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Abstract

This paper presents a comprehensive Bayesian
framework for FANOVA models. We provide
guidelines for tuning and practical implementa-
tion to improve scalability of learning and pre-
diction. Our model is very flexible and can han-
dle different levels of sparsity across and within
decomposition orders, as well as among covari-
ates. This flexibility enables the modeling of com-
plex real-world data while enhancing interpretabil-
ity. Additionally, it allows our model to unify di-
verse deterministic and Bayesian non-parametric
approaches into a single equation, making com-
parisons and understanding easier. Notably, our
model serves as the Bayesian counterpart of sev-
eral deterministic methods allowing uncertainty
quantification. This general framework unlocks
potential for novel model developments that have
been previously overlooked, such as the proposed
Dirichlet mixing model that addresses limitations
of existing models.

1. Introduction
In many applications, we aim to estimate the function that
links a target output to input covariates. In this paper, we
focus on Functional Analysis of Variance (FANOVA) mod-
els, which decompose this regression function into main
and interactions terms (Wahba, 1990; Durrande et al., 2013;
Ginsbourger et al., 2016; Chastaing & Le Gratiet, 2015)
giving insights into the effects of individual covariates and
combinations of covariates. To enhance interpretability, we
often assume that the output depends on only a few key
functional terms (Rudin et al., 2022). However, identifying
the optimal set of these terms and characterizing their non-
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linear shapes poses a significant challenge. Two distinct
approaches have emerged to address this problem.

A widely recognized method originating from the kernel
community is the Component Selection and Smoothing Op-
erator (COSSO) (Lin & Zhang, 2003; Storlie et al., 2011;
Touzani & Busby, 2013; Ravikumar et al., 2009; Radchenko
& James, 2010; Zhang & Lin, 2006; Wong et al., 2019).
However, the existing literature on COSSO primarily fo-
cuses on estimation, largely overlooking uncertainty. This
is primarily due to the absence of a Bayesian interpretation
for this frequentist approach. In contrast, a separate line
of research has proposed a Bayesian framework employ-
ing additive non-parametric models (Linkletter et al., 2006;
Kaufman & Sain, 2010; Scheipl et al., 2012; Chen & Liao,
2020; Wei et al., 2020; Curtis et al., 2014; Lu et al., 2022;
Duvenaud et al., 2011; Durrande et al., 2012; 2013). These
approaches often assign a Gaussian process (GP) or a semi-
parametric model to each functional component. Some
variants incorporate sparsity models to limit the number
of relevant terms. While both of these approaches aim to
tackle the same problem, there has been a notable lack of
connection between these two research communities.

Contributions: This paper proposes a new comprehensive
Bayesian framework for FANOVA problems, offering sev-
eral key contributions:

• We show that our model is highly flexible, accommo-
dating different levels of sparsity to adapt to real-world
data complexity. Thus, we believe that our contribution
has the potential to inspire future model developments
that may have remained overlooked until now. This
paper introduces one potential model, the Dirichlet,
that showed its efficiency in ultra-sparse settings.

• We demonstrate that our new model unifies determinis-
tic and Bayesian state-of-the-art methods into a single
equation, facilitating their comparison within a com-
mon framework. Notably, we demonstrate that our
model serves as the Bayesian counterpart to COSSO-
like approaches, enabling the quantification of uncer-
tainty in traditionally deterministic methods.

• We address various practical implementation chal-
lenges and offer insightful implementation tricks and
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guidelines, covering topics such as prior choice, hyper-
parameter tuning, scalable learning and prediction.

2. Comprehensive Bayesian framework for
FANOVA model

This section begins by reviewing the FANOVA framework.
We then present our proposed model, demonstrate its flexi-
bility in handling multi-level sparsity and provide guidelines
for its tuning and inference.

2.1. FANOVA model

Let (x(n), y(n)), for n ∈ {1, . . . , N}, be the observed data:
y(n) is the scalar output and x(n) = [x

(n)
1 , . . . , x

(n)
D ]⊤

is a D-dimensional vector of potential covariates. The
goal is to infer the regression function f such that y(n) =
f
(
x(n)

)
+ε(n) where ε(n) is a zero-mean noise. Within the

FANOVA framework (Wahba, 1990), f writes as a sum of
contributions of covariates and combinations of covariates:

f(x) = b+

r∑
i=1

∑
cj∈Ci

D

fcj (xcj ) (1)

where r ≤ D is the decomposition order, b is a constant, Ci
D

is the i-th combination of covariates without repetition i.e.,
subsets cj with i distinct elements from {1, . . . , D}, and
xcj denotes the subset of covariates in cj . This results in
J =

∑r
i=1 #C

i
D functional terms (excluding the constant

component b) where #Ci
D denotes cardinal of Ci

D.

To improve model interpretability and explainability, it is
common to truncate the sequence in (1) to include only
low-order interactions. For instance, with r = 1, we only
consider main effects, which are components depending on
individual covariates while for r = 2, the model also in-
cludes first-order interaction effects, which are functions
depending on two covariates and so on. However, as the
covariates number and the model order increase, the number
of terms still increase asO(Dr) making the estimation prob-
lem challenging. Moreover, the model complexity impedes
the interpretability and the understanding of results. Fortu-
nately, the number of relevant terms is often much smaller
than the total number of components.

2.2. Proposed Global-Local shrinkage hierarchical GP

GP are powerful non-parametric tools to define prior dis-
tributions over functions when the regression function is
not limited to simple parametric forms. In this paper, we
propose the following hierarchical FANOVA GP model pro-
viding flexible sparsity information through latent variables:

Λ ∼ P(Λ)

Θ ∼ PW(Θ)

∀i ∈ {1, . . . , r}∀cj ∈ Ci
D fcj |λi,θcj

∼ GP
(
0, λiθcjkcj

)
(2)

Functional component depending on covariates from subset
cj follows a GP of zero mean and kernel λiθcjkcj where
kcj is a given unweighted kernel function deriving the sub-
space of fcj . Λ = [λ1, . . . , λr]

⊤ and Θ = [Θ⊤
1 , . . . ,Θ

⊤
r ]

⊤

where Θi is the vector containing parameters θcj associated
to components within the order i i.e., Θi = [θcj , cj ∈ Ci

D]T .
PW(Θ) and P(Λ) are then prior distributions that are af-
fected to these vectors respectively and W are tuning hyper-
parameters. In this paper, we will use "p(.)" to denote the
density function associated to the distribution P .

Model (2) can be seen as an extension of finite-dimensional
Bayesian global-local shrinkage models (Tang et al., 2018)
to an infinite-dimensional setting. In fact, model (2) contains
two kinds of latent variables. Each parameter λi acts as a
global indicator of the strength of active components in a
given order i, while variables θcj control the sparsity of
functional components within the same order i. If θcj is
too small, the component cj will approach zero, ensuring
sparsity within the set of components of the same order i if
almost all θcj are close to zero. In contrast, if λi is too small,
the information carried by the components in order i may be
considered as not relevant. For these reasons, parameters λi
will be denoted as global scales while parameters θcj will
be denoted as local scales. Subsection 2.3 will particularly
show how this local-global formulation yields a remarkable
flexibility in managing multi-level sparsity.

2.3. Embracing flexibility: multi-level sparsity through
Local-Global scales

A large family of models can be defined with appropriate
choices of PW(Θ) denoted as the “mixing density”.1 The
simplest case is when θcj are assumed all a priori indepen-
dent i.e., pW(Θ) =

∏r
i=1

∏
cj∈Ci

D
pwcj

(θcj ). Table 3 of
Appendix A.1 presents examples of mixing densities in-
cluding discrete (e.g., Spike and Slab) and continuous (e.g.,
Horseshoe (Carvalho et al., 2009)) models. While discrete
models offer the optimal representation (many components
are exactly zero), many experiences have highlighted several
computational difficulties compared to continuous models
(see (Malsiner-Walli & Wagner, 2018) for an example). The
advantage of using a continuous model is that it allows for
recent gradient-based approaches whether for optimization
or for Bayesian sampling. To enhance the shrinkage behav-
ior of continuous models and better replicate the behavior
of discrete ones, several solutions can be extended from the
literature. One can adopt an adaptive strategy inspired by

1With analogy to scale mixture of Gaussian in finite-
dimensional models.
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adaptive LASSO (Zou, 2006): penalize each component dif-
ferently using prior information about relevant components
from a rough solution or using techniques like mutual infor-
mation between covariates. The relevance of the obtained
model depends on these estimated weights. One can also
add a further layer in the hierarchical model by assigning
priors to these weights and estimating them with the other
latent parameters (Wei et al., 2020) which increases the
number of unknown variables. In this paper, we propose an
alternative solution using a non-separable mixing density.

2.3.1. COMPONENT SHRINKAGE WITH NON-SEPARABLE
MIXING

We specifically assume local parameters θcj within the same
family i to be dependent. Then, there are different ways
to construct mixing priors on these dependant local scales.
A natural way is to extend standard mixing densities to
construct multivariate models. For instance, one can replace
the univariate Exponential with:

pW(Θ) ∝ exp

(
−

r∑
i=1

√
Θ⊤

i W
−1
i Θi

)
1[0,+∞[(Θ) (3)

where Wi is a positive definite matrix that can introduce
correlations among specific values within Θi. Even when
Wi takes a diagonal form (the model is then closely linked
to the ℓ1,2 loss), the parameters within Θi remain dependent,
albeit decorrelated. However, determining the appropriate
diagonal values of Wi that describe the relative magnitudes
of local scales remains an open problem.

In this paper, we propose a new alternative approach for
promoting dependent local scales using the Dirichlet prior:

pWi
(Θi) ∝

∏
cj∈Ci

D

θ
wcj
cj (4)

with
∑

cj∈Ci
D
θcj = 1. Hyperparameters Wi indicate the

relevance of each component. In the case of a symmetric
Dirichlet (where all elements of Wi equal a given wi), this
hyperparameter acts as a concentration parameter. As wi in-
creases, the energy distribution becomes more evenly spread
among components within order i. Conversely, with a
smaller concentration parameter, the energy is more sparsely
distributed, and the majority of components approach zero.
The limiting case if when the energy inside the order i is
concentrated onto a single component.

What makes the Dirichlet mixing particularly interesting is
its explicit connection to the number of relevant components.
In fact, when wi ≤ 1, it may be seen as an approximation
for the expected percentage of relevant components inside
the order i. In essence, knowing the expected percentage of
relevant components allows for an effective setting of this
mixing model. Then, this new model offers a high degree

of flexibility for tuning, as it enables the construction of
a structured prior over local scales while only adjusting a
single hyperparameter. This is particularly interesting when
we have a prior information regarding the number of rele-
vant components or we are searching for a low-dimensional
representation with a target number of relevant components
at each order. To the best of our knowledge, the combi-
nation of GP and Dirichlet-like non-separable shrinkage
proposed in our work is novel and results in an interesting
structured prior on functional components. The resulting
model approximates the discrete shrinkage behavior while
being continuous, which is not common in other models.

2.3.2. COVARIATE SELECTION WITH NON-SEPARABLE
MIXING

In many cases, particularly with numerous covariates, ex-
ploring a second level of sparsity through covariate selection
significantly improves model interpretability. Restricting the
active functional components in the final model to depend
on only a small number of covariates can yield desirable
sparsity properties. Notably, sparsity on covariates often
translates to sparsity on selected components. Our model
(2) can effectively handle this level of sparsity by using a
non-separable mixing that considers dependencies between
components sharing covariates. This can be achieved again
by incorporating a correlation matrix for components shar-
ing covariates in the same spirit of (3). In this paper, we
propose instead to add a layer of covariate selection. The re-
sulting mixing probability writes in an hierarchical manner:

η ∼ P(η)

∀i ∈ {1, . . . , r}∀cj ∈ Ci
D θcj |ηl,l∈cj ∼ Pηl,l∈cj (5)

The first line introduces the covariate selection variable η =
[η1, . . . , ηD]T which can be assigned a prior distribution,
such as a Dirichlet prior that can be tuned according to
the desired number of relevant covariates. The second line
deals with the mixing model, which is adjusted based on the
values of ηl associated with the same covariates on which
the interaction component depends. For instance, the prior
distribution of θ{1,2} is parameterized by the values of η1
and η2. Note that (5) results in a non-separable mixing. This
means that when we integrate (5) with respect to η, it leads
to a dependency between components that share the same
covariates, due to dependencies on the same variables ηl.
However, adding this new layer increases the dimensionality
of the problem with D variables. One approach is to set θcj
to be a deterministic function of θl for all covariates l in the
subset cj such as the product function. Then, (5) turns to:

η ∼ P(η)

∀i ∈ {1, . . . , r}∀cj ∈ Ci
D θcj =

∏
l∈cj

ηl (6)
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This setup enforces a hard shrinkage effect on the interac-
tion components when the corresponding main effects are
not relevant. In other words, if the main effects do not sig-
nificantly contribute to the model, the associated interaction
components are strongly penalized, ultimately leading to
their suppression. The primary advantage of this model is
the reduced number of unknown parameters, as all local
scales are expressed solely in terms of D variables ηl. How-
ever, a drawback arises when a covariate lacks relevance
on its own but gains significance when associated with an-
other covariate through an interaction component. In such
cases, this approach may overlook important interactions or
overestimate non-relevant main components.

Alternatively, while allowing ηl to directly control the values
of main effects components (they are equal to main effect
local scales), we propose to use individual ηl values to con-
trol interaction scales through their prior mixing. Equation
(5) can be rewritten as follows:

η ∼ P(η)

∀cj ∈ C1
D θcj = ηcj

∀i ∈ {2, . . . , r}∀cj ∈ Ci
D θcj |ηl,l∈cj ∼ Pηl,l∈cj (7)

This approach allows for a soft shrinkage effect on the in-
teractions, addressing the limitation of the previous model
while keeping the same number of parameters as model (2).

2.3.3. DIFFERENT GLOBAL SCALES

Global scales indicate the overall energy in the interaction
level, promoting a third level of sparsity across orders. In
model (2), we have set a distinct global scale for each in-
teraction order, thereby increasing the number of unknown
parameters. However, using different global scales can
be useful in high-order decomposition settings (r is large),
effectively shrinking all components in non-relevant interac-
tion orders to zero. Moreover, even with a low decomposi-
tion order, employing a different global scale per interaction
order may be necessary when the energy is not uniformly
distributed across orders, as it will be shown in Section 4.

2.4. Hyperparameters r and kcj
2.4.1. OTHOGONAL KERNEL FUNCTION

The FANOVA framework (1) allows us to measure the con-
tribution of each component to the overall model. For re-
liable interpretability, we need each component to have a
unique effect, without redundancy. To address this issue,
the concept of kernel orthogonal additive models has been
introduced in previous literature. Examples of orthogonal
kernels ensuring orthogonal subspaces are (Lu et al., 2022;
Durrande et al., 2012) that add constraints on standard ker-
nels to achieve identifiability. Alternatively, we can use
kernels related to the Sobolev space including zero-mean

functions with proper first derivatives (Storlie et al., 2011).
Expressions of these kernels are provided in Appendix A.2.

Given that standard kernels such as RBF or Matern are
not suitable in such framework, implementation tricks like
(Pleiss et al., 2018; Liu et al., 2020; Wilson & Nickisch,
2015; Gardner et al., 2018) that use kernel interpolation to
reduce complexity in learning and prediction, are no longer
applicable. It becomes essential to explore alternative ap-
proaches that align with orthogonal kernels. In this context,
we have observed that orthogonal kernels described above
have a particular structure: they write as the sum of a station-
ary kernel and linear kernels. Therefore, it is still possible
to extend these interpolation tricks to orthogonal kernels.
Details about this extension are provided in Appendix B.1.

2.4.2. DECOMPOSITION ORDER

In real-world problems, determining the true decomposition
order can be challenging. If the order is overestimated (re-
sulting in overfitting), the global scale can detect this issue
by shrinking all components in higher orders to zero. This
is feasible because we use different global parameters for
different interaction levels. However, it is more common to
underestimate the interaction order for interpretability rea-
sons. In such cases, adding a residual component can help
account for all terms above the chosen order (see Appendix
A.3 for the expression). When this residual component has
a significant energy, it suggests that the chosen decompo-
sition order should be revisited and potentially increased
to capture missing information. This adjustment can then
allow the removal of the residual component, leading to
better interpretability. Note that many papers, such as (Lu
et al., 2022), have shown that a small decomposition order
seems to be sufficient with orthogonal kernels to achieve
competitive accuracy.

2.5. Learning and prediction

Let Ω denote the set of unknown variables. Three schemes
can be used to estimate model parameters. One approach is
the expanded scheme, which analyzes the model in terms of
its functional components fcj , that is Ω = {τ, b, fcj ,Θ,Λ}
where E[∥ε(n)∥2] = τ . Another method is partial marginal-
ization, which instead considers the latent function in (1)
i.e., f = b+

∑r
i=1

∑
cj∈Ci

D
fcj , then Ω = {τ, b, f,Θ,Λ}.

A third technique is full marginalization, eliminating func-
tional components so that Ω = {τ, b,Θ,Λ}. The resulting
distributions are provided in Table 4 of Appendix A.4.

Each learning scheme has its own advantages and lim-
itations, depending on the problem and available data.
Marginalization reduces considerably the number of un-
knowns parameters Ω. For instance, full marginalization
has J + r + 2 unknown variables, while the expanded and
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partially marginalized models have (N + 1)J + r + 2 and
N + J + r + 2 respectively. However, marginalization can
also break conjugacy properties, potentially complicating
computations like the ones in Gibbs sampling. It also re-
lies on the assumption of orthogonal functional subspaces,
necessitating the careful selection of orthogonal kernels.

Once the learning scheme is chosen, one should select the
inference method to estimate p(Ω|X,y) and then deduce
predictive densities. There are two primary approaches
considered either to compute point estimates of parameters
and components, or use sampling where a set of samples are
generated to approximate the whole posterior distribution
(Filippone et al., 2013; Filippone & Engler, 2015; Pinder
et al., 2020).

In this paper, we leverage dimension reduction and consider
the fully marginalized scheme. Let X = (x(1), . . . ,x(N))
and y = (y(1), . . . , y(N)). We define the marginalized
kernel as k′Θ,Λ =

∑r
i=1 λi

∑
cj∈Ci

D
θcjkcj . Then, the pre-

dictive density of the the latent function writes

p(f |X,y) =

∫
p(f |X,y,Θ)p(Ω|X,y)dΩ (8)

Very often, a plug-in approach is used to approximate this
integral (Teckentrup, 2020): an estimate Ω̂ from p(Ω|X,y)
is computed and the predictive distribution reduces to a GP:
f |X,y ∼ GP(µ∗

Ω̂
, k∗

Ω̂
) where

µ∗
Ω(.) = b+ k′Θ,Λ(.,X)Σ−1

Θ,Λ (y − b)

k∗Ω(., .) = k′Θ,Λ(., .)− k′Θ,Λ(.,X)Σ−1
Θ,Λk

′
Θ,Λ(X, .)

and ΣΘ,Λ = τIN + k′Θ,Λ(X,X). We can also show that
the predictive distribution of a component fcj in a given
order i is a GP i.e., fcj |X,y ∼ GP(µ∗

Ωcj
, k∗Ωcj

) where

µ∗
Ωcj

(.) = γcjkcj (.,X)Σ−1
Θ,Λ (y − b)

k∗Ωcj
(., .) = γcjkcj (., .)− γ2cjkcj (.,Xcj )Σ

−1
Θ,Λkcj (Xcj , .)

where Xcj denotes the subset of X in cj and γcj = λiθcj .
In case of sampling, the marginal density p(Ω|X,y) is ap-
proximated with S samples and the predictive distribution of
the latent function (and components) writes as a mean and
scale mixture of S GPs: f |X,y ∼ 1

S

∑S
s=1 GP(µ∗

Ωs
, k∗Ωs

).

The resulting computational complexity in learning and
prediction is discussed in Appendix B.2.

3. A unified framework
In this section, we will show how the flexibility offered
by our model allows us to express almost state-of-the-art
ANOVA approaches within the same equation (2).

3.1. Bayesian FANOVA approaches

Table 5 of Appendix B.3 shows how many Bayesian
FANOVA models in the literature are special cases of our
model (2). For example, additive variable selection such as
(Scheipl et al., 2012; Antonelli & Dominici, 2018) fall under
our model with r = 1. Rather than explicitly stating how
each method is an instance of our model (as in Table 5), this
section takes a more informative approach by categorizing
these methods according to model tuning and learning.

3.1.1. TUNING-BASED CATEGORIZATION

Model tuning involves the selection of hyperparameters
(namely decomposition order, kernel choice, mixing model),
which are at the user’s choice. Differences in tuning can
break down to two points. The first one is the Global-Local
Scales Dilemma. Most of Bayesian literature do not differ-
entiate between local and global shrinkage. They typically
employ local scales to weight each component differently
while using a single global scale for all decomposition or-
ders e.g., (Vo & Pati, 2017; Reich et al., 2009; Tang et al.,
2023). We will show in our experiments that weighting
all orders equally can be problematic especially when true
relevant components are not distributed equally across or-
ders. Other works have instead employed a different global
scale per order but components within the same order are
weighted equally e.g., (Durrande et al., 2012; Lu et al.,
2022). However, our experiments will highlight the im-
portance of local scales as they help the model to better
adapt data complexity where some components might have
a more significant influence and also ensure a more parsi-
monious solution in terms of relevant components. Only
few works proposed joint covariate and component selec-
tion. For instance, several works promote their models as
a form of variable selection by making slight adjustments
to the kernel function. For example, selection may occur at
the level of the lengthscale of the RBF kernel ensuring the
automatic selection of covariates on which each component
relies (Vo & Pati, 2017). In this regard, such an approach
does not merely restrict the model to depend on a few set
of covariates. Instead, it enables to infer a fixed number
of components without specifying the order, as the model
can directly infer the appropriate order. Then, this work can
not be viewed as a covariate selection model but rather an
automatic inference of the order. The only work we found
that enables covariate selection is (Agrawal & Broderick,
2023) which is a particular instance of our generic model
(5) using the hard shrinkage model (6). The second point
of difference between Bayesian approaches is the choice of
global and local priors. Most of works use discrete models
and employ standard kernels for their GP models such as lin-
ear (Agrawal et al., 2019) and RBF (Tang et al., 2023). Only
a few works discuss the importance of orthogonal kernels
(Lu et al., 2022; Reich et al., 2009).
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3.1.2. LEARNING-BASED CATEGORIZATION

Model learning focuses on the estimation procedure of the
resulting model’s unknown parameters (e.g., local/global
scales). Differences in learning can also break down to two
main points namely the learning scheme (expanded, par-
tially or fully marginalized) and the inference method (plug-
in, sampling etc.) as presented in Section 2.5. Most works
rely on computing point estimations by alternate updates
between parameters and latent function using a partially
marginalized approach (Agrawal & Broderick, 2023; Tang
et al., 2023). Discrete parameters are mainly updated using
sampling steps. Some works employ the plug-in approach
e.g., (Lu et al., 2022). In a fully Bayesian framework, the
expanded scheme is typically used with Metropolis-Hasting
or Gibbs (Reich et al., 2009; Kaufman & Sain, 2010).

3.2. Deterministic FANOVA approaches

There has also been much work on penalized methods for
FANOVA models. Typically, f is estimated by minimizing
a penalized function within a Reproducing Kernel Hilbert
Space (RKHS) H. Specifically, each functional component
in (1) resides in a subspace Hcj of the orthogonal decompo-
sition H =

⊕
cj
Hcj . A prominent kernel solution in this

context is the COSSO method (Lin & Zhang, 2003) which
extends the standard kernel ridge solution known as Smooth-
ing Spline ANOVA (SS-ANOVA) (Wahba, 1990; Gu & Gu,
2013) to component selection. In the same spirit of LASSO,
COSSO modifies the traditional quadratic norm, replacing
it with the (pseudo-) norm of the RKHS. The solution is the
minimizer of the following loss function:

1

N

N∑
n=1

(
y(n) − f(x(n))

)2
+ α

r∑
i=1

∑
cj∈Ci

D

ωcj∥Pcjf∥H

(9)
where Pcj is the orthogonal projection of f on Hcj , ωcj ≥ 0
and α > 0 are tuning hyperparameters. Note that when ωcj

is tuned to penalize components differently, the solution
is known as Adaptive COSSO (ACOSSO), in the same
spirit as Adaptive LASSO. Some extensions of (9) have
been also proposed for instance by replacing the ℓ1 loss
with another penalization such as ℓ1,2 (Radchenko & James,
2010). Methods for solving (9) can be found in (Touzani &
Busby, 2013; Storlie et al., 2011).

While all Bayesian approaches in Section 3.1 are specific
instances of our generic proposed model, no direct connec-
tion with deterministic approaches like COSSO has been
discussed in these works. This lack of connection can be
attributed to two primary reasons. First, despite the well-
established link between GP and kernel ridge (Kanagawa
et al., 2018), the use of sparse penalization obscures the ex-
plicit expression of COSSO-like solutions in terms of a GP
and complicates their Bayesian interpretation. Second, there

is another alternative in inference that was not explored in
Bayesian non-parametric models which is the marginalized
posterior estimation. This method involves integrating out
kernel parameters, typically local scales, according to their
prior models. This provides a different estimator from the
one given by plug-in or alternate optimization. This unex-
plored alternative may also explain why a direct connection
with deterministic approaches such as COSSO has not been
established thus far, as we will show in Proposition 3.1.

Proposition 3.1. The hierarchical GP model (2) under
equal global scales and an exponential mixing for local
scales, has as marginal Maximum A Posteriori (MAP) esti-
mate, the COSSO solution (minimizer of (9)).

Proof. We derive a tangent majorant for the negative
marginal posterior likelihood of functional components and
show that maximizing this tangent majorant is equivalent to
COSSO solution. Details are provided in Appendix B.4.

Extension to other COSSO models (Ravikumar et al., 2009;
Radchenko & James, 2010) is straightforward (see Ap-
pendix B.4). This result is interesting as we have now a
Bayesian representation of deterministic approaches, al-
lowing to derive additional interesting quantities such as
predictive uncertainty intervals.

4. Experiments
4.1. Set-up

This section studies the performance of the proposed model
with different mixing priors in terms of component se-
lection and prediction accuracy on simulated and real
data. We particularly consider from Table 3 the proposed
Bayesian COSSO (Exponential) and the Dirichlet models.
Additional experiments using the Student’t and the Horse-
shoe models are provided in Appendix C.3. Bayesian mod-
els were tested using two approaches: a plug-in with MAP
estimation of parameters, and sampling using Hamiltonian
Monte Carlo (HMC) (Hensman et al., 2015). To isolate the
model’s performance from hyper-parameters selection, we
consider for our proposed models the same Sobolev kernel
as in SS-ANOVA and COSSO. Comparisons with respect
to the state-of-the-art are also provided (see Table 1)2.

Metrics: The prediction accuracy is reported in terms of
root mean square error (RMSE). To identify the most sig-
nificant components contributing to the predicted model, we
rely on variance analysis. The number of active components
(NAC) corresponds to the minimal number of components
required to achieve at least 99% of the total variance. For
simulated data, since we know the true relevant components,

2Code is provided in https://github.com/
ymarnissi/bayesfanova_paper.
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Table 1. Benchmark methods. The term "Adaptive" refers to tech-
niques whose mixing/weights were tuned based on SS-ANOVA.

Acronym Method
SS SS-ANOVA (Wahba, 1990)
COS. COSSO (Lin & Zhang, 2003)
ACOS. Adaptive COSSO (ACOSSO) (Storlie et al., 2011)
MARS Mars (Friedman, 1991)
RBF-Ok Additive models with orthogonal kernel (Lu et al., 2022)
BCOS.MAP Bayesian COSSO with Plug-in (ours)
BCOS.HMC Bayesian COSSO with sampling (ours)
Dir.MAP Dirichlet model with Plug-in (ours)
Dir.HMC Dirichlet model with sampling (ours)
ABCOS.MAP Bayesian Adaptive COSSO with Plug-in (ours)
ABCOS.HMC Bayesian Adaptive COSSO with sampling (ours)
ADir.MAP Adaptive Dirichlet model with Plug-in (ours)
ADir.HMC Adaptive Dirichlet model with sampling (ours)

the model selection performance is assessed using True Posi-
tives (correctly selected components), False Positives (incor-
rectly selected components), and False Negatives (missed
components), which we use to compute the F1 score. For
real data, only the NAC metric is used, with a smaller NAC
indicating stronger model selection power. For Bayesian
models, we also assess the accuracy of the estimated credi-
ble intervals by calculating the coverage probability (Cover).
The latter represents the proportion of test points for which
the true function lies within the estimated 95% credible
interval. In order to get normalized metrics, we report in
this section the relative metric with respect to the baseline
method SS-ANOVA as follows: mrel =

m−mSS
mSS

where m is
the metric (RMSE, F1, NAC) of the compared model and
mSS is the one obtained with SS-ANOVA.

Simulated data: We consider two examples with r = 1
and r = 2 and generate data using different realizations (In-
dependent Uniform, Compound symmetry, Trimmed Auto-
regressive) with different correlation and noise levels (see
Appendix C.1). Each experiment is repeated 10 times. The
objective was to assess model performance with respect to
mixing models, noise levels and covariate correlation. For
simplification purposes and fair comparison, we restrict our
experimental study on models that do not need initial esti-
mates to tune their hyperparameters. Then, adaptive models
are not included in these simulations. Detailed results for
various simulated scenarios are presented in Tables 6 and
7 in the Appendices. Figure 1 offers a summarized view
of these results, representing an aggregate of all conducted
experiments using relative metrics. We also provide in Ta-
ble 2 results where we investigate covariate selection and
compare hard and soft shrinkage. Note that hard shrinkage
is similar to the model in (Agrawal & Broderick, 2023).

Real data: We perform several regression tasks on UCI
datasets using 5-fold cross-validation focusing on first-order
interactions (r = 2) and compare to state-of-the-art includ-
ing adaptive models. Information on prior and algorithm
settings are provided in Appendix C.2. Figure 2 summarizes
results on UCI data from Tables 8 and 9 in the Appendices.

Figure 1. Relative RMSE and F1 score with respect to SS-ANOVA.
Results are averaged over 210 runs including different noise and
correlation levels. Individual results are provided in Tables 6 and 7
in the appendices. Lower relative RMSE indicate better predictions
while higher relative F1 scores mean superior shrinkage.

Figure 2. Relative RMSE and NAC with respect to SS-ANOVA.
Results are averaged over all folds and datasets. Individual results
are provided in Tables 8 and 9 in the appendices. Lower relative
RMSE and NAC are indicative of better performance.

Figure 3. Most relevant components in the "Demand" dataset for
COSSO and Bayesian COSSO. Using a unique global scale seems
to introduce interaction components (in red) in COSSO not pre-
sented in Bayesian COSSO.

Table 2. Results with and without covariate selection with r = 2,
D = 30 covariates and only 7 relevant components f{1}, f{2},
f{3}, f{4}, f{1,2}, f{1,3}, f{3,5} from a total of 465 components.

Metric Without covariate selection Hard shrinkage Soft shrinkage

RMSE 1.66 ± 0.12 1.43 ± 0.42 1.46 ± 0.12
True Positives 5.60±0.30 5.00±0.50 5.40±0.40
False Positives 60.30±10.23 8.30±8.87 18.81±11.35
False Negatives 1.40±0.30 2.00±0.50 1.60±0.40

4.2. Results and discussions

In the following, we organize the key takeaways from our
experiments into different sections.
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Prediction accuracy and selection power are related:
Figures 1 and 2 show that the proposed Bayesian models
outperform state-of-the-art methods. In simulated data, the
Dirichlet mixing exhibits superior performance by selecting
fewer incorrect covariates. The reconstruction error being
sensitive not only to correctly chosen covariates but also
to noise introduced by false positives, sparse models like
Bayesian Dirichlet, while occasionally missing one correct
component, consistently outperform SS-ANOVA. Experi-
ments on real data further validate the effectiveness of sparse
models, achieving competitive performance with just a few
components. For instance, in the "Housing" dataset, sparse
models reduce by half the number of active components
while achieving comparable RMSE to SS-ANOVA (see Ta-
ble 8). Additionally, adapting mixing models using weights
tuned from the SS-ANOVA estimator generally improves
results. However, when the SS-ANOVA estimator is not ac-
curate, this adaptation worsens estimates in several datasets.
In this regard, using non-separable mixing models for im-
proved shrinkage, such as the Dirichlet model, emerges as a
more effective alternative.

The Dirichlet Model: intuitive and effective with strong
prior knowledge or for dimensionality reduction: Addi-
tional experiments of Appendix C.3 support our findings
from Figures 1 and 2. Beyond its discrete-like shrinkage
behavior, the Dirichlet prior offers intuitive hyperparame-
ter tuning, allowing direct control over the percentage of
relevant components. In contrast, alternative priors like Ex-
ponential and Horseshoe require more complex tuning and
lack the same straightforward interpretation of hyperparam-
eters. However, the choice of the Dirichlet model should
be carefully considered based on our objectives. It can be
effective when a strong prior about the number of relevant
components exists or when aiming for a low-dimensional
representation with minimal components. Otherwise, it may
not always optimize accuracy or prediction performance. In
cases where the primary objective is accurate prediction or
the sparsity level needs to be automatically inferred from
data, alternative soft models like COSSO may be more suit-
able. It is important to mention that we also observed that
algorithms with Dirichlet model requires slightly more iter-
ations to converge compared to other independent models.
This may be explained by the correlation between local
scales within the Dirichlet model, which can slow down
mixing and convergence especially in sampling.

Plug-in yields sparser solutions while Sampling provides
more accurate uncertainty: Plug-in and fully Bayesian
approaches yield comparable results. However, the plug-in
approach consistently shows the best F1 score across sim-
ulated data. This can be attributed to its smallest number
of false positives in most cases (see Tables 6 and 7). This
observation aligns with established sparse reconstruction
principles in finite dimensions, where the MAP estimate

used in the plug-in approach tends to be more parsimonious
compared to estimates based on sample means. But, the
fully Bayesian approach appears to provide more accurate
uncertainty intervals. In fact, the plug-in approach approx-
imates p(Ω|y) as a Dirac mass in a single point while the
fully Bayesian approach incorporates the entire posterior
distribution, providing a more reliable uncertainty. This
observation is less evident in the UCI dataset (see Table 9),
where both methods exhibit similar coverage results. This
suggests that the marginal density of local and global pa-
rameters in the UCI data is well concentrated around the
maximum, allowing it to be effectively represented by a
Dirac distribution on the MAP estimators, as in plug-in.

Ultra-sparse models can accommodate correlated covari-
ates: Despite a slight performance decrease for dependent
covariates (see Tables 6 and 7), sparse models remain robust,
effectively capturing relevant features. While SS-ANOVA
tends to select more covariates in high correlation scenar-
ios leading to increased false positives, COSSO, Bayesian
COSSO, and Dirichlet models achieve good results with low
false positives due to sparsity constraints. Although they
may miss some relevant components with low energy, their
ability to maintain low false positives is noteworthy.

Both global and local shrinkage are important: The ob-
served differences between COSSO and Bayesian COSSO,
particularly in the second simulated example (r = 2), stem
from the Bayesian models’ adaptive global shrinkage pa-
rameter. Contrary to SS-ANOVA and COSSO, which apply
uniform penalties to both main and interaction effects, our
Bayesian models dynamically adjust the global shrinkage
parameter based on the observed energy in each order. This
adaptation is advantageous when relevant components are
unevenly distributed across orders. For instance, in the sec-
ond example (r = 2), COSSO results align more closely
with SS-ANOVA, possibly due to the inclusion of non-
irrelevant interaction components in COSSO’s estimate. In
contrast, Bayesian models, with their adaptive global param-
eter, offer improved performance by effectively capturing
relevant components and reducing the impact of irrelevant
ones. For example, in the "Demand" UCI dataset (Figure
3), Bayesian COSSO primarily identifies main effects as
relevant, while COSSO includes some fictitious interaction
components primarily due to the global parameter. Enhanc-
ing the original COSSO by assigning different weights to
the interaction order and repeating the experiments is possi-
ble. However, this introduces additional hyperparameters to
tune through cross-validation. Similarly, when comparing
RBF-OK (using a single local scale) to our proposed models,
the importance of employing heterogeneous local scales that
adapt the relevance of each component becomes evident. In
fact, while both methods yield comparable RMSE in Figure
2, our models select fewer components.
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Covariate selection is important, but caution is needed
with hard shrinkage: Table 2 highlights the importance of
covariate selection in providing a more parsimonious repre-
sentation with minimal false positives. This emphasizes the
importance of using structured models, such as the covariate
selection model, in high-dimensional settings. However the
hard shrinkage model often fails to identify component f3,5
due to its dependence on the non-relevant main effect co-
variate x5. Conversely, the soft shrinkage model shows the
most balanced trade-off, achieving a low false positive rate
while maintaining good accuracy. While the considered co-
variate selection model shows promising results in terms of
parsimony, it also reveals the need for further improvement
in capturing complex relationships with covariates such as a
covariate that is only relevant when associated with another
one through an interaction component.

5. Conclusion and future works
This paper offers a comprehensive framework for FANOVA
models, with a large flexibility allowing to unify a broad
range of models into a single equation, enabling for their
comprehension and comparison within the same Bayesian
framework. This has the particular advantage of quantifying
uncertainty for traditionally deterministic models.

A limitation of our model is that the orthogonality of func-
tional subspaces assumes implicitly independent covariates.
Non-independent covariates can lead to non-identifiability.
Our experiments showed that ultra-sparse models may
address this issue. In fact, correlations between covari-
ates can negatively affect support recovery: an inactive
covariate with high correlation to an active one is more
likely to be identified by a sparse model. However, han-
dling non-independent features can be challenging in high-
dimensional settings. Future work could extend our ap-
proach to non-independent input features and examine the
effect of non-Gaussian noise and missing data using latent
variable models. Another interesting research direction is
scaling our method to large numbers of covariates and de-
composition order in both estimation and prediction tasks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Bayesian FANOVA background
A.1. Mixing densities

Given N realizations of covariates X = (x(1), . . . ,x(N)), the conditional distribution of each component fcj (X) ∈ RN , is
a multivariate Gaussian distribution:

fcj (Xcj )|λi,θcj ,X
∼ N

(
0, λiθcjkcj (Xcj ,Xcj )

)
(10)

where kcj (Xcj ,Xcj ) ∈ RN×N is the Gram matrix associated to the kernel kcj computed on covariates cj of X.

In the following, we will refer to the marginal prior density of each component as the prior density that has been integrated
with respect to local shrinking parameters. This amounts to computing the integral of (10) with respect to PW(Θ):

p
(
fcj (Xcj )|λi,X

)
∝
∫

exp

(
−
fcj (Xcj )

⊤kcj (Xcj ,Xcj )
−1fcj (Xcj )

2λiθcj

)
θ
−N

2
cj pW(Θ)dΘ (11)

Table 3 presents examples of mixing densities and the resulting models. Note that, for some (independent) mixing densities,
the marginal prior (11) has a closed form. This is for example the case, when using a Bernoulli mixing, an Exponential
mixing or an Inverse Gamma mixing models.

Table 3. Examples of mixing distributions.

Mixing density (Log) marginal prior Proposed name

Pwcj

(
θcj

)
= Exp

w2
cj
2

 wcj√
λi

√
fcj

(
Xcj

)T
kcj

(
Xcj

,Xcj

)−1
fcj

(
Xcj

)
Exponential (Bayesian COSSO)

Pwcj

(
θcj

)
= InvGamma

 ν
2
,
νw2

cj
2

 log

(
1 +

wcj
νλi

fcj

(
Xcj

)T
kcj

(
Xcj

,Xcj

)−1
fcj

(
Xcj

)T
)

Student’t with

degree of freedom ν > 0

Pwcj

(√
θcj

)
= HalfCauchy

(
w2

cj

)
Not explicit Horshoe

Pwcj

(
θcj

)
= βδ0 + (1 − β)δwcj

fcj

(
Xcj

)
∼ βδ0 + (1 − β)N

(
0, λiwcj

kcj

(
Xcj

,Xcj

))
Spike and Slab

Pwcj

(
θcj

)
= βδ0 + (1 − β)U(0, wcj

) Not explicit Spike and Slab Uniform

Pwcj

(√
θcj

)
= βδ0 + (1 − β)HalfCauchy

(
w2

cj

)
Not explicit Spike and Slab Horsehoe

PW (Θ) = Dirichlet
(
W2

)
(see Equation (4)) Not explicit Dirichlet

A.2. Expressions of Orthogonal kernel functions

A.2.1. SOBOLEV KERNEL

The (K − 1)
th-order of Sobolev space SK−1 includes only functions that integrate to 0 and have K − 1 proper derivatives:

SK−1 =

{
g|g(1), . . . , g(K−2) are absolutely continuous,

∫ 1

0

g(t)dt = 0 and g(K−1) ∈ L2[0, 1]

}
(12)

where g(k) is the kth derivative of g. Most of papers working with this RKHS, set the corresponding reproducing kernel to

k1(s, t) =
B2K (|s− t|)
(−1)K+1(2K)!

+

K∑
i=1

Bi(s)Bi(t)

(i!)2
(13)

where Bi is the ith Bernoulli polynomial. One can select (13) as a kernel function for the Gaussian processes modeling the
main effect components while for first interaction components, one can select the kernel product

k2 ((s1, t1) , (s2, t2)) = k1 (s1, t1) k1 (s2, t2) (14)
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It is worth to note that in some papers, the employed Sobolev kernel is slightly different from the one in (13). In fact, one
can use the same weighting coefficient in the non-stationary part of (13) i.e

k1(s, t) =
B2K (|s− t|)
(−1)K+1(2K)!

+
1

c

K∑
i=1

Bi(s)Bi(t) (15)

for some positive constant c. The latter controls the linear for K = 1 (and the quadratic for K = 2) trends. Adjusting c to a
high value gives vague yet priors to the linear/ quadratic trends. For the first order interaction effects with (15), the authors
in (Reich et al., 2009) recommend adding a correction instead of using the kernel product as follows:

k2 ((s1, t1) , (s2, t2)) = k1 (s1, t1) k1 (s2, t2) +

(
1

c
− 1

)
k1,2 (s1, t1) k1,2 (s2, t2) (16)

where k1,2(s, t) =
∑K

i=1Bi(s)Bi(t). It is an important to mention that the Sobolev kernel is defined for covariates in the
range of [0, 1]. Therefore, when working with real datasets where the covariates may not naturally fall within this range, a
transformation is required before applying the Sobolev kernel.

A.2.2. ORTHOGONAL KERNEL FROM (LU ET AL., 2022)

In order to ensure orthogonality, modifications are applied to conventional kernels, such as the squared exponential kernel,
also known as the RBF kernel. The RBF kernel, denoted as k1(s, t) = exp

(
− (s−t)2

2l2

)
, is parameterized with a length

scale hyperparameter l. To satisfy the orthogonality constraints, slight adjustments are made to these kernels. Specifically,
constraints are imposed to enforce the integral of each function component with respect to the input measure to be zero
(Durrande et al., 2012). When considering the RBF kernel with the orthogonality constraints, a closed-form expression
can be obtained for the constrained kernel when the input density follows a Gaussian distribution or is approximated by a
Gaussian mixture, uniform distribution, categorical distribution, or the empirical distribution. Assuming a Gaussian input
measure, where each covariate x(n) is drawn from N (µ, δ), the constrained RBF kernel can be expressed as follows:

k1(s, t) = exp

(
− (s− t)2

2l2

)
− l

√
l2 + 2δ2

l2 + δ2
exp

(
− (s− µ)2 + (t− µ)2

2(l2 + δ2)

)
(17)

To satisfy the assumption of a Gaussian input density, the authors in (Lu et al., 2022) propose the use of a normalizing
flow technique. This approach involves transforming the continuous input features to approximate a Gaussian density
through a sequence of bijective transformations. The parameters of these transformations are learned by minimizing the
Kullback-Leibler divergence between a standard Gaussian distribution and the transformed input data. Once the parameters
are determined, they are kept fixed, and the orthogonal kernel model is fitted on the transformed data with approximate
Gaussian densities.

For interaction orders, the authors use product kernel functions similarly to (14).

A.3. Residual functional component

The residual component aims to account for non-considered interactions and prevent a loss in prediction accuracy. The
corresponding kernel for this residual component can be expressed as follows when using a second order decomposition
(main and first order interaction effects) (Reich et al., 2009):

k (s, t) =

D∏
i=1

(1 + k(si, ti)− 1−
D∑
i=1

k1 (si, ti)−
∑

1≤l<m≤D

k2 ((sl, tl) , (sm, tm)) (18)

The expression for higher decomposition order is straightforward.

A.4. Learning schemes
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B. Additional theoretical details
B.1. Highlighting the structured representation of orthogonal kernels and extension of interpolation methods

Let ko be one the orthogonal kernels presented in Section A.2. One can see that it can be expressed as the sum of a
stationary part, denoted by ks(t, u), and a linear part that involves a weighted sum of functions vi(t)vi(u) for i = 1 to L.
The representation of ko can be written as:

ko(t, u) = ks(t, u) +

L∑
i=1

αivi(t)vi(u) (19)

where αi are some weights.

In the case of the orthogonal RBF kernel, the stationary part ks corresponds to the standard RBF kernel, L = 1, and the
linear part involves α1 = − l

√
l2+2δ2

l2+δ2 and v1(.) = exp
(
− (.−µ)2

2(l2+δ2)

)
. Similarly, for the Sobolev kernel, ks(t, u) and vi(t)

are computed based on Bernoulli polynomials, on the distance |t− u| and t, respectively.

Let’s consider the Structured Kernel Interpolation (SKI) as an example (Pleiss et al., 2018; Liu et al., 2020; Wilson &
Nickisch, 2015; Gardner et al., 2018). Given a SKI approximation for the stationary kernel

ks(X,X) ≈ ω⊤
Xks(U,U)ωX

where U ∈ RM are the interpolation points and ωX ∈ RM×N is the local interpolation weight matrix, we can maintain the
same representation for the orthogonal kernel by setting:

kor(X,X) ≈ V ⊤
X A(U,U)VX

where A(U,U) ∈ R(M+L)×(M+L) is the bloc diagonal matrix formed by two blocks: ks(U,U) and the diagonal matrix
whose elements are αi while VX ∈ R(L+M)×N is the matrix that results on the concatenation of ωX and vi(X).

It is worth noting that since we have only computed interpolation approximation for stationary kernels (linear kernels are not
approximated), the accuracy of the approximation depends solely on the interpolation accuracy of the stationary part of the
orthogonal kernel.

B.2. Computational complexity

B.2.1. MATRIX-VECTOR PRODUCT WITH INTERPOLATION OF ORTHOGONAL KERNELS FOR MAIN AND INTERACTION
EFFECTS

It can be noted that, L in (19) is significantly smaller than M , with L = 1 for the orthogonal RBF kernel and typically 1 or 2
for the Sobolev kernel. With this representation, the computational cost for a matrix-vector product remains similar to that of
a stationary kernel, approximately g(M) = O(N +M logM), and the storage requirement is approximately O(N +M).

Main effects can be expressed as the sum of individual effects for each input dimension i.e., kmain(X,X) =

λ1
∑D

j=1 θ{j}kor(X{j},X{j}). Exploiting this additive structure, the cost of a matrix vector product for main effects
is O(Dg(M)). Furthermore, the main effect kernel can still be represented in the same way as the individual effects
by combining the individual orthogonal kernels into a single block-diagonal matrix. For interactions, leveraging the
kernel’s product structure and interpolated individual effect representation reduces matrix-vector multiplication complexity.
Techniques like those in (Gardner et al., 2018) allow linear scaling with the number of terms in the product.

B.2.2. COMPUTATIONAL COMPLEXITY IN LEARNING

In a fully marginalized model, the number of unknown variables, while reduced, still scales as O(Dr). However, by limiting
to lower orders like r = 1 or 2 for interpretability (as discussed in Section 2.4), we maintain a small number of unknowns.
With a low decomposition order, the primary computational complexity during each iteration arises from manipulating
ΣΘ,Λ, a weighted sum of Gram matrices. To mitigate this, we can employ black-box matrix-matrix multiplication, possibly
incorporating structured representations of orthogonal kernels, to reduce time complexity. Tasks like inverse-matrix vector
multiplication, trace, or logarithm of determinants, common in learning algorithms, can be efficiently approximated using a
single optimization algorithm call, as described in (Gardner et al., 2018).
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B.2.3. COMPUTATIONAL COMPLEXITY IN PREDICTION

Structured kernel representation can be employed to use (Pleiss et al., 2018). This is particularly useful for main effects
or latent function in additive models (r = 1). This results in constant-time predictions regardless of the test dataset size
after an initial pre-computation phase, which consumes O(N +M logM) time and requires O(M) storage. For a sampling
approach, this complexity scales linearly with the number of samples S.

B.3. Link to Bayesian additive models

Various Bayesian additive models proposed in the literature for selecting functional predictors can indeed be viewed as
particular cases of the proposed model (2). Table 5 details this link for different models. It can be also noted that covariate
selection models such as (Zou, 2006; Scheipl et al., 2012; Antonelli & Dominici, 2018) as well as semi-parametric regression
with additive models such as the Multivariate Additive Regression Splines (Friedman, 1991) are also particular examples of
our models.
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B.4. Proof of Proposition 3.1

Let us assume that p(λi) = δλτ (the same shrinkage global parameter for all the functional components) and that θcj is
unknown and pwcj

(θcj ) is the Exponential model from Table 3 (replacing w2
cj with α1w

2
cj/τ for convenience purposes),

then, rewrite the minus logarithm of the marginal posterior using the marginal prior of target components and after discarding
all the deterministic variable priors and normalize with N/2τ :

R(fc1(Xc1), . . . , fcJ (XcJ )) =
1

N
∥y − b−

J∑
j=1

fcj (Xcj )∥2

+ αN

J∑
j=1

wcj

√
fcj (Xcj )

⊤kcj (Xcj ,Xcj )
−1fcj (Xcj ) + CN (20)

where αN = 1/N
√
λτ and CN is a constant independent of the target function. It can be noticed that the objective function

(20) reduces to an adaptive group Lasso penalized problem.

In the following, we will demonstrate that the minimizer of (20) is the COSSO solution given in (Touzani & Busby, 2013;
Storlie et al., 2011).

Lemma B.1. Let us define

M(fc1(Xc1), . . . , fcJ (XcJ ), βc1 , . . . , βcJ ) =
1

N
∥y − b−

J∑
j=1

fcj (Xcj )∥2

+ α0,N

J∑
j=1

β−1
cj f

⊤
cj (Xcj )kcj (Xcj ,Xcj )

−1fcj (Xcj )

+ α1,N

J∑
j=1

w2
cjβcj + s.t βcj ≥ 0 ∀j (21)

Then, there exist, α0,N and α1,N such that M is a tangent majorant of (20).

Proof. To simplify notation, let us denote by ucj = fcj (Xcj ). Since βcj ≥ 0, then we can write βcj as a function of some

vector u′
cj (one possible value of fcj (Xcj )) such that: βcj =

√
u′⊤
cj kcj (Xcj ,Xcj )

−1u′
cj ≥ 0. We can then write (21)

equivalently as

M(uc1 . . . ,ucJ ,u
′
c1 . . . ,u

′
cJ ) =

1

N
∥y − b−

J∑
j=1

ucj∥2 +
J∑

j=1

Mcj (ucj ,u
′
cj ) (22)

where

Mcj (ucj ,u
′
cj ) = α0,N

u⊤
cjkcj (Xcj ,Xcj )ucj√

u′⊤
cj kcj (Xcj ,Xcj )

−1u′
cj

+ α1,Nw
2
cj

√
u′⊤
cj kcj (Xcj ,Xcj )

−1u′
cj (23)

We need to demonstrate that there exist some values of α0,N and α1,N such that Mcj is a tangent majorant of R i.e

M(uc1 . . . ,ucJ ,u
′
c1 . . . ,u

′
cJ ) ≥ R(uc1 . . . ,ucJ ) ∀u′

cJ (24)

and that
M(uc1 . . . ,ucJ ,u

′
c1 . . . ,u

′
cJ ) = R(uc1 . . . ,ucJ ) for u′

cj = ucj ∀j (25)

Let vcj =
√

u⊤
cjkcj (Xcj ,Xcj )

−1ucj ≥ 0. We only need to show that given some values of α0,N and α1,N we have

α0,Nv
2
cjβ

−1
cj + α1,Nw

2
cjβcj ≥ αwcjvcj ∀βcj ≥ 0 (26)

When βcj = 0, this implies vcj = 0 and then the inequality (26) holds with the assumption 0/0 = 0.
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For βcj > 0, we consider the second order polynomial P = α1,Nw
2
cjβ

2
cj − αwcjvcjβcj + α0,Nv

2
cj . If the discriminant of

polynomial P is negative, then the polynomial is always positive for all βcj > 0. It follows that if α1,N =
α2
N

4α0,N
then (24)

holds.

Corollary B.2. The minimizer of (20) with respect to fc1(Xc1), . . . , fcJ (XcJ ) is equivalent to minimizing (21) with respect
to fc1(Xc1), . . . , fcJ (XcJ ), βc1 , . . . , βcJ where α1,N = α2

N/4α0,N . That is

Argmin
fc1 (X),...,fcJ (X),βc1

,...,βcJ

M(fc1(X), . . . , fcJ (X), βc1 , . . . , βcJ ) = Argmin
fc1 (Xc1 ),...,fcJ (XcJ

)

R(fc1(Xc1), . . . , fcJ (XcJ ))

(27)

Corollary B.3. A solution for (21) (and equivalently for (20)) can be obtained through an alternating optimization process
involving fcj and βcj . This process simplifies to solving a standard SS-ANOVA problem when βcj is fixed, and a nonnegative
garrote optimization problem when fcj is fixed which is equivalent to the estimation strategy envolved in COSSO (Touzani &
Busby, 2013; Storlie et al., 2011). Then, the MAP estimator of the hierarchical model (2) with an exponential mixing density
reduces to the COSSO solution.

Remark B.4. It is worth to note that additional parameters βcj play the role of selection parameters similarly to local
shrinkage parameters θcj . However, there is no reason that these two variables are equal. In fact, unlike θcj , variables βcj
have no Bayesian interpretation and are only added to the initial model for computational reasons.
Remark B.5. Very often, the work in (Reich et al., 2009), using a model similar to the Spike and Slab Horseshoe in Table 3,
is considered in the literature as the Bayesian counterpart of COSSO. But this is actually a wrong connection since both
methods are based on different models as we have shown in Proposition 3.1.

Extension to other COSSO models is straightforward. For instance, we show in the following proposition how (Ravikumar
et al., 2009) is a particular instance of our proposed model.

Proposition B.6. The hierarchical GP model (2) with r = 2 under equal global scales and mixing model (28) for local
scales has as marginal MAP estimate, the solution in (Ravikumar et al., 2009).

θ ∼ Exp
(
w2

2

2

)
α{l} ∼ Exp

(
w2

1

2

)
θ{l} =

1
1
θ + 1

α{l}

θ{l,l′} = θ (28)

Proof. The marginal negative logarithm of the posterior density writes:

w1√
λ

D∑
l=1

√
ψl +

w2√
λ

√√√√ D∑
l=1

ψl +

D−1∑
l=1

D∑
l′=2

ψl,l′ (29)

where
ψl = f{l}

(
X{l}

)T
k{l}

(
X{l},X{l}

)−1
f{l}

(
X{l}

)
and

ψl,l′ = f{l,l′}
(
X{l,l′}

)T
k{l,l′}

(
X{l,l′},X{l,l′}

)−1
f{l,l′}

(
X{l,l′}

)
which can be seen as a ℓ1 loss on main effects and ℓ1,2 on main and interactions effects which is similar to the penalization
proposed in (Ravikumar et al., 2009).

Remark B.7. In equation (20), we considered the marginal prior of the functional component, which is marginalized with
respect to local scales. We did not consider the joint prior because our goal was to find the maximum a posteriori (MAP)
estimate of the function. It is important to note the distinction between the marginal density p(f(X)|y) and the joint
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posterior density p(f(X), θ|y). The marginal density p(f(X)|y) represents the integrated probability over all possible
values of the parameters θ, given the observed data y. In other words, it accounts for the uncertainty in the local scales
parameters. On the other hand, the joint posterior density p(f(X), θ|y) represents the probability distribution over both
the functional component f(X) and the parameters θ, given the data y. While we can derive the posterior mean estimate
directly from the augmented model as Ef(X)|y [f(X)] = Eθ|y [Ef(X)|θ,y [f(X)]], this is not necessarily true for the MAP
estimate. The MAP estimate seeks to find the maximum of the marginal posterior density, which does not always correspond
to the maximum of the joint posterior density:

Argmax
f(X)

p(f(X)|y) ̸= Argmax
f(X),θ

p(f(X), θ|y)

Therefore, if we minimize the negative logarithm of the joint posterior density with respect to the functional components
and local scales, using techniques such as alternate minimization, it will result in a different estimator from the COSSO
solution due to the distinct objectives they optimize.
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C. Additional experiments and implementation details
C.1. Simulated examples set-up

C.1.1. SIMULATED EXAMPLES IN INDEPENDENT AND DEPENDENT SETTINGS

We consider the following functions to generate our simulated data that take values on [0, 1]: g1(t) = t, g2(t) = (2t− 1)2,

g3(t) =
sin(2πt)

2− sin(2πt)
and g4(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin2 (2πt) + 0.4 cos(2πt) + 0.5 sin3(2πt). We use

these functions to generate 2 target responses, one with only main effects and one with main and first order interaction
effects:

f1(x) = 5g1 (x1) + 3g2 (x2) + 4g3 (x3) + 6g4 (x4)

f2(x) = f1(x) = 5g1 (x1) + 3g2 (x2) + 4g3 (x3) + 6g4 (x4) + 4g3 (x1x2) + 6g2

(
x1 + x3

2

)
+ 4g1 (x3x5)

We also follow (Lin & Zhang, 2003) and consider 3 realizations of training data:

• Uniform: draw covariates independently from a Uniform distribution on [0,1].

• Compound symmetry: draw U , Z1, . . . , ZD from a Uniform distribution on [0,1] then set the covariate as follows
xi =

Zi+tU
1+t for some t > 0. Then, correlation (xi, xj) =

t2

1+t2 for i ̸= j.

• Trimmed Auto-Regressive (AR): draw Z1, . . . , ZD from a Gaussian distribution with zero mean and unit variance then
set x1 = Z1, and xi = ρxi−1 +

(
1− ρ2

)0.5
Zi for i > 1, trim the covariates in [−2.5, 2.5] and scale them to belong

to [0.1]. Then, correlation (xi, xj) ≈ ρ for i ̸= j.

We consider both models f1 and f2 with different scenarios to generate train data, namely the uniform, the component
symmetry and the trimmed AR models. For f1 , we set D = 55 and for f2 we set D = 10. Then, for both examples, we
have 55 functional components. With the first function, we have only 4 relevant components while for the second, we have 4
active main components and 3 active interaction components.

Benchmark methods :As benchmarking, we consider frequentist approaches SS-ANOVA (Wahba, 1990) and COSSO
(Lin & Zhang, 2003). For Bayesian techniques, we focus on the proposed Dirichlet model. To provide a comprehensive
benchmark, we also present results from the exponential model from Table 3, which serves as the Bayesian counterpart to
COSSO. For simplification purposes and fair comparison, we restrict our experimental study on models that do not need
initial estimates to tune their hyperparameters. Then, ACOSSO and Bayesian hierarchical models with heterogeneous
hyperparameters wi are not included in this section. We also consider the same kernel of all methods namely the Sobolev
kernel with K = 1.

Details about prior settings: For the constant term b we adopt a Gaussian prior distribution with a mean of 0 and a variance
of 10 while for the noise variance, we employ Half-Cauchy priors with a scale of 10. It is important to note that the priors
for the mean and noise variance are intentionally chosen to be vague, aligning our Bayesian approach with the considered
deterministic methods. This decision ensures that these parameters are solely informed by the data, without additional
information from prior beliefs. As for the global scales, we acknowledge the significant impact of priors on the model’s
shrinkage behavior, a topic that has been extensively studied in the literature for finite dimension shrinkage problems (Polson
& Scott, 2012; Piironen & Vehtari, 2017). In our experiments, we opt for vague distributions for these global parameters (a
HalfCauchy prior with a large scale), indicating an absence of informative priors, similar to the reasons stated earlier. While
this choice may not optimize performance, it allows for a direct comparison between deterministic and Bayesian methods,
focusing solely on the effect of priors on local parameters (e.g., Dirichlet vs. Exponential). For the Dirichlet model, we set
wi = 0.5 for main effects and wi = 0.4 for interaction effects. For Bayesian COSSO, we set wi = 1/D for main effects
and wi = 1/D(D − 1) for interaction effects. By employing these parameters, we aim to achieve consistent scales for the
local parameters across different models. In fact, in main effects, which encompass D components, local scales generated
from a Dirichlet prior have a sum equal to 1. Consequently, the prior mean for each main scale becomes 1/D for main
effects and 1/D(D − 1) for interactions effects.

Practical implementation: The selection policy adopted in these experiments relies on the variance analysis to identify the
most significant components that contribute to the predicted model. Under the orthogonality assumption of the FANOVA
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decomposition, the total variance of the target function is the sum of variances of all the summands. Therefore, the
contribution of a component to the outcome can be measured in terms of the normalized variance: Ṽcj =

Vcj∑
cj

Vcj
where

Vcj is the variance of component cj . The higher this quantity is, the more informative is assumed to be the component. In
order to select the components that we should include in the model, we search for the minimal number of components that
achieves t% of the total energy where t is a threshold. We provide results for t = 0.99.

For estimation, we consider a sampling approach based on the Hamiltonian Monte Carlo (HMC) algorithm (Girolami &
Calderhead, 2011). We specifically use the probabilistic programming framework Pyro 3. For comparison, we also tested
Stein Variational Gradient Descent (SVGD) (Pinder et al., 2020; Ye et al., 2020) but the results showed that while SVGD
struggled to converge to the target parameter space, particularly with poor initialization, HMC performed well with the
fully marginalized model. For the HMC algorithm, we use 5,000 iterations as burn-in. Prediction of the latent function is
performed using 1,000 samples.

Results: Tables 6 and 7 provide the obtained results for each function with different scenarios (Independent, Dependant CS
and Dependant AR) and different levels of noises. Each simulation study is replicated 10 times and then prediction metrics
are averaged. For each experiment, we have highlighted the best method in bold based on the predictive results.

C.1.2. FANOVA MODELS WITH COVARIATE SELECTION

We consider the function f2 with D = 30 covariates, where we have a total of 465 functional components but only 7 of
them are relevant.

Details about prior settings: We compare three different models:

• Dirichlet prior on both main and interaction effects: we put a Dirichlet prior on both the main effects and the interaction
effects with hyperparameter wi = 0.1.

• Covariate selection model with the hard shrinkage model: we use a Dirichlet prior as the mixing density for the main
effects. For the interactions, we adopt a hard shrinkage approach (6) which is similar to the model adopted in (Agrawal
& Broderick, 2023).

• Covariate selection model with the soft shrinkage model: we use a Dirichlet prior as the mixing density for the main
effects. For the interactions, we adopt a soft shrinkage approach (7).

Practical implementation: To evaluate the performance of the models, we conduct experiments using independent training
data with N = 500 and assume a noise variance of τ = 1. In order to make a fair comparison, we scale the local scales of
the interaction components in the hard shrinkage model to have a sum equal to 1, which allows us to use the same global
shrinkage parameter prior for both models. We use a Plug-in approach with a MAP estimator for the parameters. Each
experiment is repeated 10 times to assess the consistency of the results.

C.2. UCI data set-up

We conducted regression experiments on UCI datasets using 5-fold cross-validation splits. We restrict our analysis to the
first order interaction. It is worth to note that our assumption of restricting our models to low order interactions for the
considered datasets can be motivated by the work in (Lu et al., 2022).

Benchmark methods: As benchmark models, we considered frequentist methods such as SS-ANOVA (Wahba, 1990),
COSSO (Lin & Zhang, 2003), ACOSSO (Storlie et al., 2011), and the Multivariate Additive Regression Splines (Mars)
method (Friedman, 1991). Additionally, we investigated Bayesian FANOVA using our Exponential and Dirichlet models.
Notably, the Exponential model is the Bayesian counterpart of the COSSO model. For these Bayesian models, we explored
an adaptive version where the weights/priors were fine-tuned based on SS-ANOVA, aligning with the spirit of ACOSSO.
These methods are refered as Bayesian ACOSSO and Bayesian ADirichlet. To provide further context, we also included
the Bayesian method proposed in (Lu et al., 2022) for comparison. The latter uses a Gaussian process with the orthogonal
RBF kernel (RBF-OK) which is a generalization of the models (Kaufman & Sain, 2010; Duvenaud et al., 2011). However,
we encountered challenges in obtaining satisfactory results with the SKIM-FA kernel (Agrawal & Broderick, 2023) in our

3https://docs.pyro.ai/
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cross-validation UCI experiments. In certain cases, the SKIM-FA kernel selected no covariate, which ultimately resulted in
negative R2 values. These unexpected outcomes indicate that the SKIM-FA kernel may not be suitable or well-suited for
the specific UCI experiments conducted in our study, perhaps due to small number of covariates. The performance of the
SKIM-FA kernel in these experiments fell short of our expectations and did not produce desirable results, then we did not
include SKIM-FA results in table 8. We opted not to include the model (Vo & Pati, 2017) in our comparison because it
does not provide the capability to predefine the target order, which is a specific requirement for our comparison. We did
not also incorporate sampling approaches based on Gibbs sampling, as (Reich et al., 2009) and (Tang et al., 2018), due
to their substantial computational demands. Instead, we included in our comparative analysis sampling methods that use
Hamiltonian Monte Carlo (HMC) in conjunction with fully marginalized models, which are more computationally efficient.

Details about prior settings: Our proposed Bayesian methods use the Sobolev kernel, as presented in Appendix A.2.
Consequently, the covariates are normalized to the range [0, 1] before applying the model. To facilitate the choice of prior
parameters for all datasets, we also normalize the output values yi before training the model. Subsequently, the output is
rescaled to its original scale prior before computing metrics. In the Dirichlet model, we assign a weight wi = 0.6 to main
effects and wi = 0.4 to interaction effects. These hyperparameters values reflect our prior assumptions, indicating that
approximately 60% of main effects and 40 % of interaction effects are likely to be relevant. For the constant function b, we
adopt a Gaussian prior with a mean of 0 and a variance of 1. Regarding the noise variance, we employ HalfCauchy priors
with a scale of 1. It is important to emphasize that we deliberately selected vague priors for the mean and noise variance
for the same reasons explained in simulation part C.1. Similarly, We set a HalfCauchy prior with a large scale for global
parameters to approximate a vague prior. To ensure comparability between the local parameters obtained from Dirichlet,
we also employ the same strategy as for simulated examples in Appendix C.1 to set the hyperparameters of the Bayesian
COSSO model. For the deterministic methods, we rely on cross-validation to choose the regularization hyperparameters
from a grid as proposed in the original papers (Storlie et al., 2011).

Practical implementation: We provide the results obtained from our proposed models, using a HMC sampling approach
with 2,000 iterations as burn-in. Prediction of the latent function is performed using 100 samples. We also provide the
prediction results obtained with our models when using a plug-in approach, i.e., we compute MAP estimate of our parameters
and we put these estimators into the Gaussian process model of the functional components.

In our study, we utilized the Python implementation of MARS from the library py-earth. For computing the functional
components, we employed the implementation provided by the work (Agrawal & Broderick, 2023). The implementation
can be found at the GitHub repository: https://github.com/agrawalraj/skimfapaper.

For the Orthogonal kernel RBF, we use the code provided by the authors in https://github.com/amzn/
orthogonal-additive-gaussian-processes.

Results: Results are presented in Table 8 and 9. For each dataset, we have highlighted the best method in bold based
on the predictive results. In cases where multiple methods yield the same results, we consider the method with the best
shrinkage properties, as indicated by the smallest value of NAC, as the best method. We consistently observed superior
performance of our Bayesian models compared to OK-RBF, with the exception of a single case. In the specific instance of
the "Demand" dataset, OK-RBF outperformed all other methods. The noticeable discrepancy in RMSE between OK-RBF
and the approaches based on the Sobolev kernel can be attributed to the normalization requirement imposed by the Sobolev
kernel. In this case, the covariates were constrained to the interval [0,1]. This normalization process during training, may
not effectively handle the out-of-range test covariates. This normalization with the small size of the dataset contribute to the
observed variability (standard-deviation) and performance discrepancies in the RMSE results for these approaches.

C.3. Additional experiments on shrinking behaviour of mixing densities

The aim of this section is to compare the shrinkage behaviour of continuous mixing models from Table 3.

C.3.1. SET UP

We consider the simple additive model f1. The train data is generated according to the Uniform scenario. The energies
(computed as the ℓ2 norm) of these active components are then E [5g1 (x0)] = 9.69, E [3g2 (x1)] = 1.80, E [4g3 (x2)] =
3.49 and E [6g4 (x3)] = 9.50. The mean value is about 5.4. We consider a sample size of N = 100 and set the noise
variance τ = 5.19 which corresponds to a signal to noise ration of 8.24.

We consider 4 different hierarchical models by varying the mixing priors on local shrinkage parameters, namely, the
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Bayesian COSSO (Exponential mixing) with wi = 1/D, the Student’t model (Inverse Gamma mixing) with ν = 1 and
wi = 1/D (which is a Cauchy model), the Horshoe model (Half Cauchy mixing) with wi = 1/D and the Dirichlet model
with wi = 0.5 in the first example and wi = 0.1 in the second example. For the constant function, we assume a Gaussian
prior N (0, 10), for the noise variance a Half-Cauchy prior HC(0, 10) and for the global shrinkage parameter, we set√
γ ∼ HC(200). For estimation, we consider a sampling approach based on HMC algorithm. We specifically use 5,000

iterations as burn-in and 100 samples for estimation. We consider the sampling approach to have an idea about the whole
posterior marginal density of the scales parameters. To measure the shrinkage behaviour of the different models, we define
the selection parameter as the product of the global and local scales normalized with the Gram matrix trace divided by N .
With such a normalization, this selection parameter can be interpreted as a variance average.

C.3.2. RESULTS

Example 1: In this first example, we set D = 10. The shrinkage parameters for these models are given in Figure 4. Overall,
all the models were similar (almost exactly the same when discarding components with selection parameter under a certain
threshold) in the number of active components that were selected. They have also well identified the correct relevant
components. Bayesian COSSO tends to select less inactive components than the other methods. The difference between the
later models in this regard was not large, but the Dirichlet model shrink slightly better irrelevant components to zero.

Example 2: We repeat the same experiments with D = 55. The model is then “utra-sparse” compared to the model of
Example 1. The obtained selection parameters are given in Figure 5. Interestingly, all models except for Dirichlet fail to
correctly distinguish the relevant components from the non-relevant ones in terms of interaction order. Figure 5 demonstrates
that these models include many noise components in the estimated function. While Horseshoe and Student’s priors exhibit
better shrinkage behavior than Bayesian COSSO, they still miss some relevant components while incorrectly estimating
a few non-relevant components with non-zero energy. In contrast, the Dirichlet model successfully recovers the correct
significant components while effectively shrinking most of the non-informative ones. This observation is particularly notable
in this scenario, as continuous models like Laplace (Bayesian COSSO) are not well-suited for ultra-sparse settings.

It is still however important to highlight that while the Dirichlet model demonstrates superior performance in terms of
shrinkage compared to other methods, its effectiveness relies on the selection of the concentration parameter wi. In our
experiments, we opted to assign the same value to all components since we lacked prior information to favor one component
over another. The value of wi represents our prior belief regarding the number of relevant components. However, if this prior
belief is inaccurate, it can lead to the exclusion of relevant components or result in noisy estimation with false irrelevant
components. To address moderate shrinkage in the low-dimensional example 1, we set wi = 0.5. This value strikes a
balance between including relevant components and avoiding excessive noise in the estimation process. In example 2, where
our aim was to obtain a low-dimensional representation of the data due to the large number of covariates, we set wi = 0.1.
This choice indicates our desire to include only 10% of the relevant covariates in the representation.

One slight limitation we observed with the Dirichlet model is its tendency to require slightly more iterations to converge
in the HMC sampler compared to other independent models. This increased computational cost may be attributed to the
correlation between local scales within the Dirichlet model, which can slow down the mixing and then the convergence
process.

Finally, these results with all the different models are also sensitive to the setting of the global parameter. In the previous
experiments, this problem was not explicitly considered, and a vague prior was used instead for this parameter.
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(a) Student’t (b) Bayesian COSSO

(c) Horseshoe (d) Dirichlet

Figure 4. Shrinkage behaviour of the different models for D = 10.

Table 6. Regression metrics of FANOVA models on simulated data with r = 1 and D = 55. The number of relevant components is 4.

Scenario Noise and Metric SS COS. BCOS.MAP BCOS.HMC Dir.MAP Dir.HMC
correlation

RMSE 3.01±0.34 1.42 ± 0.78 1.05±0.14 1.26±0.17 1.03±0.18 0.95±0.26
Inde. TP 4.00±0.00 3.50±0.50 4.00±0.00 4.00±0.00 4.00±0.00 3.90±0.30

τ = 1 FP 42.7±1.34 4.90±13.37 1.50±1.34 16.8±2.63 0.80±1.34 0.20±0.60
FN 0.00±0.00 0.50±0.50 0.00±0.00 0.0±0.00 0.00±0.00 0.10±0.30

Cover. - - 0.92±0.04 0.99±0.01 0.96±0.02 0.98±0.02

RMSE 3.27±0.21 2.20 ± 0.92 1.55±0.32 1.72±0.0.21 1.50±0.31 1.16±0.30
Inde. TP 4.00±0.00 3.90±0.30 4.00±0.00 4.00±0.00 3.90±0.00 3.80±0.40

τ = 2.19 FP 43.9±1.44 21.7±19.25 7.30±2.10 16.8±2.63 1.80±1.16 0.60±0.91
FN 0.00±0.00 0.1±0.30 0.00±0.00 0.0±0.00 0.1±0.30 0.20±0.40

Cover. - - 0.90±0.06 0.99±0.01 0.93±0.05 0.96±0.02

RMSE 3.43±0.18 2.87 ± 0.72 2.34±0.39 2.22±0.21 2.45±0.28 1.79±0.78
Inde. TP 4.00±0.00 3.90±0.30 3.90±0.30 3.90±0.30 3.70±0.45 3.40±0.80

τ = 5.19 FP 44.0±1.18 27.5±16.39 11.20±1.66 32.90±1.70 3.40±0.48 2.00±2.14
FN 0.00±0.00 0.10±0.30 0.10±0.30 0.10±0.30 0.30±0.00 0.60±0.80

Cover. - - 0.86±0.06 0.98±0.01 0.88±0.03 0.92±0.05

RMSE 3.18±0.34 1.79 ± 0.51 1.54±0.19 1.74±0.20 1.42±0.40 1.52±0.77
Dep. CS. τ = 1 TP 4.00±0.00 3.50±0.50 3.90±0.3 4.00±0.00 3.50±0.67 3.50±0.50

ρ = 0.5 FP 43.20±1.24 5.30±7.25 5.50±1.20 0.90±0.94 2.00±1.34 0.90±2.38
FN 0.00±0.00 0.50±0.50 0.10±0.3 0.0±0.00 0.50±0.67 0.50±0.50

Cover. - - 0.88±0.06 0.99±0.01 0.88±0.07 0.95±0.04

RMSE 3.56±0.33 2.48 ± 1.01 1.56±0.18 2.00±0.34 1.75±0.44 1.51±0.34
Dep. CS. τ = 1 TP 3.90±0.30 3.70±0.45 4.00±0.0 4.00±0.00 4.00±0.00 3.30±0.45

ρ = 0.8 FP 45.10±1.37 19.90±17.57 6.30±1.26 11.70±2.90 1.50±1.20 1.30±1.41
FN 0.10±0.30 0.30±0.45 0.00±0.00 0.0±0.00 0.00±0.00 0.70±0.45

Cover. - - 0.87±0.06 0.99±0.01 0.96±0.02 0.94±0.06

RMSE 3.23±0.27 2.49 ± 1.04 1.66±0.25 1.85±0.22 1.42±0.40 1.41±0.39
Dep. AR. τ = 1 TP 3.80±0.40 3.40±0.66 3.90±0.30 4.00±0.00 3.80±0.40 3.50±0.70

ρ = 0.5 FP 44.00±1.20 16.70±18.30 5.50±1.20 2.60±3.20 0.90±1.94 0.00±0.00
FN 0.20±0.40 0.60±0.66 0.01±0.30 0.00±0.00 0.20±0.40 0.50±0.70

Cover. - - 0.80±0.09 0.98±0.03 0.10±0.30 0.94±0.05

RMSE 2.94±0.27 1.87 ± 0.38 1.68±0.19 1.70±0.16 1.43±0.22 4.03±7.09
Dep. AR. τ = 1 TP 4.00±0.00 2.90±0.70 4.00±0.00 4.00±0.00 4.00±0.00 3.30±0.64

ρ = 0.8 FP 44.00±1.51 6.10±13.21 0.00±0.00 19.20±3.48 0.80±0.87 0.70±1.00
FN 0.00±0.00 1.10±0.70 0.01±0.30 0.00±0.00 0.00±0.00 0.70±0.64

Cover. - - 0.83±0.09 0.98±0.03 0.94±0.05 0.87±0.09
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(a) Student’t

(b) Bayesian COSSO

(c) Horseshoe

(d) Dirichlet

Figure 5. shrinkage behaviour of the different models for D = 55.
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Table 7. Regression metrics of ANOVA models on simulated data with r = 2 and D = 10. The number of relevant components is 7.

Scenario Noise and Metric SS COS. BCOS.MAP BCOS.HMC Dir.MAP Dir.HMC
correlation

RMSE 2.32±0.22 1.96 ± 0.48 1.10±0.13 1.42±0.21 1.37±0.18 1.69±0.29
Inde. TP 6.50±0.50 6.10±0.83 5.70±0.78 6.00±0.63 5.20±0.60 4.50±0.92

τ = 1 FP 26.70±1.26 17.90±13.38 1.90±10.94 4.80±1.24 2.0±1.18 0.70±0.90
FN 0.50±0.50 0.90±0.83 0.00±0.00 1.30±0.678 1.80±0.60 2.50±0.92

Cover. - - 0.97±0.02 0.98±0.01 0.97±0.03 0.94±0.05

RMSE 2.43±0.31 2.28 ± 0.44 1.66±0.34 1.63±0.25 1.87±0.39 1.89±1.08
Inde. TP 6.70±0.45 6.30±1.00 5.60±0.66 6.10±0.70 5.30±0.45 6.10±1.13

τ = 2.19 FP 29.00±2.00 23.50±12.36 5.00±1.78 11.30±4.24 3.20±1.53 4.30±1.00
FN 0.30±0.45 0.70±1.00 1.40±0.66 0.0±0.00 0.90±0.70 0.90±1.13

Cover. - - 0.94±0.04 0.99±0.01 0.94±0.05 0.94±0.04

RMSE 2.71±0.22 2.75 ± 0.23 2.16±0.31 2.11±0.21 2.32±0.36 2.83±1.56
Inde. TP 6.60±0.48 6.70±0.45 5.80±0.60 6.20±0.60 5.30±0.78 4.50±1.11

τ = 5.19 FP 31.30±1.73 32.70±4.36 7.30±2.41 18.40±3.66 3.80±1.99 1.90±1.57
FN 0.40±0.48 0.30±0.45 1.20±0.60 0.80±0.60 1.70±0.78 2.50±1.11

Cover. - - 0.95±0.03 0.98±0.02 0.95±0.04 0.96±0.01

RMSE 2.97±0.25 3.05 ± 0.53 2.09±0.22 2.06±0.21 2.11±0.28 2.20±0.84
Dep. CS. τ = 1 TP 6.50±0.80 5.20±0.87 3.80±0.6 4.60±0.66 3.60±0.48 4.40±1.01

ρ = 0.5 FP 22.20±2.27 17.40±9.83 1.90±1.44 4.10±2.02 7.70±1.37 0.90±0.83
FN 0.50±0.80 1.80±0.87 3.20±0.6 0.0±0.00 2.40±0.66 2.60±1.01

Cover. - - 0.89±0.06 0.96±0.03 0.86±0.06 0.91±0.07

RMSE 4.64±1.10 5.59 ± 1.63 2.43±0.04 2.19±0.26 2.21±0.24 4.49±4.80
Dep. CS. τ = 1 TP 6.10±0.30 5.50±0.80 3.80±0.4 3.80±0.40 3.30±0.45 3.50±0.67

ρ = 0.8 FP 28.40±5.64 20.30±2.14 1.00±0.44 2.70±0.78 0.90±0.70 1.10±0.83
FN 0.90±0.30 1.50±0.80 3.20±0.40 3.20±0.40 3.70±0.45 3.50±0.67

Cover. - - 0.85±0.06 0.95±0.03 0.79±0.08 0.83±0.14

RMSE 2.77±0.32 2.32 ± 0.36 1.72±0.40 2.11±0.30 1.83±0.29 1.85±1.57
Dep. AR. τ = 1 TP 6.50±0.50 6.20±0.87 5.50±1.02 5.50±1.25 5.60±0.66 5.30±1.10

ρ = 0.5 FP 29.30±2.05 14.70±10.35 1.80±0.97 6.00±2.08 2.40±1.68 3.80±0.74
FN 0.50±0.50 0.80±0.87 1.50±1.02 1.50±1.25 1.40±0.66 1.70±1.10

Cover. - - 0.89±0.07 0.93±0.05 0.90±0.04 0.90±0.06

RMSE 2.49±0.24 2.35 ± 0.21 1.34±0.24 1.71±0.20 1.62±0.24 1.89±0.31
Dep. AR. τ = 1 TP 6.10±0.53 5.70±0.90 5.60±0.48 5.20±0.60 5.20±0.97 4.60±0.91

ρ = 0.8 FP 30.60±2.05 20.50±12.88 2.00±1.18 4.70±1.41 2.50±0.80 0.80±0.97
FN 0.90±0.53 1.30±0.90 1.40±0.48 1.80±0.60 1.80±0.97 2.40±0.91

Cover. - - 0.95±0.03 0.98±0.1 0.92±0.05 0.93±0.05
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Table 8. Regression metrics of FANOVA models on various UCI datasets. Proposed models are run using the Sobolev kernel.

Data set Metric SS MARS COS. ACOS. BCOS. ABCOS. Dir. ADir. RBF-OK
(N, D, J) HMC HMC HMC HMC

RMSE 7.95±0.45 8.90±2.44 7.49±0.42 7.65±0.30 4.09±0.32 4.32±0.47 4.33±0.38 4.35±0.25 4.23±0.36
concrete MAE 6.23±0.33 6.12±0.38 5.88±0.33 6.02±0.23 2.75±0.18 2.88±0.19 3.01±0.36 2.99±0.18 2.80±0.18
(1000, R2 0.77±0.03 0.68±0.20 0.79±0.02 0.79±0.02 0.94±0.01 0.93±0.01 0.93±0.01 0.93±0.01 0.93±0.01
8, 36) NAC 21.8±0.4 18.6±0.80 10.6±2.7 15.0±1.7 22.3±1.1 19.5±2.1 17.6±1.4 14.6±1.0 23.6±3.38

Cover. - - - - 0.95±0.03 0.98±0.01 0.93±0.02 0.92±0.05 0.38±0.02

RMSE 30.30±7.35 14.51±16.75 25.03±9.23 23.80±6.27 11.95±4.68 19.17±11.30 34.55±16.17 17.95±5.74 3.11±3.64
demand MAE 16.76±4.39 7.34±6.23 13.23±3.98 12.20±2.95 6.44±1.86 9.41±4.51 18.76±6.38 9.48±1.79 1.25±1.48
(60, R2 0.86±0.04 0.79±0.38 0.91±0.04 0.92±0.02 0.97±0.02 0.94±0.06 0.81±0.11 0.95±0.03 0.99±0.00
12, 78) NAC 42.0±4.9 6.8±2.72 18.0±6.2 14.8±4.5 4.4±1.5 6.0±1.8 8.0±3.6 6.40±2.9 2.00±0.0

Cover. - - - - 0.98±0.03 0.95±0.04 0.97±0.04 0.95±0.04 0.10±0.03

RMSE 0.47±0.05 1.83±0.57 0.50±0.05 0.47±0.05 0.45±0.05 0.45±0.05 0.45±0.05 0.45±0.04 0.47±0.03
energy MAE 0.34±0.03 1.36±0.35 0.37±0.02 0.34±0.03 0.33±0.02 0.33±0.02 0.33±0.03 0.33±0.01 0.34±0.02
(768, R2 0.99±0.00 0.96±0.02 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00
8, 36) NAC 11.0±0.6 12.0±2.19 9.4±1.4 9.2±0.8 6.4±1.3 6.4±1.0 6.4±1.3 6.4±1.0 6.00±0.00

Cover. - - - - 0.93±0.02 0.94±0.04 0.93±0.02 0.95±0.04 0.98±0.01

RMSE 2.98±0.34 3.67±0.45 3.06±0.43 2.99±0.42 3.06±0.42 3.05±0.46 3.07±0.56 3.12±0.52 3.30±0.51
housing MAE 2.05±0.14 2.44±0.25 2.07±0.20 2.06±0.19 2.05±0.15 2.06±0.18 2.08±0.21 2.13±0.22 2.13±0.25
(506, R2 0.89±0.03 0.83±0.03 0.88±0.04 0.89±0.04 0.88±0.04 0.88±0.04 0.88±0.05 0.87±0.04 0.86±0.03
13, 91) NAC 71.2±0.8 24.40±2.93 59.2±2.3 46.2±6.1 58.4±6.7 36.2±2.7 29.0±7.48 30.2±2.4 35.8±2.63

Cover. - - - - 0.93±0.01 0.92±0.03 0.95±0.03 0.93±0.03 0.25±0.15

RMSE 1.86±0.83 4.16±0.51 1.73±0.60 1.75±0.71 0.51±0.05 0.50±0.06 0.56±0.07 0.59±0.12 0.60±0.26
yacht MAE 1.06±0.42 3.45±0.26 1.06±0.32 1.01±0.26 0.27±0.02 0.26±0.02 0.32±0.06 0.34±0.09 0.33±0.10
(306, R2 0.98±0.01 0.91±0.01 0.98±0.01 0.98±0.01 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00
6, 21) NAC 1.2±0.40 2.60±0.80 1.0±0.0 1.00±0.0 1.2±0.40 1.2±0.4 1.2±0.4 1.2±0.4 1.6±1.35

Cover. - - - - 0.97±0.02 0.97±0.02 0.96±0.01 0.96±0.01 0.89±0.06

RMSE 2.66± 0.30 2.85± 0.19 2.63±0.28 2.63±0.28 2.64±0.31 2.67±0.30 2.78±0.26 2.69±0.30 2.81±0.35
autompg MAE 1.90 ± 0.17 2.06 ± 0.14 1.90±0.16 1.90±0.16 1.89±0.17 1.90±0.15 2.00±0.14 1.91±0.14 2.00±0.22
(392, R2 0.88±0.02 0.86±0.02 0.88±0.02 0.88±0.02 0.88±0.02 0.87±0.02 0.87±0.01 0.87±0.02 0.86±0.02
7, 28) NAC 17.8±0.7 8.80±1.32 16.8±0.4 16.6±0.5 14.0±1.54 12.4±1.95 7.8±0.40 9.0±2.09 14.20±2.48

Cover. - - - - 0.95±0.02 0.94±0.02 0.93±0.01 0.94±0.02 0.31±0.05

RMSE 4.18±0.28 3.39±0.14 3.22±0.17 3.20±0.19 3.24±0.22 3.29±0.23 3.39±0.33 3.17±0.23 3.76±0.80
pumadyn MAE 3.36±0.21 2.62±0.12 2.52±0.09 2.50±0.11 2.55±0.19 2.56±0.18 2.69±0.32 2.45±0.18 3.05±0.75
(1000, R2 0.43±0.05 0.61±0.05 0.65±0.05 0.66±0.05 0.65±0.05 0.63±0.06 0.61±0.09 0.66±0.05 0.51±0.18
8, 36) NAC 25.0±1.3 13.4±2.57 10.6±2.73 9.8±1.9 19.2±2.25 16.6±2.33 8.6±2.93 5.4±1.35 3.80±0.74

Cover. - - - - 0.94±0.02 0.94±0.03 0.94±0.03 0.94±0.01 0.40±0.48

RMSE 0.60±0.11 0.77±0.18 0.57±0.11 0.58±0.12 0.51±0.07 0.55±0.11 0.54±0.10 0.60±0.09 0.55±0.06
servo MAE 0.38±0.05 0.57±0.09 0.36±0.05 0.36±0.05 0.33±0.05 0.33±0.05 0.32±0.04 0.37±0.06 0.35±0.03
(166, R2 0.85±0.04 0.74±0.06 0.86±0.04 0.85±0.05 0.88±0.02 0.86±0.04 0.87±0.04 0.84±0.03 0.86±0.01
4, 10) NAC 9.00±0.00 7.0±0.63 8.0±0.63 7.4±1.0 7.2±0.43 6.6±0.48 6.2±1.16 4.4±0.48 7.0±0.0

Cover. - - - - 0.96±0.01 0.96±0.01 0.96±0.01 0.95±0.01 0.95±0.01

RMSE 0.52±0.01 0.60±0.09 0.53±0.01 0.53±0.01 0.53±0.01 0.53±0.01 0.53±0.02 0.53±0.02 0.54±0.06
stock MAE 0.39±0.01 0.43±0.03 0.40±0.01 0.40±0.01 0.40±0.02 0.40±0.02 0.39±0.00 0.40±0.01 0.41±0.04
(536, R2 0.74±0.04 0.65±0.12 0.73±0.04 0.73±0.04 0.73±0.05 0.73±0.03 0.74±0.03 0.74±0.04 0.72±0.03
8, 36) NAC 19.2±0.8 15.2±1.6 16.4±0.8 16.4±0.8 10.8±1.60 11.6±1.85 7.2±0.97 9.4±0.80 10.4±4.58

Cover. - - - - 0.93±0.01 0.93±0.01 0.93±0.01 0.93±0.02 0.91±0.16
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Table 9. Regression metrics of our FANOVA models on various UCI datasets. Comparison between plug-in and sampling approaches.

Data set Metric BCOS.MAP ABCOS.MAP Dir.MAP ADir.MAP BCOS.HMC ABCOS.HMC Dir.HMC ADir.HMC
(N, D, J)

RMSE 4.15±0.29 4.16±0.32 4.13±0.26 4.34±0.34 4.09±0.32 4.32±0.47 4.33±0.38 4.35±0.25
concrete MAE 2.83±0.20 2.82±0.20 2.82±0.20 2.98±0.22 2.75±0.18 2.88±0.19 3.01±0.36 2.99±0.18
(1000, R2 0.93±0.00 0.93±0.00 0.93±0.00 0.93±0.00 0.94±0.01 0.93±0.01 0.93±0.01 0.93±0.01
8, 36) NAC 18.0±1.41 18.6±1.01 13.2±1.46 13.8±1.16 22.3±1.1 19.5±2.1 17.6±1.4 14.6±1.0

Cover. 0.94±0.01 0.94±0.01 0.94 ±0.01 0.93 ±0.00 0.95±0.03 0.98±0.01 0.93±0.02 0.92±0.05

RMSE 15.76±16.11 15.97±16.01 19.91±14.83 22.48±12.62 11.95±4.68 19.17±11.30 34.55±16.17 17.95±5.74
demand MAE 6.42±7.24 6.50±7.24 10.07±7.06 11.66±3.53 6.44±1.86 9.41±4.51 18.76±6.38 9.48±1.79
(60, R2 0.93±0.10 0.93±0.10 0.91±0.10 0.90±0.08 0.97±0.02 0.94±0.06 0.81±0.11 0.95±0.03
12, 78) NAC 2.80.0±0.40 2.80±0.40 3.20±0.74 3.40±0.80 4.4±1.5 6.0±1.8 8.0±3.6 6.40±2.9

Cover. 0.96±0.04 0.95±0.04 0.95±0.04 0.90±0.08 0.98±0.03 0.95±0.04 0.97±0.04 0.95±0.04

RMSE 0.43±0.04 0.43±0.04 0.44±0.03 0.44±0.03 0.45±0.05 0.45±0.05 0.45±0.05 0.45±0.04
energy MAE 0.32±0.01 0.32±0.07 0.33±0.01 0.32±0.01 0.33±0.02 0.33±0.02 0.33±0.03 0.33±0.01
(768, R2 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00
8, 36) NAC 4.0±0.0 4.20±0.40 4.80±0.40 7.0±0.0 6.40±1.3 6.40±1.0 6.40±1.3 6.4±1.0

Cover. 0.96±0.02 0.95±0.02 0.95±0.01 0.95±0.01 0.93±0.02 0.94±0.04 0.93±0.02 0.95±0.04

RMSE 3.15±0.56 3.22±0.51 3.05±0.51 3.17±0.43 3.06±0.42 3.05±0.46 3.07±0.56 3.12±0.52
housing MAE 2.07±0.19 2.10±0.15 2.04±0.19 2.12±0.18 2.05±0.15 2.06±0.18 2.08±0.21 2.13±0.22
(506, R2 0.87±0.05 0.86±0.05 0.88±0.04 0.87±0.04 0.88±0.04 0.88±0.04 0.88±0.05 0.87±0.04
13, 91) NAC 21.20±0.74 21.0±1.54 59.2±2.3 24.6±1.2 58.4±6.7 36.2±2.7 29.0±7.48 30.2±2.4

Cover. 0.92±0.02 0.91±0.01 0.93±0.01 0.94±0.01 0.93±0.01 0.92±0.03 0.95±0.03 0.93±0.03

RMSE 0.58±0.08 0.58±0.08 0.70±0.19 0.57±0.71 0.51±0.05 0.50±0.06 0.56±0.07 0.59±0.12
yacht MAE 0.30±0.08 0.30±0.04 0.35±0.26 0.32±0.01 0.27±0.02 0.26±0.02 0.32±0.06 0.34±0.09
(306, R2 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00
6, 21) NAC 1.2±0.40 1.2±0.4 1.2±0.4 1.2±0.40 1.2±0.40 1.2±0.4 1.2±0.4 1.2±0.4

Cover. 0.95±0.02 0.95±0.02 0.93±0.02 0.95±0.01 0.97±0.02 0.97±0.02 0.96±0.01 0.96±0.01

RMSE 2.70± 0.28 2.72±0.29 2.71±0.34 2.66±0.29 2.64±0.31 2.67±0.30 2.78±0.26 2.69±0.31
autompg MAE 1.94 ± 0.15 1.96±0.16 1.96±0.16 1.90±0.15 1.89±0.17 1.90±0.15 2.00±0.14 1.91±0.14
(392, R2 0.87±0.02 0.87±0.02 0.87±0.02 0.88±0.02 0.88±0.02 0.87±0.02 0.87±0.01 0.87±0.02
7, 28) NAC 10.40±1.49 9.6±1.35 7.80±1.45 8.0±0.63 14.0±1.54 12.4±1.95 7.8±0.40 9.0±2.09

Cover. 0.94±1.49 0.93±0.02 0.93±0.02 0.94±0.02 0.95±0.02 0.94±0.02 0.93±0.01 0.94±0.02

RMSE 3.19±0.20 3.20±0.21 3.25±0.20 3.17±0.23 3.24±0.22 3.29±0.23 3.39±0.33 3.17±0.23
pumadyn MAE 2.46±0.0.15 2.48±0.16 2.51±0.16 2.45±0.17 2.55±0.19 2.56±0.18 2.69±0.32 2.45±0.18
(1000, R2 0.66±0.05 0.65±0.05 0.64±0.05 0.66±0.05 0.65±0.05 0.63±0.06 0.61±0.09 0.66±0.05
8, 36) NAC 5.60±1.85 5.80±1.72 4.80±0.97 5.40±1.49 19.2±2.25 16.6±2.33 8.6±2.93 5.4±1.35

Cover. 0.93±0.01 0.93±0.01 0.93±0.02 0.94±0.01 0.94±0.02 0.94±0.03 0.94±0.03 0.94±0.01

RMSE 0.56±0.10 0.56±0.10 0.61±0.11 0.61±0.11 0.51±0.07 0.55±0.11 0.54±0.10 0.60±0.09
servo MAE 0.34±0.06 0.34±0.06 0.37±0.06 0.38±0.08 0.33±0.05 0.33±0.05 0.32±0.04 0.37±0.06
(166, R2 0.86±0.04 0.86±0.04 0.84±0.04 0.83±0.04 0.88±0.02 0.86±0.04 0.87±0.04 0.84±0.03
4, 10) NAC 6.6±0.48 6.60±0.48 5.60±0.48 4.60±0.48 7.2±0.43 6.6±0.48 6.2±1.16 4.4±0.48

Cover. 0.95±0.02 0.95±0.02 0.95±0.02 0.94±0.03 0.96±0.01 0.96±0.01 0.96±0.01 0.95±0.01

RMSE 0.53±0.01 0.53±0.01 0.52±0.01 0.52±0.02 0.53±0.01 0.53±0.01 0.53±0.02 0.53±0.02
stock MAE 0.39±0.01 0.40±0.01 0.39±0.01 0.40±0.02 0.40±0.02 0.40±0.02 0.39±0.00 0.40±0.01
(536, R2 0.73±0.04 0.73±0.04 0.74±0.04 0.74±0.05 0.73±0.05 0.73±0.03 0.74±0.03 0.74±0.04
8, 36) NAC 10.4±0.8 10.0±1.42 10.0±0.63 8.80±0.4 10.8±1.60 11.6±1.85 7.2±0.97 9.4±0.80

Cover. 0.93±0.01 0.91±0.02 0.93±0.02 0.93±0.02 0.93±0.01 0.93±0.01 0.93±0.01 0.93±0.02
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