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Abstract

Thanks to its solid theoretical foundation, the
SHAP framework is arguably one the most widely
utilized frameworks for local explainability of ML
models. Despite its popularity, its exact compu-
tation is known to be very challenging, proven
to be NP-Hard in various configurations. Recent
works have unveiled positive complexity results
regarding the computation of the SHAP score for
specific model families, encompassing decision
trees, random forests, and some classes of boolean
circuits. Yet, all these positive results hinge on
the assumption of feature independence, often
simplistic in real-world scenarios. In this article,
we investigate the computational complexity of
the SHAP score by relaxing this assumption and
introducing a Markovian perspective. We show
that, under the Markovian assumption, computing
the SHAP score for the class of Weighted au-
tomata, Disjoint DNFs and Decision Trees can be
performed in polynomial time, offering a first pos-
itive complexity result for the problem of SHAP
score computation that transcends the limitations
of the feature independence assumption.

1. Introduction
Since its introduction in the seminal paper (Lundberg
& Lee, 2017), the local explanatory (SHapley Additive
exPlanations) SHAP method gained increasing popularity
in the field of interpretable ML. Nevertheless, one of its
main limitations pertains to its computational intractabilty:
In general, computing the SHAP score is NP-Hard (Bertossi
et al., 2020; den Broeck et al., 2021). Recent studies have
shown positive results regarding the tractability of comput-
ing the SHAP score under specific configurations. In par-
ticular, (Lundberg et al., 2020) proposed a polynomial-time
algorithm, known as TreeSHAP, that purported to compute
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exactly the SHAP score for tree-based models. However,
subsequent research (den Broeck et al., 2021; Arenas et al.,
2023) has identified flaws in the main claim of TreeSHAP.
Indeed, other works have demonstrated that the TreeSHAP
algorithm is an implementation of interventional SHAP,
another variant of the SHAP score (Janzing et al., 2020).
A more rigorous proof for the tractability of the original
SHAP score for various families of boolean functions has
been provided in (den Broeck et al., 2021) when features are
assumed to be independent. (Arenas et al., 2023) extended
these positive results to cover the family of Decomposable
Deterministic circuits which includes the family of decision
trees among other classes of boolean circuits.

All the tractability results reported in the literature are, how-
ever, derived under the feature independence assumption.
Although practical for its simplicity, this assumption is of-
ten irrealistic in real-case scenarios. A slight relaxation of
this assumption has been examined in (den Broeck et al.,
2021) through the lens of complexity theory by considering
the family of naı̈ve bayes models and empirical distribu-
tions. Computing the SHAP score for the family of decision
trees under this relaxed assumption has been proven to be
#P-Hard in both these settings.

Between independent distributions and latent variable mod-
els, an intermediate class of distributions that hasn’t been
explored yet is the class of Markovian distributions. Marko-
vian distributions constitute an interesting class of distribu-
tions that incorporate a degree of feature correlation often
considered sufficient to model various stochastic phenomena
(Bassler et al., 2006; Kampen, 2007; Goutsias & Jenkinson,
2013).

Previous works examining the complexity of computing
the SHAP score were mostly directed towards families of
boolean functions. In this article, we shift our focus to
sequential models, in particular the family of weighted au-
tomata (WAs). WAs offer a powerful formalism for mod-
eling sequential tasks and encompass a large family of
classical models, including Deterministic and Non deter-
ministic finite automata, Hidden Markov Models, and has
been shown to be equivalent to second-order linear RNNs
(Rabusseau et al., 2019). They have been employed in
various applications, such as NLP (Knight & May, 2009),
speech processing (Pereira & Riley, 1996; Mohri et al.,
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2008) and image processing (Culik & Kari, 1993).

Recently, a line of works proposed WAs as proxy interpreta-
tion models for neural models (Okudono et al., 2020; Eyraud
& Ayache, 2021; Weiss et al., 2019; Lacroce et al., 2021).
All these works are motivated by the implicit assumption
that WAs enjoy better transparency than their neural coun-
terparts. However, the existing litterature lacks a formal
argument to substantiate this claim. One of the primary
motivations of this work is to shed some light on this issue.

The work presented in this article will primarily address
the original formulation of the SHAP score, as introduced
by (Lundberg & Lee, 2017) in their seminal paper. This
specific variant of the SHAP score has proven to be par-
ticularly challenging from a computational viewpoint, and
extends, up to a distributional shift, other variants such as the
baseline SHAP (Sundararajan & Najmi, 2020). It’s worth
noting, however, that the axiomatic basis of the original
SHAP score has been recurrently disputed in the academic
discourse with several works discussing its limitation to
capture elementary desirable properties of local models’
explanations (Janzing et al., 2020; Sundararajan & Najmi,
2020; Huang & Marques-Silva, 2023).

The main results presented in this article are given as fol-
lows:

1. A constructive proof showing that the computation of
the SHAP score for the class of WAs is tractable under
the assumption that the background data generating
distribution is Markovian (section 3).

2. Under the same assumption, a constructive proof of
the tractability of computing the SHAP score for the
class of disjoint DNFs and the family of decision trees
(section 4).

2. Background
For a given integer n > 0, we denote by [n] the set of all
integers from 1 to n. The indicator function of a set X shall
be denoted as IX . Recall that an indicator function of a
subset X in X is a binary-valued function that assigns the
value 1 to x ∈ X , 0 otherwise.

A computational function problem f : I → R, where
I is referred to as the set of instances, is in FP if it can
be computed exactly using an algorithm that runs in time
polynomial in the size of the instance.

• Languages and seq2seq languages. Let Σ be a finite
alphabet. The elements of Σ will be referred to as symbols.
Σ∗ (resp. Σ∞) denotes the set of all finite (resp. infinite)
sequences formed by Σ. For a given sequence w ∈ Σ∗,
we denote by |w| its length, wi:j the subsequence of w that
spans from the i-th symbol to the j-th symbol in w, and wi to
refer to its i-th symbol. A language f is a mapping from Σ∗

to R. When the image of a language f is binary, then it will
be called unweighted, in which case the language represents
a subset of Σ∗ equal to Lf = f−1({1}). We extend the
definition of languages to cover unweighted languages over
Σ∗, by allowing the notation: f(L) def

=
∑
w∈L

f(w) (if it exists)

for an unweighted language L. An analogous concept of
a language is the concept of a seq2seq language. For two
finite alphabets Σ and ∆, a seq2seq language is a mapping
from Σ∗ ×∆∗ to R.

When a language (or, a seq2seq language) f is computed
by a model M , such as a weighted automaton (WA) or a
weighted transducer (WT), we shall use the notation fM to
designate the language (or, seq2seq language) computed by
M .

• Operators over languages/seq2seq languages. In this
article, three operators over languages will be useful in our
analysis. We shall briefly define them in the following:

1. The product operator: The product operator, also
known as the hadamard product (Droste & Gastin,
2009; Mohri, 2004), takes two languages f, g over Σ∗

and outputs the product language f ·g. We shall employ
the notation f ⊗ g to refer to the product language of
f and g.

2. The partition constant operator: The partition con-
stant operator takes a language f over Σ∗, an integer
n, and outputs the quantity f(Σn) =

∑
w∈Σn

f(w). The

partition constant operation of a language f at the sup-
port n > 0 will be denoted as |f |n.

3. The projection operator: The projection operator
takes as input a language f over Σ∗ and a seq2seq
language g over Σ∗ × ∆∗ and outputs a language h
over ∆∗ given as

h(u) =
∑

w∈Σ|u|

f(w) · g(w, u)

In the sequel, we shall use the notation Π(f, g) to refer
to the projection operator.

• Patterns. For an alphabet Σ, a pattern p is a regular ex-
pression that takes the form: Σi1w1 . . .Σ

inwnΣ
in+1 , where

{ik}k∈[n+1] is a set of integers, and {wk}k∈[n+1] is a col-
lection of sequences over Σ∗. The language accepted by
a pattern p shall be denoted Lp. Analogous to sequences,
the symbol |p| will refer to its length. In addition, |p|# will
denote the number of occurrences of the symbol Σ in p.

In this article, the pattern formalism will be employed to
represent coalitions of features in the SHAP score formula.
Often, they shall be treated as sequences formed by an ex-
tended alphabet Σ# = Σ ∪ {#}, where # is a special
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symbol that replaces the symbol Σ present in the regular
expression associated to a pattern p. For example, the pat-
tern p = Σ00Σ2 over the binary alphabet Σ = {0, 1} is
represented by the sequence p = #00## over Σ#.

By treating patterns as sequences over Σ∗
#, we can describe

languages over patterns in the usual way. In particular,
the following languages over patterns will be used in the
remainder of this article. Given a sequence w ∈ Σ∗ and
an integer k ∈ [|w|], define the (unweighted) language over
Σ∗

# as:

Lw
k

def
= {p ∈ Σ

|w|
# : w ∈ Lp ∧ |p|# = k}

The uniform distribution over the set Lw
k will be referred to

as Pw
k , and the language

⋃
k∈[|w|]

Lw
k as Lw.

A final operation over patterns that will appear in the re-
formulation of the SHAP score formula introduced later in
this section is the swap operation. Given a pattern p ∈ Σ∗

#,
an integer i ∈ [|w|], swap(p, i) refers to the (perturbed)
pattern p′ generated by replacing the i-th element of p with
#. For example, swap(##00#1, 3) = ###0#1.

•Markovian distributions. Formally, a Markovian prob-
ability distribution P over Σ∞ is parametrized by <
Pinit, {Pn}n>0 >, where Pinit is a probability distribu-
tion over Σ, and for any integer n > 0, Pn is a stochastic
matrix 1 in |Σ| × |Σ|. For an integer n > 0, P induces a
probability distribution over the support Σn, denoted P (n),
such that for any sequence w ∈ Σn:

P (n)(w)
def
= P (wΣ∞) = Pinit(w1) ·

n−1∏
i=1

Pi[wi, wi+1]

We shall abuse notation and use Pi(σ
′|σ) instead of Pi[σ, σ

′]
interpreted as the probability of generating the symbol σ′ at
position i+ 1 conditioned on the generation of the symbol
σ at position i. When there is no confusion of the support
of the distribution, we shall omit the subscript from the
notation P (n).

For computational considerations, we constrain the family
of Markovian distributions to those whose set of parameters
can be efficiently queried:

Definition 2.1. A Markovian distribution over Σ∞ is
polynomial-time computable if there exists an algorithmic
procedure that takes as input an integer n > 0, runs in
O(poly(n, |Σ|)) and outputs the transition matrix Pn.

As a notable example, the probability distribution gener-
ated by the class of 1-gram models is trivially polynomial-
time computable. The set of polynomial-time computable

1A stochastic matrix is a positive matrix such that the sum of
its row elements is equal to 1

Markovian distributions will be denoted MARKOV. When
P ∈ MARKOV is given as an input instance to a compu-
tational function problem, it refers to a machine that im-
plements the algorithmic procedure defined implicitly in
definition 2.1.

An additional technical assumption on Markovian distribu-
tions considered in this article is that all elements of their
stochastic matrices and Pinit are greater than 0.

2.1. Weighted Automata/Transducers

• Weighted Automata. Weighted Automata (WAs) ex-
tend the classical family of finite automata accepting un-
weighted languages by allowing transitions to be endowed
with weights, construed as probabilities, costs, or scores de-
pending on the application at hand. A linear representation
of WAs is formally defined as follows:

Definition 2.2. ((Denis & Esposito, 2008)) Let Σ be an
alphabet and n > 0 be an integer. A WA A over Σ∗ is
represented by a tuple < α, {Aσ}σ∈Σ, β > where Aσ ∈
Rn×n is the transition matrix associated to a symbol σ in Σ,
and α (resp. β) are vectors in Rn that represent the initial
(resp. final) vectors. The integer n is called the size of A,
denoted size(A).

A WA A =< α, {Aσ}σ∈Σ, β > over Σ∗ computes the
language

fA(w) = αT ·Aw · β

where Aw
def
=

|w|∏
i=1

Awi
.

• Weighted Transducers. Weighted Transducers (WTs)
represent the analogous version of WAs adapted to model
seq2seq languages. It has been employed in applications
including speech processing (Mohri et al., 2008; Lehr &
Shafran, 2010), machine translation (Kumar et al., 2006)
and image processing (Culik & Friš, 1995)

Analogous to WAs, WTs admit a linear representation given
as follows:

Definition 2.3. Let Σ, ∆ be two finite alphabets and n > 0
be an integer. A WT T over Σ∗ ×∆∗ is represented by the
tuple < α, {Aσ′

σ }(σ,σ′)∈Σ×∆, β >, where α ∈ Rn, Aσ′

σ ∈
Rn×n, β ∈ R. The integer n is called the size of T , denoted
size(T ).

A WT T =< α, {Aσ′

σ }σ∈Σ,σ′∈∆, β > over Σ∗ ×∆∗ com-
putes the seq2seq language

fT (w, u) = αT ·
|w|∏
i=1

Aui
wi
· β

where (w, u) ∈ Σ∗ ×∆∗ such that |w| = |u|.
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Earlier in this section, we introduced three operators over
languages/seq2seq languages, namely the product operator,
the partition constant and the projection operator. The algo-
rithmic construction we shall furnish in later sections to com-
pute the SHAP score will involve performing a sequence
of these operations over languages/seq2seq languages de-
scribed by WAs/WTs whose parametrization will depend
on the input instance of the problem.

The following provides a technical lemma proving the com-
putational efficiency of implementing these operators over
languages/seq2seq languages represented by WAs/WTs.

Lemma 2.4. Fix two finite alphabets Σ, ∆.

1. The product operator. There exists an algo-
rithm that takes as input two WAs A, B, runs in
O(poly(size(A),size(B), |Σ|)) and outputs a
WA A⊗B that computes the product language fA⊗fB .

2. The partition constant operator. There exists an al-
gorithm that takes as input a WA A and an integer
n > 0, runs in O(poly(size(A), n, |Σ|)) and out-
puts |fA|n.

3. The projection operator. There exists an algorithm
that takes as input a WA A, a WT T , runs in
O(poly(size(A),size(T ), |Σ|) and outputs the
language Π(fA, fT ).

The proof of lemma 2.4 can be found in appendix A.

2.2. The SHAP score.

Stemming its root from the field of cooperative game theory
(Deng & Papadimitriou, 1994), the SHAP framework is built
on top of an analogy between cooperative games and the
local explainability problem of ML models. A cooperative
game is described by a set of players N and a value function
v that assigns a generated wealth for each subset of players,
referred to as a coalition, cooperating in the game. By
analogy, in the context of explainable ML, the players are
the input features of a ML model subject to explanatory
analysis. And, the value assigned to a coalition is equal to
the the expected model’s output conditioned on the event
that the features forming the coalition possess a value equal
to the instance to explain.

Similar to Shapley’s original cooperative game theory (Shap-
ley, 1953), the SHAP explainability method offers at its core
a formal characterization of a fair distribution mechanism
across input features that reflects their respective degree of
contribution to the generated model’s output for a given
instance to explain, culminating in what’s commonly known
as the SHAP score.

Formally, let M be a model that computes a function fM
from a discrete set X = X1 × . . . × Xn to R, and P be a

probability distribution over X . For an input x ∈ X , and
an integer i ∈ [n], the original SHAP score assigned to the
i-th feature for the instance x is given as (Lundberg & Lee,
2017):

SHAP(M,x, i, P )
def
=

∑
S⊆[n]

|S|!(n− |S| − 1)!

n!
· (1)

[v(S;M,x, P )− v(S \ {i};M,x, P )]

where for a subset S ⊆ [n], the value function v is defined
as

v(S;M,x, P )
def
= EX∼P [fM (X)|XS = xS ] (2)

We propose an alternative formulation of the SHAP score
formula tailored to better suit sequential models computing
languages. For an alphabet Σ, a model M that computes a
language over Σ∗, a probability distribution P over Σ∞, a
string w ∈ Σ∗ and an integer i ∈ [|w|]. The SHAP value
assigned to the symbol wi in w is given as:

SHAP(M,w, i, P ) =

|w|−1∑
k=1

1

|w| − k
Ep∼Pw

|w|−k
[V (p;M,w,P )

(3)

− V (swap(p, i);M,w,P )]

where

V (p;M,w,P )
def
= Ew′∼P |w| [fM (w′)|w′ ∈ Lp] (4)

The main idea behind this reformulation consists at mod-
eling coalitions as patterns. For example, for a sequence
w = abbaa over the alphabet Σ = {a, b}, and k = 2, the
pattern p = #b#a# in Lw

3 coincides with the coalition of
size 2 formed by the second and the forth symbol of w.

The faithfulness of the SHAP value formula given in (3)
to the one in (1) (for the case of sequential models) can
be checked by decomposing the summation in the original
formulation of the SHAP score (equation (1)) over coalitions
of the same size, and by noting that for k ∈ [|w| − 1], and a
pattern p ∈ Lw

|w|−k, we have

Pw
|w|−k(p) =

1

|Lw
|w|−k|

=
k! · (|w| − k)!

|w|!

In the sequel, whenever the SHAP score formula is men-
tioned, it shall refer to the one tailored for sequential models
using the pattern formalism (equation (3)). To avoid con-
fusion between models computing languages and boolean
functions treated in section 4.4, we shall use the notation−−−→
SHAP for this latter case.

The formal definition of the meta-computational problem
associated to SHAP score is given as follows:

Fix an alphabet Σ. Let M be a class of sequential mod-
els that compute languages over Σ∗, and P is a class of
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probability distributions over Σ∞. The computational meta-
problem associated to the SHAP score is given formally as
follows:

• Problem: SHAP(M,P)
Instance: M ∈ M, a sequence w ∈ Σ∗, an integer i ∈
[|w|], and P ∈ P
Output: Compute SHAP(M,w, i, P )

The next section is dedicated to the examination of the
computational complexity of the particular instance of this
problem where M = WA and P = MARKOV, namely
SHAP(WA,MARKOV).

3. The problem SHAP(WA,MARKOV) is in FP.
The main result of the article is stated in the following
theorem:
Theorem 3.1. The computational problem
SHAP(WA,MARKOV) is in FP.

In essence, Theorem 3.1 states the existence of an
algorithm that computes exactly the SHAP score for
the class of WAs under Markovian distributions in
O(poly(size(A), |Σ|, |w|)) time where A is the WA
given in input instance.

The remainder of this section is dedicated to provide the
high-level steps of the proof of theorem 3.1. Technically
engaged proofs of intermediary results are delegated to the
appendix. At a high-level, the structure of the proof follows
two steps, where the second step is decomposed in two
sub-steps:

1. A decomposition of the problem SHAP(WA,MARKOV):
The first step involves a decomposition of the SHAP
score formula into a sum of functions, denoted
SHAP1, SHAP2, which will be defined later in this
section. By means of a reduction argument, we shall
prove that if the computational problems associated to
SHAP1, SHAP2 are in FP, then SHAP(WA,MARKOV)
is also in FP (lemma 3.2).

2. The problems SHAP1, SHAP2 are in FP:
In the second step, we shall show that the computa-
tional problems associated to SHAP1, SHAP2 are in
FP. (lemma 3.3). The proof of this statement will fol-
low two sub-steps:

(a) In the first sub-step, we shall prove that the com-
putation of SHAP1 and SHAP2 is reduced to per-
forming a finite sequence of operations over lan-
guages/seq2seq languages whose parametrization
will depend on the input instance of the problem
(lemma 3.4).

(b) In the second sub-step, we show that WAs/WTs
that compute languages/seq2seq languages over

which operations are performed in the previous
step can be constructed.

The proof is essentially constructive, and can be translated
to a practical implementation. The organisation of the re-
mainder of this section will follow the structure of the proof
given above.

3.1. Step 1: A decomposition of the problem
SHAP(WA,MARKOV).

For a model M computing a language over Σ∗, a sequence
w ∈ Σ∗, an integer (i, k) ∈ [|w|] × [|w| − 1], and P a
probability distribution over Σ∞. Define the following two
functions:

SHAP1(M,w, k, P )
def
= Ep∼Pw

k
V (p;M,w,P ) (5)

and,

SHAP2(M,w, i, k, P )
def
= Ep∼Pw

k
V (swap(p, i);M,w,P )

(6)

By a simple manipulation of the SHAP score formula in (3),
we obtain

SHAP(M,w, i, P ) =

|w|−1∑
k=1

1

k
[SHAP1(M,w, k, P )

− SHAP2(M,w, i, k, P )]

(7)

The formal definition of the computational problems associ-
ated with the computation of SHAP1, SHAP2 for the class
of WAs under the family of Markovian distributions is given
as follows:

• Problem: SHAP1(WA,MARKOV)
Instance: A WA A, a sequence w in Σ∗, an integer k ∈
[|w|], P ∈ MARKOV
Output: Compute SHAP1(A,w, k, P )

• Problem: SHAP2(WA,MARKOV)
Instance: A WA A, a sequence w in Σ∗, two integers
(k, i) ∈ [|w|]2, P ∈ MARKOV
Output: Compute SHAP2(A,w, i, k, P )

The polynomial-time reduction of the problem
SHAP(WA,MARKOV) to SHAP1(WA,MARKOV) and
SHAP2(WA,MARKOV) is straightforward in light of
equation (7). The following lemma formally states this fact:

Lemma 3.2. If SHAP1(WA,MARKOV) and
SHAP2(WA,MARKOV) are in FP, then SHAP(WA,MARKOV)
is in FP.

Proof. The proof is straightforwardly obtained from
equation (7). Assume SHAP1(WA,MARKOV) and
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SHAP2(WA,MARKOV) are in FP. Then, there exists two algo-
rithms, say A1 and A2, that solve the problems SHAP1 and
SHAP2 respectively in O(poly(size(A), |w|, |Σ)) time.

Fix an input of instance < M,w, i, P > of
SHAP(WA,MARKOV). To compute SHAP(M,w, i, P ) us-
ing A1, A2 as oracles, run the following schema:

1. Call A1 on the set of input instances {< M,w, k, p >
}k∈[|w|] yielding {yk}k∈[|w|]

2. Call A2 on the set of input instances {<
M,w, i, k, P >}k∈[|w|] yielding {y′k}k∈[|w|]

3. Output:
|w|−1∑
k=1

1
k (yk − y′k)

The correctness of this schema to solve
SHAP(WA,MARKOV) is guaranteed by equation (7).
In addition, by assumptions on A1, A2, this schema runs
also in O(poly(size(A), |Σ|, |w|) time.

3.2. Step 2: SHAP1(WA,MARKOV) and
SHAP2(WA,MARKOV) are in FP.

This segment is dedicated to provide the outline of the proof
of the following lemma:

Lemma 3.3. The problems SHAP1(WA,MARKOV) and
SHAP2(WA,MARKOV) are in FP.

The result of the main theorem 3.1 is an immediate corol-
lary of lemma 3.2 and lemma 3.3 presented in the previous
segment of this section.

The proof of lemma 3.3 will follow two steps. In the first
step, the formulas of SHAP1 and SHAP2 will be reformu-
lated in terms of operations over languages/seq2seq lan-
guages defined in section 2. The parametrization of these
languages depends on the input instance of the problem.
In the second step, we will show that WAs and WTs can
be constructed in polynomial time that compute these lan-
guages/seq2seq languages. Combining the results of the two
steps and the efficiency of implementing these operators for
the case of WAs/WTs (lemma 2.4), the proof of lemma 3.3
can be easily obtained.

3.2.1. STEP 2.A: COMPUTATION SHAP1, SHAP2 IN
TERMS OF LANGUAGE OPERATORS.

The following lemma provides a reformulation of the func-
tions SHAP1 and SHAP2 in the form of operations over
languages whose properties depend on the input instance of
their respective problems:

Lemma 3.4. Let A be a WA over Σ∗, a sequence w ∈ Σ∗,
two integers (i, k) ∈ [|w|]× [|w|−1], and P be an arbitrary

probability distribution over Σ∞. We have

SHAP1(A,w, k, P ) = |fw,k ⊗Π(fA, g
(1)
w,P )||w| (8)

and,

SHAP2(A,w, i, k, P ) = |fw,k ⊗Π(fA, g
(2)
w,i,P )||w| (9)

where

• fw,k = Pw
k ,

• g
(1)
w,P is a seq2seq language over Σ∗×Σ∗

# that satisfies
the following constraint:

∀(w′, p) ∈ Σ|w| × Σ
|w|
# : g

(1)
w,P (w

′, p) = P (w′|w′ ∈ Lp)
(10)

• g
(2)
w,i,p is a seq2seq language over Σ∗×Σ∗

# that satisfies
the following constraint:

∀(w′, p) ∈ Σ|w|×Σ
|w|
# : g

(2)
w,i,P (w

′, p) = P (w′|w′ ∈ Lp′)
(11)

where p′ = swap(p, i)

The proof is given in appendix B.

Expressions (8) and (9) reduce the problem of computing
SHAP1 and SHAP2 to that of performing operations over
a language fw,k and two seq2seq languages, g(1)w,P , g

(2)
w,i,P

whose properties are given by equations (10) and (11) , re-
spectively. The missing link to complete the proof of lemma
3.3 is to prove that a WA that implements the language fw,k,
and WTs that compute seq2seq languages g

(1)
w,P , g

(2)
w,i,P

whose properties are given in lemma 3.4 can be constructed
in polynomial time.

3.2.2. STEP 2.B: CONSTRUCTION OF WAS/WTS THAT
COMPUTE fw,k, g

(1)
w,P , g

(2)
w,i,P

The key insight of the article is the following:

If P ∈ MARKOV, two seq2seq languages g(1)w,P and g
(2)
w,i,P

that satisfy the constraints (10) and (11), respectively, admit
a representation using the WA/WT formalism. In addition,
the construction of WAs and WTs that compute these lan-
guages/seq2seq languages can be performed in time polyno-
mial in the size of the input instance.

The next lemma provides a formal statement of this fact
while also covering the language fw,k.

Lemma 3.5. 1. The language fw,k: There exists an al-
gorithmA1 that takes as input, a sequence w ∈ Σ∗, an
integer k ∈ [|w| − 1], runs in O(poly(|w|)), and out-
puts a WA Ak,w over Σ∗

# that computes the language
fw,k = Pw

k .
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2. The seq2seq language g(1)w,P : There exists an algorithm
A2 that takes a sequence w ∈ Σ∗, and P ∈ MARKOV,
runs in O(poly(|w|, |Σ|)), and outputs a WT Tw,P

that computes a seq2seq language that satisfies the
constraint (10).

3. The seq2seq language g
(2)
w,i,P : There exists an algo-

rithm A3 that takes as input a sequence w ∈ Σ∗,
an integer i ∈ [|w|], and P ∈ MARKOV, runs in
O(poly(|w|, |Σ|)), and outputs a WT that implements
a seq2seq language over that satisfies the constraint
(11)

In the sequel, we shall refer to algorithms that compute
fw,k, g

(1)
w,P and g

(2)
w,i,P by A1, A2 and A3, respectively.

The proof of lemma 3.5 is constructive, and can be found in
appendix C.

The construction ofA1 is relatively easy. As forA2 andA3,
the key observation stems from the Bayes’ formula:

P (w|w ∈ Lp) =
P (w) · ILp

(w)

P (Lp)
(12)

In light of the equation (12), the construction of A2 and
A3 will follow the same spirit of the main algorithm for
solving SHAP(WA,MARKOV). In other words, it will involve
the construction of a WT over Σ∗ × Σ∗

# that implements
the language ILp

(w), and two WAs over Σ∗ and Σ∗
# that

implement the languages P (w) and 1
P (Lp)

, respectively.
Since WAs/WTs are not closed under the division operation,
the major difficulty in the construction lies in the design
of a WA that implements the language 1

P (Lp)
involving a

division operation.

We note that sinceA1, A2 andA3 run in time polynomial in
their respective input instances implies that the size of their
output machines is also polynomial in the size of their input
instance2. This fact will appear explicitly in the constructive
proof of lemma 3.5.

In light of lemma 3.4 and 3.5, we are ready to prove the
main lemma of this subsection:

Proof. (lemma 3.3) We shall prove that SHAP1 is in FP. A
similar argument can be applied to derive the same result
for SHAP2.

Define the following algorithmic schema that takes as input
an instance < A,w, k, P > where A is a WA, w ∈ Σ∗,
i ∈ [|w|] and P ∈ MARKOV:

1. Aw,k ← A1(w, k)

2FP ⊂ FPSPACE

2. Tw,P ← A2(w,P )

3. Output: |fAw,k
⊗Π(fA, fTw,P

)||w|

By lemma 3.4 (equation (8)), and the properties of A1, A2

(lemma 3.5), this schema solves exactly the problem
SHAP1(WA,MARKOV).

In addition, this schema also runs in
O(poly(size(A), |w|, |Σ|)). Indeed, by lemma 3.5,
steps 1 and 2 run in O(poly(|w|) and O(poly(|w|, |Σ|)),
respectively. Consequently, by FP ⊂ FPSPACE, the size of
their outputs Aw,k, and Tw,k,P is also polynomial in |w|
and |Σ|.

On the other hand, given that the operators ⊗, |.|n, Π over
languages represented by WAs/WTs can be computed in
polynomial time with respective to the size of their input
instances (lemma 2.4), this proves that the third step of the
schema also runs in O(poly(size(A), |w|, |Σ|)) time.

4. SHAP(D-DNF,MARKOV) and
SHAP(DT,MARKOV) are in FP

In this section, we switch our focus to boolean functions, in
particular the class of disjoint-DNFs (d-DNF) 3. The choice
of this family of models is mainly motivated by the fact that
it encompasses the family of decision trees, a central class
of glass-box models capturing substantial attention within
the explainable AI community. Recent works have been
dedicated to exploring the computation of SHAP scores
for Tree-based models across diverse configurations (Lund-
berg et al., 2020; Yang, 2021; Arenas et al., 2023; Yu et al.,
2022). Later in this section, we shall prove that comput-
ing the SHAP score for the family of decision trees under
Markovian distributions is reducible in polynomial time to
SHAP(WA,MARKOV), offering a polynomial-time algorith-
mic construction to compute the original SHAP score for the
family of decision trees under the Markovian assumption.

The class of disjoint-DNFs (d-DNFs) is formally defined as
follows:

Definition 4.1 (Disjoint DNF). A d-DNF is a logical ex-
pression Φ(X1, X2, . . . , Xn) where {X1, X2, . . . , Xn} is
a set of input boolean variables, such that:

• Φ is expressed as a disjunction (logical OR) of clauses,
where each clause is expressed as one or more conjunc-
tions (logical AND) of literals.

3For the general case of arbitrary DNFs, it has been shown that
computing the SHAP score for this class of models when features
are assumed to be independent is intractable under widely believed
complexity assumptions (Arenas et al., 2023).
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• Each clause in the expression is mutually exclusive
from the others, ensuring that for any input combina-
tion (X1, X2, . . . , Xn), only one clause evaluates to
true.

Example. Let X = {X1, X2, X3, X4} be a set of binary
variables. The formula

Φ = (X1∧X3∧X4)∨ (X̄1∧X2∧X3)∨ (X2∧X̄3) (13)

is a d-DNF over the variables {Xi}i∈[4] comprising 3
clauses. Indeed, for any two distinct clauses (Ci, Cj) for
(i, j) ∈ [3]2, the intersection of the set of satisfying variable
assignments for Ci and Cj is empty.

A Markovian distribution P over a boolean random vector
of dimension N is given as:

P (X1, . . . , XN ) = Pinit(X1)

N−1∏
i=1

Pi(Xi+1|Xi)

To avoid confusion with the sequential case, the set of
Markovian distributions over boolean vectors shall be de-
noted−−−−−→MARKOV. For an integer N > 0,−−−−−→MARKOVN will refer
to the set of Markovian distributions over boolean vectors
of dimension N .

The formal definition of the computational problem asso-
ciated to compute the SHAP score of the class of d-DNFs
under Markovian distributions is given as follows:

• Problem: SHAP(d-DNF,−−−−−→MARKOV)
Instance: A d-DNF Φ over N boolean variables, an in-

stance −→x ∈ {0, 1}N , an integer i ∈ [N ], P ∈ −−−−−→MARKOVN

Output: Compute
−−−→
SHAP(Φ, x, i, P )

The complexity size of the input instance of this problem is
given by the number of variables of Φ, denoted |Φ|, and the
number of clauses in the d-DNF denoted |Φ|#.

The claim of this section is given in the following theorem:
Theorem 4.2. SHAP(d-DNF,−−−−−→MARKOV) is in FP.

The proof of theorem 4.2 will proceed by reduction to the
problem SHAP(WA,MARKOV).

Before providing the details of the reduction strategy, we
shall present an interesting corollary of theorem 4.2, stating
that the SHAP score computational problem for the family
of decision trees under Markovian distributions is in FP.
Corollary 4.3. Denote by DT the set of decision
trees computing boolean functions. The problem
SHAP(DT,

−−−−−→
MARKOV) is in FP.

Proof. This result follows immediately from theorem 4.2,
and the fact that given an arbitrary decision tree in DT, an

equivalent d-DNF can be constructed in polynomial time
with respect to the size of the decision tree (Property 1,
(Aizenstein & Pitt, 1992)).

4.1. Proof of theorem 4.2: Reduction strategy

Unlike WAs, d-DNFs compute boolean functions instead of
languages. For the sake of the reduction, a first step consists
at performing a sequentialization operation of the input
instance of the problem SHAP(d-DNF,

−−−−−→
MARKOV). We give

next details of the construction.

• Sequentialization of Markovian distributions: For an
integer N > 0, the sequentialization of a Markovian dis-
tribution in −−−−−→MARKOVN to one in MARKOV must ensure that
both distributions are equal in the support {0, 1}N . Indeed,
since the SHAP score of boolean functions over N variables
considers only the support [N ], the choice of the transition
probability matrices for integers larger than i > N can be
set arbitrary, provided the resulting Markovian distribution
remains polynomial-time computable. A possible sequen-
tialization strategy of a distribution of P in −−−−−→MARKOVN is
given by a P̃ ∈ MARKOV (which depends on P ) such that:

P̃init = Pinit, P̃i(Xi+1|Xi) =

{
Pi(Xi+1|Xi) if i ∈ [N ]

Punif (Xi+1) elsewhere

where Punif (Xi+1) is the uniform distribution over {0, 1}.

• Sequentialization of d-DNFs. For any integer N > 0,
and any boolean vector

−→
X over {0, 1}N , SEQ(

−→
X ) refers to

the sequence X1 . . . XN formed by the binary alphabet.

For a given d-DNF Φ over N variables. Its sequential ver-
sion is represented by the unweighted language LΦ over Σ∗

such that:

LΦ
def
= {w ∈ {0, 1}|Φ| :

−→
X = SEQ−1(w) satisfies Φ}

Basically, LΦ comprises the set of all satisfied assignments
by the formula Φ arranged in a sequence. The following
lemma is key to prove theorem 4.2. It establishes the exis-
tence of an algorithm that constructs in polynomial time a
WA that computes the language IΦ.

Lemma 4.4. There exists an algorithm that takes as input
a d-DNF Φ, runs in time polynomial in |Φ| and |Φ|#, and
outputs a WA that computes the language ILΦ

.

The proof of lemma 4.4 can be found in appendix D.

Next, we provide the proof of theorem 4.2.

Proof. (Theorem 4.2) For an input instance < Φ,−→x , i, P >
of the problem SHAP(d-DNF,MARKOV). One can observe
that:
−−−→
SHAP(Φ, x, i, P ) = SHAP(ILΦ ,SEQ(

−→x ), i, P̃ ) (14)
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Equation (4.2) suggests the following polynomial-time
reduction strategy from SHAP(d-DNF,

−−−−−→
MARKOV) to

SHAP(d-DNF,MARKOV):

1. Construct a WA that computes the language
ILΦ

. By lemma 4.4, this can be performed in
O(poly(|Φ|, |Φ|#)) time.

2. Apply the SEQ(.) operation on −→x .

3. Wrap the parameters of P in a machine implement-
ing P̃ . For an input integer i > 0, it tests whether
i > N . If the answer is yes, it returns the uniform
distribution. Otherwise, it returns Pi. The construction
of this machine runs in O(|Φ|) time. In addition, the
resulting Markovian distribution is polynomial-time
computable.

5. Conclusion
In this article, we established the tractability of the SHAP
score computational problem under the Markovian assump-
tion for the family of weighted automata and the family
of disjoint-DNFs which encompasses, up to a polynomial-
time reduction, the family of decision trees. The proof is
constructive and is readily amenable to a translation into a
practical algorithm that extends TreeSHAP to handle the
Markovian case.

In conclusion, we note that, by revisiting algorithms de-
signed to generate WTs that compute the seq2seq languages
g
(1)
w,P , g

(2)
w,i,P (lemma 3.5), the algorithmic construction de-

scribed in this article can be easily extended to adapt to
higher-order markovian distributions, e.g.n-gram models
(Fink, 2014), provided the order of the distribution is of
reasonably small size.

In feature research, we aim at exploring the possibility to ex-
tend the tractability of SHAP explanations for other families
of models under the Markovian assumption. An interesting
family to be considered as a natural extension is the class of
Deterministic Decomposable Circuits whose SHAP score
computation under the feature independence assumption has
been proven to be in FP (Arenas et al., 2023).
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A. Proof lemma 2.4
Lemma 2.4 establishes the existence of efficient procedures to compute the product, partition constant and projection
operators over languages/seq2seq languages computed by means of WAs/WTs. In the same spirit of all results provided in
this article, we shall provide a constructive proof of this lemma. In the sequel, we fix two finite alphabets Σ, ∆.

The proof will rely on the notion of Kronecker product between matrices. A brief recall of this latter is given in the following.

• The Kronecker product: The Kronecker product between A ∈ Rn×m and B ∈ Rk×l, denoted A⊗ B, is a matrix in
R(n·k)×(m·l) constructed as follows

A⊗B =


a1,1 ·B a1,2 ·B . . . a1,m ·B]
a2,1 ·B a2,2 ·B . . . a2,m ·B]

...
...

...
...

an,1 ·B an,2 ·B . . . an,m ·B


where, for (i, j) ∈ [n]× [m] ai,j corresponds to element in the i-th row and j-th column of A.

A useful property of the Kronecker product in our context is the mixed-product property:

Proposition A.1. (Proposition 2.1, (Kiefer et al., 2013)) Given A, B, C, D matrices with judicious dimensions, we
have (A ·B)⊗ (C ·D) = (A⊗ C) · (B ⊗D)

Next, we prove the result of the three points mentioned in the lemma:

• The product language of WAs: An important property of WAs is their closure under the product operation. This fact is
classical in the theory of rational languages and has been proven in Schützenberger’s seminal paper (Schützenberger, 1961)
where WAs have been first introduced.

For the sake of completeness, the following proposition provides the details of the construction of a WA that computes the
product of two languages represented by their WAs:

Proposition A.2. Let A =< α, {Aσ}σ∈Σ, β > and A′ =< α′, {A′
σ}σ∈Σ, β

′ > be two WAs over Σ∗.
The WA A⊗A′ =< α⊗ α′, {Aσ ⊗A′

σ}σ∈Σ, β ⊗ β′ > over Σ∗ computes the language

fA⊗A′(w) = fA(w) · fA′(w)

for any w ∈ Σ∗.

Proof. Let A =< α, {Aσ}σ∈Σ, β >, and A′ =< α′, {A′
σ}σ∈Σ, β

′ > be two WAs. Denote by A ⊗ A′ the WA <
α⊗ α′, {Aσ ⊗A′

σ}σ∈Σ, β >.

For an arbitrary string w ∈ Σ∗, we have:

fA(w) · fA′(w) = (αT ·
|w|∏
i=0

Awi
· β) · (α′T ·

|w|∏
i=0

A′
wi
· β′)

= (αT ⊗ α′T ) ·
|w|∏
i=1

(Awi
⊗Aw′

i
) · (β ⊗ β′)

= (α⊗ α′)T ·
|w|∏
i=1

(Awi ⊗Aw′
i
) · (β ⊗ β′)

= fA⊗A′(w)

where the second equality results from the mixed-product property of the Kronecker product (proposition A.1).

The construction of the product WA runs in O(|Σ| · size2(A) · size2(A′)).

• The partition constant operator of WAs: The following proposition provides an implicit polynomial-time procedure
that computes the quantity |fA|n for a WA A.
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Proposition A.3. Let A =< α, {Aσ}σ∈Σ, β > be a WA over Σ∗ and an integer n > 0. We have:

|fA|n = αT · (
∑
σ∈Σ

Aσ)
n · β

Proof. Let A =< α, {Aσ}σ∈Σ, β > be a WA over Σ∗ and an integer n > 0. We first prove by induction that for any n > 0,
we have ∑

w∈Σn

Aw = (
∑
σ∈Σ

Aσ)
n (15)

The case n = 1 is trivial.

Assume the expression (15) is true for an integer n > 0. Let’s prove it is also the case for n+ 1. We have:∑
w∈Σn+1

Aw =
∑

w∈Σn

∑
σ∈Σ

Awσ =
∑

w∈Σn

Aw ·
∑
σ∈Σ

Aσ = (
∑
σ∈Σ

Aσ)
n+1

which proves the equality (15).

Let A =< α, {Aσ}σ∈Σ, β >. For an integer n > 0, we have:

|fA|n = αT ·
∑

w∈Σn

Aw · β = αT · (
∑
σ∈Σ

Aσ)
n · β

where the second result is obtained from (15).

The complexity of implementing this operation is given as: O(size(A)2(|Σ|+ size(A)).

• The projection operator: The following proposition provides a proof of the third point of lemma 2.4:

Proposition A.4. Let Σ, ∆ be two finite alphabets. Let A =< α, {Aσ}σ∈Σ, β > be a WA over Σ∗ ,and T =<
α′, {Āσ′

σ }σ∈Σ, σ′∈Σ′ , β′ > a WT over Σ∗ × ∆∗. The WA Π(A, T ) =< α ⊗ α′, {
∑
σ∈Σ

Aσ ⊗ Āσ′

σ }σ′∈∆, β ⊗ β′ > over

Σ∗ computes the language Π(fA ⊗ fT ).

Proof. Let A be a WA over Σ∗, and T be a WT over Σ∗ ×∆∗.

Define the WA Π(A, T ) =< α⊗ α′, {
∑
σ∈Σ

Aσ ⊗ Āσ′

σ }σ′∈∆, β ⊗ β′ > constructed from A and T .

For an arbitrary u ∈ ∆∗, we have

∑
w∈Σ|u|

fA(w) · fT (w, u) =
∑

w∈Σ|u|

(αT ·
|w|∏
i=1

Awi
· β)

· (α′T ·
|u|∏
i=1

Āui
wi
· β′)

=
∑

w∈Σ|u|

(α⊗ α′)T · (
|u|∏
i=1

Awi
⊗ Āui

wi
) · (β ⊗ β′)

= (α⊗ α′)T · (
|u|∏
i=1

∑
σ∈Σ

Aσ ⊗ Āui
σ ) · (β ⊗ β′)

= fΠ(A,T )(u)

The complexity of the construction implicitly outlined in proposition A.4 is O(size(A)2 × size(T )2 × |Σ|).

13
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B. Proof lemma 3.4
We’ll show the expression (8). The expression (9) can be obtained by mimicking the proof herein.
Let A be a WA, a sequence w ∈ Σ∗, an integer k ∈ [|w| − 1], and P be an arbitrary distribution over Σ∞. Let fw,k (resp.
g
(1)
w,P ) a language (resp. seq2seq language) whose properties are given in the statement of the lemma. We have:

SHAP1(A,w, i, k, P ) = Ep∼Pw
k
Ew′∼P (|w|) [fA(w

′)|w′ ∈ Lp]

=
∑

p∈Σ
|w|
#

Pw
k (p)

∑
w′∈Σ|w|

fA(w
′) · P (w′|w′ ∈ Lp)

=
∑

p∈Σ
|w|
#

fw,k(p) ·
∑

w′∈Σ|w|

fA(w
′) · g(1)w,P (w

′, p)

=
∑

p∈Σ
|w|
#

fw,k(p) ·Π(fA, g
(1)
w,P )(p)

=
∑

p∈Σ
|w|
#

fw,k(p) ·Π(fA, g
(1)
w,P )(p)

= |fw,k ⊗Π(fA, g
(1)
w,P )||w|

C. Proof lemma 3.5
The core statement of lemma 3.5 encompasses three results stating the existence of three efficient algorithmic procedures,
namely A1, A2 and A3, that construct a collection of WAs/WTs whose characteristics are given in the lemma statement.

This appendix will be split into two segments. The first segment furnishes the algorithmic construction of A1. Due to the
close similarities of algorithms A2, A3, they shall be treated simultaneously in the second segment.

Before outlining these constructions, we furnish a brief recall of some sub-families of WAs and WTs serving as a technical
background on top of which the proof will be built. In particular, three sub-families will be introduced: Determinstic Finite
Automata, deterministic WAs, and Deterministic Finite Transducers.

In the sequel, we fix an alphabet Σ, ∆.

• Deterministic finite Automata. The class of deterministic finite automata (DFAs) is a popular sub-family of WAs adapted
to model unweighted languages. A DFA is formally represented by a tuple < Q, qinit, δ, F >, where:

• Q is a finite set of states,

• qinit ∈ Q is called the initial state,

• δ : Q× Σ→ Q is a partial function 4 called the transition function,

• F ⊆ Q is called the the set of final states,

For a DFA A =< Q, qinit, δ, F >, a valid path over A labeled by a sequence w ∈ Σ∗ is a sequence of state-symbol pairs
taking the form: q0w1q1 . . . w|w|q|w|, such that for any i ∈ {0, . . . |w| − 1} : δ(qi, wi+1) = qi+1. A valid path labeled by w
is said to be accepting if q0 = qinit and q|w| ∈ F .

An important property of DFAs lies in that the cardinality of the set of its valid paths labeled by an arbitrary sequence
w ∈ Σ∗ is at most equal to 1. The unweighted language accepted by a DFA corresponds to the set of sequences that label a
valid accepting path over the DFA.

• Deterministic Finite Transducers. Deterministic Finite Transducers (DFTs) represent the analogous counterpart of DFAs
adapted to seq2seq languages, and constitutes a sub-family of WTs that compute unweighted seq2seq languages. A DFT
over Σ×∆ is formally represented by a tuple < Q, qinit, δ, F >

4A partial function f from a set X to Y is a function whose input domain is a subset of X (i.e. it doesn’t necessarily assign an output
to every element of x)

14
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• Q is a finite set of states.

• qinit is the initial state.

• δ : Q× Σ→ ∆×Q is a partial function called the transition function.

• F is called the set of final states.

The formal description of a DFT resembles to that of DFAs, and operates in a closely similar manner.

For a DFT T =< Q, qinit, δ, F >, a valid path over T labeled by a pair of sequences (u, v) ∈ Σ∗ × ∆∗ such that
|u| = |v| = n is a sequence of elements in Q × Σ × ∆ taking the form: q0u1v1q1 . . . unvnqn where for any i ∈
{0, . . . n− 1} : δ(qi, ui+1) = (vi+1, qi+1). A valid path over (u, v) ∈ Σ∗ ×∆∗ is said to be accepting if q0 = qinit and
qn ∈ F .

DFTs enjoy a similar property than DFAs in that for any pair of sequences over Σ∗ ×∆∗ with the same length, there exists
at most one valid path labeled by this pair. The unweighted seq2seq language accepted by a DFT is equal to the set of
sequence pairs over Σ∗ ×∆∗ that label a valid accepting path.

• Deterministic Weighted Automata. DWAs is the weighted variant of DFAs. It aligns with the structure of DFA while
augmenting its transitions with real-valued weights. Formally, a DWA is defined as follows:

• Q is a finite set of states,

• qinit ∈ Q is called the initial state,

• W : Q× Σ→ Q× R is a partial function 5 called the weight function,

• F ⊆ Q is called the the set of final states,

Similar to DFAs, any sequence w ∈ Σ∗ labels at most a valid path, where the notion of a valid path is equivalent to that of
DFAs. However, unlike DFAs, valid paths are assigned real-valued weighted instead of the boolean notion of acceptability.
The weight assigned to a path starting from the initial state qinitw1 . . . qn−1wn−1qn is equal to:

·
n−1∏
i=1

W (qi, wi)[2] · IF (qn)

where W (q, σ)[2] refers to the weight associated to the transition δ(q, σ).

This weight coincides with the value assigned to the sequence w1 . . . wn by the seq2seq language computed by the WT.
Sequences that label no valid path are assigned the weight 0 by default.

After presenting this brief technical background, we are now ready to prove the core statement of the lemma:

C.1. Construction of A1.

Recall that A1 refers to an algorithm that takes as input a string w ∈ Σ∗, an integer k ∈ [|w|]2, runs in O(poly(|w|)), and
outputs a WA over Σ∗

# that computes the language Pw
k . The probability distribution Pw

k refers to the uniform distribution
over the set of patterns:

Lw
k

def
= {p ∈ Σ

|w|
# : |p|# = k ∧ w ∈ Lp}

The algorithmic construction of A1 aligns with two sequential steps:

1. Create a DFA over Σ∗
# that accepts the language Lw

k ,

5A partial function f from a set X to Y is a function whose input domain is a subset of X (i.e. it doesn’t necessarily assign an output
to all elements of x)
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2. Normalize the resulting DFA by the quantity 1
|Lw

k | to obtain the output WA. Note that |Lw
k | is equal to |w|!

(k)!·(|w|−k)! and
can be computed in O(poly(|w|)) time.

The second step of the algorithmic construction, i.e. the normalization step, is straightforward. Indeed, given a WA
A =< α, {Aσ}σ∈Σ, β > and a normalizing constant C ∈ R, the WA A′ =< C · α, {Aσ}σ∈Σ, β > computes the
(normalized) language fA′ = C · fA. In addition, it’s easy to observe that this operation can be performed in polynomial
time with respect to the size of A. Our claim, that we shall prove next in this subsection, is that the size of the DFA A is
O(poly(|w|)). Assuming this claim holds, the normalization operation runs in (poly(|w|).

The rest of this subsection will focus on the first step of the algorithmic construction:

• Creation of a DFA that accepts the language Lw
k :

Fix an input instance w ∈ Σ∗, k ∈ [|w|]. A key observation for the DFA construction consists at noting that, during a
forward processing run over an input pattern to check its membership in Lw

k , a sufficient information to keep of the run’s
history is summarized in the following:

• The position of the next symbol: This information is useful to ensure that the input pattern satisfies the constraint
w ∈ Lp imposed by definition of Lw

k . Additionally, this information will enable rejecting the patterns whose length is
greater than |w|. In our case, this information lies in the interval {0, 1, . . . , |w|},

• The number of occurrences of the symbol # in the processed prefix of the input pattern: This information enables to
ensure that only patterns that satisfies the constraint |p|# = k will be accepted. In our case, this information lies in the
range {0, 1, . . . , k}.

In light of this discussion, the construction of the DFA that accepts the language Lw
k :

• The state space: Q = {0, 1, . . . , |w|]× {0, 1, . . . , k}

• The initial state: qinit = (0, 0). The first element of the pair signifies that the forward run is at position 0 (i.e. no
symbol in the input pattern has been processed so far). The second element signifies that 0 occurrences of the symbol
# has been encountered in the processed input pattern so far.

• The transition function: For a state (l, l′) ∈ {0, . . . , |w| − 1} × {0, . . . , k − 1}
Case 1 (pl+1 = #). We increment both the number of occurences of # in the input pattern and the position of the
sequence by 1 which entails a transition to (l + 1, l′ + 1):

δ((l, l′),#) = (l + 1, l′ + 1)

Case 2 (pl+1 = wl+1). we increment the position of the input pattern to l + 1 without incrementing the number of
occurrences of #.

δ((l, l′), wl+1)) = (l + 1, l′)

No other transitions are added to the transition map for all the other cases.

• The final set of states: F = {(|w|, k)}.

One can check that the complexity of this algorithmic construction runs in O(|w|2) time.

C.2. Constructions of A2 and A3.

Due to the close similarities in the construction of algorithms A2 and A3, we dedicate this segment to treat both algorithms
simultaneously. The presence of the swap(.) operation in A3 brings an additional difficulty to this latter, when compared to
A2. Consequently, we choose to treat A3 as a main case. The subtle differences between A2 and A3 will take the form of
notes where these differences will be highlighted.

16



On the Tractability of SHAP Explanations under Markovian Distributions

In lemma 3.4, A3 designates an algorithm that takes as input a string w ∈ Σ∗, an integer i ∈ [|w|], a probability distribution
P ∈ MARKOV, and outputs a WT Tw,P over Σ∗ × Σ∗

# that computes a seq2seq language that satisfies the following
constraint:

∀(w′, p) ∈ Σ|w| × Σ
|w|
# : f(w′, p) = P (w′|w′ ∈ Lswap(p,i)) (16)

Instead of this formulation, we’ll exploit an equivalent re-expression of the constraint in the algorithmic design obtained
using Bayes’ rule:

∀(p, w′) ∈ Σ|w| × Σ
|w|
# : f(w′, p) =

P (w′) · ILswap(p,i)
(w′)

P (Lswap(p,i))
(17)

The algorithms A2, and A3 will be designed following the same paradigm employed to construct the main algorithm for
solving SHAP(WA,MARKOV). Specifically, it will involve the construction of WAs/WTs that compute languages dependent
on the input instance of the problem. Then, the application of efficiently computable operators over these constructed
WAs/WTs will yield a WT that satisfies the constraint (17).

Besides operators introduced in section 2, namely the product operator, the partition constant operator and the projection
operator, we shall introduce two additional operators over seq2seq languages which will be useful in this context. An
emphasis will be put on the computational efficiency of implementing these operators for the case of seq2seq languages
represented by WTs.

Fix two finite alphabets Σ and ∆.

• The inverse operator: The inverse operator takes as input a language a seq2seq language Σ∗ ×∆∗ f , and returns the
seq2seq language denoted inv(f) such that:

inv(f)(u, s)
def
= f(s, u)

for (u, s) ∈ Σ∗ ×∆∗ such that |u| = |s|.

This operator settles for performing a swap operation of the arguments given to compute the seq2seq language for a given
pair of sequences.

When a seq2seq language over Σ∗ ×∆∗ is computed by a WT T =< α, {Aσ′

σ }(σ,σ′)∈Σ×∆, β >, the WT that computes the
seq2seq language inv(fT ) can be trivially obtained as < α, {Aσ

σ′}(σ′,σ)∈∆×Σ, β >.

• The multiplicative operator: This operator, which we’ll refer to as the multiplicative operator, takes as input a language
f over Σ∗ and a seq2seq language g over Σ∗ ×∆∗, and outputs a seq2seq language over Σ∗ ×∆∗, denoted f × g such that

(f × g)(u, s) = f(u) · g(u, s) (18)

for any (u, s) ∈ Σ∗ ×∆∗ such that |u| = |s|.

When the language f and the seq2seq language g given as arguments to this operator are represented by a WA A and a WT
T , respectively, then f × g can be computed by a WT. Moreover, the construction of this WT can be performed in time
polynomial in the size of A and T . The followin proposition provides a proof of this fact:

Lemma C.1. Let A =< α, {Aσ}σ∈Σ, β > be a WA over Σ∗, T =< α′, {Bσ}σ
′∈∆

σ∈Σ , β′ > a WT over Σ∗ ×∆∗.

The WT A× T =< α⊗ α′, {Aσ ⊗Bσ′

σ }σ
′∈∆

σ∈Σ , β ⊗ β′ > over Σ∗ ×∆∗ computes the seq2seq language fA×T .

Proof. Let A =< α, {Aσ}σ∈Σ, β > be a WA over Σ∗, B =< α′, {Bσ}σ
′∈∆

σ∈Σ , β′ > a WT over Σ∗ ×∆∗. Let A×B =<

α⊗ α′, {Aσ ⊗Bσ′

σ }σ
′∈∆

σ∈Σ , β ⊗ β′ > be the constructed WT from A and B.
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Fix a pair (u, s) ∈ Σ∗ ×∆∗ such that |u| = |s|. We have

fA(u) · fT (u, s) = (αT ·
|u|∏
i=1

Aui · β) · (α′T ·
|w|∏
i=1

Bsi
wi
· β′)

= (α⊗ α′)T ·
|u|∏
i=1

(Aui
⊗Bsi

wi
) · (β ⊗ β′)

= fA×B(u, s)

where the second equality is an application of the mixed product property of the Kronecker product (proposition A.1).

After introducing the inverse and the multiplicative operator, we are now ready to provide the overall structure of algorithms
A2 and A3.

Fix an input instance w ∈ Σ∗, a pair of integers i ∈ [|w|], and P ∈ MARKOV.

The algorithm A3 will follow three steps:

• Step 1: Construct a DWA, denoted Aw,P , over Σ∗ that computes the language

fAw,P
(w′) =

{
P (w′) if w′ ∈ Σ|w|

0 elsewhere
(19)

• Step 2: Construct a DFT, denoted Ti, over Σ∗ × Σ∗
# that computes the (unweighted) seq2seq language:

fTw,i(w
′, p) = ILswap(p,i)

(w′) (20)

for any pair (w′, p) ∈ Σ∗ × Σ∗
#.

• Step 3: Construct a DWT over Σ∗
#, denoted Aw,i,P that computes a language over Σ∗

# such that:

fAw,i,P
(p) =

1

P (Lswap(p,i))
(21)

for any p ∈ Σ
|w|
# .

Assume we have the WAs Aw,P , Aw,i,P and the WT Tw,i that compute languages/seq2seq languages described in steps 1, 2
and 3, respectively. In light of the equation (17), the seq2seq language computed by the WT

inv(Aw,i,P × inv(Aw,P × Ti))

satisfies the constraint of the seq2seq language g
(1)
w,i,P . This resulting WT represents the output of A3.

• Note. At this stage, a slight difference betweenA2 andA3 lies in steps 2 and 3. For the case ofA2, the pattern swap(p, i)
should be replaced by p in equations (20) and (21), in which case a different DFT and DWT have to be designed to compute
these set of languages/seq2seq languages. Later in this segment, we shall highlight their construction.

It’s left to show how to construct these three machines in polynomial time with respect to the size of the input instance. The
constructions of Aw,P and Tw,i are relatively easy. The construction Aw,i,P is more challenging.

The remainder of this section will be split in three segments, each of which is dedicated to provide the implementation
details of one of the steps of the algorithmic structure outlined above.
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0start 1 2 3
σ : σ

σ : #

σ : σ

σ : #

σ : σ′

σ : σ, σ : #

Figure 1. A DFT Ti that computes the seq2seq language g(w′, p) = ILswap(p,i)
(w′) for i = 3. σ (resp. σ′) refers to any symbol in Σ

(resp. Σ#.

C.2.1. STEP 1: CONSTRUCTION OF Aw,P .

Aw,P refers to the WA that computes the language expressed in 19.

Given a string w ∈ Σ∗ and P ∈ MARKOV. A Markovian distribution over the finite support Σ|w| can be easily simulated
by a DWA. The construction consists at maintaining in the state memory of the DWA the position reached so far in the
sequence and the last generated symbol. These two pieces of information are sufficient to simulate a Markovian distribution.

For the sake of the construction, we add a new symbol, denoted < BOS >, that refers to the beginning of a sequence.

The outline of the construction is given as follows:

• The state space: Q = {0, 1, .., |w|} × (Σ∪ < BOS >),

• The initial state: qinit = (0, < BOS >)

• The weight function: Let q = (i, σ) be a state in Q. We denote by σ′ an arbitrary symbol in Σ. We distinguish between
two cases:

– Case 1 ((i, σ) = (0, < BOS >)):

W ((0, < BOS >), σ′) = ((1, σ′), Pinit(σ
′))

– Case 2 (i < |w|):
W ((i, σ), σ′) = ((i+ 1, σ′) = Pi(σ

′|σ))

• The final weight vector: F = {(|w|, σ) : σ ∈ Σ}

A valid path labeled by a sequence w′ ∈ Σ|w| over the constructed DWA is given as:

(0, < BOS >)w′
1(1, w

′
1) . . . (|w| − 1, w′

|w|−1)w
′
|w|(|w|, w

′
|w|)

The weight of this path is equal to Pinit(w
′
1) ·

|w|−1∏
i=1

Pi(w
′
i+1|w′

i) · IF
(
(|w|, w′

|w|)
)
= P (w′).

Provided P is polynomial-time computable, this construction runs in O(poly(|w|, |Σ)) time.

C.2.2. STEP 2: CONSTRUCTION OF Ti.

Given an integer i > 0, the goal is to construct a DFT Ti over Σ∗ × Σ∗
# that computes the seq2seq language whose

expression is given in (20).

The construction is relatively easy. The state of the DFT will keep in its memory the current position of the pair of sequences
being parsed up to position i. At a position j < i, the DFT will enable a transition from a state j to a state j + 1 if and only
if the current pair of symbols to parse (w′

j+1, pj+1) satisfies the constraint (w′
j+1 = pj+1) ∨ pj+1 = #),. For the particular

case, j = i− 1, where the swap operation needs to be taken into account, a transition is allowed to j + 1 regardless of the
pair of symbols (pi, w′

i) fed to the DFT.

The formal description of a DFT Ti is given in the following. An illustrative example of this construction is given in figure 1.

• The state space: Q = {0, 1, . . . , i}
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• The initial state: qinit = 0,

• The transition function: Let j be a state in Q. We distinguish between three cases:

1. Case 1 (j < i− 1):
δ(j, (σ, σ′)) = j + 1

for (σ, σ′) ∈ Σ× Σ# such that (σ = σ′ ∨ σ′ = #)
2. Case 2 (j = i− 1):

δ(j, (σ, σ′)) = j + 1

for any pair of symbols (σ, σ′) ∈ Σ× Σ#

3. Case 3 (j = i):
w(i, (σ, σ′)) = i

for (σ, σ′) ∈ Σ× Σ# such that (σ = σ′ ∨ σ′ = #)

• The set of final states: Q.

• Note. For the case of the algorithm A2, a DFT that computes the seq2seq language f(p, w′) = ILp
(w′) is a trivial single-

state DFT that settles for testing at each step during the forward run whether the pair of input symbols (σ, σ′) ∈ Σ× Σ#

satisfies the constraint: σ′ = σ ∨ σ′ = #.

C.2.3. STEP 3: CONSTRUCTION OF Aw,i,P .

In the remainder of this segment, we fix a string w ∈ Σ∗, and an integer i ∈ [|w|], and P ∈ MARKOV.

Recall that the DWA Aw,i,P over Σ∗
# is required to compute a language that satisfies the constraint (21). The construction

of the DWA Aw,i,P is more challenging than the construction pf Aw,P and Ti detailed in previous segments. The difficulty
lies in the fact that, unlike the product operation, the set of WAs is not closed under the division operation.

By means of Bayes’ rule, the constraint (21) is explicitly given as

∀p ∈ Σ
|w|
# : fAw,i,P

(p) =
1

Pinit(w′
1 ∈ Lswap(p,i)1)

· 1
|w|−1∏
j=1

P (w′
j+1 ∈ Lswap(p,i)j+1

|w′
1:j ∈ Lswap(p,i)1:j )

(22)

When trying to construct a DWA that satisfies the formula (22), a difficulty arises by noting that the product terms forming
the right-side of the equation requires maintaining the full history of the input pattern. A construction of a DWA that naı̈vely
simulates the equation (22) would have a state space whose size is O(|Σ||w|).

To circumvent this issue, an intermediary question to raise is concerned with the size of the minimal sufficient information
to hold about a running pattern p1,j to compute the quantity P (w′

j+1 ∈ Lpj+1
|w′

1:j ∈ Lp1:j
). Under the assumption that

P ∈ MARKOV, one can observe that the minimal sufficient information to retain about the past of a pattern during a forward
run is:

1. The current position in the processed sequence.

2. The last position where a symbol σ ∈ Σ has been encountered during the processing run.

3. The symbol that holds the position described in the previous point.

To gain some intuition on the points discussed above, we provide an illustrative example:

• Example: Let Σ = {a, b} be an alphabet, and P ∈ MARKOV. Let p = a#a#b be a pattern (the support is equal to 5).
Let’s fix as a goal the computation of the quantity P (w ∈ La#a#b). Using Bayes’ rule, we have

P (w ∈ La#a#b) = P (w5 = b|w1 = a ∧ w3 = a) · P (w3 = a|w1 = a) · P (w1 = a)
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Since P ∈ MARKOV, w5 is independent of w1 given w3. Thus,

P (w ∈ La#a#b) = P (w5 = b|w3 = a) · P (w3 = a|w1 = a) · P (w1 = a)

Note that each product term in the right side of the equation depends only the current position, the last position where a
symbol different than # has been encountered and the symbol found in this position.

The points 2 and 3 are formalized by introducing the following two functions:

• The pos(.) function:

pos : Σ∗
# −→ N (23)

p −→ max
i∈{0,1,...,|p|]

{i ∈ N : pi ̸= #}

• The sym(.) function:

sym : Σ∗
# −→ Σ∪ < BOS > (24)

p −→

{
< BOS > if pos(p) = 0

ppos(p) elsewhere

• Example: For the alphabet Σ = {a, b} and the pattern p = a#a#. The last position held by a symbol in Σ in p is the
position 3. It is held by the symbol a. Consequently, for this example, we have pos(p) = 3, and sym(p) =′ a′.
For patterns that contain only the symbol ′#′, e.g. p′ = ####, we have pos(p′) = 0 and sym(p′) = BOS.

Next, we shall see how to reformulate the equation (22) using the functions pos(.), and sym(.).

For a given pattern p in Σ∗
#, define the language L̃p over Σ∗ described as follows:

L̃p
def
= {w ∈ Σ|p| : wpos(p) = sym(p)} (25)

By convention, if pos(p) = 0, L̃p is equal to #|p|.

Given that P ∈ MARKOV, we have

P (w′
j+1 ∈ Lpj+1

|w′
i:j ∈ Lp1:j

) = P (w′
j+1 ∈ Lpj+1

|w′
1:j ∈ L̃p1:j

) (26)

At this stage, a key observation is that the quantity present in the right-hand side of the equation (26) depends only on P ,
pj+1, pos(p1:j), sym(p1:j), and j. Indeed, by definition of the language L̃p (equation (25)), the language L̃p1:j depends
only on these last three parameters.

To make this dependency appearing explicitly, we shall introduce a definition of a new function G given as follows:

G (pj+1,pos(pi,j),sym(p1:j), j, P )
def
= P (w′

j+1 ∈ Lpj+1
|w′ ∈ L̃p1:j

) (27)

Using the equality (26), we can rewrite the constraint (22) with this newly introduced notation as:

∀p ∈ Σ
|w|
# : fAw,i,P (p) =

1

Pinit(w1 ∈ Lswap(p,i)1)
· 1
|w|−1∏
j=1

G(swap(p, i)j+1,pos(swap(p, i)1:j),sym(swap(p, i)1:j), j, P )

(28)

Toward the stated objective of constructing a deterministic WA over Σ∗
# that computes a language satisfying the constraint

(22), the expression (28) offers a better reformulation of this equation by considering two aspects:

1. The product terms forming the right-hand side of expression (28) offers a compressed representation of the history of
the processed pattern required to perform next processing operations, by maintaining only the current position in the
sequence, the last symbol different that # encountered during the forward run and its position in the sequence.
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2. The functions pos(.) and sym(.) can be easily simulated by a sequential machine that processes sequences from
left-to-right, such as WAs. Specifically, for any pattern p ∈ Σ∗

# and a symbol σ ∈ Σ, we have

pos(pσ) =

{
pos(p) if σ = #

pos(p) + 1 elsewhere

sym(pσ) =

{
sym(p) if σ = #

σ elsewhere

We shall leverage these two insights to construct a DWA that simulates the computation of the expression (28).

Assume for now that the function G can be computed in polynomial time with respect to the input instance (this fact will be
proved later in this segment), a polynomial-time construction of Aw,i,P that satisfies the constraint (21):

• The state space: Q = {0, 1, . . . , |w|}2 × (Σ∪ < BOS >).
The semantics of the elements of a state q = (k, l, σ) ∈ Q correspond to the current position in the sequence, pos(.)
and sym(.), respectively.

• The initial state: qinit = (0, 0, < BOS >)

• The transition function: Let q = (k, l, σ) be a state in Q:

1. Case 1 (k = 0):
– Case 1.1. (σ′ = #)

W ((0, 0, < BOS >),#) =

(
(1, 0, < BOS >),

1

Pinit(w′
1 ∈ L#)

)
– Case 1.2. (σ′ ∈ Σ)

W ((0, 0, < BOS >), σ′) =

(
(1, 1, σ′),

1

Pinit(w′
1 ∈ Lσ′)

)
2. Case 2. (k = i− 1) For any σ′ ∈ Σ#

W ((i− 1, l, σ), σ′) =

(
(i, l, σ),

1

G(#, l, σ, k + 1, P )

)
3. Case 3 (k ̸= i− 1 ∧ k ∈ [|w| − 1]):

– Case 3.1. (σ′ = #)

W ((k, l, σ),#) =

(
(k + 1, l, σ),

1

G(#, l, σ, k + 1, P )

)
– Case 3.2. (σ′ ∈ Σ)

W ((k, l, σ), σ′) =

(
(k + 1, k + 1, σ′)) =

1

G(σ′, l, σ, k + 1, P )

)
• The set of final states: F = {|w|} × {0, 1, . . . , |w|} × (Σ∪ < BOS >)

• Note: The case k = i−1 in the algorithmic construction outlined above corresponds to the case where the swap operation
is taken into account. The adaption of this construction to algorithmA2 consists simply at omitting this case and considering
only cases 1 and 3, where case 3 covers the set k ∈ [|w| − 1].

For illustrative purposes, we shall give next an example of the path followed by a pattern in the constructed DWA.

• Example. Fix the alphabet Σ = {a, b} and P ∈ MARKOV. Let w = aabab the instance to explain and the symbol for
which we aim at computing the SHAP score is the third symbol, i.e. i = 3.
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Let’s consider the pattern p = ##aab. By Bayes’ rule, the probability of generating a sequence that follows the pattern
swap(p, 3) = ###ab is equal to:

P (w′ ∈ L###ab) = P (w′
5 ∈ Lb|w′

1:4 ∈ L###a) · P (w′
4 = La|w′

1,3 ∈ L###) · P (w′
3 ∈ L#|w′

1,2 ∈ L##)

· P (w′
2 ∈ L#|w′

1 ∈ L#) · P (w′
1 ∈ L#)

= G(b, 4, a, 5, P ) ·G(a, 0, < BOS >, 4, P ) ·G(#, 0, < BOS >, 3, P ) ·G(#, 0, < BOS >, 2, P )

· Pinit(w
′
1 ∈ L#)

G(b, 4, a, 5, P ) holds the semantics of the conditional probability of generating the symbol b at position 5 given that the
symbol a is generated at position 4. Similarly, G(a, 0, < BOS >, 4, P ) holds the semantics of the marginal probability of
generating the symbol a at position 4.

The unique path followed by the pattern p on the DWA constructed above is:

(0, 0, < B0S >) # (1, 0, < BOS >) # (2, 0, < BOS >) a (3, 0, < BOS >) a (4, 4, a) b (5, 5, b)

The weight assigned to this path by the constructed DWA is equal to

1

Pinit(w′
1 ∈ L#)

· 1

G(#, 0, < BOS >, 2, P )
· 1

G(#, 0, < BOS >, 3, P )
· 1

G(a, 0, < BOS >, 4, P )
· 1

G(b, 4, a, 5, P )

By noting that for any σ ∈ Σ# : Pinit(w
′ ∈ L#) = G(σ, 0, < BOS >, 1, P ), the weight of this path is equal to

1
P (w′∈L###ab)

= 1
P (w′∈Lswap(##aab,3))

.

• Computation of the function G.
In order for this constructed DWA to run in time polynomial in the size of its input instance, a necessary and sufficient
condition is that the computation of the function G, can also be performed in polynomial time. We shall prove next that this
last statement is true.

Formally, the computational problem associated to the function G is given as follows:

• Problem: The computational problem G
Instance: σ′ ∈ Σ#, two integers n, m > 0 such that n < m, a symbol σ ∈ Σ∪ < BOS > and P ∈ MARKOV.
Output: Compute G(σ′, n, σ,m, P ) (equation (27)).

For an input instance < σ′, n, σ,m, P >, the quantity G(σ′, n, σ,m, P ) refers to the conditional probability of generating
a symbol in Lσ′ at position m given that the symbol σ has been generated at position n. In essence, the computational
problem G is reduced to the classical problem of inference in Bayesian Networks (Koller & Friedman, 2009). In general,
the exact inference in Bayesian Networks is intractable (Tacettin & Ünlüyurt, 2005). However, in our case, leveraging the
Markovian structure of the probability distribution enables building a tractable solution for the problem using a dynamic
programming approach.

Fix an input instance < σ′, n, σ,m, P > of the problem G. Define the random vector (Xn, . . . , Xm) that takes values over
the set Σm−n. Its joint probability distribution is given as follows:

Q(σn, . . . , σm) = Qinit(σn) ·
m−1∏
i=n

Pi(σi+1|σi)

such that

Qinit(σn) =

{
1 if σn = σ

0 elsewhere

It’s easy to observe that
G(σ′, n, σ,m, P ) = Q(Xm ∈ Lσ′) (29)

If σ′ = #, the computation of G(σ′, n, σ,m, P ) is trivial. Indeed, the fact that L# = Σ and Q(Xm ∈ Σ) = 1 entail, by
equation (29) that G(#, n, σ,m, P ) = 1.
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For the general case σ′ ∈ Σ, a recursive formula to compute G(σ′, n, σ,m, P ) can be obtained, using Bayes’ rule, as
follows:

G(σ′, n, σ,m, P ) = Q(Xm = σ′) (30)

=
∑
σ̃∈Σ

Q(Xm−1 = σ̃ ∧Xm = σ)

=
∑
σ̃∈Σ

Q(Xm = σ|Xm−1 = σ̃) ·Q(Xm−1 = σ̃)

=
∑
σ̃∈Σ

Pm−1(σ|σ̃) ·G(σ̃, n, σ,m− 1, P )

This last equation provides a recursive formula that enables the computation of G using a dynamic programming approach.
The outline of this approach is given as follows:

• Base case: m = n+ 1

1. If n = 0:
G(σ′, 0, σ,m, P ) = Pinit(σ

′)

2. If n > 0:
G(σ′, n, σ,m, P ) = Pn+1(σ

′|σ)

• General case: m > n+ 1

G(σ′, n, σ,m, P ) =
∑
σ̃∈Σ

Pm−1(σ|σ̃) ·G(σ′, n, σ,m− 1, P )

The complexity of this dynamic programming algorithm is O(m.|Σ|).

D. Proof of lemma 4.4
Lemma 4.4 states the existence of an algorithm that takes as input a d-DNF Φ, runs in O(poly(|Φ|, |Φ|#)), and outputs a
WA that implements the language LΦ. Recall that LΦ is defined as

LΦ = {w ∈ Σ|Φ| : SEQ−1(w) satisfies Φ}

The unweighted language LΦ includes the set of satisfying variable assignments of the boolean variables arranged in a
sequence format.

The structure of the algorithm that performs this task follows two steps:

1. Encode every clause C in the input d-DNF in the form of a DFA. The resulting DFA accepts the language LC .

2. Perform a union operation over all these DFAs to obtain a resulting WA. The key observation at the heart of this step
is that, for the case of disjoint DNFs the union operation can be performed using a basic sum operation over DFAs
constructed in the first step.

Next, we shall provide details of these two steps of the algorithmic construction.

D.1. Step 1: Encoding clauses as DFAs.

The basic intuition for performing this step is that an equivalent representation of the language accepted by a clause can be
alternatively represented by a pattern of length |p|. On the other hand, a pattern of length |p| can be implemented using a
DFA of size at most |p|+ 1.

Let C = l1 ∧ . . .∧ lk be a conjunctive clause over N boolean variables. We shall denote by LC the set of satisfying variable
assignments of the clause C arranged in a sequence format.
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The construction of a pattern p such that Lp = LC can be performed by scanning the literals of the clause C from left-to-right.
Assume that the clause C doesn’t possess a variable and its negation in its set of literals 6. The algorithmic schema is given
as follows:

1 Initialize a pattern p as #N

2 For each literal li in C:
- If li corresponds to a variable Xk, then set pk = 1
- If li corresponds to the negation a variable X̄k, then set pk = 0

The algorithmic schema ensures that the language of the outputted pattern accepts all and only sequences that satisfy the
constraints enforced by all literals of the clause.

The pattern construction of a clause in a d-DNF Φ as well as its conversion to a DFA can be performed in O(|Φ|) time. And,
the size of resulting DFA is O(|Φ|). Repeating the same operation over all clauses of Φ runs in O(|Φ| · |Φ|#) time.

• Example: The pattern associated to C = X2 ∧ X̄4 ∧ X̄3 over the set of boolean variables {X1, X2, X3, X4, X5} is
#100#.

D.2. Step 2: The union of DFAs representing clauses.

Fix a d-DNF Φ = C1 ∨ . . . ∨ CM over N boolean variables. Let A1, . . . , AM be a collection of DFAs (outputted by step
1) that accept the languages LC1 , . . . , LCM

, respectively. The main problem of this step is how to exploit DFAs outputted
in the first step to construct a WA A such that ILΦ = fA.

The main intuition at this point is to note that for a d-DNF, ILΦ
can be expressed as as a sum of the indicator functions of

{ILCi
}i∈[M ]. Since fAi = ILCi

for any i ∈ [M ], then fA can be computed as a sum over languages computed by DFAs .
This observation will result into a reduction of the problem of constructing a WA A that computes ILΦ into performing
a sum operation over a collection of DFAs. Fortunately, WAs are closed under the sum operation. Moreover, it can be
computed in polynomial time with respect to the size.

Lemma D.1. Let Φ = C1 ∨ . . . ∨ CM be a disjoint DNF over N boolean variables. We have:

ILΦ
=

∑
i∈[M ]

ILCi

Proof. Let Φ = C1 ∨ . . . ∨ CM be a disjoint DNF over N boolean variables. Let w be an arbitrary sequence in {0, 1}n.

Our claim is that ILΦ(w) =
∑

i∈[M ]

ILCi
(w). Note that LΦ =

M⋃
i=1

LCi by definition of Φ. Also,
M⋂
i=1

Ci = ∅ by the disjoint

property of Φ.

• Case 1 (w /∈ LΦ): This implies that ILΦ
(w) = 0. On the other hand, w /∈ LΦ and LΦ =

M⋃
i=1

LCi
implies that

∀i ∈ [M ] : w /∈ LCi
=⇒ ∀i ∈ [M ] : ILCi

(w) = 0 =⇒
M∑
i=1

ILCi
(w) = 0

• Case 2 (w ∈ LΦ): In this case, ILΦ
(w) = 1. On the other hand, LΦ =

M⋃
i=1

LCi
implies that there exists at least one

clause Ci such that w ∈ LCi . This fact combined with the fact that
M⋂
i=1

Ci = ∅ implies that this clause is unique. Denote

by C∗ this clause. We have ILC∗ (w) = 1. And, ILC
(w) = 0 for any clause C ∈ {Ci}i∈[M ] \ C∗. Consequently,

M∑
i=1

ILCi
(w) = 1.

6Clauses that exhibit this degenerate case can be checked and removed before running the algorithmic schema outlined here.
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The result of lemma D.1 implies that a WA A that computes the language ILϕ
satisfies:

fA =

M∑
i=1

ILCi
=

M∑
i=1

fAi
(31)

For two WAs A1 =< α, {Aσ}σ∈Σβ > and A2 =< α′, {A′
σ}σ∈Σ, β

′ >, the WA whose set of parameters is given as

<

(
α
α′

)
, {
(

Aσ Osize(A1)×size(A2)

Osize(A2)×size(A1) A′
σ

)
}σ∈Σ,

(
β
β′

)
>

where 0n×m is the zero matrix in Rn×m, computes the language fA + fA′ .

The resulting WA runs in O(size(A1) + size(A2)) time, and has size equal to size(A1) + size(A2).

Hence, the construction of the target WA A by performing the sum operation over {Ai}i∈[M ] as outlined by equation (31)

would take O(
M∑
i=1

size(Ai)) operations. Since the DFAs {Ai}i∈[M ] have size equal to O(|Φ|). Then, the overall operation

runs in O(|Φ| · |Φ|#).
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