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Abstract
For the first time, this position paper introduces a
fundamental link between tensor networks (TNs)
and Green AI, highlighting their synergistic po-
tential to enhance both the inclusivity and sus-
tainability of AI research. We argue that TNs are
valuable for Green AI due to their strong mathe-
matical backbone and inherent logarithmic com-
pression potential. We undertake a comprehensive
review of the ongoing discussions on Green AI,
emphasizing the importance of sustainability and
inclusivity in AI research to demonstrate the sig-
nificance of establishing the link between Green
AI and TNs. To support our position, we first
provide a comprehensive overview of efficiency
metrics proposed in Green AI literature and then
evaluate examples of TNs in the fields of kernel
machines and deep learning using the proposed
efficiency metrics. This position paper aims to
incentivize meaningful, constructive discussions
by bridging fundamental principles of Green AI
and TNs. We advocate for researchers to seri-
ously evaluate the integration of TNs into their
research projects, and in alignment with the link
established in this paper, we support prior calls en-
couraging researchers to treat Green AI principles
as a research priority.

1. Introduction
More than ever, we have access to data sets throughout
almost all science and engineering disciplines. Fueling
our economies and shaping our society, data is therefore
considered the oil of the 21st century. At the same time,
AI algorithms become increasingly powerful to transform
large amounts of raw data into valuable information. Con-
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sequently, AI development and data availability are deeply
intertwined, and they have a common characteristic: both
are growing exponentially (Wu et al., 2021). While this
wealth of information is opening the doors for extraordinary
opportunities, the downside of this development cannot be
ignored: AI research on a large scale has adverse side effects
on economic, social, and environmental sustainability. Let
us consider the example from Strubell et al. that analyzes
the energy required for training popular off-the-shelf natural
language processing models (2019). The training causes
CO2 emissions up to 280 000 kg and cloud computing costs
up to 3 million dollars. As a comparison, a person could fly
more than 300 times between Amsterdam and New York to
emit the same amount of CO2 (myclimate, 2024).

On another note, Schwartz et al. argued that one of the rea-
sons for the unsustainable development in AI research is un-
fortunately anchored in what the AI community commonly
defines as state-of-the-art results (2020), namely focusing
on accuracy or similar measures. They claim that to obtain
more accurate results, the number of model parameters and
hyperparameters is increased, as well as the size of the train-
ing data. The result is an exponentially growing demand
for compute used to train AI models (Schwartz et al., 2020).
This development is not only unsustainable from an environ-
mental and economic point of view but also from a social
one: this exponential growth has a large carbon footprint, is
expensive, and excludes researchers with fewer resources
(Schwartz et al., 2020; Ahmed et al., 2023).

The problems associated with the unsustainable develop-
ment of AI have led to a growing awareness in the AI
community. Several researchers call for redirecting the
focus of AI research by implementing efficiency as an addi-
tional benchmark alongside accuracy to assess algorithmic
progress (Schwartz et al., 2020; Strubell et al., 2020; Tam-
burrini, 2022). In fact, efficiency has always been the pri-
mary criterion to measure algorithmic progress in computer
science (Knuth, 1976; 1973; Cormen et al., 2022). Inspired
by this, a similar approach can be adapted to AI algorithms.
For this purpose, different metrics have been proposed in
the literature, e.g. estimating the carbon footprint, reporting
the energy consumption, or stating the number of floating-
point operations (FLOPS) (Lacoste et al., 2019; Henderson
et al., 2020; Lannelongue et al., 2021). In this context, a new
vocabulary has been suggested in (Schwartz et al., 2020). It
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distinguishes between AI focusing solely on accuracy ver-
sus AI considering efficiency and accuracy as equal criteria:
Red AI versus Green AI.

With this paper, we want to contribute to the emerging re-
search field into which practices and methods are suitable
for Green AI (Verdecchia et al., 2023; Yarally et al., 2023).
Green AI methods can roughly be organized into three cat-
egories: AI model development, computing infrastructure
and system level (Wu et al., 2021; Kaack et al., 2022). AI
model development focuses on reducing energy consump-
tion during data processing, experimentation, training and
inference. Computing infrastructure methods aim to, e.g.,
reduce the environmental impact of computing hardware or
data centres. Methods at the system level are, e.g., policy
considerations or technology management (Wu et al., 2021;
Kaack et al., 2022). A holistic approach with a portfolio
of different methods is critical to achieve a broad effect
for Green AI. An in-depth review can be found in several
surveys (Wu et al., 2021; Kaack et al., 2022) .

For the first time, we discuss an established tool from mul-
tilinear algebra from a Green AI perspective: Tensor Net-
works (TNs), also called tensor decompositions (Kolda &
Bader, 2009). TNs fall under the category of AI model de-
velopment. There, they stand alongside numerous strategies
in the category AI model development, such as regular-
ization, automated hyperparameter search (Yang & Shami,
2020; Bischl et al., 2023), pruning (Reed, 1993; Frankle &
Carbin, 2018), quantization (Gholami et al., 2022), physics
informed learning (Cuomo et al., 2022) or drop-out methods
(Li et al., 2022). Most of these methods leverage differ-
ent properties and do consequently not compete with each
other. Instead, they can be combined to provide amplified
benefits. To implement a holistic portfolio, we suggest
prioritizing understanding the strengths and limitations of
individual methods for Green AI. One strength of TNs is
that they approximate data in a compressed format while
preserving the essence of the information. In this way, they
often achieve logarithmic compression while having the po-
tential to achieve competitive accuracy. This makes TNs
precisely the type of tool to apply to large-scale and/or high-
dimensional problems: they allow for an efficient and, thus,
sustainable way of representing and handling big data (Ci-
chocki, 2014). Various promising results regarding accuracy
and efficiency, as, e.g. (He et al., 2018; Izmailov et al., 2018;
Richter et al., 2021; Wesel & Batselier, 2021), show their
potential.

This potential is well-recognized in the TN community, as
evidenced, e.g., by numerous comprehensive surveys (Ci-
chocki et al., 2016; 2017; Panagakis et al., 2021; Sengupta
et al., 2022; Wang et al., 2023). Although the emphasis and
motivation in the TN community so far have not been on
promoting the sustainability of AI, the existing technical

Figure 1. This position paper underscores the importance of con-
necting the research fields of TNs and Green AI. By establishing
this link for the first time, we aim to achieve two primary goals.
Firstly, to encourage the TN community to embrace Green AI
practices and consciously tailor their TN models for enhanced
sustainability. Secondly, to motivate the AI community to adopt
Green AI practices and to explore the integration of TNs in their
research. We believe that the combined application of Green AI
practices and TNs will not only foster the social, economic, and
ecological sustainability of AI models but also enhance the inclu-
sivity and diversity of AI research. Ultimately, this synergy is
expected to amplify the positive impact of AI research as a whole.

contributions are a solid foundation for the arguments pre-
sented in this position paper. This position paper argues
that TNs are a valuable asset for Green AI. To make a
substantial impact on Green AI, prioritizing and actively
optimizing for sustainability is essential (Schwartz et al.,
2020). As shown in Figure 1, by establishing the link be-
tween research on Green AI and TNs for the first time, this
position paper aims to encourage interested AI researchers
to adopt TNs and Green AI practices in their future work.
To that end, we provide an economic, social, and environ-
mental analysis of the possibilities and challenges of Green
AI as well as the potential of TNs for Green AI. Understand-
ing the impact of TNs on Green AI is not trivial. To the
best of the authors’ knowledge, this is the first paper that
highlights TNs from a Green AI perspective. To support
our position, the paper is organized as follows: In Section 2,
we underscore the importance of Green AI research by ex-
ploring the detrimental effects of the exponentially growing
computational demand reported in the literature. We also
lay the groundwork for analyzing selected TN examples by
reviewing a range of efficiency metrics suggested in Green
AI literature. In Section 3, we introduce commonly used
TNs and their logarithmic compression potential. In Section
4, we provide evidence from the literature on how applying
TNs in kernel machines and deep learning contexts can lead
to efficiency gains. Finally, in Section 5, we summarise our
findings, demonstrate the benefits of linking TN and Green
AI research, critically evaluate our stance and point towards
promising future research directions.
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2. Green AI in Related Literature
In their pioneering work, Schwartz et al. point out that AI
models are commonly considered state-of-the-art when they
achieve greater accuracy (or similar measures) than previ-
ously reported (2020). To incentivize competition and thus
accelerate AI innovation, results are made public on leader-
boards based on accuracy metrics. Schwartz et al. assert that
beating the state-of-the-art algorithm is often achieved by at
least one of the following three aspects: more extensive data
sets, a more complex model, which is highly correlated with
the number of parameters, or more extensive hyperparam-
eter experiments (2020). This results in an exponentially
growing demand for compute to train AI models (Amodei &
Hernandez), requiring an unsustainable amount of hardware,
energy, and computational time.

We review the related literature in two parts. First, we sum-
marise how existing literature views the negative impact of
increasing computation on sustainability in general and AI
progress in particular. Second, we highlight metrics pro-
posed in the literature for measuring efficiency or estimating
the environmental impact of AI models.

2.1. The Negative Impact of Growing Compute on
Sustainability and AI Progress

Sustainability is based on three fundamental, intersecting
dimensions: economic, social, and environmental (Purvis
et al., 2019). Research indicates that the rapidly increasing
computational demands in AI have the potential to chal-
lenge these three dimensions. The implications of this are
explored in the subsequent discussion.

As large computations can have a hefty price tag (Strubell
et al., 2019; 2020), they negatively impact both the eco-
nomic and social dimensions of sustainability. Concern-
ing the economic dimension, linear gains in accuracy con-
trast with an exponentially growing amount of compute
(Schwartz et al., 2020). Thus, diminishing returns contrast
with increasing costs associated with e.g. cloud computing
and hardware (such as CPU, GPU, and TPU). In the social
dimension, high costs can create barriers for researchers
with fewer resources to participate in computationally ex-
pensive AI development. The barriers for researchers with
fewer resources (academia typically has fewer resources
than industry) are reflected in the drop of academic contri-
butions to large-scale AI results from 89% in 2010 to 4%
in 2021, with the rest claimed by industry (Ganguli et al.,
2022; Ahmed et al., 2023). Beyond the financial aspect,
being dependent on external cloud compute providers can
be problematic, too (Ahmed et al., 2023). For example, com-
putations may need to be performed on-site in applications
where privacy or security-relevant data is handled. There-
fore, state-of-the-art computations with sensitive data may
only be possible if enough financial resources are available

to provide for large amounts of expensive hardware. Con-
cerning the environmental aspect, several studies show that
AI research causes a substantial carbon footprint (Strubell
et al., 2020; Brown et al., 2020; Dodge et al., 2022). The
emissions are attributable to operational emissions, associ-
ated, e.g., with cloud computing, and embodied emissions,
associated, e.g., with hardware. In case operational emis-
sions are decreased by relying on electricity with a low car-
bon intensity, embodied emissions make up for the largest
share (Gupta et al., 2021). In fact, a recent study shows
that more than 50% of Meta’s emissions are attributed to
embodied costs (Wu et al., 2021).

Beyond sustainability, an exponentially growing computa-
tional need can cause an additional problem. When compu-
tational needs cannot be met anymore, they will negatively
impact progress and innovation in AI. Until now, progress
and innovation in AI strongly rely on the increase of avail-
able computational resources (Thompson et al., 2020). Ac-
cording to forecasts, the number of transistors on a mi-
crochip doubling every two years (Moore’s Law), will reach
its limits (Leiserson et al., 2020). Furthermore, its two-
year doubling period has already been overtaken by the
exponentially growing need for compute, which is doubling
every 3.4 months (Amodei & Hernandez) with a total in-
crease of 300, 000 times between 2012 and 2018 (Amodei
& Hernandez). Consequently, the growing need for compute
will ultimately limit AI progress and innovation, especially
in computationally expensive fields (Strubell et al., 2019;
Thompson et al., 2020). Another aspect is that exponentially
growing demand for compute can compromise reproducibil-
ity. The AI community already has a growing awareness of
its importance; see, e.g., the ML Reproducibility Challenge
(Papers with Code, 2024).

To summarize, reducing compute can tackle many of the
problems mentioned above. One suggested direction is
for AI researchers to redirect their focus toward Green AI
and redefine what a state-of-the-art model entails. First,
it is suggested that accuracy and efficiency be considered
equally important when measuring progress in AI. Second,
an analysis of the trade-off between performance and com-
putational resources used should be included in AI research.
It can be concluded that AI algorithms with higher efficiency
will, therefore, positively impact both sustainability and AI
progress (Strubell et al., 2019; Schwartz et al., 2020). In
addition, reporting on efficiency metrics has other benefits:
it will raise awareness and incentivize progress in efficiency
(Henderson et al., 2020; Tamburrini, 2022).

2.2. Efficiency Metrics Suggested in Literature

So far, there is a tendency at major AI venues to report
accuracy rather than efficiency or both metrics (Schwartz
et al., 2020). Reporting efficiency for AI models can present
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challenges, and currently, there is no standardized approach
for this task in the AI community (Hernandez & Brown,
2020). A thorough understanding of their benefits and limi-
tations is essential to employ efficiency metrics effectively.
Consequently, we will discuss various evaluation criteria
for efficiency that are considered in the literature, namely
CO2 equivalent (CO2e) emissions, electricity usage, float-
ing point operations (FLOPS), the big O notation, elapsed
runtime and the number of parameters.

An appealing criterion to measure efficiency is CO2e emis-
sions since they are directly related to climate change. Dis-
advantages include that they are challenging to measure
and are influenced by factors that do not account for algo-
rithmic optimization, e.g. hardware, the carbon intensity
of the used electricity, and time as well as the location of
the compute (Schwartz et al., 2020; Strubell et al., 2020).
An alternative criterion independent of time and location is
to state the electricity usage in kWh. It can be quantified
because GPUs commonly report the amount of consumed
electricity. However, it is still hardware-dependent. There
are several websites and packages available to compute the
CO2e and electricity usage of algorithms (Lacoste et al.,
2019; Lottick et al., 2019; Anthony et al., 2020; Henderson
et al., 2020; Lannelongue et al., 2021; Schmidt et al., 2021).

A hardware-independent criterion is the number of FLOPS
required to train the model. On the one hand, they are com-
puted analytically and facilitate a fair comparison between
algorithms (Hernandez & Brown, 2020; Schwartz et al.,
2020). On the other hand, they do not account, e.g., for opti-
mized memory access or memory used by the model (Hen-
derson et al., 2020; Schwartz et al., 2020). Next to giving
the absolute number of FLOPS, it is possible to additionally
report e.g. a FLOPS-based learning curve (Hernandez &
Brown, 2020). Several packages are available to compute
FLOPS, such as flops-counter, torchstat, pytorch-0pCounter
or GFlops (Swall0w; sovrasov; GFlops; Lyken17).
A commonly used criterion in computer science is the big O
notation (Knuth, 1976). It is used to report an algorithm’s
storage complexity and computational cost. While the big O
notation may be impractical for AI practitioners due to the
strong influence of application-specific termination criteria
on run time, it offers significant theoretical benefits. It al-
lows for easy comparison of algorithm sections and required
storage complexities, making it a valuable tool in theoretical
analysis.
The elapsed runtime is easy to measure but highly depen-
dent on the used hardware and other jobs running in parallel
(Schwartz et al., 2020). The number of parameters, whether
they are learnable or total, is a widely used measure of effi-
ciency. It is reassuringly agnostic to hardware and takes into
account the memory needed by the model. However, it is
essential to note that different model architectures can result
in varying workloads for the same number of parameters.

3. Essentials of Tensor Networks for Green AI
As mentioned earlier, increasing the model parameters,
hyperparameters, and training data size can boost an AI
model’s performance. TNs can handle the resulting large-
scale or high-dimensional data objects. This paper builds
upon the evidence for the compression potential of TNs
provided in prior work. By establishing the link between
TNs and Green AI explicitly for the first time, we aim to
inspire future research that utilizes TNs beyond efficiency
improvement but optimizes TNs as a part of a holistic port-
folio for Green AI.
Alongside several reviews on TNs (Kolda & Bader, 2009;
Cichocki et al., 2016), several surveys and technical con-
tributions discuss the broad applicability and successful
implementation of TNs in AI. The work referenced below
is a small selection of existing work for TNs in AI; a com-
plete overview is well beyond the scope of this paper. The
surveys (Cichocki et al., 2016; 2017; Ji et al., 2019) give a
broad overview of the applications of TNs, covering data
preprocessing, supervised and unsupervised learning, re-
gression and classification tasks, Gaussian Processes (GPs),
kernel machines or deep learning, among others. A de-
tailed overview of the various applications of TNs in neural
networks (NNs) is provided by the survey (Wang et al.,
2023), covering, for example, Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs) and
transformers. Collaborative filtering, mixture and topic
modelling with TNs are discussed in (Sidiropoulos et al.,
2017). Finally, in (Signoretto et al., 2011), a framework for
kernel machines with TNs is discussed.
While the referenced sources are excellent for detailed tech-
nical knowledge, our paper primarily focuses on the po-
tential of TNs for Green AI. Before applying TNs to AI is
discussed in Section 4, this section explains the foundational
concepts of TNs.

3.1. From Vectors and Matrices to Tensors and then
Tensor Networks

Multidimensional arrays, widely known as tensors, are a
generalization of vectors and matrices to higher orders1.
The primary data structures in various fields are large vec-
tors or matrices rather than tensors, which could imply that
TNs might not be suitable for many standard applications.
However, there is a solution to the problem described above:
vectors and matrices can be rearranged into tensors by a pro-
cedure called tensorization (Oseledets, 2010; Khoromskij,
2011). The row and column size are factorized into multiple
factors and then reshaped into a tensor. A small tensoriza-
tion example is illustrated in Figure 2, where a matrix of size

1In the tensor community, order commonly refers to the number
of indices: For example, a third-order tensor has three indices and
can be visualized in a cube (Kolda & Bader, 2009).
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Figure 2. Left: tensorization of a matrix of size 23×23 into a sixth-
order tensor of size 2×2×2×2×2×2. The two crosses illustrate
the organization of the entries. Based on Fig. 2 of (Cichocki et al.,
2015). Right: tensorization in diagram notation. The 2 edges of
the node representing the 8-by-8 matrix become 6 edges sticking
out the node representing the sixth-order tensor.

23×23 is transformed into a sixth-order tensor, visually rep-
resented as a cube of smaller cubes. Tensorization enables
the application of TNs to vectors and matrices through sys-
tematic index bookkeeping. The two ’X’ shapes on the left
side of Figure 2 illustrate this method of organizing entries.
The essential requirement to preserve information during
tensorization is meticulous indices tracking. For instance,
the element labelled with the light orange ’X’ in Figure 2,
which is represented as (1, 2) in matrix format, transforms
into (1, 1, 1, 1, 2, 1) in the tensorized form. Due to this
bookkeeping approach, the impact of the newly imposed
structure is expected to be minimal. In practice, the ten-
sorization is simply performed as a reshape() operation,
which does not introduce relevant computational costs. To
simplify the depiction of higher-order objects, it is possible
to use the diagram notation shown on the right side of Figure
2. In this notation, a matrix or a tensor is depicted as nodes
with as many edges sticking out as its number of orders. In
the following subsection, we introduce commonly used TNs.

3.2. Commonly Used Tensor Networks

A tensor can be expressed as a function of simpler tensors
that form a TN, also called tensor decomposition. The idea
of a TN originates in the generalization of the Singular
Value Decomposition (SVD) to higher orders. In many
applications, TNs can represent data in a compressed format
with a marginal loss of information because of correlations
present in the data (Cichocki et al., 2016; 2017).

In literature, the most commonly used TNs include the
Canonical Polyadic (CP) (Carroll & Chang, 1970; Harsh-
man, 1970), the Tucker (Tucker, 1966), and the Tensor
Train (TT) decomposition (Oseledets, 2011). Without loss
of generality, in this subsection, we will treat a third-order
tensor Y to introduce the TNs mentioned above. The
CP decomposition (Carroll & Chang, 1970; Harshman,
1970) of Y ∈ RI1×I2×I3 consists of a set of factor ma-
trices A,B,C ∈ RIj×R, j = 1, 2, 3 and a weight vector

Figure 3. Graphical depiction of commonly used TNs for a third-
order tensor. Connected edges are indices that are being summed
over. The CP decomposition is a special case of Tucker, where the
core tensor is diagonal. This is shown by the diagonal in the node.

λ ∈ RR×1. Elementwise, Y can be computed from

yi1i2i3 =

R∑
r=1

λr ai1r bi2r ci3r. (1)

The scalars ai1r, bi2r, ci3r are the entries of the three factor
matrices A,B,C, λr is the r-th entry of λ, R denotes the
rank of the decomposition. The Tucker decomposition
(Tucker, 1966) of Y ∈ RI1×I2×I3 consists of a 3-way ten-
sor G ∈ RR1×R2×R3 , called the core tensor, and a set of
matrices A,B,C ∈ RIj×Rj , j = 1, 2, 3. Elementwise, Y
can be computed from

yi1i2i3 =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1r2r3 ai1r bi2r ci3r. (2)

The scalars ai1r, bi2r, ci3r are the entries of the three fac-
tor matrices A,B,C, gr1r2r3 is the (r1r2r3)-th entry of G
and R1, R2, R3 denote the ranks of the decomposition. The
TT decomposition (Oseledets, 2011) of Y ∈ RI1×I2×I3

consists of a set of three-way tensors Y(j) ∈ RRj×Ij×Rj+1 ,
j = 1, 2, 3 called TT-cores. Elementwise, Y can be com-
puted from

yi1i2i3 =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

y
(1)
r1i1r2

y
(2)
r2i2r3

y
(3)
r3i3r4

, (3)

where R1, R2, R3, R4 denote the ranks of the TT-cores and
by definition R1 = R4 = 1. Figure 3 shows a diagram
depicting the CP, Tucker, and TT decomposition for the case
of a third-order tensor. Connected edges are indices being
summed over, whereas the number of free edges corresponds
to the order of the tensor.

When a TN approximates a tensor, the chosen ranks are
pivotal. These ranks act as hyperparameters and are crucial
for determining the approximation’s accuracy, necessitating
careful tuning. The usual goal is to balance compression
and accuracy effectively. It is essential to select ranks that
are low enough to ensure effective compression but still
high enough to maintain the desired level of accuracy of the
approximation.
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Figure 4. Demonstrating the impact of Tucker, TT, and CP decom-
positions on a ID tensor with I = 100 and R = 10. Without
decomposition, the tensor’s storage complexity increases exponen-
tially with D. The Tucker decomposition yields a slower exponen-
tial growth, while CP and TT decompositions grow linear in D.

3.3. Logarithmic Compression Potential of Low-Rank
Tensor Networks as an Enabler for Green AI

The low-rank approximation of TNs is powerful for two
key reasons. First, computations can be performed in the
compressed low-rank format, typically executed at the level
of individual TN components such as CP factor matrices
or TT cores. Due to these mathematical properties, TNs
can efficiently compress both data and model parameters
(Cichocki et al., 2016; 2017). Second, low-rank TNs can
transform an exponential complexity into a linear complex-
ity with minimal loss of information (Cichocki et al., 2016;
2017). We call this type of transformation logarithmic com-
pression. The inherent logarithmic compression capability
of TNs is a key reason we present them as a powerful tool
for Green AI in this position paper.

Considering a CP decomposition for a given tensor with ID

elements, the number of elements in its rank-R decompo-
sition are O(RID), thus linear in D. Assuming a uniform
rank R in a TT decomposition yields a storage complexity
of O(R2ID) elements. Consequently, both decompositions
achieve logarithmic compression. The Tucker decomposi-
tion, on the other hand, still scales exponentially with D:
a given tensor with ID elements requires O(RD) in the
Tucker format. Tucker decompositions can still achieve
significant compression if R ≪ I . Figure 4 illustrates the
effects of different decompositions for a numerical example.

4. Applications of Tensor Networks to AI
This position paper promotes the strategic application of
TNs to develop more sustainable AI algorithms. So far, we

have established that TNs have broad applicability for vari-
ous AI model architectures, learning paradigms, and tasks.
When optimally leveraged, they have the potential to meet
the growing computational needs in AI due to their loga-
rithmic compression capability while maintaining accuracy.
Thanks to efficient bookkeeping, TNs are versatile. They
are adept at processing not only tensor-formatted data but
also vectors and matrices, making them suitable for a wide
range of AI applications.

This section aims to enrich existing technical surveys on
TNs by injecting a distinct Green AI perspective supported
by carefully curated examples from kernel machines and
deep learning. We delve into a typical supervised learning
scenario to illustrate the practical integration of TNs into
AI algorithms. Given a set of independent and identically
distributed input/output pairs xn and yn, a supervised learn-
ing problem can be described as minimizing the measure of
loss L and a regularization term R

min
w

1

N

N∑
n=1

L(yn, f(xn | w)) +R(w), (4)

where f(x | w) is a nonlinear function parameterized by the
weights w. To incorporate TNs, f(x | w) is parametrized
with low-rank TNs. We will explore two specific imple-
mentations of this parametrization: a kernel machine and a
NN. In discussing these models, we will highlight efficiency
improvements and the associated changes in accuracy as
documented in the literature, demonstrating how TNs en-
hance the efficiency of AI algorithms. The insights gained
from these examples showcase the practical efficacy of TNs
in advancing sustainable AI and underscore their potential
for broader application across various AI domains.

4.1. Tensor Networks in Kernel Machines

Kernel machines, such as Gaussian processes (Rasmussen
& Williams, 2006) and support vector machines (Cortes
& Vapnik, 1995), can be universal function approximators
(Hammer & Gersmann, 2003). While they have shown
equivalent or superior performance compared to NNs (Lee
et al., 2017; Garriga-Alonso et al., 2018; Novak et al., 2018),
they scale poorly for high-dimensional or large-scale prob-
lems. A single-output kernel machine is given by

f(x | w) = ⟨φ(x),w⟩, (5)

where φ(·) is a feature map, w is a weight vector and ⟨·, ·⟩
denotes the inner product. A common choice is to represent
φ(·) as a Kronecker product of D regressors, computed
from a chosen number I basis functions. The adoption of a
Kronecker product structure can lead to significant storage
and computational complexity, resulting from the exponen-
tial increase of the number of basis functions φ(·) ∈ RID
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and parameters in w ∈ RID

. The issue of this exponen-
tial growth can be completely alleviated by imposing a TN
structure on both φ(x) and w, leveraging the logarithmic
compression potential of TNs. In other words, the basis func-
tions φ(x) and weight vector w are never explicitly calcu-
lated. Instead, their TN representations are used throughout
training and inference. For kernel machines with TNs, the
following basis functions have been explored in the litera-
ture: polynomial basis function are treated in (Rendle, 2010;
Blondel et al., 2016; Batselier & Wong, 2017), pure-power-1
polynomials in (Novikov et al., 2017), lagged timeseries in
(Batselier et al., 2017), pure-power-I polynomials in (Chen
et al., 2017) and B-splines in (Karagoz & Batselier, 2020).
The use of trigonometrical basis functions is described in
(Stoudenmire & Schwab, 2016), and Fourier features in
(Wahls et al., 2014; Kargas & Sidiropoulos, 2021; Wesel &
Batselier, 2021). Wesel & Batselier, for example, achieved
superior accuracy results with TNs on a laptop compared
to those previously obtained by an alternative method on a
cluster (2021).
Employing TNs can significantly reduce a model’s mem-
ory requirements. For example, applying CP decomposi-
tion reduces the storage complexity from O(ID) down to
O(DIR), and the total computational runtime for training
from O(NI2D + I3D) down to O(DN(IR)2 +D(IR)3)
(Wesel & Batselier, 2021). Significant computational sav-
ings are attained by performing both training and inference
computations at the level of a single factor matrix with di-
mensions I × R. The key insight is the transformation
of the dependency on D from an exponential to a linear
scale, a change that substantially boosts efficiency without
compromising accuracy.

4.2. Tensor Networks in Deep Learning

Deep learning has achieved state-of-the-art performance in
many fields, such as computer vision (Krizhevsky et al.,
2012; He et al., 2016) and Natural Language Processing
(NLP) (Devlin et al., 2019; Brown et al., 2020). The success,
however, comes at a cost: models in deep learning are large
and require a lot of compute (Strubell et al., 2019; 2020).
NNs have been made more efficient with TNs for a variety
of application fields, including computer vision (Jaderberg
et al., 2014; Lebedev et al., 2015; Kim et al., 2016) and
NLP (Ma et al., 2019; Hrinchuk et al., 2020; Abronin et al.,
2024).
We address the learning problem as described in (4), where
the function f(x | w) is parameterized by a NN. TNs can
be integrated into NNs by compressing a pretrained NN or
directly training a compressed NN. A NN that incorporates
TNs, either wholly or partially, is referred to as a factorized
NN. The first method involves taking a readily available
pretrained network (Abadi et al., 2015; Paszke et al., 2019).
It then decomposes layers with a TN of choice to minimize

the approximation error on the pretrained weights. Subse-
quently, it is a standard practice to fine-tune the factorized
network, aiming to restore any performance that may have
been compromised during the decomposition process (Den-
ton et al., 2014; Lebedev et al., 2015; Kim et al., 2016).
The second approach entails starting with a randomly initial-
ized factorized network and proceeding to train it while it
remains compressed. This method is recognized for improv-
ing training efficiency through the decrease in the number
of parameters (Ye et al., 2018). In both methodologies,
whether during fine-tuning of the first or training of the sec-
ond, back-propagation is conducted based on equation (4),
with the weights represented in the form of TNs.

As an example that works for both methodologies, we show
how to compress the weights for a fully connected layer with
a TT decomposition following the foundational methodol-
ogy of Novikov et al. (2015). In a fully connected layer,
the primary operation is the matrix-vector multiplication
Wx, involving the weight matrix W ∈ RID×JD

and input
vector x ∈ RJD

. To simplify the notation, we omit the bias
term. To prepare for applying a TN, both the weight ma-
trix W and the input vector x must first be tensorized into
higher-order tensors, resulting in W ∈ RI×...×I×J×...×J

and X ∈ RJ×...×J , respectively. The tensorization is usu-
ally performed as shown in Section 3.1. Without loss of
generality, we simplify the notation by setting Ii = I and
Jj = J for i, j ∈ 1, ..., D. Attaining the desired efficiency
is accomplished by substituting W with a TN. Assuming a
TT decomposition with uniform rank R, the entries of the
matrix-vector product are computed as∑

r2...rD

∑
j1...jD

w
(1)
i1j1r2

w
(2)
r2i2j2r3

· · ·w(d)
rDiDjD

xj1...jD . (6)

Introducing TTs in fully connected layers reduces the com-
putational complexity of the forward pass from O(IDJD)
for the matrix representation to O(DR2Imax{ID, JD}).
The learning complexity of one backward pass is
reduced from O(IDJD) to O(D2R4Imax{ID, JD}).
The memory complexity is reduced from O(IDJD)
to O(Rmax{ID, JD}) for the forward pass and to
O(R3 max{ID, JD}) for the backward pass. Choosing
a sufficiently small rank R increases the efficiency com-
pared to the full rank model. A theoretical guarantee for the
optimal low-rank approximation, similar to the Eckhardt-
Schmidt-Young theorem for matrices, does not exist for TNs
(Vannieuwenhoven et al., 2014). In Section 4.3, we provide
empirical evidence to showcase the effect of low-rank TNs
on the accuracy and efficiency of NNs.

Besides TTs (Novikov et al., 2015; Garipov et al., 2016;
Tjandra et al., 2017; Wu et al., 2020; Yang et al., 2017;
Efthymiou et al., 2019; Yu et al., 2019; Cheng et al., 2021),
other decompositions, e.g. Tucker (Kim et al., 2016; Calvi
et al., 2020; Chu & Lee, 2021) and CP (Mamalet & Garcia,
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2012; Rigamonti et al., 2013; Denton et al., 2014; Jader-
berg et al., 2014; Lebedev et al., 2015; Astrid & Lee, 2017;
Chen et al., 2020; Kossaifi et al., 2020) have been proposed
for fully connected, convolutional, recurrent, and attention
layers.

4.3. Green AI Analysis of Selected Tensor Network
Models with Regard to Efficiency Metrics

In this section, we assess how the application of TNs has
led to improvements in the efficiency metrics presented
in Section 2.2. The prevalent focus in the AI community
is on reporting solely accuracy rather than both accuracy
and efficiency. This fact, combined with the absence of
a standardized method for reporting efficiency, results in
only a limited amount of TN-related papers that can be used
in our analysis. Table 1 summarizes the results discussed
below.

For kernel machines, several examples the examples effec-
tively showcase how TN can contribute towards Green AI
(Novikov et al., 2017; Kargas & Sidiropoulos, 2021; Wesel
& Batselier, 2021). Kargas & Sidiropoulos show that the CP
decomposition model for supervised learning can match or
even outperform NNs. Their research highlights comparable
execution times and marginally better average accuracy for
the TN methods (2021). Novikov et al. report that their TN
model not only offers competitive training and inference
times but also yields a significant 58% increase in accuracy
compared to a NN (2017). Compared to the best compet-
ing method (Mikhail Trofimov, 2016), they achieved a 21×
speed up with a drop in accuracy of 11.46% (Novikov et al.,
2017). Wesel & Batselier achieved superior accuracy 2.5
times faster on a laptop than the best competing method
(Hensman et al., 2013) on a cluster (7141 s vs. 18360 s,
respectively) (2021). Compared to the uncompressed prob-
lem, using a TN reduced the number of parameters by up to
99.9% (Wesel & Batselier, 2021).
We highlight the contribution of TN in deep learning to-
wards Green AI by showcasing efficiency improvements
with four examples (Kim et al., 2016; Ye et al., 2018; Yin
et al., 2021; Abronin et al., 2024). Kim et al. and Ye et
al. have demonstrated that TNs, when applied to convolu-
tional and recurrent layers, respectively, enhance training
and inference efficiency compared to standard NNs without
significantly compromising accuracy (2016; 2018). Across
a range of datasets, Kim et al. managed significant effi-
ciency improvements by applying TNs, achieving up to an
86.4% reduction in memory, 79.7% in FLOPS, 72.8% in
runtime, and 76.6% in electricity usage while maintaining
robust top-5 accuracy, reduced by no more than 2.2% (2016).
With the application of TNs, Ye et al. managed to drastically
cut down the number of parameters for the uncompressed
model (by over 80,000 times), speed up convergence by 14
times, and even increase accuracy by 15.6% (2018). Yin

et al. proposed a framework to compress both CNNs and
RNNs, which they have tested for various image classifica-
tion and video recognition tasks (2021). For CNN models,
they were able to slightly increase the accuracy compared to
the uncompressed model for multiple data sets, with a com-
pression ratio between 2.4× and 8.3× (Yin et al., 2021).
Abronin et al. compressed GPT-2small, utilizing only a
fraction of the training data set to recover the performance
loss. Their method outperforms competing compression ap-
proaches, achieving a 1.5× compression ratio with a relative
loss of 30.83% in performance (2024).

Employing the efficiency metrics advocated in Green AI
literature clearly demonstrates the considerable potential
of TNs to uphold Green AI principles, namely enhancing
efficiency while maintaining accuracy. In some scenarios,
TNs enhance both accuracy and efficiency, which is an ideal
outcome. However, in others, a trade-off may occur between
a minor decrease in accuracy and significant improvements
in energy efficiency and memory usage. The decision to
engage in this trade-off is highly dependent on the specific
context and application, making it impractical to offer a one-
size-fits-all recommendation. Nevertheless, a fundamental
guideline remains: a thorough analysis of accuracy and effi-
ciency metrics is indispensable to arrive at a well-informed
decision regarding the trade-off.

5. Critical Discussion and Conclusion
This proposition paper is the first paper to propose TNs as an
essential tool for realizing Green AI. First, we addressed the
exponential rise in computational demands in AI, followed
by a review of the Green AI literature and various efficiency
metrics suggested by researchers. A brief technical overview
of TNs was provided, followed by a practical introduction
to the practical implementation of TNs in deep learning
and kernel machines. We demonstrated through specific
examples how TNs can boost efficiency while maintaining
accuracy.

To summarize, the strength of TNs for Green AI lies in their
solid mathematical foundation, logarithmic compression po-
tential and broad applicability across different data formats
and model architectures. They are a versatile tool that can
significantly increase the efficiency of data preprocessing,
training, and inference.
Regarding the three categories for Green AI, the impact
of TNs can have limitations. A limitation of TNs on AI
model development, namely to enhance model efficiency, is
anticipated for weakly correlated data since TNs are based
on extending the truncated SVD to higher orders. In this
case, other methods can be used, or TNs can be combined
with other methods. So far, TNs have, for example, been
effectively paired with methods such as regularization (So-
fuoglu & Aviyente, 2020; Wesel & Batselier, 2021), au-

8



Position: Tensor Networks are a Valuable Asset for Green AI

Table 1. Overview over TN models discussed in Section 4.3. Here, accuracy is to be understood as a umbrella term (Schwartz et al., 2020).
The following terms are abbreviated: classification (class.), regression (reg.), action recognition (act. reg.), Natural Language Processing
(NLP), Kernel Machine (KM), Long Short-Term Memory (LSTM).

TN-MODEL TASK MODEL DATA SET
SPEED UP

COMP. RATIO
RELATIVE CHANGE

IN ACCURACY

(NOVIKOV ET AL., 2017) CLASS. KM SYNTHETIC 21.3× SPEED-UP − 11.46%
(KARGAS & SIDIROPOULOS, 2021) REG. KM ABALONE 1.6× SPEED-UP − 4.39%
(WESEL & BATSELIER, 2021) REG. KM AIRLINE 2.5× SPEED-UP +1.13%
(KIM ET AL., 2016) CLASS. ALEXNET IMAGENET 1.8× SPEED-UP +2.17%
(YE ET AL., 2018) ACT. REC. LSTM UCF11 14.0× SPEED-UP +1.13%
(YIN ET AL., 2021) CLASS. RESNET CIFAR-100 2.4× COMP. RATIO +3.25%
(ABRONIN ET AL., 2024) NLP GPT-2 SMALL WIKITEXT-2 1.5× COMP. RATIO − 30.83%

tomated hyperparameter search (Deng & Xiao, 2022) or
knowledge distillation (Abronin et al., 2024).

The effect of TNs on computing infrastructure and system-
level impacts is clearly limited. TNs have no effect on the
computing infrastructure beyond their reduced hardware
requirements. Alternative low-carbon technologies are re-
quired to provide sufficient renewable energy sources, to
reduce the energy demand of data centres and the emissions
associated with manufacturing, transporting and recycling
hardware. Potential system-level impacts of TNs (and of
most methods that increase the efficiency of AI models) in-
clude the acceleration of carbon-intensive technologies and
lifestyle choices or the rebound effect. This effect occurs
when the expected gains are diminished due to increased
technology usage. However, the rebound effect is not exclu-
sively detrimental. It can enhance inclusivity by lowering
barriers to entry for previously excluded researchers and,
therefore, increase usage. This broader inclusion has the po-
tential to bring together a more diverse group of researchers,
which could enrich the progress of AI. Lastly, the role of AI
in addressing climate change issues, as discussed in works
like Huntingford et al., must be considered (2019). Miti-
gating undesired system-level impacts requires, e.g., policy
considerations and technology management. Ensuring that
AI solutions foster sustainability requires a careful appraisal
of the costs and benefits, a consideration that, while impor-
tant, is beyond the scope of this paper.

Regarding the three pillars of sustainability, TNs offer no-
table potential benefits. First, by reducing the need for
hardware and computational resources, TNs can cut costs,
making them an economically more sustainable solution
and a viable choice for industrial applications. Second, the
reduced hardware and computational demands of TNs de-
crease reliance on expensive, potentially external computing
resources. As discussed above, reduced hardware require-
ments can lower entry barriers to AI research, potentially
fostering inclusivity and social sustainability. Additionally,
the capacity to process sensitive data on-site can enhance

data privacy. Third, the ability of TNs to minimize hard-
ware use and shorten computational time can significantly
decrease the embodied and operational emissions associated
with AI. Consequently, the widespread adoption of TNs
in AI models could profoundly affect the environmental
sustainability of AI. Looking forward, as we approach the
constraints imposed by Moore’s Law, the quest for algo-
rithmic innovation is anticipated to increasingly focus on
enhancing efficiency. In this scenario, TNs, renowned for
their logarithmic compression potential, can play a crucial
role in facilitating continued advancement of AI.

A potential direction for future work could be to provide
a comprehensive overview and assessment of particularly
beneficial combinations of additional Green AI methods
with TNs, considering application-specific requirements.
Regarding TNs specifically, there are open challenges that
can dampen their potential benefits on Green AI. For exam-
ple, implementing favourable design choices for TNs often
requires experience. Practitioners’ guidelines or theoretical
frameworks to support decision-making are yet to be de-
veloped. A first step in that direction could be quantifying
TNs’ effect on the whole model development phase and the
savings in embodied emissions.
We advocate for optimizing TNs to Green AI objectives.
That includes intensifying research on data- or hardware-
efficient TN models, training TN models from scratch, or
gradually compressing TN models while training. Open
questions evolve around tensor rank approximation. Finding
the true tensor rank is an NP-hard problem. Furthermore,
for tensors, there exists no theorem akin to the Schmidt-
Eckart-Young theorem to provide a theoretical guarantee for
the optimal low-rank approximation. Moreover, future re-
search could further investigate proper weight initialization
or efficient hyperparameter training, among others.

We envision that TNs will have a broad application in di-
verse sectors of AI and contribute to more sustainable AI.
We encourage researchers to integrate TNs in their research,
address the open questions, and advance AI progress.
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