → R,
we denote by argmaxx∈A F (x) = {x ∈ 2V : F (x) ≥
F (x′) ∀x′ ∈ 2V \x} the set of points for which the function
is maximal. A set function F : 2V → R is said to be
submodular if for every A ⊆ B ⊆ V and e ∈ V/B it holds
that F (A∪{e})−F (A) ≥ F (B∪{e})−F (B). Conversely,
F is said to be supermodular if −F is submodular. We
denote by X ∼ U(V) the standard uniform distribution over
the set V (i.e. P(X = e) = 1/|V | for all e ∈ V). For any
random variable X , we denote by E[X] its expectation. The
Hamming ball of radius r ≥ 0 around any point x ∈ X is
denoted by BH(x, r) = {x′ ∈ X : dH(x, x′) ≤ r} where
dH(·, ·) denotes the Hamming distance defined below. We
denote by ⌊·⌋ and ⌈·⌉ the root and floor functions. Finally,
the distance of a point x ∈ X to any subset V ⊆ X is
defined by d(x, V) = mine∈V dH(x, e).

2.2. Diversity measures

To specify the three notions of diversity considered in the
paper, we start with the following notion of distance that
naturally fits categorical spaces.

Definition 2.1. (Hamming Distance). The Hamming dis-
tance between two points x = (x1, . . . , xd) ∈ X and
x′ = (x′

1, . . . , x
′
d) ∈ X is defined as the number of co-

ordinates in which x and x′ differ. Formally, it is defined as
follows: dH(x, x′) =

∑d
i=1 I{xi ̸= x′

i}.

It is well known that the Hamming distance is positive define
and satisfies the triangular inequality. It plays the role of
natural distance on categorical spaces since here we can
only compare if two items are different. Equipped with this
distance, we can now introduce the notions of diversity.
Definition 2.2. (Packing Radius). Let Dn =
(x1, . . . , xn) ∈ Xn be any design of n ≥ 2 points of the
categorical space. Then, we define the packing radius of the
design Dn as follows:

PR(Dn) := min
xi ̸=xj∈Dn

dH(xi, xj)

2
.

Having a packing radius as large as possible ensures that the
points of the design are as different as possible. It is thus a
desirable characteristic. For instance, it can be motivated by
setting up a series of n elements as diverse as possible so
that it minimizes the chance to take one element for another
one. Designs maximizing this criterion are also sometimes
called maximin designs (Johnson et al., 1990).
Definition 2.3. (Covering Radius). Let Dn =
(x1, . . . , xn) be any design of n ≥ 1 points of the cate-
gorical space. Then, we define the covering radius of the
design Dn over X as follows:

CR(Dn) := max
x∈X

dH(x,Dn) = max
x∈X

min
i=1...n

dH(x, xi).

This criterion computes the distance of the point of the
domain which is the farthest away from the design. Con-
sequently, having a small covering radius ensures that any
point of the full space has a similar point in the design.
Hence, having a CR as small as possible is desirable. It is
sometimes called dispersion in the theory of quasi-Monte
Carlo methods (Niederreiter, 1992) or minimax-distance
(Johnson et al., 1990).
Definition 2.4. (Average Covering). The average covering
of a design Dn = (x1, . . . , xn) of n ≥ 1 points of the
boolean hypercube is defined as follows:

AC(Dn) := E [dH(X,Dn)] = E
[
min

i=1...n
dH(X,xi)

]
.

where X ∼ U(X) is uniformly distributed over the space.

This criterion is perhaps the most intuitive and computes
the average distance of a point taken at random in the space.
Having an average covering as small as possible ensures
that, on average, all the points of the space are effectively
represented by the design. Our goal in this paper is to create
categorical designs that are optimal according to the above
criteria.

3

Measures of diversity and space-filling designs for categorical data

3. Optimal categorical designs: some
properties and exact construction

In this section, we present the main theoretical properties
of optimal designs solving (1) and present two simple and
exact methods to construct such designs.

3.1. Properties of optimal designs

We present here three important results that explain the
generic behavior of optimal designs. We point out that
additional results as well as the proofs of the results can be
found in Appendix B. To our knowledge, these results are
new to the literature.

Proposition 3.1. Consider any diversity measure ℓ ∈
{CR(·),PR(·),AC(·)} and let D∗

n be an optimal design of
any size n ≥ 2 solving (1) with regards to the diversity
metric. Then, the function n 7→ ℓ(D∗

n) is non-increasing.

Informally, this result states that any of the optimal diversity
metrics can only decrease or stagnate the more points n are
added to the design. Of course, it is also important to note
that to have a perfect covering (e.g., ℓ(Dn) = 0 for CR),
we necessarily have to include all the points of the space
(i.e., n = 2d). Thus, to have a finer understating of the
decreasing rates of the diversity metrics towards 0 we can
expect with regard to the size of the design n, we cast the
next result.

Proposition 3.2. (Bounds on optimal diversity metrics).
Consider any diversity measure ℓ ∈ {CR(·),PR(·)}, let D∗

n

be any optimal design of any size n ≥ 4 solving (1) with
regards to the diversity metric and consider for simplicity
that d is odd. Then, the following inequalities hold:⌊d

2

⌋
− ⌈ln2(n)⌉ ≤ ℓ(D∗

n) ≤
⌊d
2

⌋
− ln2(n− 1)

2
.

Hence, we deduce for instance that the decreasing rate
of the optimal covering radius is of order CR(D∗

n) =
⌊d/2⌋ − Θ(ln2(n)). As a consequence, since we have a
logarithmic decreasing rate in terms of the size n, this re-
sult highlights the fact that the marginal impact of adding
a novel point to the design will decrease as the size n
grows. The curves displayed in Figure 2 in Section 5 high-
light this phenomenon in practice. Additionally, it is also
interesting to compare this result to the case of continu-
ous designs (Gómez et al., 2021) where it is known that
CR(D∗

n) = Θ(n−1/d) when X = [0, 1]d. Here, the dimen-
sion d impacts the initial value ⌊d/2⌋ in categorical spaces
and not the decreasing rate as opposed to continuous spaces
where it directly impacts the rate of decay. Note also that a
similar upper bound for the average covering can be found
in B. The next result states that optimal designs are invariant
under permutation of the index and stable by addition of any
point.

Proposition 3.3. (Invariance of design measures). Con-
sider any diversity measure ℓ ∈ {CR(·),PR(·),AC(·)} and
let D∗

n be any optimal design solving (1). Then, for any per-
mutation π : {1, . . . , d} → {1, . . . , d} of the dimensions of
the design and any point z ∈ X , we have that: ℓ(π(D∗

n)⊕
z) = ℓ(D∗

n) where π(D∗
n) = (π(x1), . . . , π(xn)) with

π(xi) = (x
π(1)
i , . . . , x

π(d)
i).

Thus, we deduce that categorical designs are—as opposed
to continuous designs—also invariant by addition. More-
over, since taking any permutation and adding a point to an
optimal design also provides an optimal design, we deduce
that there is a non-unicity of optimal designs which limits
the opportunity to find a closed form. On the other hand,
this result states that once we find a suitable design Dn, one
can easily create other designs with the same properties by
simply applying permutations (as we use to generate designs
in practical settings in Section 5).

3.2. Exact computation of optimal designs

Exhaustive-search. Perhaps, the most straightforward way
to create an optimal design with regard to a given measure
is to perform an exhaustive search over all possible designs
of the desired size. More formally, given a size n ≥ 1
and a metric ℓ, an exhaustive search can be described as
follows: (1) compute ℓ(Dn) for any design Dn ∈ Xn of
size n; (2) return D∗

n ∈ argmaxDn∈Xn ℓ(Dn). By enu-
merating all possible solutions, we will of course identify
an optimal design. However, the main drawback of this
method is its numerical complexity. Indeed, since there are(|X |

n

)
possible designs and the complexity of computing a

diversity metric is at least of order n2d (see Appendix A),
the overall complexity of an exhaustive search is at least
of order Ω(

(|X |
n

)
n2d), which makes it almost impracticable

even for small designs. The main computational bottleneck
stems from the combinatorial factor

(|X |
n

)
. We show how to

improve it below.

Linear programming. Interestingly, one possible way to
improve the numerical complexity of identifying an optimal
design in practice is to notice that those problems can be
put in standard linear forms. Indeed, since optimal designs
can be formulated as a maximization problem as in (1), one
can employ tools from linear programming to speed up the
computation. More precisely, the next result shows that one
can find an optimal design by solving a linear program.

Proposition 3.4. (LP-exact solvers). Consider any diver-
sity measure ℓ ∈ {CR(·),PR(·),AC(·)} and any design size
n ≥ 2. Then, identifying an optimal design D∗

n solving (1)
can be done by solving a standard integer program of the
form:

maximize cT x
subject to Ax ≤ b

4

Measures of diversity and space-filling designs for categorical data

where x ∈ Znv , c ∈ Rnv , A ∈ Rnc×nv and b ∈ Rnc are
fully detailed in Appendix B due to their size and with a
number of constraints nc and variables nv of order O(dn2)
for the packing radius and O(n|X |) for the covering radius
and average covering.

In practice, it is thus possible to employ standard integer
linear programming solvers (Cplex, 2009; Achterberg, 2009)
which rely on relaxing the integrity constraints to drastically
prune the search space and speed up the computations. Of
course, using a linear programming formulation does not
improve the theoretical complexity in a worst-case scenario.
However, in practice, it only allows to find optimal designs
of small sizes (i.e. n < 6 as shown in Appendix D). To
the best of our knowledge, we are not aware of any other
algorithms that can create exact optimal designs with a
better ptractical complexity. In the next section, we will
provide two approximate algorithms that have a much lower
computational cost and allow to create designs for larger
sizes.

4. Approximate algorithms for the
construction of categorical designs

In this section, we introduce two algorithms (GIPPR and
GAC) which allow to construct categorical designs that still
present approximation guarantees with regard to optimal
design solving (1) while drastically reducing the computa-
tional cost of exact solvers.

4.1. The GIPPR algorithm with approximation
guarantees for packing and covering radii

Algorithm statement. The GIPPR algorithm (Algorithm
1) creates a design Dn over the combinatorial input space
by iteratively adding points xt+1 ∈ X to the design Dt at
any time step t ≥ 1 (lines 6 & 7). It only takes as input the
dimensionality d of the space and the size n of the desired
design. It starts with a design D1 filled by a random point
(line 1). Then, at each iteration t ≥ 1, it solves an integer
program where the values of the constraints depend on the
points Dt gathered so far. To have a better understanding of
GIPPR, the next proposition sheds some light on the linear
program.
Proposition 4.1. Let Dt = (x1, . . . , xt) be the set of points
generated by GIPPR at time t ≥ 1 with xi = (x1

i , . . . , x
d
i)

for all i ∈ {1, . . . , t}. Then, we have the following equiva-
lence:

argmax[1,d]
Ax≤b

cT x = argmax
x∈X

d(x,Dt)

where x ∈ {0, 1}d × {0, . . . , d}, c = (0, . . . , 0, 1) ∈ Rd+1,
b = (∥x1∥1, . . . , ∥xt∥1) ∈ Rt×1 and A ∈ Rt×(d+1) with
ai,j = (2xj

i − 1) for all (i, j) ∈ {1, . . . , t} × {1, . . . , d}
else 1.

Algorithm 1 Greedy Integer Programming Packing Radius
(GIPPR)
Require: Dimensionality d ≥ 1 of the categorical space,

size n ≥ 2 of the design
1: Set randomly the first design point D1 ← {x1} where

x1 ∼ U(X)
2: Set c = (0, 0, . . . , 0, 1) ∈ Rd+1

3: for t = 1, ..., n− 1 do
4: Set b = (∥x1∥1, . . . , ∥xt∥1) ∈ Rt and A ∈ Rt×d+1

as described in Proposition 4.1
5: Solve the following integer program with x ∈

{0, 1}d × {0, . . . , d} and store any of the results:

(x∗1, . . . , x
∗
d+1) ∈ argmax

Ax≤b
cT x

6: Set the novel design point: xt+1 ← (x∗1, . . . , x
∗
d)

7: Add the point to the design: Dt+1 ← Dt ∪ {xt+1}
8: end for
9: Return the design Dn

Thus, since the above equality is a set equality, we
deduce that GIPPR selects in fact any point xt+1 ∈
argmaxx∈X d(x,Dt) which the farthest away from the
current design Dt in lines 5 & 6. It is noteworthy that this
generic mechanism of selecting the furthest away point can
alternatively be found under the name coffee-house design
in the continuous and graph domains (Müller, 2001; 2007).
Here, the key differences are the following: (1) while there
is not an exact way to solve the furthest away problem in
the continuous domain, here we can solve it exactly using
linear programming tools and (2) we do not rely on any
discretization of the space here and only requires solving an
integer program with d+ 1 variables and n constraints.

Theoretical analysis. Since GIPPR sequentially adds the
points which are the furthest away from the collected points,
it is not obvious how it relates to the optimization of the
diversity metrics of Section 2. However, the next result
shows that the algorithm implements a greedy scheme with
regard to the packing radius. To our knowledge, it is the
first time these results are stated in the literature.

Lemma 4.2. (Greediness of GIPPR). Let Dt =
(x1, . . . , xt) be the sequence of points generated by GIPPR
at any time t ≥ 1 and let xt+1 denotes the next point
of the design defined in line 6. Then, we have the fol-
lowing property: xt+1 ∈ argmaxx∈X dH(x,Dt) =
argmaxx∈X PR(Dt ∪ {x}).

Thus, we deduce that by solving the integer program of
Proposition 4.1, GIPPR selects at each time step a point
xt+1 ∈ argmaxx∈X PR(Dt ∪ {x}) maximizing the pack-
ing radius. The generic strategies of taking the locally op-
timal choice at each stage are often referred to as greedy

5

Measures of diversity and space-filling designs for categorical data

or myopic in the literature (Bednorz & Sciyo.com, 2008;
Wilson et al., 2018), hence the name GIPPR. From this per-
spective, it could be tempting to exploit results from the
submodular optimization literature (Nemhauser et al., 1978)
to explain the convergence of GIPPR. Unfortunately, the
PR does not satisfy the submodular property (see Appendix
C.1). Nonetheless, it is still possible to show that GIPPR
still achieves an approximation guarantee with regard to
optimal diversity metrics by using the covering arguments
of (Gonzalez, 1985), as shown below.

Theorem 4.3. (Approximation guarantees). Let Dn =
(x1, . . . , xn) denotes the design provided by GIPPR (Algo-
rithm 2) over the categorical space X and denote by PR∗

n

and CR∗
n the values of the optimal packing and covering

radii of any size n ≥ 2. Then, we have the following guar-
antees:

CR∗
n ≤ CR(Dn) ≤ 2 · CR∗

n

and
1

2
· PR∗

n ≤ PR(Dn) ≤ PR∗
n.

Thus, the design provided by GIPPR will be at least half
as good in terms of packing radius as the optimal design
solving (1). More surprisingly, it also shows that the greedy
policy on the packing radius, also presents similar guaran-
tees for the covering radius. Here, it is important to note
that we have a trade-off between accuracy and numerical
complexity when compared to the exact solvers of Sec-
tion 3. Indeed, at the price of slightly worst theoretical
guarantees (ratio 1/2), we have an algorithm that allows
to create designs for larger sizes n thanks to a drastically
better numerical complexity (see Appendix D for numerical
examples).
Remark 4.4. (Numerical complexity). At each iteration,
we solve one linear program with d + 1 variables and n
constraints. Thus, the total complexity of the algorithm
is of order O(n × LP (d + 1, n)) while the complexity
of the exact solver using linear programming is of order
O(LP (dn2, dn2)). To have a better grasp on the numeri-
cal improvement, when solving line 5 with a brute-force
solution (Appendix A), the complexity of GIPPR is of order
O(|X |n2d) while the complexity of exact solvers of Section
3 is of order of O(

(|X |
n

)
n2d).

Remark 4.5. (Non-binary variables). We point out that
GIPPR can be extended to the case of non-binary input
spaces X = {0, . . . , n1} × · · · × {0, . . . , nd} by simply
encoding each non-binary variables with several binary vari-
ables, as detailed in Appendix D.2.

4.2. The GAC algorithm with approximation guarantees
for the average covering

Algorithm statement. Similarly to the previous algorithm,
GAC (Algorithm 2) creates a design Dn over the categor-

Algorithm 2 Greedy Average Covering (GAC)
Require: Dimensionality d ≥ 1 of the categorical space,

number n ≥ 2 of design points
1: Set the first design point at random D1 ← {x1} where

x1 ∼ U(X)
2: for t = 1, ..., n− 1 do
3: Get any point that greedily minimizes the average

covering:

xt+1 ∈ argmin
x∈X

EX∼U(X)[dH(X,Dt ∪ {x})]

4: Add the point to the design: Dt+1 ← Dt ∪ {xt+1}
5: end for
6: Return the design Dn

ical space X by iteratively adding a point xt+1 to the pre-
viously constructed design Dt at each time step (line 4).
It implements a greedy optimization scheme (Nemhauser
et al., 1978) over the average covering. It only takes as in-
put the dimensionality d of the input space and the size
of the desired design n. The mechanism behind GAC
is simple. At each iteration, it adds any point xt+1 ∈
argminx∈X EX [dH(X,Du∪{x})] = AC(Dt∪{x}) greed-
ily maximizing the average covering. In this sense, it is sim-
ilar to GIPPR, but here we greedily maximize the average
covering.

Theoretical analysis. To investigate the properties of GAC,
we first cast a generic result that highlights an important
property of the average covering measure. To the best of
our knowledge, these results are new to the literature.

Proposition 4.6. (Average covering is supermodular).
Consider the set function D 7→ AC(D) where D is any non-
empty design of X . Then, the function is non-increasing and
supermodular:

|AC(Dt+i∪{x})−AC(Dt+i)| ≤ |AC(Dt∪{x})−AC(Dt)|

for all x ∈ X , Dt ⊆ Dt+i ∈ X t+i, i, t ≥ 0.

Hence, the average covering satisfies the diminishing return
property in the sense that the marginal gain |AC(Dt∪{x})−
AC(Dt)| of adding an element x ∈ X will decrease as the
design Dt gets larger. In other words, the more we add
points to the current design, the more marginal will be the
improvements. A crucial consequence of this proposition is
that we can directly invoke arguments from the submodular
optimization literature (Nemhauser et al., 1978) to obtain
the following convergence result.

Theorem 4.7. (Approximation guarantees). Let Dn =
(x1, . . . , xn) ∈ Xn denotes a design of size n ≥ 1 returned
by GAC and denote by AC∗

n = minDn∈Xn AC(Dn) the
best average covering that can be achieved and AC∗

1 =
AC(D1) = d/2. Then, we have the following approximation

6

Measures of diversity and space-filling designs for categorical data

guarantee:

AC∗
1 − AC∗

n

2
≤ AC∗

1 − AC(Dn) ≤ AC∗
1 − AC∗

n.

Thus, the spread between the initial covering with one point
and the covering provided by GAC is at least half as good
as the optimal one. Similarly to GIPPR, the main message
here is that we observe a trade-off between accuracy and
numerical complexity with regard to exact solvers. We can
now create designs with larger values of n thanks to the gain
on the numerical complexity described below.

Remark 4.8. (Numerical complexity). At each time
step, we simply need to identify a point xt+1 ∈
argminx∈X AC(Dt ∪ {x}). By using a naive imple-
mentation provided in Appendix C using AC(Dn) =
(1/|X |)

∑
x∈X d(x,Dn), the complexity of the algorithm is

at most of order O(n|X |2), which has to be compared with
the complexity of order O(

(|X |
n

)
nd2d) of the exact solver.

Again, with a lower computational cost, one can achieve an
approximation of the true result.

Remark 4.9. (Practical implementation). Since the practi-
cal optimization of submodular functions is a dense subject
of research by itself, we point out that there are several
ways to provide more efficient implementations of GAC
depending on the available computational hardware if nec-
essary. In particular, due to 1) the expectation in the av-
erage covering, it is possible to use a faster stochastic ap-
proximations (Proposition A.2), 2) the incremental nature
of the function, it is possible to use the iterative update
dH(x,Dt+1) = min(dH(x, xt+1), dH(x,Dt)) to drasti-
cally reduce the computation as shown in (Gómez et al.,
2021) and 3) the submodularity of the average covering
allows to use both lazy (Minoux, 2005) and stochastic eval-
uations (Mirzasoleiman et al., 2015). Details regarding
efficient implementations can be found in Section D.5.

5. Numerical experiments
In this section, we empirically demonstrate the advantages
of GIPPR and GAC compared to the baselines 1) random
designs, 2) discretized continuous design (d-Halton (Halton
& Smith, 1964)) and 3) k-DPP designs (Kulesza et al., 2012).
The full details of the experiments as well as additional
results for non-binary spaces can be found in Appendix D
as well as the runing times of all the algorithms.

Diversity measures. Finally, in many applications such as
selecting a subset of items from a catalog or news feed (Mal-
herbe & Scaman, 2022), the end goal is to build a subset as
diverse as possible. Thus, to measure the overall capacity of
the methods to provide diverse subsets, we directly recorded
the values of the diversity metrics PR,CR and AC for differ-
ent sizes n in Figure 2. Again, Random designs are always
outperformed by any other design. More importantly, al-
though GAC and GIPPR are approximate methods, they still
respectively consistently outperform other methods over the
PR and ACmeasures. For PR, either GAC or GIPPR achieve
the best results, making them the overall best methods for
diversity metrics. Finally, is also interesting to note that
for most methods we indeed observe a logarithmic decay
over the measures as suggested by the theoretical results
of Section 3. Lastly, we can see that GIPPR (resp. GAC)
almost provides empirically better results for PR (resp. AC).
However, since they are approximate solvers (and it is gen-
erally hard to predict which method will give the best results
on a downstream task) we generally advice that you should
go with GAC if you want to have a good ”average” and if
you want to have a better ”worst-case” you should go to
GIPR.

Numerical integration. Next, similarly to continuous de-
signs that outperform random methods for numerical in-
tegration (Morokoff & Caflisch, 1995), we investigated
the capacity of our designs to perform integration in dis-
crete spaces. We computed the empirical mean F̂n(Dn) =∑

x∈Dn
f(x)/n using the diverse subsets Dn over two func-

tions f commonly encountered in the combinatorial litera-

10 20 30 40 50
Size n of the design Dn

0

-1

-2

-3- P
ac

ki
ng

 R
ad

iu
s

Random
d-Halton
k-DPP
GAC
GIPPR

10 20 30 40 50
Size n of the design Dn

1

2

3

4

5

6

Co
ve

rin
g

Ra
di

us

Random
d-Halton
k-DPP
GAC
GIPPR

10 20 30 40 50
Size n of the design Dn

1

2

3

Av
er

ag
e

Co
ve

rin
g

Random
d-Halton
k-DPP
GAC
GIPPR

10 20 30 40 50
Size n of the design Dn

-5

-4

-3

-2

-1

0

- P
ac

ki
ng

 R
ad

iu
s

Random
d-Halton
k-DPP
GAC
GIPPR

10 20 30 40 50
Size n of the design Dn

2

4

6

8

Co
ve

rin
g

Ra
di

us

Random
d-Halton
k-DPP
GAC
GIPPR

10 20 30 40 50
Size n of the design Dn

2

3

4

Av
er

ag
e

Co
ve

rin
g

Random
d-Halton
k-DPP
GAC
GIPPR

Figure 2. The graph displays the
evolution of the diversity mea-
sures PR(Dn), CR(Dn) and
AC(Dn) for different design
sizes n ∈ {2, . . . , 50}. The bold
line represents the average value
and, when available, the trans-
parent area represents the stan-
dard deviation computed over
100 runs. The top line consid-
ers the case when d = 7 and the
bottom line considers the case
when d = 8. For each of the
plots, lower is better.

7

Measures of diversity and space-filling designs for categorical data
O

ne
M

ax

0 10 20 30 40 50
size n of the design

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 Approxim
ation error

Random

0 10 20 30 40 50
size n of the design

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 Approxim
ation error

d-Halton

0 10 20 30 40 50
size n of the design

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 Approxim
ation error

k-DPP

0 10 20 30 40 50
size n of the design

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 Approxim
ation error

GIPPR

0 10 20 30 40 50
size n of the design

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 Approxim
ation error

GAC

H
ar

m
on

ic

0 10 20 30 40 50
size n of the design

60

40

20

0

20

40

60

Approxim
ation error

Random

0 10 20 30 40 50
size n of the design

60

40

20

0

20

40

60

Approxim
ation error

d-Halton

0 10 20 30 40 50
size n of the design

60

40

20

0

20

40

60

Approxim
ation error

k-DPP

0 10 20 30 40 50
size n of the design

60

40

20

0

20

40

60

Approxim
ation error

GIPPR

0 10 20 30 40 50
size n of the design

60

40

20

0

20

40

60

Approxim
ation error

GAC

Figure 3. The graphs display the average approximation error F̂n(Dn) − EX∼U(X)[f(X)] in bold for various design sizes n ∈
{1, . . . , 50}, and the transparent colors represent the 90% and 10% quantile of the error computed over 100 runs with d = 10 for OneMax
(Top) and Harmonic (Bottom).

ture (Doerr et al., 2019): OneMax f(x) =
∑d

i=1 I{xi = 1}
which equally captures the impact of each dimension and
the weighted Harmonic f(x) =

∑d
i=1 i

2I{xi = 1}. The
difference between the approximate F̂n(Dn) and the ground
truth mean

∑
x∈X f(x)/n are averaged and collected in Fig-

ure 3 over 100 runs. First, note that all the methods evenly
cover the space in the sense that they are unbiased and cen-
tered around the true average for both functions. Second,
observe that discretizing a continuous design (d-Halton),
which reduces the variance in continuous spaces, can in fact
generate estimates with larger tails than random designs for
categories. Last, note that the variance of the estimates we
propose is much lower than random methods for which it
can be up to five times smaller. Thus, similarly to the con-
tinuous case, optimal designs also provide better estimates
than random methods in the discrete case.

Data collection. First, we evaluated the capacity of the
methods to build and collect efficient datasets for any re-
gression problem. We considered the generic problem of
selecting a set of n samples Dn = (x1, . . . , xn) ∈ Xn

in order to collect a (costly) training set of labelled data
((x1, f(x1)), . . . , (xn, f(xn))) to then build an approxima-
tion of any function f : X → R described over categories.
We used three real-world systems f taken from the cate-
gorical benchmark of (Doerr et al., 2019): (1) LAB from
telecommunication which measures the autocorrelation of a
sequence of bits (2) MIS from combinatorics which consists
of estimating the size of the largest independent set in a
graph and (3) Ising Model from physics which measures
the configuration’s energy of the Ising spin glass model
with d spins directing up or down. All the details can be
found in Appendix D. For each design Dn, we labeled the
corresponding dataset with a budget of n = 20 data and
d = 10 parameters. Then, we learned a gaussian process
model f̂θn by maximizing the marginal log-likelihood over
the labeled data and evaluated its generalization capacities
by computing its mean square error (MS) and log-likelihood
(LL) over the whole space X in Figure 4. First, observe

that Random (baseline) designs are always outperformed
by any other design. More importantly, GAC and GIPPR
respectively consistently outperform other methods such as
DPP and discretized continuous designs, making them the
overall best methods for data collection and we deduce that
when facing such problems it is better to use approximates
of optimal designs than random methods.

Random d-Halton k-DPP GRIPPR GAC
Ising-MS 6.33 (±0.9) 6.14 (±0.9) 6.34 (±0.8) 6.13 (±0.8) 5.77 (±0.7)
Ising-LL 3.88 (±0.9) 3.53 (±0.8) 3.75 (±0.7) 3.48 (±0.6) 3.42 (±0.6)
MIS-MS 63.4 (±12) 65.4 (±11) 65.0 (±13) 58.5 (±13) 47.2 (±7.8)
MIS-LL 295 (±98) 336 (±105) 314 (±121) 235 (±111) 163 (±56)
LAB-MS 3.63 (±0.3) 3.58 (±0.3) 3.60 (±0.3) 3.47 (±0.3) 3.58 (±0.2)
LAB-LL 1.12 (±0.3) 1.09 (±0.2) 1.10 (±0.3) 1.03 (±0.2) 1.08 (±0.2)

Figure 4. Results of the data collection experiments (± std). Best
results are highlighted in bold. Lower is better.

Hyperparameter tuning. Then, we investigated whether
evaluating diverse subsets can improve upon the standard
random searches to select hyperparameters. To do so, we
considered the problem of tuning (1) the architecture of a
classification graph neural network over the standard Cora
(Cora) and CiteSeer (Cite) datasets (Sen et al., 2008) in-
volving nine discrete decisions such as the choice of activa-
tion function, presence/absence of skip-connections and
presence/absence of drop-out at each layer and (2) the
seven catgeorical hyperparameters of the SCIP linear solver
(Achterberg, 2009) taken from the NeurIPS 2011 compe-
tition (Gasse et al., 2022) such as separating/maxcuts and
branching/scorefac over the item placement (Item) and load
balancing tasks (Load). All the details are provided in Ap-
pendix D. For each problem, we evaluated n = 20 different
sets of parameters provided by each design and kept the
best configuration. The average improvements (%) over the
default configuration are collected in Figure 5. Again, sim-
ilarly to the above experiment, we observe that the design
we propose perform better than other methods on this task.

6. Discussion and Conclusion
In this paper, we introduced two novel methods to cre-
ate experimental designs for discrete variables that rely on

8

Measures of diversity and space-filling designs for categorical data

Random d-Halton k-DPP GRIPPR GAC
Cora 75.5 (±2.9) 74.9 (±4.2) 76.1 (±4.1) 77.2 (±3.3) 78.2 (±4.2)
Cite 82.0 (±6.2) 80.7 (±5.7) 83.0 (±4.9) 83.2 (±2.5) 84.0 (±4.2)
Item 23.4 (±2.3) 37.4 (±1.9) 26.3 (±8.3) 40.3 (±4.8) 41.7 (±0.5)
Load 22.0 (±2.7) 18.0 (±2.1) 17.2 (±15) 25.0 (±4.6) 19.6 (±2.4)
Anon 46.8 (±5.2) 42.2 (±7.3) 47.7 (±5.3) 63.3 (±3.2) 58.2 (±5.7)

Figure 5. Average improvements over the default configuration
(%±std). Higher is better. Best results are highlighted in bold.

greedy and linear optimization. They present both strong
approximation guarantees and are shown to outperform ex-
isting methods on empirical benchmarks. Our methods have
been implemented up to dimension fifty using open-source
solvers allowing us to cover a new variety of problems as
shown in Appendix D. In the future, we plan to (1) investi-
gate the use of deep-learning to solve more efficiently these
specific LP problems (Khalil et al., 2017) to make these
methods adapted to even larger dimensional systems, (2)
considering a mix of the diversity measures, and (3) extend-
ing the approach to mixed continuous/discrete inputs.

Impact Statement
In our work, we proposed a novel methodology to generate
a subset of items that are described by categorical features.
These new solvers are mostly agnostic to the specific appli-
cation and can be applied to a wide range of problems (from
experimental physics to news feed creation). Therefore, the
societal and ethical impacts of our contribution are heavily
dependent on the nature of the problems solved with the
algorithm. We start by noting that beneficial applications of
our work are thick on the ground, ranging from the design
of a more efficient diversity in display systems to the design
of low correlation sequences for telecommunication, or the
design of methods to efficiently gather training data. For
instance, in the case where we wish to display a subset of
some population like in dating apps, our methods allow us
to have a better subset that represents the diversity of the
whole population compared to random methods. In partic-
ular, since our algorithm can create designs that minimize
the covering radius or average covering, we are sure that
using these methods we have the designs that represent the
whole population in the best possible way and nobody will
be left behind. Thus, it is easy to see the beneficial impacts
in terms of inclusion, and building less biased recommen-
dation systems. Another by-product of our methodology is
perhaps to reduce the training time of big systems by only
using subsets of the data. Thus, it would help to reduce the
overall computational cost of any energy glutton systems
and thus be beneficial from this side. From the latter ex-
ample we can perceive that, even though the collection of
good labeled data makes them more accurate or efficient to
accomplish their tasks, the positive or negative impact of
our work fully depends on the nature of the tasks considered.
So, providing novel diversity methods could lead to a more
beneficial models, as it could allow the design of malicious

systems. However, we hope that our contribution alone will
not in itself encourage individuals to design new malicious
models and we believe that in the long run the impact of this
work will be positive.

References
Achterberg, T. Scip: solving constraint integer programs.

Mathematical Programming Computation, 1:1–41, 2009.

Back, T. and Khuri, S. An evolutionary heuristic for the
maximum independent set problem. In Proceedings of
the First IEEE Conference on Evolutionary Computation.
IEEE World Congress on Computational Intelligence, pp.
531–535. IEEE, 1994.

Bednorz, W. and Sciyo.com. Greedy Algorithms. Sciyo.com,
2008. ISBN 9789537619275. URL https://books.
google.de/books?id=l0QezQEACAAJ.

Calandriello, D., Derezinski, M., and Valko, M. Sampling
from a k-dpp without looking at all items. Advances in
Neural Information Processing Systems, 33:6889–6899,
2020.

Chi, H., Mascagni, M., and Warnock, T. On the optimal hal-
ton sequence. Mathematics and computers in simulation,
70(1):9–21, 2005.

Contal, E., Malherbe, C., and Vayatis, N. Optimization
for gaussian processes via chaining. arXiv preprint
arXiv:1510.05576, 2015.

Cplex, I. I. V12. 1: User’s manual for cplex. International
Business Machines Corporation, 46(53):157, 2009.

Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O. M., and
Bäck, T. Benchmarking discrete optimization heuris-
tics with iohprofiler. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pp.
1798–1806, 2019.

Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O. M., and
Bäck, T. Benchmarking discrete optimization heuristics
with iohprofiler. Applied Soft Computing, 88:106027,
2020.

Durakovic, B. Design of experiments application, concepts,
examples: State of the art. Periodicals of Engineering
and Natural Sciences, 5(3), 2017.

Fang, K.-T., Li, R., and Sudjianto, A. Design and model-
ing for computer experiments. Chapman and Hall/CRC,
2005.

Faure, H. Discrépance de suites associées à un système de
numération (en dimension s). Acta arithmetica, 41(4):
337–351, 1982.

9

https://books.google.de/books?id=l0QezQEACAAJ
https://books.google.de/books?id=l0QezQEACAAJ

Measures of diversity and space-filling designs for categorical data

Gasse, M., Bowly, S., Cappart, Q., Charfreitag, J., Charlin,
L., Chételat, D., Chmiela, A., Dumouchelle, J., Gleixner,
A., Kazachkov, A. M., et al. The machine learning for
combinatorial optimization competition (ml4co): Results
and insights. In NeurIPS 2021 Competitions and Demon-
strations Track, pp. 220–231. PMLR, 2022.

Gautier, G., Polito, G., Bardenet, R., and Valko, M.
DPPy: DPP Sampling with Python. Journal of Ma-
chine Learning Research - Machine Learning Open
Source Software (JMLR-MLOSS), 2019. URL http:
//jmlr.org/papers/v20/19-179.html. Code
at http://github.com/guilgautier/DPPy/.

Gómez, A. N., Pronzato, L., and Rendas, M.-J. Incremental
space-filling design based on coverings and spacings:
improving upon low discrepancy sequences. Journal of
Statistical Theory and Practice, 15(4):1–30, 2021.

Gonzalez, T. F. Clustering to minimize the maximum in-
tercluster distance. Theoretical computer science, 38:
293–306, 1985.

Halton, J. and Smith, G. Radical inverse quasi-random
point sequence, algorithm 247. Commun. ACM, 7(12):
701, 1964.

Hammersley, J. M. Monte carlo methods for solving multi-
variable problems. Annals of the New York Academy of
Sciences, 86(3):844–874, 1960.

Hochbaum, D. S. When are np-hard location problems easy?
Annals of Operations Research, 1(3):201–214, 1984.

Hochbaum, D. S. and Shmoys, D. B. A best possible heuris-
tic for the k-center problem. Mathematics of operations
research, 10(2):180–184, 1985.

Johnson, M. E., Moore, L. M., and Ylvisaker, D. Minimax
and maximin distance designs. Journal of statistical
planning and inference, 26(2):131–148, 1990.

Jones, B. and Johnson, R. T. Design and analysis for the
gaussian process model. Quality and Reliability Engi-
neering International, 25(5):515–524, 2009.

Joseph, V. R. Space-filling designs for computer exper-
iments: A review. Quality Engineering, 28(1):28–35,
2016.

Jourdan, A. and Franco, J. A new criterion based on
kullback-leibler information for space filling designs.
arXiv preprint arXiv:0904.2456, 2009.

Kenny, Q. Y., Li, W., and Sudjianto, A. Algorithmic con-
struction of optimal symmetric latin hypercube designs.
Journal of statistical planning and inference, 90(1):145–
159, 2000.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. Advances in neural information processing sys-
tems, 30, 2017.

Kulesza, A., Taskar, B., et al. Determinantal point pro-
cesses for machine learning. Foundations and Trends®
in Machine Learning, 5(2–3):123–286, 2012.

Lanctot, J. K., Li, M., Ma, B., Wang, S., and Zhang, L.
Distinguishing string selection problems. Information
and Computation, 185(1):41–55, 2003.

Lim, A., Rodrigues, B., Wang, F., and Xu, Z. k-center
problems with minimum coverage. Theoretical Computer
Science, 332(1-3):1–17, 2005.

Lin, H. and Bilmes, J. A class of submodular functions
for document summarization. In Proceedings of the 49th
annual meeting of the association for computational lin-
guistics: human language technologies, pp. 510–520,
2011.

Macchi, O. The coincidence approach to stochastic point
processes. Advances in Applied Probability, 7(1):83–122,
1975.

MacWilliams, F. J. and Sloane, N. J. A. The theory of error
correcting codes, volume 16. Elsevier, 1977.

Malherbe, C. and Scaman, K. Robustness in multi-objective
submodular optimization: a quantile approach. In Inter-
national Conference on Machine Learning, pp. 14871–
14886. PMLR, 2022.

Malherbe, C., Grosnit, A., Tutunov, R., Ammar, H. B., and
Wang, J. Optimistic tree searches for combinatorial black-
box optimization. In Advances in Neural Information
Processing Systems.

McKay, M. D., Beckman, R. J., and Conover, W. J. A
comparison of three methods for selecting values of input
variables in the analysis of output from a computer code.
Technometrics, 42(1):55–61, 2000.

Mead, R. The design of experiments: statistical principles
for practical applications. Cambridge university press,
1990.

Minoux, M. Accelerated greedy algorithms for maximizing
submodular set functions. In Optimization techniques, pp.
234–243. Springer, 1978.

Minoux, M. Accelerated greedy algorithms for maximizing
submodular set functions. In Optimization Techniques:
Proceedings of the 8th IFIP Conference on Optimization
Techniques Würzburg, September 5–9, 1977, pp. 234–243.
Springer, 2005.

10

http://jmlr.org/papers/v20/19-179.html
http://jmlr.org/papers/v20/19-179.html

Measures of diversity and space-filling designs for categorical data

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrák,
J., and Krause, A. Lazier than lazy greedy. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

Morokoff, W. J. and Caflisch, R. E. Quasi-monte carlo
integration. Journal of computational physics, 122(2):
218–230, 1995.

Müller, W. G. Coffee-house designs. Optimum design 2000,
pp. 241–248, 2001.

Müller, W. G. Collecting spatial data: optimum design
of experiments for random fields. Springer Science &
Business Media, 2007.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functions—i. Mathematical programming, 14:265–
294, 1978.

Niederreiter, H. Random number generation and quasi-
Monte Carlo methods. SIAM, 1992.

Pronzato, L. Optimal experimental design and some related
control problems. Automatica, 44(2):303–325, 2008.

Pronzato, L. Minimax and maximin space-filling designs:
some properties and methods for construction. Journal de
la Société Française de Statistique, 158(1):7–36, 2017.

Pronzato, L. and Müller, W. G. Design of computer experi-
ments: space filling and beyond. Statistics and Comput-
ing, 22:681–701, 2012.

Santner, T. J., Williams, B. J., Notz, W. I., and Williams,
B. J. The design and analysis of computer experiments,
volume 1. Springer, 2003.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Sobol, I. M. On the distribution of points in a cube and
the approximate evaluation of integrals. Zhurnal Vy-
chislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4):
784–802, 1967.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing

in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Wan, X., Nguyen, V., Ha, H., Ru, B., Lu, C., and Osborne,
M. A. Think global and act local: Bayesian optimisa-
tion over high-dimensional categorical and mixed search
spaces. In International Conference on Machine Learn-
ing, pp. 10663–10674. PMLR, 2021.

Wilson, J., Hutter, F., and Deisenroth, M. Maximizing
acquisition functions for bayesian optimization. Advances
in neural information processing systems, 31, 2018.

11

Measures of diversity and space-filling designs for categorical data

Abstract
This appendix contains additional material for the paper ”Measures of diversity and space-filling designs for
categorical data”. In Section 6, we discuss the potential negative social impact of our work. In Section A, we
provide numerical methods to compute the diversity metrics. In Section B, we present additional results for
Section B and provide the proofs of the results. In Section C, we provide the proofs of Section 4. Finally, Section
D describes the setup of the numerical experiments and present the computational times associated with each
method.

A. Computation and approximations of the diversity measures
In this section, we provide algorithms and methods to compute the three diversity measures described in Section 2: packing
radius, covering radius, and average covering.

A.1. Packing Radius

Exhaustive-computation. The computation of the packing radius is straightforward in the sense that it does not involve any
computation over the whole space X . Algorithm 3 provides a direct way to compute the packing radius. Considering that it
takes d operations to compute a Hamming distance between two points, the total complexity of the algorithm is thus of
order O(dn2).

Algorithm 3 Packing radius computation
Require: Design Dn = (x1, . . . , xn)

1: Set PR← d
2: for i = 1, ..., n− 1 do
3: for j = i+ 1, ..., n do
4: dist← dH(xi, xj)/2
5: if dist < PR then
6: PR←dist
7: end if
8: end for
9: end for

10: Return the packing radius PR

A.2. Covering Radius

Exhaustive-computation. Since the computation of the covering radius involves finding the maximum distance of a point
in the total space X to the design, its direct computation is more numerically intensive than the packing radius. Similarly,
Algorithm 4 provides a straightforward way to compute the covering radius. Since it takes dn operations to compute
mini=1...n d(x, xi) for any given point x ∈ X , its total complexity is of order O(dn|X |).

Algorithm 4 Covering radius computation
Require: Design Dn = (x1, . . . , xn)

1: Set CR← 0
2: for x ∈ X do
3: dist← mini=1...n dH(x, xi)
4: if dist > CR then
5: CR←dist
6: end if
7: end for
8: Return the covering radius CR

Linear programming. Similarly to the case of identifying an optimal design (Section 3), it is possible to employ tools from
linear programming to efficiently compute the covering radius of a design. More precisely, the next result provides an exact

12

Measures of diversity and space-filling designs for categorical data

linear programming formulation which allows a faster computation.

Proposition A.1. (Linear programming covering radius). Let Dn = (x1, . . . , xn) be any design of n ≥ 1 points with
xi = (x1

i , . . . , x
d
i) ∈ X for all 1 ≤ i ≤ n. Then, the covering radius of the design is the solution of the following linear

program:

CR(Dn) = max
Ax≤b

cT x

where x ∈ {0, 1}d × {0, . . . , d}, c = (0, . . . , 0, 1) ∈ Rd+1, b = (∥x1∥1, . . . , ∥xn∥1)T , x ∈ {0, 1}d × {0, . . . , d} and
A ∈ Rn×d+1 with ai,j = (2xj

i + 1) for all (i, j) ∈ {1, . . . , n} × {1, . . . , d} else 1.

Note that this problem has d+ 1 variables and n constraints. Thus, we can trade the complexity of order O(dn|X |) of the
exact computation method by solving a linear program and resulting in a complexity of O(LP (d+ 1, n)).

A.3. Average Covering

Exhaustive-computation. Similarly to the covering radius, computing the average covering is more challenging in the
sense that it involves the computation of the distance of any point of the domain to the design. Algorithm 5 provides a
straightforward way to compute the average covering, with a total complexity of order O(dn|X |).

Algorithm 5 Average covering computation
Require: Design Dn = (x1, . . . , xn)

1: Set AC← 0
2: for x ∈ X do
3: dist← mini=1...n dH(x, xi)
4: AC← AC+ dist/|X |
5: end for
6: Return the average covering AC

Approximate evaluation. However, it is important to note that contrarily to the covering radius which can be computed
with linear programming tools, here we can compute a provably approximately correct estimation of the average covering
using stochastic methods. In particular, the next proposition shows that one can easily compute the average covering using a
stochastic approximation.

Proposition A.2. (Average Covering Approximation). Let Dn = (x1, . . . , xn) be any design of n ≥ 1 points. Consider
the following estimate of the average covering of Dn as defined follows

ÂCM (Dn) =
1

M

M∑
i=1

d(Xi, Dn)

where X1, . . . , XM ∼ U(X) denotes any series of M ≥ 1 points independently and uniformly distributed over X . Then,
for any δ ∈ (0, 1), we have the following approximation error which holds with probability at least 1− δ:

AC(Dn)− ÂCM (Dn) ≤ d ·
√

ln(2/δ)

2M
.

This result provides a bound on the error of the stochastic estimate that only uses M points as a proxy for X . More
importantly, it highlights the fact that it is only necessary to take M = O((d/ε)2) points to have an approximation error of
at most ε > 0, resulting in a total complexity of O(nd3/ε2) to compute AC(Dn) instead of O(dn|X |) provided by the exact
computation of the average covering.

A.4. Proofs of the computation results

Proof of Proposition A.1. Fix any Dn ∈ Xn and recall that CR(Dn) = maxx∈X d(x,Dn) = maxx∈X mini=1...n d(x, xi)

13

Measures of diversity and space-filling designs for categorical data

by definition. Thus, by a straightforward rewriting, it can be seen that CR(Dn) is a solution of the following problem:

max D

subject to D ≤ d(x, xi), ∀i ∈ {1, . . . , n}
x ∈ {0, 1}d
D ∈ {0, . . . , d}.

Indeed, observe that, in the above problem, for any x ∈ Zd, the first constraint is satisfied for all i ∈ {1, . . . , n}
and maximum whenever D = mini=1...n d(x, xi). Thus, by taking the maximum over any x ∈ {0, 1}d, we obtain
maxx∈{0,1}d d(x, Dn) = CR(Dn). However, to turn the problem into a linear program, we need to linearize the first
constant. Now observe that for any x = (x1, . . . , xd) ∈ {0, 1}d and xi = (x1

i , . . . , x
d
i), we have:

d(x, xi) =

d∑
j=1

I{xj ̸= xj
i} =

d∑
j=1

xj(1− xj
i) + xj

i (1− xj) =

d∑
j=1

xj(1− 2xj
i) + xj

i

which is linear in terms of each of the xj. Hence, we have

D ≤ d(x, xi)⇔ D+

d∑
j=1

xj(2x
j
i − 1) ≤ ∥xi∥

which is linear. Therefore, one can compute CR(Dn) by solving the following linear problem written in standard form:

max cT x
subject to Ax ≤ b

x ∈ {0, 1}d × {0, . . . , d}

where c = (0, . . . , 0, 1)T ∈ Rd+1, b = (∥x1∥, . . . , ∥xn∥)T , x = (x1, . . . , xd, D)
T using the previous notations and

A ∈ Rn×d+1 with ai,j = 2xj
i + 1 if j ≤ d and ai,d+1 = 1 for all i = 1, . . . , n further described below:

A =

(2x1

1 − 1) · · · (2xd
1 − 1) 1

(2x1
2 − 1) · · · (2xd

2 − 1) 1
...

. . .
...

...
(2x1

n − 1) · · · (2xd
n − 1) 1

 .

Proof of Proposition A.2. First, since the random variables X1, . . . , XM are independent, it follows that
d(X1, Dn), . . . , d(XM , Dn) are also independent and identically distributed. As a direct consequence, it follows that

E
[
ÂCM (Dn)

]
= E

[
1

M

M∑
i=1

d(Xi, Dn)

]
= E[d(X1, Dn)] = AC(Dn).

Moreover, since 0 ≤ d(X1, Dn)/M ≤ d/M by definition, a straightforward application of Hoeffding’s inequality gives that
for all t ≥ 0:

P
(
AC(Dn)− ÂCM (Dn) ≥ t

)
≤ 2 exp

(
−2Mt2

d2

)
.

Now, observing that 2e−2Mt2/d2 ≤ δ when t = d
√

ln(2/δ)
2M gives the result.

B. Supplementary material for Section 3
In this section, we provide additional results for Section 3 as well as the proofs of the results.

14

Measures of diversity and space-filling designs for categorical data

B.1. Additional results

First, we start to case a simple result about the non-increasing property of the diversity measures that will be used in the
main results of the paper.

Lemma B.1. (Non-increasing property). For any diversity measure ℓ ∈ {CR(·),PR(·),AC(·)}, we have the following
non-increasing property:

ℓ(Dn ∪ {z}) ≤ ℓ(Dn), ∀z ∈ X
where Dn ∈ Xn denotes any design of n points in X .

Interestingly, this property also points out that this non-decreasing property motivates the use of incremental algorithms that
sequentially add points to a given design to decrease their diversity measure (as used in GIPPR and GAC). However, a more
straightforward consequence is that it will be used to prove Proposition 3.1. In the continuation of this result, we provide
several results that will be used to prove Proposition 3.2.

Lemma B.2. Consider any design Dn ∈ X of any size n ≥ 2. Then, we have:

AC(Dn) ≤ CR(Dn).

Proposition B.3. For any dimension d ≥ 2 and any design size n ≥ 1, we have the following inequalities:

PR∗
n+1 ≤ CR∗

n and AC∗
n ≤ CR∗

n

where CR∗
n = minDn∈Xn PR(Dn), AC∗

n = minDn∈Xn AC(Dn) and PR∗
n+1 = maxDn+1∈Xn+1 PR(Dn) denotes the

optimal metrics.

Proposition B.4. (Bounds on optimal covering radius). Consider any dimension d ≥ 2 of the categorical space and let
D∗

n be an optimal design solving (1) where ℓ = CR of any size n ≥ 4. Then, the following inequalities hold:

d

2
− ln2(n) ≤ CR(D∗

n) ≤
⌊d
2
− ⌊ln2(n/2)⌋

2

⌋
and CR∗

2 = CR(D∗
2) = ⌊d/2⌋.

Proposition B.5. (Bounds on optimal packing radius). Consider any dimension d ≥ 2 of the categorical space and let
D∗

n be an optimal design solving (1) of any size n ≥ 5. Then, the following inequalities hold:⌊d
2
− ln2(n)

⌋
≤ PR∗

n ≤
⌊d
2
− ⌊ln2((n− 1)/2)⌋

2

⌋
.

where PR∗
2 = d/2.

Proposition B.6. (Upper bound on optimal average covering). Consider any dimension d ≥ 2 of the categorical space
and let D∗

n be an optimal design solving (1) of any size n ≥ 5. Then, the following inequalities hold:

AC∗
n ≤

⌊d
2
− ⌊ln2(n/2)⌋

2

⌋
.

where AC∗
1 = d/2.

B.2. Proofs of the results of Section 3

Here, we provide the proofs of the results.

Proof of Lemma B.1. For simplicity, we will directly prove the result for any nested designs D ⊆ D′ ⊆ X . Now, observe
that:

CR(D) = max
x∈X

min
y∈D

dH(x, y) (2)

= max
x∈X

min
y∈D∪(D′\D)

dH(x, y) (3)

≥ max
x∈X

min
y∈D′

dH(x, y) (4)

= CR(D′). (5)

15

Measures of diversity and space-filling designs for categorical data

For the average covering, we have:

AC(D) =
1

|X |
∑
x∈X

min
y∈D

dH(x, y) =
1

|X |
∑
x∈X

min
y∈D∪(D′\D)

dH(x, y) ≥ 1

|X |
∑
x∈X

min
y∈D′

dH(x, y) = AC(D′).

Finally, since D ⊆ D′,
PR(D) = min

x,y∈D
x ̸=y

dH(x, y) ≥ min
x,y∈D′

x̸=y

dH(x, y) = PR(D′).

Proof of Proposition B.2. For the average covering, we have

AC(Dn) =
1

|X |

n∑
i=1

d(x,Dn) ≤
1

n

n∑
i=1

max
x∈X

d(x,Dn) = CR(Dn).

Proof of Proposition B.3. First, we prove that PR∗
n+1 ≤ CR∗

n. Consider any n ≥ 1 and let xCR1 , . . . , xCRn be any design with
minimum covering radius and xPR1 , . . . , xPRn+1 be any design achieving optimal Packing Radius. Then, since the search space
X ⊆

⋃n
i=1 B(xCRi ,CR∗

n) is included in a union of n balls by definition of the covering radius and we have n+ 1 points in
the packing radius design, it necessarily follows that one of the ball B(xCRi∗ ,CR) contains two points xPRi1 and xPRi2 of the PR
design. Then, by definition of the Packing Radius, it follows that:

PR∗
n+1 = min

1≤i ̸=j≤n+1

dH(xi, xj)

2
≤

dH(xPRi1 , x
PR
i2
)

2
≤

(dH(xPRi1 , x
CR
i∗) + dH(xCRi∗ , x

PR
i2
))

2
≤ CR∗

n

which proves the first part of the result. We now prove that AC∗
n ≤ CR∗

n. Let D∗
n ∈ argminDn∈Xn CR(Dn). Then, we have

that:
AC∗

n = min
Dn∈Xn

AC(Dn) ≤ AC(D∗
n) ≤ CR(D∗

n) = CR∗
n

which concludes the proof.

Proof of Proposition B.4. We start to prove the lower bound. First, note that since CR∗
1 = d and CR∗

2 = ⌊d/2⌋, the
result trivially holds whenever n < min{n ∈ N : CR∗

n < d/2} and n > 2d/2. Now, consider any min{n ∈ N : CR∗
n <

d/2} ≤ n < 2d and let Dn = (x1, . . . , xn) ∈ Xn be any design of n points minimizing the covering radius. Since,
CR∗

n = maxx∈X dH(x,Dn), it necessarily follows that X ⊆
⋃n

i=1 BH(xi,CR∗
n) by definition. Thus, since both these sets

are finite, we have that:

2d = |X | (6)

≤

∣∣∣∣∣
n⋃

i=1

BH(xi,CR
∗
n)

∣∣∣∣∣ (7)

≤
n∑

i=1

|BH(xi,CR
∗
n)| (8)

= n|BH(x1,CR
∗
n)| (9)

= n

CR∗
n∑

i=0

(
d

i

)
(10)

≤ n2
dH

(
CR∗n
d

)
(11)

≤ n2d
(1+2CR∗n/d)

2 (12)

= n2
d
2+CR∗

n (13)

where we used the fact that
∑k

i=0

(
d
i

)
≤ 2dH(k/n) for any 0 < k < n/2 where H(x) = −x log(x)− (1− x) log(1− x)

denote the binary cross entropy (see (MacWilliams & Sloane, 1977) Chapter 10) and we used the fact that H(x) ≤ (1+2x)/2
for any x ≤ 1/2 on lines (6) and (7). Finally, taking the logarithm on both sides gives that d− ln2(n) ≤ d

2 + CR∗
n which

proves the lower bound.

16

Measures of diversity and space-filling designs for categorical data

Upper bound for the covering radius. To prove the upper bound, we use the fact that minDn∈Xn CR(Dn) ≤ CR(DUB
n)

for a design DUB
n that is inspired by the construction provided in (Malherbe et al.). Fix any n ≥ 4 and set L = ⌊ln2(n/2)⌋

which has been chosen so that 2× 2L ≤ n. Now, consider the design:

DUB
n = D0

2L ∪D1
2L

where
D0

2L = {(x1, . . . , xL, 0, . . . , 0) : (x1, . . . , xL) ∈ {0, 1}L}

and
D1

2L = {(x1, . . . , xL, 1, . . . , 1) : (x1, . . . , xL) ∈ {0, 1}L}

Observe that D0 and D1 respectively contains all the possible combinations of L elements filled with 0 (resp. 1) for the
remaining elements. Moreover, note that |DUB

n | = |D0
2L | + |D

1
2L | ≤ 2 × 2L ≤ n by definition of L. Now, for any

x = (x1, . . . , xd) ∈ X , observe that there necessarily x0 ∈ D0
2L and x1 ∈ D1

2L that share the same first L elements as x,
i.e. x[1,...,L] = x0

[1,...,L] = x1
[1,...,L] which implies that

dH(x,DUB
n) ≤ min

(
dH(x, x0), dH(x, x1)

)
= min

(
L∑

i=1

I{x0
i ̸= xi}+

d∑
i=L+1

I{x0
i ̸= xi},

L∑
i=1

I{x1
i ̸= xi}+

d∑
i=L+1

I{x1
i ̸= xi}

)

= min

(
d∑

i=L+1

xi,

d∑
i=L+1

(1− xi)

)

= min

(
d∑

i=L+1

xi, (d− L)−
d∑

i=L+1

xi

)

= (d− L)min

(
d∑

i=L+1

xi/(d− L), 1−
d∑

i=L+1

xi/(d− L)

)

≤ d− L

2

where we used on the last inequality the fact that
∑d

i=L+1 xi/(d − L) ∈ [0, 1] and that min(x, 1 − x) ≤ 1/2 for all
x ∈ [0, 1]. Since the previous results hold for any x ∈ X , and the covering radius only takes integer values, we deduce that

min
Dn∈Xn

CR(Dn) ≤ CR(DUB
n) ≤

⌊d− L

2

⌋
=
⌊d
2
− ⌊ln2(n/2)⌋

2

⌋
which proves the result.

Algorithm 6 Lower Bound Algorithm
Require: Number n ≥ 2 of points, parameter D ≥ 1 such that n|B(0, D)| ≤ 2d

1: X0 ← X
2: D̂0 ← ∅
3: for t = 0, ..., n− 1 do
4: Pick any point xt+1 ∈ Xt

5: Add the point to the design: D̂t+1 ← D̂t ∪ {xt+1}
6: Remove the points from the current point Xt+1 ← Xt/B(xt+1, D)
7: end for
8: Return design D̂n

Proofs of Proposition B.5. We start to prove the lower bound. We use the fact that maxDn
PR(Dn) ≥ PR(Dn) for any

design Dn of size n. We investigate a specific class of designs D̂D
n provided by Algorithm 6. For this algorithm, since

d(x, x′) ≥ D for all x ̸= x′ ∈ D̂D
n , it follows that PR(D̂D

n) ≥ D/2. Moreover, since at each time step we remove at

17

Measures of diversity and space-filling designs for categorical data

most |B(0, D)| points (line 6) and the initial size of the space is |X | = 2d, the algorithm does indeed terminates whenever
n|B(0, D)| ≤ 2d. Thus, with a budget of n points, we can get a design with a packing radius satisfying:

max
Dn∈Xn

PR(Dn) ≥ max
D≥0

PR(D̂D
n) (14)

≥ 1

2
max
D≥0
{|B(0, D)| ≤ 2d/n} (15)

≥ 1

2
max
D≥0
{

D∑
i=0

(
d

i

)
≤ 2d/n} (16)

≥ 1

2
max
D≥0
{2dH(D/d) ≤ 2d/n} (17)

≥ 1

2
max
D≥0
{2

d(1+D/d)
2 ≤ 2d/n} (18)

=
1

2
max
D≥0
{d
2
+

D

2
≤ d− log2(n)} (19)

=
1

2
max
D≥0
{D ≤ d− 2 log2(n)} (20)

=
⌊d− 2 log2(n)⌋

2
(21)

≥ ⌊d
2
− log2(n)⌋ (22)

where we used the fact that
∑D

i=0

(
d
i

)
≤ 2dH(D/d) where H(x) denotes the binary gross entropy on line (26) and the fact

that H(x) ≤ (1 + x)/2 for any x ≤ 1/2 which proves the result. For the upper bound, we directly use Proposition B.3 and
B.4.

Proof of Proposition B.6. Similarly to the previous result, the result is obtained by combining Propositions B.3 and B.4.

Proof of Proposition 3.1. Consider any n ≥ 2. We first prove the result with the covering radius. Let D∗
n and D∗

n+1 be
an optimal covering solving (1) for the covering radius and consider any point e ∈ X/D∗

n. Then, using the fact that CR is
non-increasing (Lemma B.1), we have:

min
Dn∈Xn

CR(Dn) = CR(D∗
n) ≥ CR(D∗

n ∪ {e}) ≥ min
Dn+1∈Xn+1

CR(Dn+1) = CR(D∗
n+1)

which gives the non-increasing property for the covering radius. Now reproducing the exact same steps with the average
covering, we obtain:

AC(D∗
n) ≥ AC(Dn ∪ {e}) ≥ min

Dn+1∈Xn+1
AC(D∗

n+1).

Finally, for the packing radius, considering any e ∈ Dn+1, we have:

PR(D∗
n+1) ≤ PR(Dn+1/e) ≤ max

Dn∈Xn
PR(Dn) = PR(D∗

n)

which concludes the proof.

Proof of Proposition 3.2. To prove the result, we use the worst lower and upper bound of Propositions B.4 and B.5. Thus,
we have: ⌊d

2
− ln2(n)

⌋
≤ ℓ(D∗

n) ≤
⌊d
2
− ⌊ln2((n− 1)/2)⌋

2

⌋
.

for both the covering and packing radius. For the lower bound, we directly have:⌊d
2
− ln2(n)

⌋
≥
⌊⌊d

2

⌋
− ln2(n)

⌋
=
⌊d
2

⌋
− ⌈ln2(n)⌉.

18

Measures of diversity and space-filling designs for categorical data

Finally, when d is odd, we have the following for the upper bound:⌊d
2
− ⌊ln2(n− 1/2)⌋

2

⌋
=
⌊⌊d

2

⌋
+

1

2
− ⌊ln2((n− 1)/2)⌋

2

⌋
(23)

=
⌊⌊d

2

⌋
− ⌊ln2(n− 1)⌋

2

⌋
(24)

=
⌊d
2

⌋
−
⌈⌊ln2(n− 1)⌋

2

⌉
(25)

≤
⌊d
2

⌋
− ln2(n− 1)

2
(26)

which concludes the proof.

Proof of Proposition 3.3. The statement holds because for any permutation π : {1, . . . , n} → {1, . . . , n} and any point
z ∈ X , the functions π : X → X defined by π(x)i = xπ(i) and x 7→ x ⊕ z are isometries, and the composition of two
isometries is an isometry. We will prove the result for any design Dn ∈ Xn. For the first function, this follows from the fact
that the hamming distance is symmetrical on the coordinates:

dH(π(x), π(y)) =
∑

i=1,...,d

I{xπ(i) ⊕ yπ(i)} =
∑

i=π(1),...,π(d)

I{xi ⊕ yi} =
∑

i=1,...,d

I{xi ⊕ yi} = dH(x, y).

For the second, it follows from the fact that the XOR operation is commutative and is its own inverse.

dH(x⊕ z, y ⊕ z) =
∑

i=1,...,d

I{xi ⊕ zi ⊕ yi ⊕ zi}

=
∑

i=1,...,d

I{xi ⊕ yi ⊕ zi ⊕ zi} =
∑

i=1,...,d

I{xi ⊕ yi} = dH(x, y).

Now, since we know that the function f : x→ π(x)⊕ z is an isometry on X for any π and z ∈ X which implies that (1)
dH(f(x), f(x′)) = dH(x, x′) for any (x, x′) ∈ X 2, (2) f(X) = X and (3) dH(f(x), f(x′)) = 0 if and only if x = x′, we
obtain that:

CR(f(Dn)) = max
x∈X

min
x′∈Dn

dH(x, f(x′)) (27)

= max
x∈f(X)

min
x′∈Dn

dH(x, f(x′)) (28)

= max
x∈X

min
y∈Dn

dH(f(x), f(x′)) (29)

= max
x∈X

min
y∈Dn

dH(x, x′) (30)

= CR(Dn). (31)

Similarly, the same holds for the packing radius:

PR(f(D)) = min
x̸=x′∈f(Dn)

2
dH(x, x′) (32)

= min
x,x′∈Dn

f(x) ̸=f(x′)

dH(f(x), f(x′)) (33)

= min
x̸=x′∈D

dH(f(x), f(x′)) (34)

= min
x̸=x′∈D

dH(x, x′) (35)

= PR(Dn). (36)

19

Measures of diversity and space-filling designs for categorical data

Finally, the case of the average radius is analogous to the case of the covering radius.

Proof of Proposition 3.4. We proceed case by case and show the decomposition for (1) the packing radius, (2) the covering
radius, and (3) the average covering.

Packing radius as an integer linear program. Consider any number of points n ≥ 1 with the points of the design
x1, . . . , xn and observe first that the optimal packing radius is solution to the following problem:

max r
subject to r ≤ d(xi, xj), ∀(i < j) ∈ {1, . . . , n}2

r ∈ {0, . . . , d}

However, the distance d(xi, xj) is naturally non-linear with regards to the variables:

d(xi, xj) =

d∑
k=1

xk
i ⊕ xk

j =

d∑
k=1

xk
i + xk

j − 2xk
i x

k
j .

Here, the main trick is to introduce some auxiliary variables bki,k ∈ {0, 1} to linearize the XOR operator. In particular,
bki,j = xk

i ⊕ xk
j can be written as a solution of the following linear inequalities:

bki,j ≤ xk
i + xk

j

bki,j ≥ xk
i − xk

j

bki,j ≥ xk
j − xk

i

bki,j ≤ 2− xk
j − xk

i .

Thus, by plugging the previous inequalities into the initial formulation, we get that:

max r

subject to r ≤
∑d

k=1 b
k
i,j , ∀(i < j) ∈ {1, . . . , n}2

bki,j ≤ xk
i + xk

j ∀(i < j) ∈ {1, . . . , n}2, k ∈ {1, . . . , d}
bki,j ≥ xk

i − xk
j

bki,j ≥ xk
j − xk

i

bki,j ≤ 2− xk
j − xk

i .

which is a linear program in standard form with 1+nd+dn(n+1)/2 variables and 4n(n+1)/2+dn(n+1)/2 constraints.
It thus results in a program with O(dn2) variables and O(dn2) constraints.

Covering radius as a linear program. First, observe that the design minimizing the covering radius is a solution of the
following problem: minDn∈Xn maxx∈X d(x,Dn). Now, the first step is to rewrite the problem by linearizing the maximum
term as follows:

min D
subject to D ≥ dx ∀x ∈ X

D ≤ dx + (1− bx)d, ∀x ∈ X
1 =

∑
x∈X bx,

where bx ∈ {0, 1} are |X | binary variables and dx = d(x,Dn) for any x ∈ X . Now, the second trick is to use the following
decomposition to linearize the term dx by noticing that it is a solution of the following problem:

dx ≤ d(x, xi) ∀i ∈ {1, . . . , n}
dx ≥ d(x, xi)− (1− bxi)d ∀i ∈ {1, . . . , n}
1 =

∑n
i=1 b

x
i

by introducing the n binary variables bxi ∈ {0, 1}n. Finally, denoting x = (x1, . . . , xd) for any x ∈ X and xi =

(x1
i , . . . , x

d
i), and observing that d(x, xi) =

∑d
k=1 x

k + xk
i (1 − 2xk) is linear with regard to xk

i for any 1 ≤ k ≤ d, by

20

Measures of diversity and space-filling designs for categorical data

putting the previous results altogether we obtain that the optimal covering radius is a solution of following linear program:

min D
subject to D ≥ dx, ∀x ∈ X

D ≤ dx + (1− bx)d, ∀x ∈ X
1 =

∑
x∈X bx,

dx ≤
∑d

k=1 x
k + xk

i (1− 2xk), ∀x ∈ X , i ∈ {1, . . . , n}
dx ≥

∑d
k=1 x

k + xk
i (1− 2xk)− (1− bxi)× d, ∀x ∈ X , i ∈ {1, . . . , n}

1 =
∑n

i=1 b
x
i ∀x ∈ X

which is a linear program with 1 + |X |(n+ 2) variables and 1 + |X |(2n+ 3) constraints.

Average covering as a linear program. Consider any number of points n ≥ 1 with the points of the design x1, . . . , xn and
observe first that the optimal design Dn for the average covering is a solution of the following problem:

min
∑
x∈X

d(x,Dn)

subject to Dn ∈ Xn.

Now, the trick is to linearize the term dx = d(x,Dn) = mini=1...n d(x, xi) for any x ∈ X . Observe that dx is a solution of
the following program:

dx ≤ d(x, xi) ∀i ∈ {1, . . . , n}
dx ≥ d(x, xi)− (1− bxi)× d ∀i ∈ {1, . . . , n}
1 =

∑n
i=1 b

x
i

by introducing the n binary variables bxi ∈ {0, 1}n. Now, denoting x = (x1, . . . , xd) for any x ∈ X and xi = (x1
i , . . . , x

d
i),

we have that d(x, xi) =
∑d

k=1 x
k + xk

i (1− 2xk) which is linear with regard to xk
i for any 1 ≤ k ≤ d. Thus, plugging this

distance into the previous program we have that the average covering is a solution of the following problem:

min
∑
x∈X

dx

subject to dx ≤
∑d

k=1 x
k + xk

i (1− 2xk), ∀x ∈ X i ∈ {1, . . . , n}
dx ≥

∑d
k=1 x

k + xk
i (1− 2xk)− (1− bxi)× d ∀x ∈ X , i ∈ {1, . . . , n}

1 =
∑d

i=1 b
x
i ∀x ∈ X

which is an integer linear program with (n+ 1)|X |+ nd variables (n|X | for the bi, |X | for the dx and nd for the xi ∈ Dn)
and |X |(2n+ 1) constraints.

C. Supplementary material for Section 4
In this section, we provide additional results for Section 4 and provide the proofs of the results.

C.1. Additional results

The next result is a crucial property to show that the GIPPR algorithm presents some guarantees.

Lemma C.1. Let Dt = (x1, . . . , xt) be a collection of t ≥ 1 points generated by the GIPPR algorithm for any time step
t ≥ 1. Then, we have the following:

PR(Dt+1) =
d(xt+1, Dt)

2
=

maxx∈X dH(x,Dt)

2
=
CR(Dt)

2
.

Moreover, to illustrate the fact that the packing radius is not submodular, we simply consider a counterexample:

D =
[0,0,0,0,0]
[1,1,1,1,1]
[0,0,0,1,1]

, D′ =

[0,0,0,0,0]
[1,1,1,1,1]
[0,0,0,1,1]
[1,1,1,0,0]

, and z = [1, 1, 0, 0, 0].

21

Measures of diversity and space-filling designs for categorical data

Here, we have
|PR(D ∪ z)− PR(D)| = 2− 2 = 0 < 1 = 2− 1 = |PR(D′ ∪ z)− PR(D′)|

which contradicts the submodular assumption.

C.2. Proofs of the results

Proof of Lemma C.1. We show the result by induction. When t = 1, observe that x2 ∈ argmaxx∈X d(x, x1) by definition.
Thus, we have PR(D2) = d(x2, x1)/2 = d(x2, D1)/2 = maxx∈X d(x,D1)/2 = CR(D1)/2 by construction. Now assume
that the result holds for any t ≥ 2 (i.e., PR(Dt) = CR(Dt−1)/2) and denote by xt+1 ∈ argmaxx∈X d(x,Dt) the next
point of the GRIPPR algorithm. Then, we have

PR(Dt+1) = min
1≤i<j≤t+1

d(xi, xj)/2 (37)

= min

(
min
1≤i≤t

d(xi, xt+1)/2, min
1≤i<j≤t

d(xi, xj)/2

)
(38)

= min (d(xt+1, Dt)/2,PR(Dt)) (39)

= min

(
max
x∈X

d(x,Dt),max
x∈X

d(x,Dt−1)

)
/2 (40)

= max
x∈X

d(x,Dt)/2 (41)

= d(xt+1, Dt)/2 (42)
= CR(Dt)/2 (43)

which proves the result by induction.

Proof of lemma 4.2. First, obverse that for any e ∈ X and any t ≥ 2, we have:

PR(Dt ∪ {e}) = min(min
i=1...t

dH(e, xi)/2, min
i<j≤t

dH(xi, xj)/2) (44)

= min(d(e,Dt)/2,PR(Dt)) (45)
= min(d(e,Dt)/2,max

x∈X
d(x,Dt−1)/2) (46)

≤ min

(
max
x∈X

d(x,Dt),max
x∈X

d(x,Dt−1)

)
/2 (47)

= max
x∈X

d(x,Dt)/2 (48)

where we used on the last line that d(e,Dt) ≤ maxx∈X d(x,Dt) for all e ∈ X . Now, observing that the previous inequality
turns into an equality whenever e ∈ argmaxx∈X d(x,Dt) proves that

argmax
x∈X

d(x,Dt) ⊆ argmax
x∈X

PR(Dt ∪ {x}).

To prove that it is an equivalence, pick any e /∈ argmaxx∈X d(x,Dt) and note that it implies that:

d(e,Dt) < max
x∈X

d(x,Dt) ≤ max
x∈X

d(x,Dt−1)

which translates into the fact that

PR(Dt ∪ {e}) = min(d(e,Dt),max
x∈X

d(x,Dt−1))/2 (49)

= d(e,Dt)/2 (50)
< max

x∈X
d(x,Dt)/2 (51)

= max
x∈X

PR(Dt ∪ {x}) (52)

and we deduce that e /∈ argmaxx∈X d(x,Dt)} ⇒ e /∈ argmaxx∈X PR(Dt ∪ {e}) which proves the second part of the
equivalence.

22

Measures of diversity and space-filling designs for categorical data

Proof of Theorem 4.3. Denote by Dt = (x1, . . . , xt) be the design of t ≥ 1 points generated by the GIPPR algorithm
after t ≥ 1 steps. Now, by virtue of Lemma C.1, we know that PR(Dn+1) = d(xn+1, Dn)/2 = CR(Dn)/2 where
Dn+1 = (x1, . . . , xn+1) denotes a design generated by the GIPPR with size n + 1. Now consider a design D∗

n =
(x∗

1, . . . , x
∗
n) of size n ≥ 1 with optimal covering radius, i.e., D∗

n ∈ argminDn∈Xn CR(Dn). Then, similarly to the proof
of Proposition B.3, since there are n + 1 points in Dn+1, we necessarily have one ball B(x∗

i ,CR(D
∗
n)) centered around

a point x∗
i ∈ D∗

n of the optimal design of radius CRn which contains two points xi, xj ∈ Dn+1 ×Dn+1, implying that:
PR(Dn+1) ≤ dH(xi, xj)/2 ≤ CR(D∗

n). Therefore, we deduce from Lemma 4.2 that:

CR(Dn)

2
= PR(Dn+1) ≤ CR(D∗

n) = CR∗
n,

which proves that CR(Dn) ≤ 2CR∗
n. Similarly, when taking a design D∗

n+1 = (x∗
1, . . . , x

∗
n+1) with optimal parking radius

(i.e., D∗
n+1 ∈ argmaxDn+1∈Xn+1 PR(Dn+1)) using the same covering argument, we deduce from Lemma 4.2 that

PR∗
n+1 = PR(D∗

n+1) ≤ CR∗
n ≤ CR(Dn) = 2PR(Dn+1)

which proves that PR(Dn+1) ≥ PR∗
n+1/2 and concludes the proof.

Proof of Lemma 4.6. Without loss of generality, we prove that the function F : D 7→ AC(D) if D ̸= ∅ and d otherwise is
non-increasing. Observing that for any point x ∈ X and any sets ∅ ≠ D ⊆ D′ ⊆ X , we have that dH(x,D) ≥ dH(x,D′).
Thus, summing over all the points x ∈ X , it follows that

F (D) =
1

|X |
∑
x∈X

dH(x,D) ≥ 1

|X |
∑
x∈X

dH(x,D′) = F (D′)

which proves that the function is non-increasing for any D ̸= ∅. Now, since F (D) ≤ d/2 whenever |D| > 0 and F (∅) = d,
the result also holds when D = ∅. Now, to prove that the function −F is submodular, consider the function Fx(D) =
−dH(x,D) for any x ∈ X . Pick any point e ∈ X/D and observe first that Fx(D ∪ {e}) = −min(dH(x,D), dH(x, e)).
Thus, it follows that

Fx(D ∪ {e})− F (D) = dH(x,D)−min(dH(x,D), dH(x, e))

= max(0, dH(x,D)− dH(x, e)).

Now, for any ∅ ≠ D ⊆ D′ ⊂ X and e ∈ X/D′, observe that:

Fx(D ∪ {e})− Fx(D) = max(0, dH(x,D)− dH(x, e))

≥ max(0, dH(x,D′)− dH(x, e))

= Fx(D
′ ∪ {e})− Fx(D

′).

Hence, we deduce that the function Fx is submodular for any x ∈ X . Finally, since −F (D) = (1/|X |)
∑

x∈X Fx(D) is a
sum of submodular functions, we deduce that −F is submodular.

Proof of Theorem 4.7. Recall that by virtue of Lemma 4.6, we know that the function F : D 7→ −AC(D) is submodular.
Now denote by D∗

n = (x∗
1, . . . , x

∗
n) an optimal design and by Dn = (x1, . . . , xn) a design generated by the GAC algorithm

and by ∆(e|D) = AC(D)− AC(D ∪ {e}) the marginal improvement of adding a points e to a design D. Now note that for
any i ∈ {1, . . . , n− 1}, we have:

−AC∗
n = −AC(D∗

n) (53)
≤ −AC(Di ∪D∗

n) (54)

= −AC(Di) +

n∑
t=1

∆(x∗
t |Di ∪ {x∗

1, . . . , x
∗
t−1}) (55)

≤ −AC(Di) +

n∑
t=1

∆(x∗
t |Di) (56)

≤ −AC(Di) +

n∑
t=1

∆(xi+1|Di) (57)

= −AC(Di) + n∆(xi+1|Di) (58)

23

Measures of diversity and space-filling designs for categorical data

where we used on the second line that the average covering is monotonic. On the fourth line −AC(·) is submodular. On the
fifth line that ∆(xi+1|Di) ≥ ∆(x∗

t |Di) since xi+1 ∈ argmaxx∈X ∆(xi+1|Di) by definition of the algorithm. Thus, we
have proved so far that:

∆(xi+1|Di) ≥
1

n
(AC(Di)− AC∗

n) ∀i ∈ {1, . . . , n− 1}.

Now, setting δi = AC(Di)− AC∗
n, it implies that δi − δi+1 = AC(Di)− AC(Di+1) = ∆(xi+1|Di). Plugging this into the

previous translates into δi − δi+1 ≥ δi/n, implying that

δi+1 ≤
(
1− 1

n

)
δi, ∀i ∈ {1, . . . , n− 1}.

Applying this inequality recursively gives that:

AC(Dn)− AC∗
n ≤

(
1− 1

n

)n−1

(AC(D1)− AC∗
n).

Now using the fact that (1− 1/n)n−1 ≤ 1/2 for any n ≥ 2, gives

AC(Dn)− AC∗
n ≤

(AC(D1)− AC∗
n)

2
.

Now observing that AC(D1) = AC∗
1, it translates into:

AC(Dn)− AC∗
1 + AC∗

1 − AC∗
n ≤

1

2
(AC∗

1 − AC∗
n)

which gives
1

2
(AC∗

1 − AC∗
n) ≤ AC∗

1 − AC(Dn)

and proves the result.

D. Supplementary material for Section 5
Here, we fully describe the setup of the numerical experiments presented in Section 5 and provide associated complexity
results.

D.1. Numerical complexity of the methods

Here we discuss the theoretical and empirical complexity of the algorithms introduced in the paper.

Numerical complexity (theoretical). Table D.1 reports the worst-case complexity of the algorithms presented in the
paper. LP(X,Y) denotes solving a linear program with X variables and Y constraints. Exact corresponds to the methods
introduced in Section 3. Approximate corresponds to GIPPR for the PR and CR and to GAC for the AC. Approximate
(Exhaustive) corresponds to these algorithms where we replaced the resolution of the linear program by an exhaustive search.
Last, in order to have another comparison, it is also interesting to recall that the complexity of generating a k-DPP using the
standard Cholesky decomposition is of order O(|X |3) as pointed out in (Calandriello et al., 2020).

PR CR AC
Exact (exhaustive)

(|X |
n

)
n2d

(|X |
n

)
nd|X |

(|X |
n

)
nd|X |

Exact (LP) LP(dn2, dn2) LP(n|X |, n|X |) LP(n|X |, n|X |)
Approximate (LP) nLP(d+ 1, n) nLP(d+ 1, n) nLP(d, |X |)
Approximate (Exhaustive) dn2|X | dn2|X | dn2|X |2

Table 1. Numerical complexity of identifying an optimal design for the different covering measures. LP(x, y) denotes solving a standard
integer linear program with x variables and y constraints.

Numerical complexity (practical). To provide an example of the time required to create a design in practice, we recorded
the time to generate each design. Of course, we point out that these results are only indicative in the sense that they can

24

Measures of diversity and space-filling designs for categorical data

drastically vary depending on both the hardware and the specific implementation of the algorithms. All the times have been
recorded on the same laptop computer with an Intel i7 CPU @ 1.80GHz 1.99 GHz with 16GB of RAM and all the linear
programs have been solved using the open-source SCIP solver, in python 3. results are collected in Tables 2, 3 and 4.

Note that by using an exact linear program, we are able to obtain an exact optimal design up to dimension d = 8 in less than
10 minutes. Moreover, using an approximate algorithm such as GIPPR or GAC, we are able to create designs up to d = 50
dimensions.

d = 5 d = 6 d = 7 d = 8 d = 9 d = 10 d = 15 d = 20 d = 30 d = 40 d = 50
n = 3 0.1361 0.1427 0.1356 0.1236 0.1376 0.1530 0.1530 0.1376 0.137 0.127 0.1346
n = 4 0.1659 0.1256 0.1396 0.2107 0.1538 0.1371 0.1778 0.1547 0.187 0.125 0.2103
n = 5 0.2032 0.3478 0.1928 0.2849 0.5785 0.3081 1.3928 1.0887 1.081 1.731 1.5282
n = 6 0.2336 0.4767 0.1587 0.3625 1.7036 0.9732 1.6523 0.8137 9.951 3.683 3.8064
n = 7 0.4571 0.6411 0.3111 0.9800 - - - - - - -
n = 8 3.1896 4.162 0.5724 1.9579 - - - - - - -
n = 9 160.3 230.2 178.2 - - - - - - - -
n = 10 530.2 580.5 479.3 - - - - - - - -
n = 15 - - - - - - - - - - -
n = 20 - - - - - - - - - - -
n = 30 - - - - - - - - - - -
n = 40 x - - - - - - - - - -
n = 50 x - - - - - - - - - -
n = 75 x x - - - - - - - - -
n = 100 x x - - - - - - - - -

Table 2. Time (s) to generate an exact optimal design maximizing the packing radius using the linear programming formulation with
different values of n and d. x denotes the case where n > |X | and − denotes the case where the optimization did not terminate before 10
minutes.

d = 5 d = 6 d = 7 d = 8 d = 9 d = 10 d = 15 d = 20 d = 30 d = 40 d = 50
n = 3 0.016 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
n = 4 0.016 0.018 0.019 0.019 0.019 0.019 0.0249 0.026 0.028 0.027 0.033
n = 5 0.016 0.018 0.019 0.019 0.019 0.019 0.045 0.034 0.039 0.050 0.082
n = 6 0.016 0.018 0.019 0.019 0.019 0.019 0.0551 0.045 0.055 0.073 0.129
n = 7 0.016 0.018 0.020 0.020 0.020 0.020 0.0652 0.0594 0.070 0.097 0.166
n = 8 0.016 0.018 0.020 0.020 0.020 0.020 0.0770 0.0690 0.0843 0.118 0.208
n = 9 0.016 0.018 0.020 0.020 0.020 0.020 0.0916 0.0928 0.099 0.145 0.246
n = 10 0.016 0.018 0.020 0.020 0.020 0.020 0.1016 0.1023 0.117 0.169 0.286
n = 15 0.017 0.019 0.020 0.020 0.021 0.021 0.1898 0.2773 0.220 0.304 0.474
n = 20 0.017 0.019 0.020 0.022 0.022 0.022 0.3178 0.4725 0.335 0.476 0.673
n = 30 0.017 0.019 0.021 0.023 0.024 0.031 0.497 3.8640 0.797 1.111 1.276
n = 40 x 0.020 0.022 0.026 0.028 0.040 0.833 7.2363 3.255 11.710 9.526
n = 50 x 0.020 0.023 0.027 0.034 0.052 1.223 11.10 21.67 30.56 41.14
n = 75 x x 0.032 0.035 0.049 0.095 2.627 48.25 219.5 269.5 512.3
n = 100 x x 0.038 0.048 0.070 0.15 4.55 84.05 534.7 712.5 1122

Table 3. Time (s) to generate a design with the GIPPR algorithm with different values of n and d. x denotes the case where n > |X |.

d = 5 d = 6 d = 7 d = 8 d = 9 d = 10 d = 15 d = 20 d = 30 d = 40 d = 50
n = 3 0.005 0.012 0.022 0.057 0.1539 0.3361 5.910 10.59 16.87 54.77 77.08
n = 4 0.009 0.018 0.026 0.072 0.2055 0.3481 5.927 11.48 18.51 58.63 86.19
n = 5 0.007 0.029 0.036 0.092 0.2049 0.4817 7.136 12.82 21.27 63.88 100.4
n = 6 0.009 0.029 0.053 0.093 0.2933 0.4635 6.668 13.12 23.70 66.57 118.9
n = 7 0.015 0.029 0.049 0.105 0.2863 0.4801 7.175 14.46 29.85 76.05 137.9
n = 8 0.013 0.029 0.050 0.091 0.2555 0.5851 6.684 16.77 25.92 77.79 160.3
n = 9 0.015 0.031 0.066 0.097 0.2802 0.7503 7.011 17.12 26.85 92.44 187.4
n = 10 0.014 0.031 0.071 0.113 0.3518 0.7731 8.104 19.07 27.96 97.97 182.8
n = 15 0.021 0.042 0.069 0.131 0.4771 0.9520 8.567 22.41 37.97 151.7 280.0
n = 20 0.028 0.048 0.087 0.158 0.4537 1.0901 8.423 29.99 50.92 168.7 382.9
n = 30 0.029 0.064 0.139 0.168 0.5658 1.3500 8.625 37.25 79.35 222.5 484.2
n = 40 x 0.083 0.190 0.208 0.6566 1.5073 9.151 41.92 94.47 314.3 583.3
n = 50 x 0.090 0.219 0.341 0.7371 1.8781 11.87 54.18 106.7 356.6 686.4
n = 75 x x 0.347 0.858 1.0122 2.3584 12.24 67.78 146.3 514.4 937.1
n = 100 x x 0.383 1.404 2.5266 2.8363 12.43 87.91 182.5 682.7 1193

Table 4. Time (s) to generate designs with the GAC algorithm for different values of n and d. x denotes the case where n > |X |.

D.2. Extension to non-binary variables and different cardinality

The derivation of the GAC algorithm to non-binary is straightforward since it only involves the direct computation of the
distances dH(x, xi) for xi ∈ Dn. However, to adapt both the exact linear program solvers of Section 3 and the GIPPR
algorithm of Section 4, the main bottleneck to adapt the linear programming formulation lies in the linearization of the
standard XOR formulation to non-binary variables. We now provide the derivation. Consider any variables x and y that
can take D ≥ 3 different categories, i.e. x ∈ {1, . . . , D} and y ∈ {1, . . . , D}. Then, z = I{x ̸= y} is the solution of the

25

Measures of diversity and space-filling designs for categorical data

following linear equations:

−Dz ≤ x− y ≤ Dz

z − (D + 1)δ ≤ x− y ≤ −z + (D + 1)(1− δ)

where δ ∈ {0, 1} is an additional extra binary variable. Thus, one can directly adapt all the linear formulations (GRIPPR
and exact solvers) using this trick, at the price of two additional constraints and one extra variable per XOR operator.

As an example, the figure below (Figure 6) reports the same results as Figure 5 withcategorical variables with cardinality 3
(Top) and 4 (Bottom) when d = 5.

10 20 30 40 50
Size n of the design

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Av
er

ag
e

Co
ve

rin
g

GAC
GIPPR
RDM
LHS
Sobol

10 20 30 40 50
Size n of the design

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Co
ve

rin
g

Ra
di

us

GAC
GIPPR
RDM
LHS
Sobol

10 20 30 40 50
Size n of the design

0

1

2

3

4

5

Pa
ck

in
g

Ra
di

us

GAC
GIPPR
RDM
LHS
Sobol

10 20 30 40 50
Size n of the design

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Av
er

ag
e

Co
ve

rin
g

GAC
GIPPR
RDM
LHS
Sobol

10 20 30 40 50
Size n of the design

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Co
ve

rin
g

Ra
di

us

GAC
GIPPR
RDM
LHS
Sobol

10 20 30 40 50
Size n of the design

0

1

2

3

4

5

Pa
ck

in
g

Ra
di

us

GAC
GIPPR
RDM
LHS
Sobol

Figure 6. The graph displays the evolution of the diversity measures PR(Dn), CR(Dn) and AC(Dn) for different design
sizes n ∈ {2, . . . , 50}. The bold line represents the average value computed over 10 runs. The top line considers the case
when we have 3 categories and the bottom line considers the case when we have 4 categories.

D.3. Addition of constraints

We point out that additional constraints can be embedded in the diversity program as long as they can be cast into a standard
linear programming form. As an example, for the constraint d(x, 0⃗) ≤ K and the ball constraint d(x, x∗) ≤ K for some K,
one can respectively cast them as

∑d
i=1 xi ≤ K and

∑d
i=1 xi(1− x∗

i) + (1− xi)x
∗
i ≤ K and we can directly add them to

the Linear Program described in Prop 3.4 and 4.1.

D.4. Comparison to optimal designs

Due to the size of the problem, we only compare the quality of the empirical designs to the optimal solutions for very small
problems. The next table (D.4) shows the different values of approximate values compared to the optimal one.

n 1 2 3 4 5 6 7 8
CR⋆ 3 1 1 1 1 1 1 0
PR⋆ 3 2 2 1 1 1 1
CR GIPPR 3 1 1 1 1 1 1 0
PR GIPPR 3 2 1 1 1 1 1

Table 5. Comparison of the covering and packing radius of approximate methods compared to the optimal one for a design with d = 3.

26

Measures of diversity and space-filling designs for categorical data

D.5. Details of the numerical experiments

All the experiments were performed on a desktop computer with Intel i7 CPU @ 1.80GHz 1.99 GHz with 16GB of RAM.
First, we described the algorithms used in the benchmark and then describe the test problems.

Random designs. A random design Dn = (x1, . . . , xn) of size n ≥ 1 defined on X , simply consists of a collection of n
points x1, . . . , xn ∼ U(X) uniformly and independently distributed over X .

k-DPP. For the implementation of k-DPP, we used the implementation of (Gautier et al., 2019) with a kernel set to
k(x, x′) = exp(−dH(x, x′)) to be as close as possible to our setting.

d-Halton. For the d-Halton, we used a design Dn = (x1, . . . , xn) of n ≥ 1 points generated according to the standard
Halton sequence (Halton & Smith, 1964) from the scipy QMC library (Virtanen et al., 2020) over X = [0, 1]d. Then, we
simply discretize the design using the 1/2 threshold, i.e¿., Dn = (I{x1 > 1/2}, . . . , I{xn > 1/2}).

GIPPR. For the GIPPR algorithm, we directly used the implementation provided in Algorithm 2 with the open-source SCIP
solver. We ran the algorithm at least up to d = 50 in our experiments.

GAC. For the GAC algorithm, we used the implementation provided in Algorithm 7 below. For this implementation,
first we compute the pairwise distance Q between all the points of X = (x1, . . . , x|X |) with xi = binaryd(i) with
i ∈ {1, . . . , 2d} and we keep updated the distance of the points of the domain to the current set in C. Then, at each time
step, the line 5 performs the computation of the vectorized minimum of each element i of the design using the fact that
min(Qi, C) = (Qi + C − |Qi − C|)/2 and we take the summation (Sum) over the columns of the matrix to compute the
average covering. The argmin then selects the point which greedily minimize the average covering. Finally, we update the
novel distance vector C and we add the novel point it. In practice, the empirical computation cost of this algorithm comes
from the computation of Q which is |X |2. In practice, we were able to run this algorithm up to d = 20 using int8 for the
elements of the matrix which can be further improved using sparse matrix. For larger dimensionalities, one can employ
sub-sampling techniques over the full space which are detailed below and have some guarantees:

• Using the stochastic approximation of Proposition A.2 to compute ÂCM (D). This approach simply consists in sub-
sampling the space X with M points sampled uniformly over the input space in order to approximate the computation
of AC(Dn) in Algorithm 5. Using this approximation, we have a complexity of at most O(n|X |Md) to run GAC, and
by using arguments as in the proof of Theorem 4.7, one can easily show that with probability at least 1− δ:

AC∗
1 − AC∗

n

2
≤ AC∗

1 − ÂCM (Dn) + ε

where ε = 2d
√

ln(2/δ)/2M . Thus, taking M = O(d2) allows to have a small error regardless of the dimension.

• Using stochastic greedy evaluations as in (Mirzasoleiman et al., 2015). It consists in sub-sampling M points X̂M =
{X1, . . . , XM} to compute the argminx∈X̂M

of line 3 of GAC (Algorithm 5) instead of computing the minimum
argminx∈X on the full space X . For this algorithm, it is known that, in expectation, we have an approximation error at
least of order (1/2− e−nM/|X |) instead of the standard 1/2. We refer to (Mirzasoleiman et al., 2015) for more details
on the derivation of this result.

For larger dimensions (d > 20), we thus used the previous statements using the same algorithm as described in Algorithm
7 with a sub-sample of X̂M of M = 10d2 examples instead of the full space X . Last, we also point out that the popular
method of (Minoux, 1978) could also be used to speed up the computations. Second, we detail the empirical protocol used
for each task.

Diversity. For the diversity task, we simply computer the metrics AC(Dn), CR(Dn) and PR(Dn) for each design Dn

provided by the methods above with n ∈ {1, . . . , 50} and d ∈ {7, 8}. To have uncertainty measures, we repeated the
experiments 100 times when the designs Dn are random.

Numerical Integration. For the numerical integration task, we recorded the empirical average F̂n(Dn) =
(1/|Dn|)

∑
x∈Dn

f(x) over two functions f commonly encountered in the genetic optimization literature (Doerr et al.,
2019) for which the ground truth EX∈U(X)[f(X)] is known:

• OneMax. The OneMax is probably the best-studied benchmark problem in the context of discrete optimization. It is
described by the function f(x) =

∑d
i=1 I{xi = 1}, which computes the number of ones in a vector. The problem has

27

Measures of diversity and space-filling designs for categorical data

Algorithm 7 GAC with fast updates
Require: Dimensionality d ≥ 1 of the categorical space, number n ≥ 2 of design points

1: D0 = ∅
2: Compute the matrix Q ∈ R|X |×|X| where Qi,j = dH(xi, xj)
3: C ← [d, . . . , d] ∈ Rd

4: for t = 1, ..., n− 1 do
5: Get any point that greedily minimizes the average covering:

it ← arg min
i=1...n

Sum[Q+ C − |Q− C|]/2

6: Update the distance vector C ← (Qi∗ + C − |Qi∗ − C|)/2
7: Dt ← Dt−1 ∪ {xit}
8: end for
9: Return the design Dn

a very smooth and non-deceptive objective landscape. Note that since it puts equal weights on all the dimensions, if the
expectation of an estimate is equal to d/2 then, the estimate evenly covers each dimension of the space.

• Harmonic. f(x) =
∑d

i=1 i
2I{xi = 1} which puts harmonic weights on the dimensions with d = 10. Note that each

weight on each dimension is different which makes it more challenging than the OneMax version.

For each test problem f and each design Dn, we computer the empirical average F̂n(Dn) with a size n ∈ {1, . . . , 50} and
with dimension d = 10. We repeated each experiment 100 times to have an uncertainty measure.

Data Collection. We detail here the full setup for the experimental design experiments. For the target objective f , we used
the following problems:

• Ising. The Ising Spin Glass model arose in solid-state physics and statistical mechanics, aiming to describe simple
interactions within many-particle systems. The classical Ising model considers a set of spins placed on a regular lattice,
where each edge < i, j > is associated with an interaction strength Ji,j . In essence, a problem instance is defined
upon setting up the coupling matrix Ji,j . Each spin directs up or down, associated with a value ±1, and a set of
d spin glasses is said to form a configuration, denoted as S = (s1, . . . , sd). The configuration’s energy function is
described by the system’s Hamiltonian, as a quadratic function of those d spin variables: −

∑
i<j Ji,jsisj −

∑d
i=1 hisi

where hi is an external magnetic field. The problem of interest is the study of the minimal energy configurations,
which are termed ground states, on a final lattice. The implementation of the Ising model of (Doerr et al., 2020) was
taken, assuming zero external magnetic fields, and applying periodic boundary conditions (PBC). To formally define
the function, we adopt a strict graph perspective, where G = (V,E) is undirected and |V | = d. We apply an affine
transformation {−1,+1} → {0, 1} where the d spins become binary decision variables. A generalized, compact form
for the quadratic objective function is written as follows:

f(x) =
∑

(u,v)∈E

[xuxv − (1− xu)(1− xv)]

where the graph G is defined as follows ei,j = 1 if and only if j = i+ 1 for all i ∈ {1, . . . , d− 1} or j = d and i = 1.
For this problem, we took the implementation of (Doerr et al., 2020).

• MIS. Given a graph G = (V,E) with V = {1, . . . , |V |}, a maximum independent vertex set (which generally is not
equivalent to a maximal independent vertex set) is a subset of vertices where no two vertices are direct neighbors. A
maximum independent vertex set (MIS) is defined as an independent vertex set V ′ having the largest possible size.
Using the standard binary encoding V ′ = {i = 1 . . . d | xi = 1}, MIS can be formulated as follows:

f(x) =

d∑
i=1

xi − d
∑
i,j

xixjei,j .

28

Measures of diversity and space-filling designs for categorical data

where ei,j = 1 if (i, j) ∈ E and 0 otherwise. In particular, following (Back & Khuri, 1994), a specific, scalable
problem instance was considered and defined as follows:

ei,j = 1⇔j = i+ 1 ∀i ∈ {1, . . . d} − {d/2}
or j = i+ d/2 + 1 ∀i ∈ {1, . . . , d/2− 1}
or j = i+ d/2− 1 ∀i ∈ {2, . . . , d/2}.

For this problem, we took the implementation from (Doerr et al., 2020). Here, the problem is given a subset of graphs
and their MIS score, predicting the scores of other MIS.

• LABS. Obtaining binary sequences possessing a high merit factor, also known as the Low Autocorrelation Binary
Sequence (LABS) problem, constitutes a grand combinatorial challenge with practical applications in radar engineering
and measurements. It poses a non-linear system over a binary sequence space, with the goal to model the reciprocal of
the sequence’s autocorrelation:

f(x) =
d2

E(x)
where E(x) =

n−1∑
k=1

(
n−k∑
i=1

si × si+k

)2

with si set to si = 2xi − 1 to cast the problem in {−1, 1}d when xi ∈ {0, 1}d. For this problem, we took the
implementation of (Doerr et al., 2020). Here the problem consists of collecting a dataset of sequences and their
associated autocorrelations to predict the autocorrelations of other sequences.

Training. For each problem f , we can get the values f(x) over the whole domain x ∈ X . For the gaussian process model,
we used a standard ARD kernel used in (Wan et al., 2021) defined by:

kθ(x, x
′) = l × exp

(
−

d∑
i=1

σiI{xi ̸= x′
i}

)

where θ = (l, σ1, . . . , σd) are d+ 1 learnable parameters. When we have a series of evaluations (x1, y1), . . . , (xn, yn), the
parameters are learned by minimizing the log-likelihood of the data, which is proportional to

L(θ|(x1, y1), . . . , (xn, yn)) ∝ −
1

2
log |Kθ,n|+ yTnK

−1
θ,ny

where Kθ,n is the n × n matrix where each entry (i, j) is equal to kθ(xi, xj). In practice, we learned the parameters θ̂n
solving:

θ̂n ∈ arg max
θ∈Rd+1

L(θ|(x1, y1), . . . , (xn, yn))

using the Adam optimizer with 100 steps and a learning rate set to 10−3, where (x1, y1), . . . , (xn, yn) denotes the labeled
data set.

Evaluation. Finally, once the parameters θ̂n are learned, we computed the log-likelihood over the whole space X as well as
the mean square error:

MSE(f̂θn ,X) = (1/|X |)
∑
x∈X

(f̂θn(x)− f(x))2

Parameter tuning. We detail here the full setup for the parameter tuning experiments.

Graph Neural Network tuning. For the second set of experiments, we considered the problem of tuning the architecture
of a standard three-layers graph neural network displayed in Figure D.5. The task here consists in choosing for each
layer between two activation functions A ∈ {ReLU, TanH}, to put a dropout of value 0.3 or not and finally to activate
the skip-connection or not for each layer. It results in a total of nine binary variables. To record the quality of a set of
configuration parameters x ∈ {0, 1}9, we record the average gain over each problem instance:

SCORE(x) =
Test(⃗0)− Test(x)

Test(⃗0)

29

Measures of diversity and space-filling designs for categorical data

GCN +A D

skip-co

GCN +A D

skip-co

GCN +A D

skip-co

MLP

So
ftm

ax

Figure 7. Architecture of the graph neural network. A denotes the activation function, D denotes a dropout and skip-co denotes a skip
connection.

where Test denotes the value on the classification error on the test set of the network learned after T = 50 epochs, with the
Adam optimizer with 1e− 3 learning rate and a batch size of the size of the training set. We used two datasets to perform
the experiments, Cora and CiteSeer which are encountered in most graph neural nets tasks. For each class of problem and
each algorithm, we recorded the best score using a budget of n = 20 different configurations, defined as follows:

max(SCORE(x1), . . . ,SCORE(xn))

where Dn = (x1, . . . , xn) denotes a design. Moreover, for each design class (load balancing, item placement and
anonymous), we reproduced the results M = 10 times to have an estimation of the average gain as well as the variation.

SCIP tuning. The third task of the NeurIPS 2021 ML4CO competition (Configuration taks) consisted in finding the
hyperparameters of a MILP solver (here the SCIP solver) that provide the best results over a given class of problem instances:
item placement and load balancing. Here the combinatorial solver SCIP is parameterized by a collection of a short-listed set of
25 hyperparameters. Among them, there are nine binary categorical parameters: branching/scorefunc, branching/preferbinary,
branching/lpgainnormalize, lp/pricing, nodeselection/childsel, separating/maxcuts and branching/scorefac. For each class of
problem (item, load, anonymous), we consider 10 problems in each class denoted here by f1, . . . , f10 and we denote by
fi(x) the result of the SCIP solver over the problem fi tuned with the categorical parameters x. Here, fi(x) corresponds to
the primal-dual gap of the solver when the solver is parameterized with x and we denote by f̄i the primal-dual gap of the
solver with default parameters. To record the quality of a set of parameters x, we record the average gain over each problem
instance:

SCORE(x) =
1

10

10∑
i=1

fi(x)− fi(⃗0)

fi(⃗0)

For each class of problem and each algorithm, we recorded the best score using a budget of n = 20 different configurations,
defined as follows:

max(SCORE(x1), . . . ,SCORE(xn))

where Dn = (x1, . . . , xn). Moreover, for each design class (load balancing, item placement and anonymous), we reproduced
the results M = 10 times to have an estimation of the average gain as well as the variation.

30

