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Abstract

In recent years, deep learning has made remark-
able progress in a wide range of domains, with a
particularly notable impact on natural language
processing tasks. One of the challenges associ-
ated with training deep neural networks in the
context of LLMs is the need for large amounts
of computational resources and time. To mitigate
this, network growing algorithms offer potential
cost savings, but their underlying mechanisms are
poorly understood. We present two notable con-
tributions in this paper. First, we present Deep
Fusion, an efficient approach to network train-
ing that leverages pre-trained initializations of
smaller networks. Second, we propose a theoreti-
cal framework using backward error analysis to
illustrate the dynamics of mid-training network
growth. Our experiments show how Deep Fu-
sion is a practical and effective approach that not
only accelerates the training process but also re-
duces computational requirements, maintaining
or surpassing traditional training methods’ perfor-
mance in various NLP tasks and T5 model sizes.
Finally, we validate our theoretical framework,
which guides the optimal use of Deep Fusion,
showing that with carefully optimized training dy-
namics, it significantly reduces both training time
and resource consumption.

1. Introduction
Large language models (LLMs) have significantly advanced
the state of the art in various natural language processing
tasks, including text generation, translation, summarization,
and question answering. However, training these models
demands substantial amounts of data and computational re-
sources. As a result, there has been a growing interest in
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developing efficient training methods to address the chal-
lenges associated with the high computational costs and
energy consumption during the training process (Narayanan
et al., 2021).

While some studies (Kaplan et al., 2020; Touvron et al.,
2023; Zhou et al., 2023) discuss that a balance of data and
model size is important, it’s undeniable that larger models
often yield better performance (Chowdhery et al., 2022).
Several experiments and publications have demonstrated
that as model size increases, the performance on various
natural language processing tasks continues to improve (De-
vlin et al., 2018; Radford et al., 2019; Brown et al., 2020).
This trend is evident in the progression of LLMs, such as
BERT, GPT-2, GPT-3, and PaLM where each successive
generation is larger and achieves better results across a wide
range of benchmarks (Gu et al., 2021a).

Advancements in LLM efficiency have been driven by a
variety of innovative techniques that enable faster training
or inference without sacrificing performance. One such ap-
proach is model compression, which has been shown to re-
duce LLM size without significant loss in accuracy (Ganesh
et al., 2021; Zhang et al., 2022; Kwon et al., 2022). Sim-
ilarly, adaptive computation time methods have been pro-
posed to dynamically allocate computational resources dur-
ing LLM training, leading to improved efficiency (Graves,
2016). Techniques such as layer-wise adaptive rate scaling
(LARS) and layer-wise adaptive rate control (LARC) have
demonstrated accelerated convergence in LLMs by adapting
learning rates on a per-layer basis (You et al., 2017b;a).
Moreover, recent studies have explored the potential of
mixed-precision training, where lower-precision computa-
tion is employed during the training process to speed up
training and reduce memory requirements (Micikevicius
et al., 2017). One technique attracting more interest lately is
network growing, which is based on increasing transformer
size during training. This approach has been shown to speed
up training in various studies (Shen et al., 2022; Gong et al.,
2019; Yao et al., 2023; Gu et al., 2021b; Li et al., 2023),
while others report similar or even lower performance com-
pared to standard training methods (Kaddour et al., 2023).
However, these methods are not well understood and add
complexity to the already challenging process of training
large language models, both in terms of implementation and
correct deployment.
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In addition to efficiency, a critical aspect to scale LLM
training is distributed training, typically done with a mix
of data and model parallelization. The former splits the
training batch across accelerators (e.g., GPUs), while the
latter splits the model operations across accelerators so that
each accelerator computes part of the model. While data
parallelism alone is typically the easiest to implement, it is
not well suited for very large models as it needs the whole
model to fit in a single accelerator. Model parallelism can
be efficient, but it can be more difficult to implement as the
dependency between accelerators’ input and outputs can
lead to degraded performance. In our research, we present
two novel contributions to emphasize network growing for
training efficiency as a primary goal. First, we introduce
Deep Fusion, an efficient approach to network training that
leverages pre-trained initializations of smaller networks. We
employ a fusion operator to combine these smaller networks,
promoting wide over-parameterization as a growing mech-
anism. Deep Fusion serves as a new method to distribute
training across accelerators. By enabling the growth from
these smaller models, it allows for a modular and efficient
distribution of parallel training before the fusion operation,
effectively training smaller models for an initial portion of
the training process.

Second, we introduce a new theoretical framework based
on Backward Error Analysis (BEA) (Hairer et al., 2006) to
analyze the implicit regularization the optimization process
introduces during training right after the fusion operation
takes place. BEA has been shown to be an essential analy-
sis tool in many settings, continual-learning (Dherin, 2023)
being of special interest for this work. The main result of
the BEA framework is the decomposition of a modified loss
into the original loss plus terms that are implicitly mini-
mized during training. When we apply this analysis to Deep
Fusion, it becomes clear that the key aspect of our approach
lies in a specific interaction component, often referred to as
a ‘Lie bracket’ (Lee, 2022) in differential geometry. This
component encapsulates the dynamic interplay between the
gradients of the smaller and larger networks, highlighting
how they influence and adjust to each other during the first
step of the training process.

As we will see throughout the paper, Deep Fusion demon-
strates significant reductions in both training time and re-
source consumption, while maintaining or improving gener-
alization performance.

1.1. Contribution

As part of our research, this paper proposes:

• A method that focuses on initializing large networks
from training smaller networks, and employing fusion
operators to combine them. This method promotes

wide over-parameterization, which leads to improved
efficiency in network training.

• An effective framework for the utilization of data and
model parallelization techniques, as well as the strategic
use of accelerator devices to train models of smaller size.
This allows our approach to significantly reduce training
time while increasing the performance of the resulting
networks.

• A new theoretical framework to analyze dynamically
growing wider network algorithms, backed with valida-
tion experiments.

• A downstream task evaluation with LLMs, demonstrat-
ing its effectiveness and efficiency in various scenarios.

2. Related Work
In line with the lottery ticket hypothesis (Frankle and Carbin,
2018; 2019), our work shares the following belief: The
most commonly used initialization schemes, primarily dis-
covered heuristically (Glorot and Bengio, 2010; He et al.,
2015), are sub-optimal. While there’s some evidence that
over-parameterization may not be necessary during training
(Nakkiran et al., 2020; Belkin et al., 2019), we still believe
over-parameterization and a “good” initialization can yield
better performance. Thus, we aim to actualize some of the
potential that comes from finding a more principled initial-
ization scheme.

From a transfer learning perspective, progressive networks
(Rusu et al., 2016) grow networks to address the problem
of forgetting previous tasks. Another approach, deep model
consolidation (Zhang et al., 2020), uses a smaller pre-trained
model to provide a better initialization for a larger model,
which is then fine-tuned on a new task. Network morphism
(Wei et al., 2016) is another approach that aims to find a
larger network by transforming a smaller, pretrained net-
work while preserving the network function during the trans-
formation. This is achieved by expanding the original net-
work with layer-wise operations that preserve input-output
behavior.

Similar to our method, staged training (Shen et al., 2022)
also focuses on network efficiency. This approach involves
defining a growth operator while preserving constraints as-
sociated with loss and training dynamics. By gradually
expanding the model capacity, staged training allows for
more efficient training. We argue that preserving training
dynamics might not be the most effective approach when
it comes to fusion. In fact, it could be counterproductive,
and exploring high learning rate cycles could offer a prefer-
able alternative. We validate this theoretically and show it
empirically.

BEA has been used in many settings to uncover inductive
training biases of various optimizers (e.g. gradient descent
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(Barrett and Dherin, 2021), SGD (Smith et al., 2021); mo-
mentum (Ghosh et al., 2023); Adam and RMSProp (Catta-
neo et al., 2023)), various architectures (e.g., GANs (Rosca
et al., 2021); diffusion models (Gao et al., 2023)), and vari-
ous training settings like continual-learning (Dherin, 2023)
or distributed and federated learning (Barba et al., 2021).

3. Fusion
We start by demonstrating our FUSION operator on two fully
connected layers before expanding to T5 transformers.

A generic neural network is a function f : Rd → Rk defined
with r layers. A layer gk : Rn → Rm has weights in layer
k ∈ [r] wk ∈ Rn×m and biases being bk ∈ Rm. That is, for
each layer k we calculate

ak = gk(ak−1) = φk(ak−1wk + bk), (1)

where a0 = x is the input vector, and φk is the k-th activa-
tion function. In what follows, we will omit ak when it is
clear from context.

The output of the neural network is defined as the composi-
tion of the r layers,

f(x) = gr ◦ . . . ◦ g2 ◦ g1(x). (2)

Our FUSION operator F takes two layers from two differ-
ent models and generates a new layer by composing their
weights and biases. The fused layer has two characteristics:

• Fusion rule: the fused layer maintains the same compo-
sition or architecture defined in Eq.1. That is, we do not
allow a change in the architecture, but rather a change
in the dimensionality of the operations.

• Fusion property: the fused layer calculates the concate-
nation of the the two original layers that are fused.

The fusion operator (F) is defined as follows. Given two
layers with n, n′ inputs and m, m′ outputs,

Fw : Rn×m × Rn
′×m′

→ R(n+n′)×(m+m′), (3)

Fb : Rm × Rm
′
→ R(m+m′). (4)

The FUSION of the weights performed by Fw results in
a new matrix where the weights of the layers of the two
models are located in the diagonal and the rest is set to
zero. Similarly, the new bias is simply the concatenation
of the bias of the two layers being fused. So the new fused
weight w(f) and new bias b(f) taking the weights of two
layers, w, w′, and bias b, b′, respectively is defined as,

w(f) =

(
w 0
0 w′

)
, b(f) = [b, b′], (5)

where 0 is the zero matrix. The output of the fused layer k
is defined as,

g
(f)
k =F(gk, g′k) = φk(a

(f)
k−1Fw(wk, w

′
k) + Fb(bk, b′k))

=φk

(
[ak−1, a

′
k−1]

(
wk 0
0 w′k

)
+ [bk, b

′
k]

)
=φk([ak−1wk + bk, a

′
k−1w

′
k + b′k]) = [gk, g

′
k].

This means that the result of the FUSION operator on two
layers is the concatenation of the outputs, that is [hk, h′k].

3.1. Deep Fusion and Self Deep Fusion

For two neural networks f and f ′ defined as in Eq. 2, the
deep fusion of the two models is defined as follows: We first
extend the notation of F as follows,

F(f, f ′) = F(gr, g′r) ◦ . . . ◦ F(g1, g′1)([x, x]);

And we denote by AVG(x, y) = (x + y)/2. The function
that averages two vectors of the same dimension, then the
deep fusion is defined as,

DF (f, f ′) = AVG(F(f, f ′)).

Intuitively, the deep fused model is maintaining a concate-
nation of the hidden representations from models f and f ′

(fusion property) throughout the network, and taking the
average of their logits.

This means that after the deep fusion operation, the function
calculated by the model is equivalent to the function of av-
erage ensemble of the two models. However, if we continue
training the fused model, the extra parameters added by the
zero blocks in the example can start leveraging the hidden
representation from the cross model, and potentially lead to
better performance.

Deep fusion allows the models to be distributed across mul-
tiple GPUs while still taking advantage of the strengths of
both data parallelism and model parallelism.

Self deep fusion of a model f is defined as deep fusing the
model with itself (that is, DF (f, f)). It can be considered a
loss preserving growth operation that does not change the
network’s predictions to any given input.

3.2. Deep Fusing T5 Transformers

This section describes how to deep fuse two (or more) T5
models (Raffel et al., 2019), f and f ′, discussing the partic-
ularities of each layer type. Once the fusion is completed,
the hidden representation of the newly fused model should
be a combination of the two hidden representations from the
original models, aligned along the feature dimension axis.

Starting from the bottom layer, the fusion of the embedding
layer is achieved by simply concatenating the smaller em-
beddings together (on the feature dimension axis). Next,
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for the multi-head attention, if f has y heads, and f ′ has y′

heads, then, the fused model will have y + y′ heads, and
the additional heads do not interact with the others. All
projections (query, key, value, attention output) as well as
the MLP blocks are converted to diagonal matrices with
extra parameters initialized to zero (see eq. (5)) to prevent
leaking information from the wrong hidden representation
at initialization.

Note that skip connections and activations are parameter free
and do not need further handling. Similarly, the element-
wise scaling operation holds a scaling parameter per element
in the hidden representation, and thus is trivial to fuse.

Lastly, the fusion of the normalization of the hidden repre-
sentation between attention and MLP layers proves to be
unfeasible. This is due to the fact that it’s not possible to
uphold the fusion rule and the fusion property simultane-
ously. For the normalization layer we either: 1) Preserve
the fusion property but break the fusion rule by normalizing
the hidden representations of the sub-models individually
and then concatenating them; or 2) keep the fusion rule
but violate the fusion property by treating the concatenated
hidden representation as a single vector for normalization.
It’s important to note that the first option requires additional
coding beyond parameter initialization, unlike the second
option. This dilemma doesn’t occur in self deep fusion.

4. Gradient Flow Bias
In this section, we analyze the inductive bias introduced by
network growth using BEA (Hairer et al., 2006). The idea
behind BEA is to approximate the discrete updates of the op-
timizer by a continuous gradient flow (described by an ODE
called the modified equation) on a modified loss that com-
prises the original loss and additional terms modelling the
inductive biases. For instance, (Barrett and Dherin, 2021)
showed that a single update of SGD follows a gradient flow
on the modified (batch) loss L̃(θ) = L(θ) + h

4 ‖∇θL(θ)‖
2,

whose inductive bias is the flatness regularizer h4 ‖∇θL(θ)‖
2

depending on the learning rate h. More precisely, the
modified equation is θ̇(t) = −∇L̃(θ(t) and its solution
θ̃(h) starting at θ and evaluated at t = h approximates
the SGD step θ′ = θ − h∇L(θ) with an error of O(h3).
The case of two consecutive updates on the batch losses
L1 and L2 has recently been worked out in (Dherin, 2023)
in the context of continual learning with batches of chang-
ing data distribution. In this case, the modified equation
is θ̇(t) = −∇L̃(θ(t))− h

2 [∇L1,∇L2](θ(t)) with modified
loss L̃(θ) = L1(θ)+L2(θ)+

h
2 ‖∇L1(θ)‖2+ h

2 ‖∇L2(θ)‖2.
In this latter modified equation we see that the Lie bracket
[∇L1,∇L2] of the consecutive updates modifies the implicit
flatness regularization on both updates. The Lie bracket de-
fined as [F,G] = (∇G)F − (∇F )G on general vector

fields F,G : Rd → Rd is an important tool in differential
geometry; see (Lee, 2022) for instance.

We approach the analysis of network growth similarly as
a consecutive learning problem. In our new setting, the
network before the growth operation is modelled by a small
model loss while the model post-growth is modelled by a
big model loss. We want to understand the additional induc-
tive bias introduced by the growth step in the optimization.
Therefore we are interested in computing the inductive bias
generated by the two consecutive optimization steps sur-
rounding the network growth operation. The training of the
small model and the large model follow respectively the gra-
dient fields F (w) = −∇wL1(w) andG(w) = −∇wL2(w).
Both vector fields are defined on the parameter space of the
large model with w0 = (θ1, . . . , θn, η = 0) and subsequent
training steps starting from w = (θp1 , . . . , θpn , η). η is the
set of parameters in the large model that are not set with the
small model and they are set to zero right after fusion.

For n models, immediately after fusion we form parameters
w1 and its gradient descent update is:

w1 = w0 − h∇wL1(w0) = w0 + hF (w0). (6)

Subsequent steps with vector field G are defined as:

w2 = w1 − hB∇wL2(w1) = w1 + αhG(w1), (7)

where hB = αh is the learning rate for the big model.

The losses L1(w) and L2(w) can be expressed in terms of
the small and big models as follows:

L1(w) = L

(
1

n

n∑
i=1

fi(x; θi), y

)
, (8)

L2(w) = LB(w) = LB(θp1 , . . . , θpn , η), (9)

where x and y are the inputs and reference labels, respec-
tively, and fi(x; θi) is the output for the i-th model with
parameters θi. Note that L1(w) is the loss right after fusion,
so all small models are independent but the output is the
average operator. Also, for parameters of the form w0 with
η = 0, we have L1(w0) = L2(w0).

We present the true modified loss in Theorem 1 and the
modified equation in Theorem 2. These theorems suggest
that in these network growth settings, the problem does not
follow a gradient flow that is some weighted sum of the
various losses (before and after the operation); rather, it is
biased with the Lie bracket of the gradients’ vector fields.
More interestingly, the higher the big network’s learning
rate, the more prominent this bias is.

The modified loss in Theorem 1 corresponds with the im-
plicit regularization definition from (Barrett and Dherin,
2021), taking into account the fusion operator.
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When the Lie bracket between the two task gradients
[∇wL1,∇wL2] is not zero, this may actually interfere with
this implicit regularization, potentially creating settings
where the second update steers the learning trajectory away
from the flatter regions of the first task.

Theorem 1 (Modified loss). The consecutive gradient up-
dates can be bounded by following the gradient flow on this
modified loss:

L̃(w) ≤ 1

n

n∑
i=1

LS(θi) + LB(w) +
h

4n2

n∑
i=1

‖∇θiLS(θi)‖2

+
hα2

4
‖∇wLB(w)‖2. (10)

where LS(θi) is the loss for the i-th small model.

For the special case of self-fusion (i.e., the same model is
fused with itself), the actual modified loss is,

L̃(w) = LS(θ) + LB(w) +
h

4
‖∇θLS(θ)‖2

+
hα2

4
‖∇wLB(w)‖2.

Theorem 2 (Modified equation). Consider two consecutive
training runs like the ones described above, first a small
model, then deep fusion and finally a large model training.
The modified equation shadowing the update composition is
of the form:

ẇ(t) = −∇wL̃(wt) +
hα

2
[∇wL1,∇wL2](wt) +O(h2).

Corollary 1. The larger the learning rate in the big model
the more influence of the Lie bracket.

In the coming section, we analyze this bias and understand
its structure. Later in the experiment section, we empirically
measure its importance.

4.1. Lie Bracket Structure vs the Gradient Loss

In the preceding section, we observed that the Lie bracket
serves as a crucial adjustment factor to the gradient differ-
ence between the loss of the small model and the fused
model. This section examines the Lie bracket from two
perspectives. Initially, Lemma 2 confirms that the updated
model parameters η follow the same gradient updates as
the original small model parameters. The Lie bracket’s es-
sential role in fused models becomes evident here; without
it, the model updates would be uniform, lacking any addi-
tional effects. Subsequently, Lemma 3 illustrates that the
Lie bracket ensures the updated parameter directions are the
only non-zero components, highlighting the Lie bracket’s
significance in refining our algorithm.

For the sake of the analysis, the following discussion as-
sumes a self fusion environment of n models. In the self
fusion case, the output of the big model right after fusion is
ŷ = 1

n

∑n
i=0 fi(x, θi) = f(x, θ) given that all models are

identical.

Lemma 1 (Scaled gradient). Let f be a small model with
parameters θ. Suppose its loss LS is continuous and that
LS’s partial derivatives are Lipschitz continuous. When per-
forming self deep fusion n times of f , for the first gradient
step after fusion,∇θLB(θ, . . . , θ, η = 0), we have

∇θLB(θ, . . . , θ, η = 0) =
1

n
∇θLS(θ).

Lemma 2 (Same gradient). Let f be a small model with
parameters θ. When performing self deep fusion n times
of f , for the first gradient step after fusion for every ηi, we
have that

∇ηiLB(θ, . . . , θ, η = 0) =
1

n
∇θjLS(θ),

for some θj that is a parameter in the same layer.

Lemma 1 and Lemma 2 suggests that the new parameters η
are updated using a gradient analogous to the combined
gradients from the small models. This means that the η
parameters are updated by concatenating the θpi parameters
from the small model. Without an implicit Lie bracket
term in subsequent gradient steps, the integration of the η
parameters would be unfeasible.

Lemma 3 (Non-zero Lie bracket). In self deep fusion, the
[∇wL1,∇wL2] has non-zero values only for the parameter
dimension η that was initialized as zero in the big model.

[F,G] =


0
...
0

(
∑n
i=1∇θi∇ηLB(w))∇LS(θ)


In Lemma 3, the analysis requires viewing the problem
through the lens of manifolds. Consider M as the manifold
of the big model, defined as M = {(θ, . . . , θ, η) : θ ∈
Rds , η ∈ R(db−ds)}. The fused model (right after fusion)
resides within a smaller submanifold N ⊂M , where N =
{(θ, . . . , θ, 0) : θ ∈ Rds}. This lemma demonstrates that
the Lie bracket acts as a mathematical tool for understanding
the transfer of information between the submanifold N and
the ambient manifold M .

The Lie bracket [F,G] serves as a correction mechanism
that integrates the influence of the submanifold N into the
overall system dynamics of G. Essentially, the Lie bracket
facilitates the exchange of directions between N and M .

Corollary 2. If for the small model∇LS(θ) is close to zero,
then the Lie bracket on N is close to zero.
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5. Experiments
We begin by training T5 language models on the C4 dataset.
The term ‘deep’ will be dropped when context allows.

5.1. Language Models

The aim of this experiment is to establish a better initial
checkpoint for a large T5 (Raffel et al., 2019) transformer
network, referred to as T5-MEDIUM, by using two smaller
T5 models, denoted as T5-SMALL. We present two types
of results: fusing two unique small models and fusing one
model with itself (self fusion). We trained the following 4 ex-
periments (see dimensionalities in Table 8 in Appendix B):

1. baseline: T5-MEDIUM from random initialization.
2. fusion-rule: T5-MEDIUM trained from fusing the

two T5-SMALL models each trained for 1M steps, while
maintaining the fusion rule.

3. fusion-prop: T5-MEDIUM trained from fusing the
two T5-SMALL models each trained for 1M steps, while
maintaining the fusion property.

4. self-fusion: T5-MEDIUM trained from self fusing a
T5-SMALL model trained for 1M steps.

Zero matrices in Eq. 5 were substituted with blocks ini-
tialized randomly with a low variance. Table 1 presents
performance comparison between the various fusion algo-
rithms and their cost.

Model Loss Accuracy Cost
fusion-rule 4.61e+4 66.88 2 · 16h + 37.4h = 53.4h
fusion-prop 4.53e+4 67.25± 0.03 2 · 16h + 41h = 73h
self-fusion 4.55e+4 67.20± 0.05 16h + 42.4h = 58.4h

Table 1. Performance of different T5-Medium fusion methods at 1
million steps, replicated three times for standard deviation. Cost is
in TPU V3 4x4 hours.
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Figure 1. Accuracy and loss on validation data. The x-axis of the
graph is scaled in millions of steps.

The outcomes of our experiments indicate that while it re-
quires extra code changes to the T5 transformer, upholding
the fusion property results in superior performance com-

pared to adhering to the fusion rule. Furthermore, we dis-
covered that self fusion yields comparable performance to
standard fusion.

As for comparing against the baseline, Figure 1 shows the
learning curves of the top two out of three fusion algo-
rithm compared to baseline. We discovered that the baseline
needed an additional 860K steps to achieve the performance
level of self fusion. When employing self fusion, training a
T5-MEDIUM resulted in an 18% reduction in computation
time compared to the baseline. 1 Details are in Table 2.

Model / time Fusion Post fusion Cost Acc.
baseline 0 steps 1.86M steps 71.2h 67.2

0h 71.2h

self-fusion 1M steps 1M steps 58.4h 67.2
16h 41h

Table 2. Cost is in TPU hours (TPU V3 4x4 topology).

5.2. Fusion in Stages

We explored staged fusion using T5-S, T5-M, and T5-L ar-
chitectures (Table 9, Appendix C) and tested various fusion
settings depicted in Figure 2.

1 2

SS SS

3
L L

4
L

SS SS

L
5

L
6

L

S

M M M M M M

Figure 2. Settings for final T5-L fusion: yellow signifies fused
models, white indicates regular training, and links represent fusion
(double link signifies self fusion). Every node in the graph is
trained 1M steps (as an example - algorithm 4 is trained a total
of 7M steps).

Every model (T5-S, T5-M, T5-L) is trained 1M steps. Ta-
ble 3 below present the performance of the various models,
temporarily disregarding the cost.

Model Loss Accuracy
(1) 4.04e+4 69.89
(2) 3.93e+4 70.45
(3) 3.9e+4 70.56
(4) 3.87e+4 70.74
(5) 3.91e+4 70.57
(6) 3.91e+4 70.47

Table 3. Performance of the various ways of fusing T5-L.

The results show similar performance between fusion and
self fusion (settings (3) and (5)) as we seen in the previ-
ous experiment. However, repeated self fusion reduces

1T5-SMALL model training time included.
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performance, while multiple regular fusions enhance T5-L
performance (settings (6) vs (4)). While repeated regular
fusion enhance performance, it is very costly, and thus the
best performance if we take cost into consideration is self
fusion again. Training a model using a single application of
self fusion, setting (5), results in a 20% reduction in com-
putation time on T5-L compared to the standard setting (1).
Details in Table 4 below.

Model / time Fusion Post fusion Cost Acc.
(1) 0 steps 1.7M steps 246.7h 70.57

0h 246.7h

(5) 1M steps 1M steps 197.9h 70.57
47.7h 150.2h

Table 4. Cost is in TPU hours (TPU V3 4x4 topology). Baseline
(setting (1)) needed 700K extra steps to reach performance of self
fusion (setting (5)).

5.3. Fine Tuning for Down Stream Tasks

We fine-tuned high performing settings from the first ex-
periment together with a baseline on NLP tasks using the
GLUE benchmark. We trained two T5-SMALL models for
500K steps before self fusing them to create a T5-MEDIUM.
We also trained a standalone T5-MEDIUM to show the
difference with a randomly initialized model of the same
size. These models were pretrained for 0 (corresponding
to baseline without pretraining vs fusion without extra
pretraining), 250K, 500K, and 1M steps (baseline only),
and then fine-tuned. The GLUE average results are shown
in Table 5 and Figure 3. The complete results for each task
is presented Table 7 in the Appendix.

Model / Pretrain steps 0 250K 500K 1M

baseline 64.07 83.33 84.35 84.74±0.13
fusion-prop 81.40 84.10 84.86±0.13 -
self-fusion 81.01 83.71 84.94±0.2 -

T5-SMALL - - - 80.28

Table 5. Performance (GLUE average) of the various models on
downstream tasks, replicated three times for standard deviation.

Our results indicate that enhancing a pretrained model’s
performance may simply require self-fusion before fine-
tuning, without further pretraining. For instance, a T5-
SMALL model, trained for 500K steps, when self-fused and
fine-tuned, outperforms the small model trained to 1M steps
before fine-tuning (81.01 vs 80.28). It is evident that the
extra parameters from self-fusion benefit NLP tasks more
than extended pretraining.

Next, the results above also suggest that deep fusion can lead
to faster training to better performance, when fine-tuning
on downstream NLP tasks. However, while in pretrain, the

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

80

81

82

83

84

85

GL
UE

 a
ve

ra
ge

self-fusion
fusion
baseline

Figure 3. Performance (Glue average - an average over many NLP
tasks that score between 0 and 100) of the various models.

training curves of fusion and self fusion look similar, we can
see that for downstream tasks, fusion maintains higher per-
formance throughout until convergence (here, both models
converge to similar performance).

Model / time Fusion Post fusion Time GLUE
baseline 0 steps 1M steps 39.2h 84.74

0h 39.2h

fusion-prop 500k steps 500k steps 37.9h 84.86
2×8h 21.9h

self-fusion 500k steps 500k steps 29.9h 84.94
8h 21.9h

Table 6. Compute time in hours (TPU V3 4x4 topology).

The total compute saving is about 24% TPU time for this
configuration as presented in Table 6. Even though we
trained for less time, the final performance was slightly
better than the baseline.

5.4. Training Dynamics

In this section, our experiments will show how the post-
fusion learning rate affects the performance of the learning,
as well as the parameters. To understand how the learning
rate affects performance, we ran the normal T5 learning
rate schedule with various offsets. A positive offset means
we start from lower maximal learning rate while a negative
offset means we maintain the maximal learning rate for
longer before dropping. Figure 4 displays the performance
at the extremes (high positive offset vs high negative one).
The full tested spectrum of offsets tested appears in Figure 7
in Appendix D.

While it is clear that higher learning rates toward the begin-
ning benefit learning in the long run, we observe they hurt
performance at first. This is in line with Section 4 where we
show that larger Lie bracket values bias the updates to un-
lock capacity, but at the short term cost of higher objective
loss. Adding a negative offset resulted in better performance,
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Figure 4. Performance on T5 when applying large offsets to the learning rate schedule.

Figure 5. Heat maps of the first layers’ feed forward kernel every 50K steps (left to right till 400K steps training). The upper row is for
high learning rates (highly negative offset: -50K), while the lower row is displaying the heat maps for low learning rates (highly positive
offset: +50K). Figure 8 in the Appendix zooms in on the last heat map in the first row showcasing how the replicas of the smaller model
diverge.

but led to instabilities, and thus the previous experiment did
not introduce offsets to the learning rate schedule.

To further understand the drop in performance for low learn-
ing rates, we use heat maps to visualize the kernels from the
first feed forward layer. Figure 5 shows the kernel when the
learning rate is high and low. It is evident that after 400K
steps, the parameters initialized to zero were not able to
catch up in magnitude with the already optimized ones at
expansion point. This observation is further aligned with
Section 4 where we note that high learning rates lead to high
Lie bracket values, thereby unlocking the potential of the
extra parameters.

5.5. When to Perform Fusion

Suppose we are given X hours budget of TPU/GPU time,
and suppose we would like to grow the network once
through training (via self deep fusion), we wanted to an-
swer the question: at which step is it optimal to perform self
deep fusion?

We performed experiments training T5-MEDIUM (Table 8
in Appendix B) with various budgets: 50, 60 and 70 hours.
The final model was obtained by first training T5-SMALL
and apply self deep fusion at step x during training for vari-
ous possible steps x (see Figure 6). In the graph, each point
represents a different training, where the X-axis represents
the step (in 1000s) in which we applied self deep fusion,
and the Y-axis represents the final accuracy of the model.

We found that selecting the optimal time to fuse for a given
time budget requires some balance.

In particular:

• If the small model has not been trained enough the final
fused model will under-perform.

• If the small model is trained and has fully converged, the
small model is allotted too much of the budget and the
final model shows a slight degradation from optimal.

For the T5-SMALL model, fusing at 500k steps performs
well (Figure 6). We note in our experiments the optimal
number of steps for the small model was independent of
the total budget – a confirmation of the importance of the
information transfer when fusing from small to the larger
models.

6. Discussion and Conclusion
In this paper, we present a new technique for improving the
training process of large models. Our technique, called deep
fusion, combines multiple models into a single model that
can be trained more efficiently. We demonstrate how model
fusion can be used to reduce the restrictions of distributed
training, save on overall compute costs, and improve model
performance.

Additionally, we introduced a new theoretical framework
to illuminate the dynamics of mid-training network growth.
This framework offers valuable insights to aid in the design
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Figure 6. Step to fuse. Displays the final accuracy of the fused
model as a function step number when fusion was done (in 1000s).
Each color represents a specific total budget allotted to training.
The left-most points represent a randomly initialized baseline.

and comprehension of network growing algorithms, eas-
ing the potential complexity they introduce when training
already intricate large language models.

In our experiments we fused models trained on the same data
with identical architectures. While fusion has immediate
training advantages, further research is needed to understand
the implications and possible applications of fusing models
trained on different sources and distinct architectures.

For example, it would be interesting to explore if transfer
learning occurs when fusing models trained in different
domains. Additional insights could arise by investigating the
characteristics of models fused from submodels differing in
dimensionality. For instance, one model could be attention-
heavy, while another could be MLP-heavy. Finally, one
could explore model fusion when the models are trained on
different sequence lengths. This could also lead to efficiency
improvements, as lower-length models train faster.

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Model Glue avg COLA
Matthew’s

SST acc MRPC f1 MRPC
acc

STS-b
pearson

STS-b
spearman

qqp acc qqp f1 MNLI-m MNLI-
mm

QNLI RTE

baseline 1m 84.74 54.18 94.38 93.17 90.69 89.83 89.75 91.94 89.13 86.77 86.6 92.13 78.34
baseline 1m 84.45 52.95 93.92 93.12 90.44 89.49 89.35 91.94 89.14 86.94 86.58 92.26 77.98
baseline 1m 84.69 53.15 93.81 92.15 88.97 89.06 88.93 92.04 89.24 86.55 86.21 91.69 82.31

Fusion 500k 84.98 53.97 94.27 92.91 90.2 89.68 89.49 92.04 89.36 86.6 86.43 92.39 80.87
Fusion 500k 84.68 54.46 93.81 91.8 88.97 89.44 89.28 91.95 89.13 86.67 86.65 92.11 80.14
Fusion 500k 84.92 53.94 94.5 92.73 89.71 90.62 90.44 92.01 89.23 86.64 86.45 91.56 80.51

Self fusion 500K 84.69 54.58 93.12 92.03 89.22 89.23 89.16 91.81 89.01 86.64 86.68 92.11 80.87
Self fusion 500K 85.19 55.82 93.69 93.1 90.44 89.9 89.73 92.04 89.34 86.8 86.31 92.31 80.87
Self fusion 500K 84.95 58 94.27 92.36 89.71 89.93 89.7 91.96 89.18 86.47 86.4 91.93 77.62

Table 7. Performance (Glue tasks) of the various models on downstream tasks.

A. Proofs
In this appendix, we provide proofs for Theorem 1 and
Theorem 2, which are restated below for convenience.

Theorem 1 (Modified loss). The consecutive gradient up-
dates can be bounded by following the gradient flow on this
modified loss:

L̃(w) ≤ 1

n

n∑
i=1

LS(θi) + LB(w) +
h

4n2

n∑
i=1

‖∇θiLS(θi)‖2

+
hα2

4
‖∇wLB(w)‖2. (10)

where LS(θi) is the loss for the i-th small model.

Theorem 2 (Modified equation). Consider two consecutive
training runs like the ones described above, first a small
model, then deep fusion and finally a large model training.
The modified equation shadowing the update composition is
of the form:

ẇ(t) = −∇wL̃(wt) +
hα

2
[∇wL1,∇wL2](wt) +O(h2).

Proof. We are expanding the second part of Eq. 7 using a
Taylor series expansion around w0:

w2 =w0 + hF (w0) + αhG(w0 + hF (w0)) =

=w0 + h(F (w0) + αG(w0))+

h2α∇G(w0)F (w0) +O(h3).

We want a modified equation of the form:

ẇ = H0(w) + hH1(w) + h2H2(w) + . . . . (11)

The Taylor series expansion of the modified equation solu-
tion is:

w(h) = w + hẇ +
h2

2
∇ẇẇ + . . . . (12)

Substituting Eq. 11 into Eq. 12:

w(h) =w + h(H0(w) + hH1(w))+

h2

2
H ′0(w)H0(w) +O(h3)

=w + hH0(w) +O(h3)+

h2
(
H1(w) +

1

2
H ′0(w)H0(w)

)

To have w1 = w(h) at first order, we obtain the following
condition: H0(w) = F (w0) + αG(w0) and,

H1(w) +
1

2
H ′0(w)H0(w) = α∇G(w0)F (w0)

H1(w) +
1

2
(∇F (w0) + α∇G(w0))(F (w0) + αG(w0)) =

α∇G(w0)F (w0)

H1(w) =
α

2
(∇G(w0)F (w0)−∇F (w0)G(w0))−

1

2
(∇F (w0)F (w0) + α2∇G(w0)G(w0)).

Using the definition of F and G:

∇F (w0)F (w0) =∇w(∇wL1(w0))∇wL1(w0) =

=
∇w
2
‖∇wL1(w0)‖2.

then,

H1(w) =
α

2
[∇wL1,∇wL2](w0)−

∇w
(
1

4
‖∇wL1(w0)‖2 +

α2

4
‖∇wL2(w0)‖2

)
.

So the continuous modified equation is:

ẇ(t) =−∇w
(
L1(wt) + αL2(wt) +

h

4
‖∇wL1(wt)‖2+

hα2

4
‖∇wL2(wt)‖2

)
+

hα

2
[∇wL1,∇wL2](wt) +O(h2).
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We can write the modified loss by substituting L1(w) and
L2(w) by their definition using LS and LB to obtain,

L̃(w) = L

(
1

n

n∑
i=1

fi(x; θi), y

)
+ LB(w)+

h

4
‖∇θiL

(
1

n

n∑
i=1

fi(x; θi), y

)
‖2+

hα2

4
‖∇wLB(w)‖2.

Applying Jensen’s inequality to L
(
1
n

∑n
i=1 fi(x; θi), y

)
<

1
n

∑n
i=1 L(θi), where L(θi) = LS(θi) finalizes the proof.

Lemma 1 (Scaled gradient). Let f be a small model with
parameters θ. Suppose its loss LS is continuous and that
LS’s partial derivatives are Lipschitz continuous. When per-
forming self deep fusion n times of f , for the first gradient
step after fusion,∇θLB(θ, . . . , θ, η = 0), we have

∇θLB(θ, . . . , θ, η = 0) =
1

n
∇θLS(θ).

Proof. We present the proof for self deep fusion of a model
with itself, and the expansion to n copies can be proved in
the same manner. First, it is easy to see that when θ1 = θ2
we have

∇θ1LB(θ1, θ2, η = 0) = ∇θ2LB(θ1, θ2, η = 0).

This follows immediately in self deep fusion from the sym-
metry of the network, and the fact that the model is copied
twice as is.

Next, we will show that

∇θ2LS(θ2) = ∇θ1LS(θ1) = ∇θ1LB(θ1, θ2, η = 0)+

∇θ2LB(θ1, θ2, η = 0).

To see this note that when η = 0,

∇θ1jLS(θ1) = lim
ε→0

LS(θ1 + 1j · ε)− LS(θ1)
ε

= lim
ε→0

LB(θ1 + 1j · ε, θ2 + 1j · ε, η)− LB(θ1, θ2, η)
ε

= lim
ε→0

1

ε

[
LB(θ1, θ2 + 1j · ε, η) + ε∇θ1jLB(θ1, θ2 + 1j · ε, η)

+O(ε2)− LB(θ1, θ2, η)
]

= lim
ε→0

1

ε

[
(LB(θ1, θ2, η) + ε∇θ2jLB(θ1, θ2, η)+

+ ε∇θ1jLB(θ1, θ2 + 1j · ε, η) +O(ε2)− LB(θ1, θ2, η)
]

= lim
ε→0

1

ε

[
LB(θ1, θ2, η) + ε∇θ2jLB(θ1, θ2, η)+

+ ε∇θ1jLB(θ1, θ2, η) +O(ε2)− LB(θ1, θ2, η)
]

= ∇θ1jLB(θ1, θ2, η) +∇θ2jLB(θ1, θ2, η) (13)

In the above, 1j is the unity vector with j being the only
non-zero entry, and we use Taylor expansion to move from
one line to the other. Additionally, since the functions in
question have Lipschitz continuity, then whatever is in the
O(ε2) can be bounded by a constant times ε2.

Lemma 2 (Same gradient). Let f be a small model with
parameters θ. When performing self deep fusion n times
of f , for the first gradient step after fusion for every ηi, we
have that

∇ηiLB(θ, . . . , θ, η = 0) =
1

n
∇θjLS(θ),

for some θj that is a parameter in the same layer.

Proof. As before we prove the lemma on fusing the same
model twice for simplicity. Extending to n copies can be
proved in the same manner. To prove that every parameter
in η receive the same gradients as some parameter in θ in
the same layer we use the following two observations:

• The hidden representation in every layer is a vector of
the form (y, y) for some real number vector y (Fusion
Property). This means that the input to every layer is of
the form (y, y) for some real number vector y.

• Given the above, each parameter in η affects the predic-
tion in same way as one of the parameters in θi, which
means adding ε either to that variable, or to the equiva-
lent variable in θi has the same effect on the predictions.

More formally, it easy to see that:

(y||y)
(
θ + ε1i,j 0

0 θ

)
= (y||y)

(
θ 0

0+ ε11i,j θ

)
13
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where 1i,j is a matrix with zeros in every entry except
entry i, j that is equal to 1.

By definition the gradient for a parameter is the change in
loss when applying ε change to the parameter (divided by ε).
From the above it is easy to see that the gradient for the
two parameters is equivalent as they affect the Loss in the
same exact way. This together with Lemma 1 concludes the
proof.

Corollary 3. From Lemma 1 and Lemma 2 given a layer
with parameters θ, the fused layer gradient looks as follows

∇θ,θ,ηLB =

(
1
2∇θLs

1
2∇θLs

1
2∇θLs

1
2∇θLs

)
,

which concludes the proof.
Lemma 3 (Non-zero Lie bracket). In self deep fusion, the
[∇wL1,∇wL2] has non-zero values only for the parameter
dimension η that was initialized as zero in the big model.

[F,G] =


0
...
0

(
∑n
i=1∇θi∇ηLB(w))∇LS(θ)


Proof. Suppose we are self deep fusing a model n times.
Let M be the manifold M = {(θ1, . . . , θn, η) : θ ∈
RdS , η ∈ R(db−ds)}; Here ds, and db are the dimension
of the small and big models respectively. Since θi = θj for
all i, j, the losses L1 and L2 are of the form,

L1(w) =
1

n
LS(θ1) + · · ·+

1

n
LS(θn),

and,
L2(w) = LB(θ1, . . . , θn, η).

The corresponding vector fields F (w) and G(w) are

−


1
n∇LS(θ1)

...
1
n∇LS(θn)

0

 and −


∇θ1LB(θ1, . . . , θn, η)

...
∇θnLB(θ1, . . . , θn, η)
∇ηLB(θ1, . . . , θn, η)

 .

Consider the submanifold N ⊂M where

N = {(θ1, . . . , θn, 0) : θ ∈ RdS and θi = θj ∀i, j}.

We have the following relation between the small and big
model losses on that submanifold (See Lemma 2):

∇θiL1(w) = ∇θiL2(w), (14)

for all w ∈ N . Thus, the vector fields F and G are related
as follows:

G(w) = −


1
n∇LS(θ1)

...
1
n∇LS(θn)

∇ηLB(θ1, . . . , θn, η)

 = F (w) + gη(w)

with

gη =


0
...
0

−∇ηLB(θ1, . . . , θn, η)


This means that the Lie bracket between F = −∇wL1 and
G = −∇wL2 has the following form on N :

[F,G] = [F, F + gη]

= [F, F ] + [F, gη]

= [F, gη]

=



∇LS(θ1)

...
∇LS(θn)

0

 ,


0
...
0

∇ηLB(θ1, . . . , θn, η)




=


0
...
0

(
∑n
i=1∇θi∇ηLB(w))∇LS(θ)


which concludes the proof.

B. Model Dimensions for First Experiment
In this appendix, we list the dimension of the T5 transform-
ers used in the first experiment.

Model Name T5-Small T5-Medium
embedding dim 512 1024
number of heads 6 12
enc./dec. layers 8 8

head dim 64 64
mlp dimension 1024 2048

number of parameters 77M 242M

Table 8. Dimensions of T5 Small and Medium.

C. Model Dimension for Second Experiment
In this appendix, we list the dimension of the T5 transform-
ers used in the second experiment.

Model Name T5-S T5-M T5-L
embedding dim 512 1024 2048
number of heads 6 12 24
enc./dec. layers 8 8 8

head dim 128 128 128
mlp dimension 1024 2048 4096

number of parameters 95M 317M 1.1B

Table 9. Dimensions of T5-S, T5-M and T5-L.
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Figure 7. Performance on T5 when applying offsets to the learning rate schedule.

Figure 8. Self fusion parameter weight heatmap after 400K steps
when using a high learning rate.

D. Offsets Experiments Details
In this appendix, we show the performance given various
offsets that are applied to the learning rate schedule. The
results are inline with the theoretical analysis, meaning the
higher the offset (maintaining higher learning rate after
growth), the better the final performance. The data is in
Figure 7.
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