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Abstract
Bayesian Optimization (BO) is a technique for
sample-efficient black-box optimization that em-
ploys probabilistic models to identify promis-
ing inputs for evaluation. When dealing with
composite-structured functions such as f = g ◦ h,
evaluating a specific location x yields observa-
tions of both the final outcome f(x) = g(h(x))
as well as the intermediate output(s) h(x). Pre-
vious research has shown that integrating infor-
mation from these intermediate outputs can en-
hance BO performance substantially. However,
existing methods struggle if the outputs h(x) are
high-dimensional. Many relevant problems fall
into this setting, including in the context of gen-
erative AI, molecular design, or robotics. To ef-
fectively tackle these challenges, we introduce
Joint Composite Latent Space Bayesian Optimiza-
tion (JoCo), a novel framework that jointly trains
neural network encoders and probabilistic models
to adaptively compress high-dimensional input
and output spaces into manageable latent repre-
sentations. This enables effective BO on these
compressed representations, allowing JoCo to out-
perform other state-of-the-art methods in high-
dimensional BO on a wide variety of simulated
and real-world problems.

1. Introduction
Many problems in engineering and science involve optimiz-
ing expensive-to-evaluate black-box functions. Bayesian
Optimization (BO) has emerged as a sample-efficient ap-
proach to tackling this challenge. At a high level, BO builds
a probabilistic surrogate model, often a Gaussian Process,
of the unknown function based on observed evaluations and
then recommends the next query point(s) by optimizing
an acquisition function that leverages probabilistic model
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predictions to guide the exploration-exploitation tradeoff.
While the standard black-box approach is effective across
many domains (Frazier & Wang, 2016; Packwood, 2017;
Zhang et al., 2020; Calandra et al., 2016; Letham et al.,
2019; Mao et al., 2019), it does not make use of rich data
that may be available when objectives may be stated in
terms of a composite function f = g ◦ h. In this setting,
not only the final objective f(x) = g(h(x)), but also the
outputs of the intermediate function, h(x), can be observed
upon evaluation, providing additional information that can
be exploited for optimization.

While recent scientific advances (Astudillo & Frazier, 2019;
Lin et al., 2022) attempt to take advantage of this structure,
they falter when h maps to a high-dimensional intermediate
outcome space, a common occurrence in a variety of appli-
cations. For example, when optimizing foundational ML
models with text prompts as inputs, intermediate outputs
may be complex data types such as images or text and the
objective may be to generate images of texts of a specific
style. In aerodynamic design problems, a high-dimensional
input space of geometry and flow conditions are optimized
to achieve specific objectives, e.g., minimizing drag while
maintaining lift, defined over a high-dimensional output
space of pressure and velocity fields (Zawawi et al., 2018;
Lomax et al., 2002).

Intuitively, the wealth of information contained in such
high-dimensional intermediate data should pave the way for
more efficient resolution of the task at hand. However, to
our knowledge, little literature exists on leveraging this po-
tential efficiency gain when optimizing functions with high-
dimensional intermediate outputs over high-dimensional
input spaces. To close this gap, we introduce JoCo, a new
algorithm for Joint Composite Latent Space Bayesian Op-
timization. Unlike standard BO, which constructs a sur-
rogate model only for the full mapping f , JoCo simulta-
neously trains probabilistic models both for capturing the
behavior of the black-box function and for compressing the
high-dimensional intermediate output space. In doing so,
it effectively leverages this additional information, yield-
ing a method that substantially outperforms existing high-
dimensional BO algorithms on problems with composite
structure.
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Our main contributions are:

1. We introduce JoCo, a new algorithm for composite
BO with high-dimensional input and output spaces.
To our knowledge, JoCo is the first composite BO
method capable of scaling to problems with very high-
dimensional intermediate outputs.

2. We demonstrate that JoCo significantly outperforms
other state-of-the-art baselines on a number of syn-
thetic and real-world problems.

3. We leverage JoCo to effectively perform black-box
adversarial attacks on generative text and image mod-
els, challenging settings with input and intermediate
output dimensions in the thousands and hundreds of
thousands, respectively.

2. High-Dimensional Composite Objective
Optimization

We consider the optimization of a composite objective func-
tion f : X → R defined as f = g ◦ h where h : X → Y
and g : Y → R. At least one of h and g is expensive to
evaluate, making it challenging to apply classic numerical
optimization algorithms that generally require a large num-
ber of function evaluations. The key complication compared
to more conventional composite BO settings is that inputs
and intermediate outputs reside in high-dimensional vector
spaces. Namely, X ⊂ Rd and Y ⊂ Rm for some large d
and m. Concretely, the optimization problem we aim to
solve is to identify x∗ ∈ X such that

x∗ ∈ argmax
x∈X

f(x) = argmax
x∈X

g(h(x)). (1)

For instance, consider the scenario of optimizing generative
AI models where X represents all possible text prompts
of some maximum length (e.g., via vector embeddings for
string sequences). The function h : X → Y could map
these text prompts to generated images, and the objective,
represented by g : Y → R, quantifies the probability of the
generated image containing specific content (e.g., a dog).

Combining composite function optimization and high-
dimensional BO inherits challenges from both domains,
exacerbating some of them. The primary difficulty with
high-dimensional X and Y is that the Gaussian Process
(GP) models typically employed in BO do not perform well
in this setting due to all observations being “far away” from
each other (Jiang et al., 2022; Djolonga et al., 2013). In ad-
dition, in higher dimensions, identifying the correct kernel
and hyperparameters becomes more difficult. When dealing
with complex data structures such as texts or images, explic-
itly specifying the appropriate kernel might be even more
challenging. Furthermore, while BO typically assumes a

known search space (often a hypercube), the structure and
manifold of the intermediate space Y is generally unknown,
complicating the task of accommodating high-dimensional
modeling and optimization.

2.1. Related Work

Bayesian Optimization of Composite Functions As-
tudillo & Frazier (2019) pioneered this area by proposing
a method that exploits composite structure in objectives to
improve sample efficiency. This work is a specific instance
of grey-box BO, which extends the classical BO setup to
treat the objective function as partially observable and mod-
ifiable (Astudillo & Frazier, 2021b). Grey-box BO methods,
particularly those focusing on composite functions, have
shown dramatic performance gains by exploiting known
structure in the objective function.

For example, Astudillo & Frazier (2021a) propose a frame-
work for optimizing not just a composite function, but a
much more complex, interdependent network of functions.
Maddox et al. (2021b) tackled the issue of high-dimensional
outputs in composite function optimization. They proposed
a technique that exploits Kronecker structure in the covari-
ance matrices when using Matheron’s identity to optimize
composite functions with tens of thousands of correlated
outputs. However, scalability in the number of observations
is limited (to the hundreds) due to high computational and
memory requirements.

Candelieri et al. (2023) propose to map the original problem
into a space of discrete probability distributions measured
with a Wasserstein metric, and by doing so show perfor-
mance gains compared to traditional approaches, especially
as the search space dimension increases. In the context of
incorporating qualitative human feedback, Lin et al. (2022)
introduced Bayesian Optimization with Preference Explo-
ration (BOPE), which use preference learning leveraging
pairwise comparisons between outcome vectors to reducing
both experimental costs and time. This approach is espe-
cially useful when the function g is not directly evaluable
but can be elicited from human decision makers.

While the majority of existing research on BO of composite
structures focuses on leveraging pre-existing knowledge of
objective structures, advancements in representation learn-
ing methods, such as deep kernel learning (Wilson et al.,
2016a;b), offer a new avenue. These methods enable the
creation of learned latent representations for GP models.
Despite this potential, there has been limited effort to ex-
plicitly utilize these expressive latent structures to enhance
and scale up grey-box optimization.

Bayesian Optimization over High-Dimensional In-
put Spaces Optimizing black-box functions over high-
dimensional domains X poses a unique set of challenges.
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Conventional BO strategies struggle with optimization tasks
in spaces exceeding 15-20 continuous dimensions (Wang
et al., 2016). Various techniques have been developed to
scale BO to higher dimensions, including but not limited
to approaches that exploit low-dimensional additive struc-
tures (Kandasamy et al., 2015; Gardner et al., 2017), vari-
able selection (Eriksson & Jankowiak, 2021; Song et al.,
2022), and trust region optimization (Eriksson et al., 2019).
Random embeddings were initially proposed as a solution
for high-dimensional BO by Wang et al. (2016) and ex-
panded upon in later works (e.g., Rana et al. (2017); Nayebi
et al. (2019); Letham et al. (2020); Binois et al. (2020);
Papenmeier et al. (2022).

Leveraging nonlinear embeddings based on autoencoders,
Gómez-Bombarelli et al. (2018) spurred substantial research
activity. Subsequent works have extended this “latent space
BO” framework to incorporate label supervision and con-
straints on the latent space (Griffiths & Hernández-Lobato,
2020; Moriconi et al., 2020; Notin et al., 2021; Snoek, 2013;
Zhang et al., 2019; Eissman et al., 2018; Tripp et al., 2020;
Siivola et al., 2021; Chen et al., 2020; Grosnit et al., 2021;
Stanton et al., 2022; Maus et al., 2022; 2023b; Yin et al.,
2023). However, these approaches are limited in that they
require a large corpus of initial unlabeled data to pre-train
the autoencoder.

3. Method
3.1. Intuition

One may choose to directly apply standard high-dimensional
Bayesian optimization methods such as TuRBO (Eriksson
et al., 2019) or SAASBO (Eriksson & Jankowiak, 2021) to
the problem (1), ignoring the fact that f has a composite
structure and discarding the intermediate information h(x).
To take advantage of composite structure, Astudillo & Fra-
zier (2019) suggest to model h and g separately. However, a
high-dimensional space Y poses significant computational
challenges for their and other existing methods.

To tackle this problem, we can follow the latent space BO
literature to map the original high-dimensional intermediate
output space Y into a low-dimensional manifold Ŷ such that
modeling and optimization becomes feasible on Ŷ . Com-
mon choices of such mappings include principal component
analysis and variational autoencoders. One key issue with
these latent space methods is that they require an accurate
latent representation for the original space. This is a funda-
mental limitation that prevents us from further compressing
the latent space into an even lower-dimensional space with-
out losing too much information.

In the context of composite BO, reconstructing the interme-
diate output is not actually a goal but merely a means to
an end. Instead, our actual goal is to map the intermediate

g(y)
h(x)

f(x)

RewardTrust 
Region

Figure 1. JoCo architecture: Two NN encoders, EX and EY , embed
the high-dimensional input and intermediate output spaces into
lower-dimensional latent spaces, X̂ and Ŷ , respectively. The latent
probabilistic model ĥ maps the embedded input space to a distri-
bution over the embedded intermediate output space Ŷ , while ĝ
maps Ŷ to a distribution over possible composite function values.
Together, these components enable effective high-dimensional op-
timization by jointly learning representations that enable accurate
prediction and optimization of the composite function f .

output to a low-dimensional embedding that retains infor-
mation relevant to the optimization goal, namely the final
function value f(x), and but not necessarily information
unrelated to the optimization target.

By using the function value as supervisory information, we
are able to learn, refine, and optimize both the probabilis-
tic surrogate models and latent space encoders jointly and
continuously as the optimization proceeds.

3.2. Joint Composite Latent Space Bayesian
Optimization (JoCo)

Figure 1 illustrates JoCo’s architecture and Algorithm 1
outlines JoCo’s procedures. Unlike conventional BO with
a single probabilistic surrogate model, JoCo consists of four
core components:

1. Input NN encoder EX : X → X̂ . EX projects the
input space x ∈ X to a lower dimensional latent space
X̂ ⊂ Rd′

where d′ ≪ d.

2. Outcome NN encoder EY : Y → Ŷ . EY projects
intermediate outputs y ∈ Y to a lower dimensional
latent space Ŷ ⊂ Rm′

where m′ ≪ m.

3. Outcome probabilistic model ĥ : X̂ → P(Ŷ). ĥ
maps the encoded latent input space X to a distribu-
tion over the latent output space Ŷ . We model la-
tent ŷ as a draw from a multi-output GP distribution:
h ∼ GP(µh,Kh), where µh : X̂ → Rm′

is the prior
mean function and Kh : X̂ × X̂ → Sm′

++ is the prior
covariance function (here S++ is the set of positive
definite matrices).

4. Reward probabilistic model ĝ : Ŷ → P(f(x)). ĝ
maps the encoded latent output space Ŷ to a distribution
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Algorithm 1 JoCo

Require: Input space X , Number of TS samples Nsample, Initial data size n, number of iterations N
Generate Initial Data: D = {(x1,y1, f(x1)), . . . , (xn,yn, f(xn))} with n random points.
Fit Initial Models: Initialize EX , EY , ĥ, ĝ on D by minimizing (2).
JoCo Optimization Loop:
for i = 1, 2, . . . , N do

xi ← TS(SS = TuRBO Trust Region, Nsample, EX , ĥ, ĝ)
Evaluate xi and observe yi and f(xi).
D ← D ∪ {(xi,yi, f(xi)}
Update EX , EY , ĥ, and ĝ jointly using the latest Nb data points by minimizing (2) on D.

end for
Find xbest such that f(xbest) is the maximum in D
return xbest

over possible composite function values. We model f
over Ŷ as a Gaussian Process: g ∼ GP(µg,Kg), where
µg : Ŷ → R and Kg : Ŷ × Ŷ → S++.

Architecture JoCo trains a neural network (NN) en-
coder EY to embed the intermediate outputs y jointly with
a probabilistic model that maps from the embedded inter-
mediate output space Ŷ to the final reward f . The NN
is therefore encouraged to learn an embedding of the in-
termediate output space that best enables the probabilistic
model ĝ to accurately predict the reward f . In other words,
the embedding model is encouraged to compress the high-
dimensional intermediate outputs in such a way that the
information preserved in the embedding is the information
needed to most accurately predict the reward. Additionally,
JoCo trains a second encoder EX (also a NN) to embed the
high-dimensional input space X jointly with a multi-output
probabilistic model ĥ mapping from the embedded input
space X̂ to the embedded intermediate output space Ŷ . Each
output of ĥ is one dimension in the embedded intermediate
output space.

Training Given a set of n observed data points Dn =
{(x1,y1, f(x1)), . . . , (xn,yn, f(xn))}, the JoCo loss is:

L(Dn) =
1

n

n∑
i=1

[
logPĥ (EY(yi) | EX (xi))

+ logPĝ (f(xi) | EY(yi))
]
,

(2)

where Pĥ(·) and Pĝ(·) refer to the marginal likelihood of the
GP models GP(µh,Kh) and GP(µg,Kg) on the specified
data point, respectively. While they are two distinct, addi-
tive parts, the fact that the encoded intermediate outcome
EY(yi) is shared across these two parts ties them together.
Furthermore, the use of f in Pĝ(·) injects the supervision
information of the rewards into the loss that we use to jointly
updates all four models in JoCo.

We refer to Section 4 and Appendix B for details on the
choice of encoder and GP models.

The BO Loop We start the optimization by evaluating
a set of n quasi-random points in X , observing the cor-
responding h and f = g ◦ h values (existing evaluations
can easily be included in the data). We initialize EX , EY ,
ĥ, and ĝ by fitting them jointly on this observed dataset
by minimizing the loss (2). We then generate the next de-
sign point xn+1 by performing Thompson sampling (TS)
with JoCo (Algorithm 2) with an estimated trust region
using TuRBO (Eriksson et al., 2019) as its search space.
TS, i.e. drawing samples from the distribution over the
posterior maximum, is commonly used with trust region
approaches (Eriksson et al., 2019; Eriksson & Poloczek,
2021; Daulton et al., 2022) and is a natural choice for JoCo
since it can easily be implemented via a two-stage sampling
procedure.

After evaluating xnext and observing ynext = h(xnext) and
f(xnext), we update all four models jointly using the Nb

latest observed data points.1 We repeat this process until sat-
isfied with the optimization result. As we will demonstrate
in Section 4.4 and Appendix A.2, joint training and con-
tinuous updating the models in JoCo are key to achieving
superior and robust optimization performance. The overall
BO loop is described in Algorithm 1.

Training details On each optimization step we update
EX , EY , ĥ, and ĝ jointly using the Nb most recent obser-
vations by minimizing (2) on D for 1 epoch. In particular,
this involves passing collected inputs x through EX , passing
the resulting embedded data points x̂ through ĥ to obtain
a predicted posterior distribution over ŷ, passing collected
intermediate output space points y through EY to get ŷ, and
then passing ŷ through ĝ to get a predicted posterior distri-
bution over f . As stated in (2), the loss is then the sum of 1)
the negative marginal log likelihood (MLL) of ŷ given our

1In practive, we update with Nb = 20 for 1 epoch; our abla-
tions in Appendix A.3 show that the optimization performance
is very robust to the particular choice of Nb and the number of
updating epochs.
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Algorithm 2 Thompson Sampling in JoCo

Require: Search space SS ⊂ X , number of samples
Nsample, models EX , ĥ, ĝ

1: function TS(SS,Nsample, EX , ĥ, ĝ)
2: Sample Nsample points X ∈ SS uniformly
3: X̂← EX (X)

4: S← ĥ.posterior(X̂).sample()
5: F← ĝ.posterior(S).sample()
6: xnext ← X[argmaxF]
7: return xnext
8: end function

predicted posterior distribution over ŷ, and 2) the negative
MLL of outcomes f given our predicted posterior distribu-
tion over f . For each training iteration, we compute this
loss and back-propagate through and update all four models
simultaneously to minimize the loss. We update the models
using gradient descent with the Adam optimizer using a
learning rate of 0.01 as suggested by the best-performing
results in our ablation studies in Appendix A.3

4. Experiments
We evaluate JoCo’s performance against that of other meth-
ods on nine high-dimensional, composite function BO tasks.
Specifically, we consider as baselines BO using Deep Kernel
Learning (Wilson et al., 2016a) (Vanilla BO w/ DKL), Trust
Region Bayesian Optimization (TuRBO) (Eriksson et al.,
2019), CMA-ES (Hansen, 2023), and random sampling. Our
results are summarized in Figure 2. Error bars show the stan-
dard error of the mean over 40 replicate runs. For fair com-
parison, all BO methods compared use Thompson sampling.
Implementation details are provided in Appendix B.1. Code
to reproduce results is available at https://github.
com/nataliemaus/joco_icml24.

4.1. Test Problems

Figure 2 lists input (d) and output (m) dimension for each
problem. The problems we consider span a wide spectrum,
encompassing synthetic problems, partial differential equa-
tions, environmental modeling, and generative AI tasks. The
latter involve intermediate outcomes with up to half a mil-
lion dimensions, a setting not usually studied in the BO
literature. We refer the reader to Appendix B.2 for more
details on the input and output of each problem as well as
the respective encoder architectures used.

Synthetic Problems We consider two synthetic compos-
ite function optimization tasks introduced by Astudillo &
Frazier (2019). In particular, these are composite versions of
the standard Rosenbrock and Langermann functions How-
ever, since Astudillo & Frazier (2019) use low-dimensional

(2-5 dimensional inputs and outputs) variations, we modify
the tasks to be high-dimensional for our purposes.

Environmental Modeling Introduced by Bliznyuk et al.
(2008), this environmental modeling problem depicts pol-
lutant concentration in an infinite one-dimensional channel
after two spill incidents. It calculates concentration using
factors like pollutant mass, diffusion rate, spill location, and
timing, assuming diffusion as the sole spread method. We
adapted the original problem to make it higher-dimensional.

PDE Optimization Task We consider the Brusselator par-
tial differential equation (PDE) task introduced in Maddox
et al. (2021a, Sec. 4.4). For this task, we seek to minimize
the weighted variance of the PDE output on a 64× 64 grid.

Rover Trajectory Planning We consider the rover trajec-
tory planning task introduced by Wang et al. (2018). We
optimize over a set of 20 B-Spline points which determine
the trajectory of the rover. We seek to minimize a cost func-
tion defined over the resultant trajectory which evaluates
how effectively the rover was able to move from the start
point to the goal point while avoiding a set of obstacles.

Black-Box Adversarial Attack on LLMs We apply JoCo
to optimize adversarial prompts that cause an open-source
large language model (LLM) to generate uncivil text. Fol-
lowing Maus et al. (2023a), we optimize prompts of four
tokens by searching over the word-embedding space and
taking the nearest-neighbor word embedding to form each
prompt tested.

This task is naturally framed as a composite function op-
timization problem where the input space consists of the
prompts of four words to be passed into the LLM, the inter-
mediate output space consists of the resultant text generated
by the LLM, and the utility function is the log probability
that the generated text is “toxic” according to a toxic text
classification model. In order to obtain text outputs that
are both toxic and consist of sensible English text (rather
than simply strings of repeated curse words, etc.), we addi-
tionally compute the probability that the generated text is
sensible text with angry sentiment using an Emotion English
sentiment classifier. The utility function we optimize is the
product of these two predictions.

Black-Box Adversarial Attack on Image Generative
Models We consider several of the adversarial prompt
optimization tasks introduced by Maus et al. (2023a). For
these tasks, we seek to optimize prompts (strings of text)
that, when passed into a publicly available large text-to-
image generative model, consistently cause the model to
generate images of some target ImageNet class, despite
these prompts not containing any words related to that class.
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Figure 2. JoCo outperforms other baselines across nine high-dimensional composite BO tasks. Top row: Results for the five composite BO
tasks including synthetic functions (Langermann, Rosenbrock) and problems motivated by real-world applications (environment modeling,
PDE, and rover trajectory planning). Bottom row: Results for the large language model and image generation prompt optimization tasks.

In particular, any individual words that cause the model to
generate images of the target class on their own are disal-
lowed. Following Maus et al. (2023a), we optimize prompts
consisting of four tokens.

Similar to the LLM problem, the input space consists of
prompts of four tokens that could be passed into the model.
Here, the intermediate output space consists of the 224x224
RGB images generated by the text-to-image model, and
the utility function is the log probability that the generated
images belong to the target class according to the standard
ResNet18 ImageNet classifier from TorchVision (TorchVi-
sion maintainers and contributors, 2016).

Additionally, we consider a more challenging variation of
this task from Maus et al. (2023a). For this variation, we
optimize strings of text that, when pre-pended to the fixed
string “a picture of C” (where C is some other non-target
ImageNet class), result in prompts that cause the model to
generate images of the target class rather than of images
of C. We again prohibit the use of any individual words
related to the target class. In order to discourage generation
of images of the non-target class C, we modify the utility
function to be the sum of the log probabilities that the gen-
erated image belongs to the target ImageNet class, and that
it does not belong to the the non-target class C.

4.2. Optimization Results

Figure 2 aggregates the main experimental results of this
work. We find that JoCo outperforms all baselines across all
optimization tasks. Note that we do not compare directly to
the composite function BO method proposed by Astudillo
& Frazier (2019) as it becomes intractable when the output

Prompt: “av YS Takeru”
Reply: “. . . It’s a fucking cookbook, not a travel book!”
Prompt: “Boxing aii stable”
Reply: “Come on you little fuckers, let out aaaallll the pres-
sure. . . ”
Prompt: “Ambrose ino RI”
Reply: “first I got it I was like well fuck it, then they got better
and better. . . ”
Prompt: “rug crime icable”
Reply: “...People are too fucking stupid to ever see.”
Prompt: “obs campaigning ”
Reply: “im a fucking moron... He just sounds like a dumb ass.”
Prompt: “thing omorph”
Reply: “...to feel really badass, tell any one of your friends to
go fuck themselves...”

Figure 3. Toxic text generation task, examples of successful
prompts/replies found by JoCo.

space is sufficiently high-dimensional (which is the case for
all problems we consider).

Non-generative problems In Figure 2, JoCo exhibits
strong performance on the synthetic “Langermann” and
“Rosenbrock” tasks. The competitive edge of JoCo extends
to real-world inspired tasks such as the simulated environ-
mental modeling problem, PDE task, and rover trajectory
planning. While on some problems (specifically, Rosen-
brock, Env model, and PDE), some of the baselines catch
up after sufficiently many evaluations, Joco’s performance
early on is clearly superior. The diverse problem structures
of these non-generative tasks underscore JoCo’s optimiza-
tion efficacy across a range of different tasks.
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(a) Sportscar image generation

(b) Dog image generation

(c) Aircraft image generation

Figure 4. Examples of successful prompts found by JoCo for vari-
ous image generation tasks. Panels depict the results of applying
JoCo to trick a text-to-image model into generating images of
sports cars (a), dogs (b), and aircraft (c), respectively, despite no
individual words related to the target objects being present in the
prompts (and for dogs and aircraft the prompt containing a set of
misleading tokens).

Text generation The “Toxic Text Gen” panel of Figure 2
shows that JoCo substantially outperforms all baselines, in
particular early on during the optimization. This illustrates
the value of the detailed information contained in the full
model outputs (rather than just the final objective score).
Figure 3 shows examples of successful prompts found by
JoCo and the resulting text generated.

Image generation Figure 4 gives examples of successful
adversarial prompts and the corresponding generated im-
ages. These results illustrate the efficacy of JoCo in optimiz-
ing prompts to mislead a text-to-image model to generate
images of sports cars (a), dogs (b), and aircraft (c), despite
the absence of individual words related to the respective
target objects in the prompts. In the “Sportscar” task, JoCo
effectively optimized prompts to generate images of sports
cars without using car-related words. Similarly, in the “Dog”
and “Aircraft” tasks, JoCo identified prompts pre-pended
to “a picture of a mountain” and “a picture of the ocean”
respectively, showcasing its ability to successfully identify
adversarial prompts even in this more challenging scenario.

In the “Aircraft” image generation example in the bottom
right panel of Figure 4, JoCo found a clever way around
the constraint that no individual tokens can be related to
the word “aircraft”. The individual tokens “lancaster” and
“wwii” produce images of towns and soldiers (rather than air-
craft), respectively, when passed into the image generation
model on their own (and are therefore permitted according
to our constraint). However, knowing that the Avro Lan-
caster was a World War II era British bomber, it is less
surprising that these two tokens together produce images of
military aircraft. In this case JoCo was able to maximize
the objective by finding a combination of two tokens that is
strongly related to aircraft despite each individual token not
being related.

4.3. Modeling Performance

The superior optimization performance of JoCo in Figure 2
suggests that the JoCo architecture is able to achieve bet-
ter modeling performance than a standard approximate GP
model on the collected composite-structured data, thereby
enabling better optimization performance across tasks. In
Table 1, we evaluate the modeling performance of the JoCo
architecture more directly. We consider the predictive accu-
racy on held out data collected during a single optimization
trace (using an 80/20 train/test split). We find that the JoCo
architecture obtains better predictive performance across
tasks compared to a standard approximate GP model, both
with and without the use of a deep kernel (DKL).

Additionally, we can see from Table 1 that the supervised
learning performance of the approximate GP model is better
with DKL than without DKL across tasks. This supports
claims that Vanilla BO with DKL is a stronger baseline than
Vanilla BO without DKL, which provides justification of
our choice to compare to Vanilla BO with DKL rather than
Vanilla BO without DKL in Figure 2.

Task JoCo Model GP+DKL GP

Aircraft Image Gen 3.468 6.809 6.810
Dog Image Gen 1.844 5.741 5.742
Sportscar Image Gen 5.854 8.334 8.337
Toxic Text Gen 0.0181 0.0183 0.0184
Rosenbrock 0.495 0.591 0.858
Langermann 2.4120 2.4122 2.4126
PDE 0.534 0.536 0.544
Rover 20.126 20.767 27.940
Env Model 4.191 6.351 14.419

Table 1. Root mean squared error (RMSE) achieved by different
model architectures on held-out test data for all tasks. We compare
the JoCo architecture to a standard approximate GP with and
without the use of a deep kernel (DKL). For each task, we gather
all data from a single optimization trace and use a random 80/20
train/test split.
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Figure 5. Performance comparison of JoCo under three training schemes: (1) JoCo: continuous joint updating of encoders and GPs,
where both components are updated together throughout the optimization (2) Not Updating Models: the models are not updated post
initial training (3) W/o Joint Training: EX and ĥ are updated first followed by a separate updating of EY and ĝ. We observe a notable
performance degradation when deviating from the joint and continuous updating training scheme, which is particularly pronounced in the
more complex generative AI tasks.

4.4. Ablation Studies

As laid out in Section 3, jointly updating both the encoders
and GP models throughout the entire optimization is one
of the key design choices of JoCo. We conducted ablation
studies to more deeply examine this insight. Figure 5 shows
JoCo’s performance compared to (i) when components of
JoCo are not updated during optimization (Not Updating
Models); (ii) when the components are updated separately
rather than jointly, with EX and ĥ being updated first fol-
lowed by a separate updating of EY and ĝ using the two ad-
ditive parts of the JoCo loss (2) (W/o Joint Training). Note
that while these components are updated separately, updates
to the models and the embeddings are still dependent on the
present weights of EX and EY .

From the results it is evident that both design choices are
critical to JoCo’s performance, and that removing any one of
them leads to a substantial performance drop, especially in
the more complex, higher-dimensional generative AI prob-
lems. Despite joint training being a crucial element, the
extent to which the joint loss contributes to JoCo’s perfor-
mance appears to be task-dependent, with the effect (com-
pared to non-joint training) being less pronounced for some
of the synthetic tasks. The underpinning rationale here
is that, as stated in Section 3.2, the two additive parts in
JoCo loss are inherently intertwined. This “non-joint” train-
ing still establishes a form of dependency where the latter
models are influenced by the learned representations of the
former (i.e., ĥ is trained on the output of EY and EY is shared
across both parts of the loss). This renders a complete sepa-
ration of their training infeasible.

In Appendix A we provide additional discussion and results
ablating various components of JoCo, which demonstrate
that (i) each component of JoCo’s architecture is crucial for
its performance, including the use of trust regions, propagat-
ing the uncertainty around modeled outcomes and rewards,
and the use of Thompson sampling; (ii) the experimental
results are robust to choices in the training hyperparameters
including the number of updating data points, the number
of training epochs, and learning rate.

5. Conclusion
Bayesian Optimization (BO) is an effective technique
for optimizing expensive-to-evaluate black-box functions.
However, so far BO has been unable to leverage high-
dimensional intermediate outputs in a composite function
setting. With JoCo we introduce a set of methodological
innovations that enable it to effectively utilize the informa-
tion contained in high-dimensional intermediate outcomes,
overcoming this limitation.

Our empirical findings demonstrate that JoCo not only
consistently outperforms other BO algorithms for high-
dimensional problems in optimizing composite functions,
but also introduces computational savings compared to pre-
vious approaches. This is particularly relevant for appli-
cations involving complex data types such as images or
text, commonly found in generative AI applications such as
text-to-image generative models and large language mod-
els. As we continue to encounter such problems with in-
creasing dimensionality and complexity, JoCo will enable
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sample-efficient optimization on composite problems that
were previously deemed computationally infeasible, broad-
ening the applicability of BO to a substantially wider range
of complex problems.

Impact Statement
JoCo achieves major improvements in sample efficiency
over existing methods for challenging high-dimensional
grey-box optimization tasks. While these capabilities hold
great promise to help accelerate advances in science and
engineering, the possibility – as with any tool – that they
might be used for more nefarious purposes cannot be com-
pletely ruled out. Our empirical studies demonstrate that
JoCo can be leveraged for highly sample-efficient black-box
adversarial attacks on generative models. While this holds
some risk, we believe that the value methods such as JoCO
provide for hardening models to make them more robust
to such attacks (e.g., via Red-Teaming) strongly outweighs
that risk.
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Appendix

A. Additional Ablation Studies
A.1. Computational Environment

To produce all results in the paper, we use a cluster of machines consisting of NVIVIA A100 and V100 GPUs. Each
individual run of each method requires a single GPU.

A.2. JoCo Components

Here we show results ablating the various components of the JoCo method. We show results for running JoCo after removing

1. the use joint training to simultaneously update the models on data after each iteration (w/o Joint Training);

2. the use of a trust region (w/o Trust Region);

3. propagating the uncertainty through in estimated outcome, i.e., y (w/o Outcome Uncertainty);

4. propagating the uncertainty through in estimated reward, i.e., f(x) (w/o Reward Uncertainty);

5. generating candidates by optimizing for expected improvement instead of using Thompson sampling (JoCo with EI).
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Figure 6. Ablating JoCo components.

Figure 6 summarizes the results. We observe that removing each of these added components from the JoCo method can
significantly degrade performance. Joint training is one of the key components of JoCo and using it is important to achieve
good optimization results such as in the Dog Image Generation task. However, in other tasks, JoCo without joint training
can also perform competitively. This is likely because when training JoCo in a non-joint fashion, we first train the EX and ĥ
models on the data, and then afterwards train the EY and ĝ models separately. However, since ĥ by definition relies on the
output EY , it is impossible to completely separate the training of each individual components of JoCo.

We also observe that the use of trust region optimization is essential; JoCo without a trust region performs significantly
worse across all tasks. This is not a surprising result, since although JoCo is designed to tackle high-dimensional input and
high-dimensional output optimization tasks, we still rely on the trust region to identify good candidates in the original input
space X .

For the toxic text generation task, we additionally examined the impact of the deep kernel’s architecture, specifically focusing
on size of the last hidden dimension of the outcome NN encoder EY , which one might expect to have a significant effect on
the optimization performance. However, as Figure 7 shows, regardless the choice of ŷ’s dimensionality, the performance of
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Figure 7. Performance of JoCo on the toxic text generation task across different sizes of the last hidden dimension of the outcome NN
encoder EY . Our main results were obtained at a latent ŷ dimension of 32. The consistent performance highlights JoCo’s robustness to
changes in such neural network architecture configurations.

JoCo remained consistent, underscoring the robustness of JoCo to such neural network architecture configurations. Our
main results were obtained with a latent ŷ dimension of 32.

A.3. Training Hyperparameters
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Figure 8. Ablation study on the number of updating epochs NEpoch in JoCo. Particularly, the scenario where we do not update the models
(i.e., NEpoch = 0) highlights the importance of adaptively updating JoCo components during optimization.

In addition to the core components of JoCo, we also performed ablation studies around training hyperparameters of JoCo.
By default, we update models in JoCo after each batch of black-box function evaluations for 1 epoch using up to 20 data
points (i.e., NEpoch = 1, Nb = 20) with learning rate being 0.01. Specifically, we investigate how robust JoCo’s performance
is with respect to changes in

1. NEpoch, the number of epochs we update models in JoCo with during optimization;

2. Nb, the number of latest data points we use to update models in JoCo;

3. the learning rate.

In the ablation studies, we vary one of the above hyperparameters at a time and examine how JoCo performs on different
optimization tasks. In general, we have found JoCo to be very robust to changes in these parameters.

Figure 8 shows the ablation results on NEpoch. Note that setting NEpoch = 0 is equivalent to not updating JoCo components
during optimization. Figure 8 demonstrates that updating the encoders and GPs in JoCo adaptively as we move closer to the
optimum is crucial for the performance of JoCo.
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Figure 9. Ablation study on the number of updating training points Nb in JoCo. This figure showcases the robustness of JoCo’s
performance across different numbers of training data points considered for updating, demonstrating that JoCo can maintain a consistent
performance regardless of the number of recent data points used to update the model.

On the other hand, when we do update the models, JoCo displays very stable performance with regard to the choices of
training hyperparameters such as NEpoch (Figure 8), Nb (Figure 9), and learning rate (Figure 10).

A.4. JoCo vs Compositional BO

Compositional BO (CBO) (Astudillo & Frazier, 2019) requires fitting a GP for every (scalar) output, which does not scale to
a large number of outputs. We are interested in problems with tens of thousands of outputs, which is out of reach for standard
CBO. However, Figure 11 shows that JoCo outperforms EI-CF even on problems with moderate output dimensions (18-1000)
while being much faster and requiring much less memory. TS-CF, while much faster than EI-CF, performs substantially
worse than JoCo. For problems with higher dimensional inputs and outputs, CBO methods become prohibitively expensive
and are consequently not presented here.

B. Additional Details on Experiments
B.1. Implementation details and hyperparameters

We implement JoCo leveraging the BoTorch (Balandat et al., 2020) and GPyTorch (Gardner et al., 2018) open source
libraries (both BoTorch and GPyTorch are released under MIT license).

For the trust region dynamics, all hyperparameters including the initial base and minimum trust region lengths Linit, Lmin, and
success and failure thresholds τsucc, τfail are set to the TuRBO defaults as used in Eriksson et al. (2019). We use Thompson
sampling as described in Algorithm 2 for all experiments.

Since we consider large numbers of function evaluations for many tasks, we use an approximate GP surrogate model. In
particular, we use a Parametric Gaussian Process Regressor (PPGPR) as introduced by Jankowiak et al. (2020) for all tasks.
To ensure a fair comparison, we employ the same surrogate model with the same configuration for JoCo and all baseline BO
methods. We use a PPGPR with a constant mean and standard RBF kernel. Due to the high dimensionality of our chosen
tasks, we use a deep kernel (Wilson et al., 2016a;b), i.e., several fully connected layers between the search space and the
GP kernel, as our NN encoder EX . This can be seen as a deep kernel setup for modeling Ŷ from X . We construct EY in a
similar fashion. In particular, we use two fully connected layers with |X |/2 nodes each, unless otherwise specified. We
update the parameters of the PPGPR during optimization by training it on collected data using the Adam optimizer with a
learning rate of 0.01. The PPGPR is initially trained on a small set of random initialization data for 30 epochs. The number
of initialization data points is equal to ten percent of the total budget for the particular task. On each step of optimization,
the model is updated on the 20 most recently collected data points for 1 epoch. This is kept consistent across all Bayesian
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Figure 10. Ablation study on various learning rates used in JoCo’s training. The figure elucidates the stability of JoCo’s optimization
performance across different learning rates.

optimization methods. See Appendix A for an ablation study showing that using only the most recent 20 points and only 1
epoch does not significantly degrade performance compared to using on larger numbers of points or for a larger number of
epochs. We therefore chose 20 points and 1 epoch to minimize total run time.

B.2. Experimental Setup

In this section, we describe experimental setup details including input, output, and encoder architecture used of each
problem.

B.2.1. SYNTHETIC PROBLEMS

Problem Setup The composite Langermann and Rosenbrock functions are defined for arbitrary dimensions, no modifica-
tion was needed. We use Langermann function with input dimension 16 and output dimension 60, and on the composite
Rosenbrock function with input dimension 10 and output dimension 18.

Encoder Architecture In order to derive a low-dimensional embedding the high-dimensional output spaces for these
three tasks with JoCo, we use a simple feed forward neural net with two linear layers. For each task, the second liner layer
has 8 nodes, meaning we embed the high-dimensional output space into an 8-dimensional space. For Rosenbrock tasks,
the first linear layer has the same number of nodes (i.e., 18) as the dimensionality of the intermediate output space being
embedded. For the composite Langermann function, the first linear layer has 32 nodes.

B.2.2. ENVIRONMENTAL MODELING PROBLEM

Problem Setup The environmental modeling function is adapted into a high-dimensional problem. We use the high-
dimensional extension of this task used by Maddox et al. (2021a). This extension allows us to apply JoCo to a version of
this function with input dimensionality 15 and output dimensionality 16.

Encoder Architecture For the environmental modeling with JoCo, as with synthetic problems, we use a feed-forward
neural network with two linear layers to reduce output spaces. The second layer has 8 nodes, and the first has 16 nodes,
matching the intermediate output’s dimensionality.

B.2.3. PDE OPTIMIZATION TASK

Problem Setup The PDE gives two outputs at each grid point, resulting in an intermediate output space with dimensionality
642 · 2 = 8192. We use an input space with 32 dimensions. Of these, the first four are used to define the four parameters of
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Figure 11. This graph compares the performance and efficiency of JoCo and Compositional BO (CBO). JoCo outperforms CBO methods
on problems with moderate output dimensions (18-1000), offering significant advantages in terms of speed and memory.

the PDE while the other 28 are noise that the optimizer must learn to ignore.

Encoder Architecture In order to embed the 8192-dimensional output space with JoCo, we use a simple feed-forward
neural net with three linear layers of 256, 128, and 32 nodes, respectively. We therefore embed the 8192-dimensional output
space to a 32-dimensional space.

B.2.4. ROVER TRAJECTORY PLANNING

Problem Setup This task is inherently composite in nature as each evaluation allows us to observe both the cost function
value and the intermediate output trajectory. For this task, intermediate outputs are 1000-dimensional since each trajectory
consists of a set of 500 coordinates in 2D space.

Encoder Architecture In order to embed this 1000-dimensional output space with JoCo, we use a simple feed forward
neural net with three linear layers that have 256, 128, and 32 nodes respectively. We therefore embed the 1000-dimensional
output space to a 32-dimensional space.

B.2.5. BLACK-BOX ADVERSARIAL ATTACK ON LARGE LANGUAGE MODELS

Problem Setup For this task, we obtain an embedding for each word in the input prompts using the 125M parameter
version of the OPT Embedding model (Zhang et al., 2022). The input search space is therefore 3072-dimensional (4 tokens
per prompts * 768-dimensional embedding for each token). We limit generated text to 100 tokens in length and pad all
shorter generated text so that all LLM outputs are 100 tokens long. For each prompt evaluated, we ask the LLM to generate
three unique outputs and optimize the average utility of the three generated outputs. Optimizing the average utility over
three outputs encourages the optimizer to find prompts capable of consistently causing the model to generate uncivil text.
We take the average 768-dimensional embedding over the words in the 100-token text outputs. The resulting intermediate
output is 2304-dimensional (3 generated text outputs * 768-dimensional average embedding per output).
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Encoder Architecture In order to embed this 2304-dimensional output space with JoCo, we use a simple feed forward
neural net with three linear layers that have 256, 64 and 32 nodes respectively. We therefore embed the 2304-dimensional
output space to a 32-dimensional space.

B.2.6. ADVERSARIAL ATTACK ON IMAGE GENERATIVE MODELS

Problem Setup As in the LLM prompt optimization task, we obtain an embedding for each word in the input prompts
using the 125 million parameter version of the OPT Embedding model (Zhang et al., 2022). The input search space is
therefore 3072-dimensional (4 tokens per prompts x 768-dimensional embedding for each token). For each prompt evaluated,
we ask the text-to-image model to generate three unique images and optimize the average utility of the three generated
images. Optimizing the average utility over three outputs encourages the optimizer to find prompts capable of consistently
causing the model to generate images of the target class. The resulting intermediate output is therefore 451584-dimensional
(224 x 224 x 3 image dims x 3 total images per prompt). Since the intermediate outputs are images, we use a convolutional
neural net to embed this output space.

Encoder Architecture We use a simple convnet with four 2D convolutional layers, each followed by a 2x2 max pooling
layer, and then finally two fully connected linear layers with 64 and 32 nodes respectively. We therefore embed the
451584-dimensional output space to a 32-dimensional space.

C. Additional Examples for Image Generation Task
In the dog image generation task, the optimizer seeks to find prompts which mislead a text-to-image model to generate
images of dogs, despite the absence of individual words related to dogs and despite prompts being pre-pended to the
misleading text “a picture of a mountain”. In Figure 4 b), we provide examples of the best prompts found by JoCo for
the dog image generation task after running JoCo for the full budget of 1000 function evaluations. In Figure 12, we
additionally include examples of the best prompts found by two baseline methods: TuRBO and random sampling. For
all three optimization methods (JoCo, TuRBO, and random sampling), we include examples of the best prompt found by
the optimizer after only 400 function evaluations, and after the full budget of 1000 function evaluations. As in Figure 4,
examples in Figure 12 include both the best prompt found by the optimizer and three example images generated when the
prompt is given to the text-to-image model.

At the full budget of 1000 function evaluations, notice that both JoCo and TuRBO can find prompts that successfully
generate images that look clearly like dogs. However, after only 400 function evaluations, only Joco has found a successful
prompt while the best prompt found by TuRBO generates images of cougars rather than dogs. This is consistent with results
in Figure 2 which show that, while TuRBO often eventually converges to a high final reward by the end of the optimization
budget, JoCo has significantly better anytime performance, achieving high reward after a much smaller number of function
evaluations.
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JoCo After 1k Evals
Prompt: “wrigley felipe whereabouts nominate 
a picture of a mountain”
Images Generated:

TuRBO After 1k Evals
Prompt: “harga encountaineberman a picture 
of a mountain”
Images Generated:

Random Sampling After 1k Evals
Prompt: “milky decreasing saddle tori a picture 
of a mountain”
Images Generated:

JoCo After 400 Evals
Prompt: “tuna fem madewithunity cavaliers a 
picture of a mountain”
Images Generated:

TuRBO After 400 Evals
Prompt: “cougars sukhamethyst kendall a 
picture of a mountain”
Images Generated:

Random Sampling After 400 Evals
Prompt: “corinattenborough unfollow scrat a 
picture of a mountain”
Images Generated:

Figure 12. Examples of the best prompts found by JoCo, TuRBO, and random sampling for the dog image generation task after 400
function evaluations, and after the full budget of 1000 function evaluations. For the dog image generation task, the optimization methods
seek to trick a text-to-image model into generating images of dogs despite 1) no individual words related to dogs being present in the
prompt and 2) the prompt being pre-pended to the misleading text “a picture of a mountain”. Successful prompts are those that trick the
text-to-image model into consistently generating images of dogs. At the full budget of 1000 function evaluations, both JoCo and TuRBO
can find prompts that successfully generate images that contain dogs. However, after only 400 function evaluations, only Joco has found a
successful prompt, while the best prompt found by TuRBO generates images of cougars rather than dogs. The random sampling baseline
is never able to generate pictures with dogs.
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