
OSSCAR: One-Shot Structured Pruning in Vision and Language Models with
Combinatorial Optimization

Xiang Meng 1 Shibal Ibrahim 1 Kayhan Behdin 1 Hussein Hazimeh 2 Natalia Ponomareva 2 Rahul Mazumder 1

Abstract
Structured pruning is a promising approach for
reducing the inference costs of large vision and
language models. By removing carefully cho-
sen structures, e.g., neurons or attention heads,
the improvements from this approach can be re-
alized on standard deep learning hardware. In
this work, we focus on structured pruning in the
one-shot (post-training) setting, which does not re-
quire model retraining after pruning. We propose
a novel combinatorial optimization framework
for this problem, based on a layer-wise recon-
struction objective and a careful reformulation
that allows for scalable optimization. Moreover,
we design a new local combinatorial optimiza-
tion algorithm, which exploits low-rank updates
for efficient local search. Our framework is time
and memory-efficient and considerably improves
upon state-of-the-art one-shot methods on vision
models (e.g., ResNet50, MobileNet) and language
models (e.g., OPT-1.3B – OPT-30B). For lan-
guage models, e.g., OPT-2.7B, OSSCAR can lead
to 125× lower test perplexity on WikiText with
2× inference time speedup in comparison to the
state-of-the-art ZipLM approach. Our framework
is also 6× – 8× faster. Notably, our work con-
siders models with tens of billions of parame-
ters, which is up to 100× larger than what has
been previously considered in the structured prun-
ing literature. Our code is available at https:
//github.com/mazumder-lab/OSSCAR.

1. Introduction
Structured pruning (Lebedev & Lempitsky, 2016; Wen et al.,
2016) reduces model size by removing entire subcompo-

1Massachusetts Institute of Technology, Cambridge, MA, USA
2Google Research, New York, NY, USA. Correspondence to: Xi-
ang Meng <mengx@mit.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

nents, e.g., channels in convolutional layers, neurons in
dense layers and heads in multi-head attention. Structured
pruning offers a practical solution to improve inference la-
tency on standard hardware in contrast to unstructured prun-
ing (LeCun et al., 1989; Hassibi & Stork, 1992; Han et al.,
2015), which requires specialized hardware and software.

Despite clear computational benefits from structured prun-
ing, significant challenges remain. Structured pruning is
generally associated with a significant drop in utility. To
recover lost accuracy, most existing methods (Li et al., 2017;
Molchanov et al., 2017; He et al., 2017; Luo et al., 2017; Yu
et al., 2018) rely on gradual pruning or iterative retraining,
where the model is finetuned on the original loss after every
pruning stage. Such finetuning or retraining is expensive—
they may not be desirable or possible for large datasets and
models under resource constraints. For example, finetuning
an LLM on a standard GPU (A100) may not be possible
beyond a few billion parameters (Malladi et al., 2023). In
this context, recent works such as Kwon et al. (2022); Kurtić
et al. (2023) focus on the challenging task of one-shot struc-
tured pruning which is performed post-training. Here, a
pre-trained model is compressed (without retraining) based
on a small amount of calibration data while retaining model
accuracy as much as possible.

Despite impressive advances, state-of-the-art methods ap-
pear to face challenges in terms of increased computation
time, memory usage, and balancing utility with structured
sparsity. To address these challenges, we propose a novel
optimization-based framework for one-shot structured prun-
ing, which is highly scalable and can achieve good utility-
sparsity tradeoffs. We employ a layer-wise reconstruction
objective and a careful structure-aware reformulation of the
optimization formulation to enable more scalability. To
obtain good solutions to the problem, we propose a local
combinatorial optimization algorithm, which leverages prob-
lem structure to perform efficient local search. By integrat-
ing these algorithmic components, we demonstrate that our
method is capable of handling large vision and language
models, up to 30 billion parameters using a single 32GB
V100 GPU — an improvement over prior approaches that
can handle up to 340 million parameters.

1

https://github.com/mazumder-lab/OSSCAR
https://github.com/mazumder-lab/OSSCAR

OSSCAR: One-Shot Structured Pruning

Contributions. Our technical contributions are:

1. Motivated by prior work (He et al., 2017; Dong et al.,
2017; Kurtić et al., 2023), we consider a layer-wise recon-
struction objective. We formulate the structured pruning
problem as a convex quadratic program with combinato-
rial constraints. Making use of problem-structure (exam-
ple, by observing that certain groups of variables share
the same coefficients), we propose a reformulation of the
quadratic objective that significantly reduces the effective
size of the Hessian matrix. Our framework, named as OS-
SCAR1, is a novel general structured pruning framework
that prunes channels in convolutional layers, neurons in
dense layers or heads in multi-head attention layers.

2. The optimization problem underlying structured pruning
is challenging due to its scale, and combinatorial nature.
We propose a new efficient algorithm, which performs
local combinatorial search to (i) iteratively prune (i.e.,
zero out) structures to satisfy desired combinatorial con-
straints, as well as (ii) locally explore structures with
similar structured sparsity budgets, but with better objec-
tive values. Our algorithm makes heavy use of low-rank
matrix updates during its combinatorial search and en-
joys theoretical guarantees (runtime and memory cost
analysis).

3. OSSCAR considerably improves over state-of-the-art ap-
proaches for one-shot structured pruning of language and
vision models, both in terms of achieved model quality
(utility) and inference time. (a) For language models,
e.g., OPT-2.7B, OSSCAR can lead to 125× lower test
perplexity on WikiText with 2× inference time speedup
in comparison to state-of-the-art ZipLM (Kurtić et al.,
2023) approach. Our framework is also 6× – 8× faster
than ZipLM. OSSCAR achieves 1.6× storage reduction
in saving decoder layers over ZipLM, when we match
performance. (b) For vision models, e.g., ResNet50, OS-
SCAR achieves 10% better accuracy for ∼ 2× speedup
over prior state-of-the-art approaches when adapted
to the one-shot setting. Our code is publicly avail-
able at: https://github.com/mazumder-lab/
OSSCAR.

It appears that ours is the first work to consider up to 30
billion model sizes for structured pruning, which is 100×
larger than what has been considered by prior works on
structured pruning (Kwon et al., 2022; Kurtić et al., 2023).
The existing state-of-the-art pipelines are unable to scale to
structured pruning of model with such sizes.

2. Related Work
Network pruning can be generally categorized into unstruc-
tured and structured methods. (a) Unstructured methods

1OSSCAR: One-Shot Structured Compression AlgoRithm

(LeCun et al., 1989; Hassibi & Stork, 1992; Han et al., 2015;
2016; Guo et al., 2016) prune unimportant weights in the
model, but efficiency of the pruned sparse network cannot
be realized on general-purpose GPU hardware. To achieve
speedups custom hardware libraries are needed. (b) Struc-
tured methods prune channels, neurons etc. (Lebedev &
Lempitsky, 2016; Wen et al., 2016), and thus actual speedup
can be realized without the need for custom sparse acceler-
ators. In this work, we consider structured pruning. Next,
we briefly review structured pruning methods in vision and
language models.

Structured pruning in vision models. Lebedev & Lempit-
sky (2016); Wen et al. (2016); Zhou et al. (2016) consider
ℓ21 norm to prune filters in convolutional layers. Li et al.
(2017) and He et al. (2018a) use ℓ1 norm and ℓ2 norm of the
filters for pruning respectively. He et al. (2017); Luo et al.
(2017) minimize a layer-wise reconstruction error using
LASSO and greedy methods to prune channels, respectively.
Yu et al. (2018)’s approach minimizes reconstruction error
of the final response layer and propagates importance scores
through the entire network. Molchanov et al. (2017) uses
first-order information from Taylor expansion to greedily
prune the least important channels. Liu et al. (2017); Luo &
Wu (2020) use scaling factors in Batch Normalization layers
as importance scores for pruning channels. Liu et al. (2021)
use Fisher-approximation based importance scores to prune
channels (or groups of channels). Tang et al. (2020); Lin
et al. (2020); Sui et al. (2021) consider feature-importance
based measure to determine the important channels. Chen
et al. (2021a; 2023) recognize structures that can be pruned
without impacting the network output if their parameters
are set to zero, and utilize tailored stochastic projected
gradient algorithms to efficiently prune such structures.
All the above methods are used in the context of gradual
pruning, or finetuning, which is prohibitively expensive on
large pretrained models and datasets. We explore one-shot
pruning adaptations of some of these approaches, and
compare them with our approach OSSCAR.

Structured pruning in language models. Previous works
focus on pruning different components in Transformer mod-
els. Voita et al. (2019); Michel et al. (2019) prune heads
in multi-head attention layers. McCarley (2019); Hou et al.
(2020); Chen et al. (2021b) prune the feed-forward network
(FFN) by reducing the intermediate dimension. Fan et al.
(2020); Sajjad et al. (2020) drop entire Transformer blocks
(a pair of MHA and FFN) from a pre-trained model. Xia
et al. (2022); Tao et al. (2023) allow for pruning the hid-
den dimension shared by all transformer blocks. All of
these methods are paired with gradual pruning, or finetun-
ing, which can be prohibitively expensive for large models.
Kwon et al. (2022) and Kurtić et al. (2023) consider the more
challenging task of post-training one-shot structured prun-
ing, which is the main focus of our work. These approaches

2

https://github.com/mazumder-lab/OSSCAR
https://github.com/mazumder-lab/OSSCAR

OSSCAR: One-Shot Structured Pruning

consider pruning both heads in multi-head attention layers
and intermediate dimension in FFN blocks. Kwon et al.
(2022) considers a local model based on the second-order
(Hessian) information of the loss function to prune attention
layer heads and hidden neurons in FFN. Although effective,
this approach can be prohibitively expensive in terms of
runtime and/or memory for billion-parameter models as the
ones we consider. Kurtić et al. (2023) consider a layer-wise
reconstruction error (He et al., 2017; Luo et al., 2017) to
prune attention heads and hidden neurons in FFN. Kwon
et al. (2022) and Kurtić et al. (2023) consider BERT-Large
and GPT2 models with sizes < 340 million parameters.

Combinatorial optimization in network pruning. Net-
work pruning broadly speaking involves identifying which
parameters to set to zero to minimize the impact on per-
formance of the original model. Due to its discrete nature,
network pruning can be formulated as a combinatorial op-
timization problem. Several works have explored unstruc-
tured network pruning using combinatorial optimization
techniques. Yu et al. (2022) formulates the problem as a
mixed-integer quadratic programming problem and employ
different heuristics for pruning. Benbaki et al. (2023) con-
siders an ℓ0 regression formulation and propose algorithms
that exploit problem structure for computational benefits.
Xu et al. (2023) utilizes combinatorial optimization to deter-
mine the optimal sparsity allocation for each layer. Meng
et al. (2024) jointly minimizes the number of non-zero pa-
rameters and FLOPs using combinatorial optimization. To
the best of our knowledge, OSSCAR is a novel framework
that directly optimizes the layer-wise structured pruning
problem with discrete optimization methods at scale.

Sparsity in linear models. There is a rich body of work
on sparsity in linear models: see Hastie et al. (2015); Bach
et al. (2012) for an overview of Lasso based procedures. A
relatively recent line of work has advanced computational
aspects of discrete optimization based procedures for sparse
linear models—see Bertsimas et al. (2016); Hazimeh &
Mazumder (2020); Hazimeh et al. (2022) for progress in
vanilla ℓ0-sparsity and Hazimeh et al. (2023) (and references
therein) for group-sparse settings. The problem of structured
pruning in neural networks that we consider here poses
interesting and unique challenges compared to the setting
of linear models.

Paper organization. The rest of the paper is organized as
follows. We present our problem formulation in Section
3 and our proposed algorithm in Section 4. We provide
empirical validation of our proposals on large vision and
language models in Section 5.

3. Problem Formulation
Here we describe OSSCAR: a novel framework for struc-
tured pruning under latency constraints. Building on prior
work in post-training structured pruning (He et al., 2017;
Luo et al., 2017), we adopt a layer-wise pruning strategy.
At a high-level our goal here is to prune weights that mini-
mally impact model performance in each layer: i.e., pruned
weights w should be comparable to the original pre-trained
weights ŵ.

Formally, we consider minimizing the squared error loss
between the output of a layer with weight ŵ and the pruned
weight w (to be learned) over N training samples {Xi}Ni=1.
If h(w,X) denotes the layer’s output (before the activation
function) with weight w for input X , we minimize the loss

L(w) =
1

2N

N∑
i=1

∥∥h(ŵ,Xi)− h(w,Xi)
∥∥2 , (1)

subject to some structured sparsity constraints on w.

In all models we consider, h(w,X) is a linear function of
w, and L(w) is a quadratic function of w of the form:

L(w) =
1

2
w⊤H ′w −G′⊤w. (2)

Here, H ′ and G′ are the quadratic and linear coefficients, re-
spectively. The length of w equals to the number of weights
in the layer, potentially reaching hundreds of millions in
LLMs (e.g., 200 million weights in the OPT-30B model).
This scale presents significant memory and computational
challenges in forming/saving H ′ and evaluating L(w).

To address the computational challenges, we make a key
observation: the loss function L(w) is highly structured in
the sense that H ′ is highly sparse, and variables in w can be
divided into groups sharing the same quadratic coefficients.
This insight allows us to represent w as a matrix (denoted
as W) and reformulate the loss as

L(W) =
1

2
Tr(W⊤HW)− Tr(G⊤W). (3)

This reformulation significantly downscales the problem:
e.g, the quadratic coefficient matrix size can reduce from
hundreds of millions to tens of thousands. For instance, with
OPT-30B, we only need to handle a 27k × 27k matrix H .

In what follows we discuss how to construct (3) given a
network. We consider the case of dense layers, CNNs and
LLMs. We show that across all models, our optimization
problem can be formulated as a Mixed Integer Quadratic
Program (MIQP).

Structured pruning in dense layers. As a motivating
example, we start with structured pruning in a dense (lin-
ear) layer with an input dimension Nin and an output

3

OSSCAR: One-Shot Structured Pruning

Vanilla Formulation
· · ·

Channel 1 Channel 2 Channel 3 Channel Cin

Our Formulation

··
·

kHkW

Cout

Figure 1: Comparison of two methods
for representing the weight. Top: Tradi-
tional vanilla formulation representing
the weight as a single vector of size
Cin × kH × kW × Cout, potentially
consisting of hundreds of millions of
variables. Left: Our proposed method,
representing the weight as a (Cin ×
kH × kW)× Cout matrix. Here, each
column corresponds to the weights of
a single convolutional filter and shares
the same quadratic coefficient. There-
fore, this representation significantly
reduces the problem’s scale. In both
figures, cells with different colors rep-
resent weights acting on different in-
put channels, with each channel being
acted on by (Cout×kH×kW) weights.

dimension Nout. We write W as a Nin × Nout ma-
trix, and the input X over N samples as a N × Nin

matrix. The loss function can then be expressed as
L(W) = 1

2
∥XŴ − XW∥2F = 1

2
Tr(W⊤(X⊤X)W) −

Tr((X⊤XŴ)⊤W) + 1
2
Tr(Ŵ⊤(X⊤X)Ŵ). Consequently,

we set H = X⊤X and G = X⊤XŴ in (3). For struc-
tured pruning within dense layers, we would like to remove
input neurons, which corresponds to pruning certain rows
of the matrix W .

Structured pruning in CNNs. To prune the weights in
a convolutional layer, we apply convolutional filters w of
size Cout × Cin × kH × kW to an input feature map X of
dimensions Cin × fh × fw. This feature map X is derived
from a data point in the training set. The convolution of w
with X produces an output matrix h(w,X) = Conv (w,X)
of size Cout × fh × fw. In this notation, Cin and Cout are
the number of input and output channels (the output channel
also referred to as a filter), and kh, kw, fh, and fw represent
kernel and feature map dimensions, respectively.

An important insight here is that the outputs of any two
filters are independent of each other’s weight choices, and
their weights share identical quadratic coefficients in (1).
Hence we can write the weights as a matrix W with di-
mensions (Cin × kH × kW) × Cout, where each column
represents the weights of a single convolutional filter, as
illustrated in Fig 1.

This formulation allows us to express the loss L(W) in the
form (3). Here, H is a positive semi-definite matrix with
dimensions (Cin × kH × kW) × (Cin × kH × kW), and
G is the quadratic problem’s linear term, with dimensions

Feature map X

at layer ℓ

Weight W

Feature map Y

after convolution

ReLU
Cin Cout

Figure 2: Illustration of structured pruning in a convolutional
layer to reduce feature map X’s width by pruning weights that act
on certain input channels. This figure shows an example where
weights acting on the second input channel (denoted by gray cells)
are pruned. Consequently, the corresponding channel (also in
gray) in the feature map X becomes redundant and can be re-
moved. Practically, we apply an optimization algorithm to prune
and update the weight matrix W to minimize the difference be-
tween the feature map Y generated from pruned weights and dense
weights.

(Cin×kH ×kW)×Cout. Both H and G can be computed2

using the training samples {Xi}Ni=1 and the original dense
weight Ŵ .

We adopt a channel pruning approach aimed at reducing the
width of feature maps by selectively pruning weights that
act on certain input channels (see Fig 2). This method offers
two benefits: (i) It enables the removal of redundant input
channels affected by the pruned weights, along with the
corresponding filters (from the previous layer) that generate
these channels. This decreasing inference time. (ii) Rather
than removing entire convolutional filters, our approach
prunes only parts of each filter. This selective pruning al-
lows for the application of optimization techniques to the
unpruned weights, aiming to closely replicate the output of
the original filters by minimizing L(W).

As illustrated in Fig. 1, each weight acting on a particular
input channel corresponds to a set of rows in the weight
matrix W . Thus, to implement channel pruning, it suffices
to prune (or remove) some rows of the matrix.

Structured pruning in LLMs. We now discuss structured
pruning in Transformers (Zhang et al., 2022). Figure 3
presents the structure of a layer in a Transformer. In line
with previous studies (Kwon et al., 2022; Kurtić et al., 2023),
our focus is on two structural changes: removing attention
heads and reducing the intermediate dimension in fully con-
nected layers. This involves pruning the last linear sublayer
in multi-head attention and the second sublayer of the feed-
forward network, as highlighted in red in Fig 3.

2In practice, we can compute H and G by using e.g, PyTorch’s
“nn.unfold” function.

4

OSSCAR: One-Shot Structured Pruning

Multi-head
attention

Add & Norm

Linear

Linear

Add & Norm

L×

Projection

Attention
block

Concat

Linear

Q K V

Ch

Ch

Figure 3: Illustration of structured pruning to accelerate
a Transformer layer. The multi-head attention comprises
Ch distinct single-head attention blocks. The outputs from
these blocks are concatenated and processed through a lin-
ear sublayer. We prune the linear sublayer for multi-head
integration and the second sublayer of the feed-forward net-
work, as marked in red.

Given that these two sublayers are linear, we can represent
W as a Nin × Nout matrix, where Nin and Nout are the
input and output dimensions of the linear layer, respectively.
Following the discussion on structured pruning in dense
layers, we can write loss L(W) in the form (3).

We now describe the structured pruning constraints corre-
sponding to these two types of structural removal:

1. Removing attention heads: the output of each attention
head is a Dhead-dimensional vector, feeding into the
multi-head integration linear sublayer. To prune an atten-
tion head, we remove Dhead consecutive rows from the
linear sublayer’s weight matrix W .

2. Reducing the intermediate dimension in fully connected
layers: this involves removing neurons from hidden
states, equivalent to removing individual rows from the
second linear sublayer’s weight matrix. This case aligns
with structured pruning for dense layers.

Structured pruning as a MIQP. We now introduce a uni-
fied MIQP formulation encompassing structured pruning
for all the models discussed previously.

We first divide the rows of the weight matrix W into a
partition Q1, Q2, . . . , Qp. To determine p and the partition,
we consider three cases:

1. Dense layers: p = Nin (input dimension) and each
Qj = {j} denotes weights for the j-th input neuron.

2. Convolutional layers: p = Cin (the number of input
channels) and each partition Qj includes rows {(j −
1)kHkW + 1, . . . , jkHkW }, represents weights acting

on the j-th input channel.
3. Attention heads: p = Ch (the number of attention

heads) and each partition Qj = {(j − 1)Dhead +
1, . . . , jDhead}, represents weights for the j-th head.

We use a binary variable zj to indicate whether weights in
Qj are kept or pruned. OSSCAR aims to prune p′ groups
of weights while minimizing the loss L(W), and can be
described by the following problem (here wi denotes the
i-th row of matrix W) with both discrete (z) and continuous
(W) variables:

min
W,z

L(W) :=
1

2
Tr(W⊤HW)− Tr(G⊤W)

s.t. wi · (1− zj) = 0, ∀ j ∈ [p], i ∈ Qj

p∑
j=1

zj = p− p′, zj ∈ {0, 1}.

(4)

4. Algorithm
The main goal of this paper is one-shot structured pruning
on large-scale models. It is important to obtain high-quality
solutions to the MIQP derived from structured pruning both
effectively, due to the large scale of the problem, and ac-
curately since we only prune once and will not fine-tune
the weights via SGD. To this end, we first reformulate the
MIQP (4) (involving both discrete and continuous variables)
to a combinatorial problem in Section 4.1 (with only dis-
crete variables). We then introduce an efficient approximate
solver based on local search for achieving a high-quality
solution in Section 4.2.

4.1. A combinatorial optimization reformulation

The MIQP(4) involves two sets of variables: the binary
variables z and the weight matrix W . In practice, z has up
to a few thousand variables, while the weight matrix W may
have millions of variables. Fixing the binary variables z
reduces the problem to a quadratic one, which, despite its
large scale, is relatively simple to solve optimally. However,
the critical task is to wisely determine the values of z, as
they indicate which portions of a layer’s input are retained
and how effectively the output of the dense weight can be
approximated by the pruned weight.

In light of this, we reformulate the MIQP as a combinatorial
problem, primarily focusing on optimizing z. We let S
denote the set of indices where z is zero as, and define f(S)
as the minimum loss L(W) achieved by pruning all rows in
Qj for j in S from the weight matrix W and then updating
the remaining weights:

f(S) = min
W

L(W) :=
1

2
Tr(W⊤HW)− Tr(G⊤W)

s.t. wi = 0, ∀ i ∈ Qj , j ∈ S.
(5)

5

OSSCAR: One-Shot Structured Pruning

The objective is to identify a set S with p′ elements that
minimizes f(S), and can be written as the following combi-
natorial problem:

min
S⊂{1,2,...,p}

f(S), s.t. |S| = p′. (6)

Optimizing f(S) is challenging: potential candidates S se-
lections grow exponentially with the number of channels.
For example, pruning half of 32 channels in a CNN layer
results in over 600 million possible choices for S. More-
over, calculating the value of f(S) for a specific S involves
solving a quadratic problem with up to millions of variables,
further complicating this problem. In the next section, we
introduce a highly efficient method for identifying a high-
quality S.

4.2. Local search based approximate solver

To motivate our local search based approximate solver, we
first discuss calculating f(S) for a specific set S. Define

IS :=
{
i | i ∈ Qj for some j /∈ S

}
(7)

as the set of rows not constrained to zero in (5). Conse-
quently, computing the value of f(S) becomes a quadratic
problem focusing on the weights in rows from IS :

f(S) = min
WIS

1

2
Tr(W⊤

ISHIS ,ISWIS)− Tr(G⊤
ISWIS) (8)

Here, HIS ,IS is the submatrix of H with rows and columns
in IS , and WIS (GIS) is the submatrix of W (G) with rows
in IS . The optimal value of this quadratic problem is

f(S) = −1

2
Tr
(
G⊤

IS (HIS ,IS)
−1GIS

)
. (9)

The time complexity of computing (9) is O(d21(d1 + d2)),
assuming W is a d1 × d2 matrix. Solving the combinato-
rial optimization problem (6) requires evaluating f(S) for
numerous distinct sets S. In LLMs, the scales of d1 and
d2 can reach up to tens of thousands, presenting substantial
computational challenges.

To accelerate the evaluation of f(S), a crucial insight is
that if we already have f(S′) computed for a set S′ similar
to S, we can apply low-rank matrix updates to efficiently
calculate f(S). This leads to the following result:

Proposition 4.1. Given two sets S and S′. Suppose we
have computed the value of f(S′), the inverse of HIS′ ,IS′

and the optimal weight matrix for f(S′). The value of f(S),
the inverse of HIS ,IS and the optimal weight matrix for
f(S) can then be computed within O(td1(d1 + d2)) time
complexity, where t = |IS∆IS′ | denotes the symmetric
difference between IS and IS′ .

Algorithm 1 Local search-based approach for solving (6).
Require: The number of iterations T , two lists {ti}Ti=1 and

{pi}Ti=1 with
∑T

i=1 pi = p′ and pi ≤ ti,∀i ∈ [T].
1: Initialize with S0 = ∅, compute H−1 and the optimal

weight W ∗ = H−1G.
2: for i = 1, 2, . . . , T do
3: Conduct a local search on Si−1: solve problem (10)

with S′ = Si−1, t̂ = ti and p̂ = pi and get Si.
4: Compute f(Si), the inverse of HISi

,ISi
and the opti-

mal weight matrix for f(Si).
5: end for
6: Output: The set ST that approximately optimizes (6).

The proof of Proposition 4.1 is in Section A.1. It inspires us
to perform a local search at each iteration around the current
solution S′ by approximately solving:

min
S

f(S) s.t. |S∆S′| ≤ t̂, |S| ≥ |S′|+ p̂. (10)

We restrict the symmetric difference between S′ and S by
t̂. This constraint allows efficient computation of compute
f(S), the inverse of HIS ,IS and the optimal weight matrix
for f(S), as per Proposition 4.1. We require |S| ≥ |S′|+ p̂
since our strategy is to start with the empty set and gradually
increase the cardinality of S, which means we begin with the
dense weight and gradually prune the structural components
in the neural network.

To solve (10), we replace elements in S′ with minimal im-
pact on the objective with those that have more significant
effects. The importance of each element in [p] is evaluated
based on the objective’s change when the element is added
to or removed from S′. This is formally expressed as:

Bj =

{
f (S′)− f (S′ \ {j}) , if j ∈ S′

f (S′ ∪ {j})− f (S′) , otherwise,
∀j ∈ [p].

(11)
We set s1 = ⌊ t̂−p̂

2 ⌋ and s2 = ⌊ t̂+p̂
2 ⌋. Sout includes the s1

elements in S′ with the lowest Bj values, while Sin includes
the s2 elements in [p]−S′ with the highest Bj values. Then,
we derive the solution to (10) as:

S = (S′ \ Sout) ∪ Sin. (12)

The method we propose is concisely outlined in Algorithm 1.
Proposition 4.2 details the time and memory complexities
of Algorithm 1, with its proof provided in Section A.2.

Proposition 4.2. Assume each group in the row partition
Q1, Q2 . . . , Qk is of equal size. Then, Algorithm 1 can be
executed in O(Td21(d1 + d2)) time and requires O(d1(d1 +
d2)) memory. Furthermore, if we choose ti = pi for all
i ∈ [T], then the time complexity reduces to O(d21(d1+d2)).

6

OSSCAR: One-Shot Structured Pruning

We now discuss the effects of parameters t̂ and p̂ in (10)
on the performance of Algorithm 1. The parameter t̂ deter-
mines the range of the local search. A larger t̂ enables more
aggressive updates yet complicates solving (10), reducing
the accuracy of our approximate solution to it. Conversely,
a smaller t̂ leads to precise updates, but this conservative
approach requires much more iterations for convergence. As
for p̂, its larger values (e.g., t̂ = p̂) make Algorithm 1 resem-
ble a greedy pruning method. In this mode, each iteration
adds elements to S with the greatest impact on the objective
f(S). On the other hand, a smaller p̂ shifts the algorithm
towards a local swapping strategy, where elements within S
are exchanged with more impactful ones from outside S to
find a set with a smaller objective value. Figure 4 provides
an illustration of Algorithm 1 under different p̂ settings.

In our experiments, we found that the performance of our
proposed algorithm is not sensitive to the choice of t̂ and
p̂. Therefore, we do not tune over these parameters much,
and we set t̂ = p̂ ≤ 10, with the precise values of t̂ and p̂
depending on the problem size (detailed in Section B.1). We
also conduct an ablation study to examine the algorithm’s
performance with various choices of t̂ and p̂ and show the
low sensitivity of our algorithm to these hyperparameters.
The results are presented in Appendix B.2.5.

5. Numerical Experiments
In this section, we compare our proposed framework OS-
SCAR with leading structured pruning methods in vision
and language models. We provide detailed information on
the experimental setup and reproducibility in Appendix B.1.
Additional experimental results and ablation studies are
given in Appendix B.2.

Our proposed framework OSSCAR employs a one-shot prun-
ing method, which prunes weights just once without finetun-
ing. On the other hand, some structured pruning methods
(Li et al., 2017; Sui et al., 2021; Luo et al., 2017) perform
a fine-tuning procedure after pruning to retrain the weights
via stochastic gradient descent. One-shot pruning is more
efficient than fine-tuning, which typically requires a signifi-

S1 S2 S3 S1 S2

Figure 4: The structure of sets {Si}Ti=1 under different
choices of p̂. Left: with a large p̂, Algorithm 1 mimics a
greedy pruning approach, incrementally expanding the set S
and resulting in nested sets S1 ⊂ S2 ⊂ S3 · · · . Right: with
a small p̂, Algorithm 1 employs a local swapping strategy,
leading to sets without a nested structure.

cantly larger number of training samples and greater com-
putational resources. For instance, fine-tuning ResNet50 on
ImageNet involves over a million training samples and days
of training, whereas our one-shot pruning experiments only
take a few minutes and 500 training samples. Additionally,
fine-tuning large language models often becomes imprac-
tical due to the high demand for computational resources.
Therefore, in our experiments, we focus on one-shot prun-
ing. To ensure fairness in our comparisons, we also consider
the performance of competing methods in one-shot setting.

5.1. Structured pruning in vision models

We consider various pre-trained convolutional networks in-
cluding ResNet20 (He et al., 2016, 260k parameters) trained
on CIFAR10 (Krizhevsky et al., 2009), MobileNet ((Howard
et al., 2017), 4.2M parameters) and ResNet50 (25.6M pa-
rameters) trained on ImageNet (Deng et al., 2009). We
assess the performance of all structured pruning methods
using 500 training samples as the calibration dataset.

Competing methods. We compare it with several one-shot
pruning methods in vision models: (i) Magnitude Pruning
(MP) (Mozer & Smolensky, 1989; He et al., 2018a), (ii)
CHIP (Sui et al., 2021), (iii) FPGM (He et al., 2018b), (iv)
Lasso (He et al., 2017) and (v) ThiNet (Luo et al., 2017).
The configuration details for these methods and the parame-
ter settings for OSSCAR are outlined in Section B.1.1.

Performance on a single layer. We first evaluate struc-
tured pruning on a single layer. Figure 5 compares the
squared loss between dense and pruned weights at differ-
ent speedup ratios. OSSCAR significantly outperforms MP,
CHIP, and FPGM, as these methods do not directly mini-
mize L(W). Compared to ThiNet and Lasso, which aim to
minimize L(W), OSSCAR achieves about 20% lower loss
under the same speedup ratios. These results demonstrate
the effectiveness of our proposed local optimization method
(Algorithm 1) in obtaining high-quality solutions for the
layerwise channel pruning problem.

Accuracy performance. The effectiveness of Algorithm
1 in solving pruning problems at each layer translates to
improved out-of-sample performance of the overall pruned
model, as demonstrated in Table 1. The table compares
the test accuracy for pruned ResNet20, MobileNetV1, and
ResNet50 across different speedup ratios. OSSCAR consis-
tently achieves higher accuracy compared to existing meth-
ods, particularly at higher speedup ratios, with 15% ∼ 30%
higher accuracy. These results showcase the superiority
of OSSCAR in maintaining high accuracy while achieving
significant speedups.

7

OSSCAR: One-Shot Structured Pruning

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
Speedup ratio

104

105

106

Lo
ss

 L
(W

)
Pruning a single convolution layer in Resnet50

MP
CHIP
FPGM
Lasso
ThiNet
OSSCAR

Figure 5: Performance of pruning the layer “layer1.0.conv2”
in Resnet50 at different speedup ratios. The plot shows
the squared loss between dense and pruned weights of this
single layer, using different pruning methods. The speedup
ratio is computed as the total number of channels (64) di-
vided by the number of channels retained after pruning.

Table 1: One-shot structured pruning performance (accu-
racy) of various methods on ResNet20, MobileNetV1, and
ResNet50. The speedup ratio denotes the inference time
improvement of pruned models over dense models. For all
methods, we take ten runs and report the mean.

Model Speedup MP CHIP FPGM Lasso ThiNet OSSCAR

ResNet20
on CIFAR10

(91.36%)

1.3x 55.37 67.24 39.01 89.03 89.16 89.20 (±0.12)
1.4x 39.54 39.05 24.37 86.68 87.09 87.70 (±0.16)
1.7x 26.92 19.16 12.82 83.55 84.11 85.05 (±0.19)
2.0x 18.98 11.81 10.92 78.80 79.30 81.10 (±0.49)
2.6x 11.04 9.97 12.45 68.58 70.35 72.60 (±0.78)
3.5x 10.21 10.31 12.60 57.15 58.68 61.82 (±0.98)

MobileNetV1
on ImageNet

(71.95%)

1.3x 21.66 33.16 4.42 70.13 70.07 70.70 (±0.05)
1.4x 1.60 5.36 0.58 67.65 67.66 68.89 (±0.08)
1.5x 0.13 0.77 0.11 63.79 64.06 66.37 (±0.15)
1.7x 0.10 0.22 0.10 58.88 59.51 63.03 (±0.31)
1.9x 0.10 0.10 0.13 52.72 53.34 58.39 (±0.36)
2.2x 0.10 0.10 0.10 45.47 45.77 52.07 (±0.57)

ResNet50
on ImageNet

(77.01%)

1.2x 60.57 57.06 59.53 73.82 73.49 74.33 (±0.08)
1.3x 9.28 16.86 18.79 67.07 66.29 69.30 (±0.16)
1.4x 3.28 5.34 5.48 61.58 60.44 65.32 (±0.27)
1.6x 0.95 1.24 1.42 53.15 51.91 59.14 (±0.44)
1.7x 0.37 0.57 0.40 41.68 41.08 50.16 (±0.59)
1.9x 0.25 0.29 0.21 29.23 28.87 38.45 (±0.63)

5.2. Structured Pruning in Large Language Models

Next, we evaluate the usefulness of our proposed framework
OSSCAR for one-shot structured pruning on LLMs.

Models and datasets. We focus on pruning the OPT model
family (Zhang et al., 2022), with sizes ranging from 1.3
billion to 30 billion parameters. For calibration data, we
adopt the approach of Frantar & Alistarh, 2023, utilizing
128 segments of 2048 tokens each, randomly selected from
the first shard of the C4 dataset (Raffel et al., 2020). We
consider perplexity as our key metric, recognized for its
challenge and stability in evaluating the performance of
pruned models (Yao et al., 2022; Xiao et al., 2023; Frantar
& Alistarh, 2023). The perplexity is calculated following
precisely the procedure described by HuggingFace (Per,

2022), using full stride. We consider the test sets of raw-
WikiText2 (Merity et al., 2017) and PTB (Marcus et al.,
1994) as well as a subset of the C4 validation data, all
popular benchmarks in LLM pruning literature (Yao et al.,
2022; Xiao et al., 2023; Frantar & Alistarh, 2023). We use
the HuggingFace Transformers library (Wolf et al., 2020) for
handling the models and datasets. In addition to perplexity,
we evaluate the pruned models on 4 different zero-shot tasks:
Piqa (Bisk et al., 2020), Lambada (Paperno et al., 2016), Arc
easy, and challenge (Clark et al., 2018), and report results
in Section B.2.2.

Competing methods. We compare against multiple one-
shot structured pruning methods: (i) Magnitude pruning
(MP), (ii) Magnitude pruning with a layer-wise refinement
step (MP+), and (iii) ZipLM3 (Kurtić et al., 2023). The
configuration details for these methods, along with the pa-
rameter settings for OSSCAR, are outlined in Section B.1.2.

Results. We report the perplexity performance on the raw-
WikiText2 test set across various speedup ratios for different
models (OPT-1.3B, OPT-2.7B), as shown in Table 2. In-
terestingly, we observe a rapid increase in perplexity for
pruned models using baseline methods, even at relatively
small speedup ratios. OSSCAR, in contrast, demonstrates
substantial gains over baseline methods. Notably, it shows a
much smaller increase in perplexity with higher speedups.
For instance, OSSCAR achieves a perplexity 125 times lower
than the state-of-the-art ZipLM framework for one-shot
structured pruning for the OPT 2.7 billion parameter model
at a 2x inference speedup.

3The authors of ZipLM (state-of-the-art) only considered mod-
els of sizes < 340 million. We apply the ZipLM framework to
OPT models. For the second stage of their framework (structured
SPDY search), we turn off the randomized search component, as it
appears to be computationally intractable.

Table 2: Perplexity performance on Wikitext for one-shot
structured pruning of OPT models (1.3B, 2.7B, and 6.7B).
The speedup ratio denotes the inference time improvement
of pruned models over dense models. For all methods we
take ten runs and report the mean and standard error.

Model Speedup MP MP+ ZipLM OSSCAR

OPT-1.3B

1.2x 163.0 (±0.20) 22.01 (±0.09) 14.58 (±0.08) 15.54 (±0.15)
1.3x 1834 (±1.00) 41.46 (±0.28) 61.36 (±5.19) 17.53 (±0.11)
1.4x 7412 (±29.0) 4953 (±151) 729.0 (±114) 20.49 (±0.36)
1.7x 8752 (±55.0) 4802 (±287) 1829 (±66.0) 25.74 (±0.54)
2.0x 8439 (±15.0) 6490 (±113) 3529 (±346) 37.87 (±0.64)
2.6x 9546 (±4.00) 7608 (±241) 6424 (±301) 68.50 (±1.89)
3.3x 12006 (±50.0) 8772 (±256) 9424 (±761) 153.0 (±3.56)

OPT-2.7B

1.2x 234.2 (±3.07) 22.33 (±0.12) 12.14 (±0.03) 13.14 (±0.17)
1.3x 3817 (±108) 46.31 (±0.59) 21.83 (±3.47) 14.94 (±0.22)
1.4x 6957 (±794) 111.2 (±2.50) 414.9 (±113) 17.11 (±0.21)
1.7x 13903 (±208) 9977 (±5025) 1820 (±422) 21.18 (±0.24)
2.0x 12793 (±48.0) 12003 (±2419) 3611 (±840) 29.48 (±0.46)
2.4x 11975 (±18.0) 15979 (±3180) 9209 (±2356) 51.90 (±1.06)
3.0x 15874 (±62.0) 12433 (±596) 14039 (±1863) 102.7 (±3.24)

8

OSSCAR: One-Shot Structured Pruning

1.0 1.5 2.0 2.5 3.0
Speedup

101

102

103

104

Pe
rp

le
xi

ty
 (W

ik
iTe

xt
)

MP
MP+
OSSCAR

1.0 1.5 2.0 2.5 3.0
Speedup

101

102

103

104

105

106

107

Pe
rp

le
xi

ty
 (W

ik
iTe

xt
)

MP
MP+
OSSCAR

1.0 1.5 2.0 2.5 3.0
Speedup

101

102

103

104

105

Pe
rp

le
xi

ty
 (W

ik
iTe

xt
)

MP
MP+
OSSCAR

OPT-6.7B OPT-13B OPT-30B

Figure 6: Perplexity performance on WikiText (in log-scale) for one-shot structured pruning of OPT models (6.7B, 13B, and
30B). The speedup ratio denotes the inference time improvement of pruned models over dense models. For all methods, we
take ten runs and report the mean perplexity.

Performance on larger OPT Models We next showcase
the one-shot pruning performance of OSSCAR on larger
OPT Models (6.7B, 13B, and 30B). Due to memory limi-
tations, ZipLM (Kurtić et al., 2023) cannot process these
models4. Thus, we compare our framework solely against
magnitude pruning-based methods (MP and MP+). Figure 6
displays the perplexity for these models on raw-WikiText2,
with the logarithmic scale of the y-axis highlighting that
OSSCAR reduces the perplexity by at least two orders of
magnitude against the baselines. OSSCAR’s superior per-
formance stems from achieving much smaller layer-wise
reconstruction error at each layer compared to MP and MP+,
resulting in less impact on the model’s performance.

The overall loss in perplexity from one-shot structured prun-
ing can be mitigated by increasing the sample size from 128
to 2048. For instance, at a 2x speedup, this adjustment can
reduce perplexity by up to 3.5 points. We explored this in an
ablation study detailed in the Supplementary Section B.2.3.

Timing comparison. Our framework stands out for its
time efficiency in pruning networks. Table 3 displays the
total time different algorithms take to prune a model to
various speed-up ratios. As shown, OSSCAR is notably
faster, achieving speeds 6–8 times faster than the ZipLM
framework. Remarkably, our optimization framework is
only 1.5x slower than MP+ baseline, yet it offers substantial
improvements in predictive performance.

6. Conclusion
We introduce OSSCAR, a novel optimization framework
for one-shot structured pruning in large-scale vision and
language models. OSSCAR is based on a reformulation
of the layer-wise reconstruction objective, which exploits
problem structure to allow for scalable optimization. We

4The original ZipLM pipeline runs out of memory for 1.3B
and 2.7B models as well. We added CPU offloading (see Section
B.1.2), allowing it to work with 1.3B and 2.7B models.

Table 3: Total time taken by different algorithms to prune a
model to various speed-up ratios. For all methods we take
ten runs and report the mean and standard error.

Model MP MP+ ZipLM OSSCAR

OPT-1.3B 0.469 (±0.00) 1166 (±3.00) 9161 (±670) 1455 (±4.00)
OPT-2.7B 0.996 (±0.00) 2229 (±8.00) 22839 (±999) 2842 (±12.0)
OPT-6.7B 2.551 (±0.01) 5084 (±67.0) - 7434 (±96.0)

develop a novel local combinatorial optimization algorithm
that exploits low-rank updates for efficient local search. Our
framework is both time- and memory-efficient, markedly en-
hancing the practicality and performance of one-shot struc-
tured pruning methods. For example, on OPT-2.7B, OS-
SCAR can lead to 125× lower test perpexity on WikiText
with 2× inference time speedup in comparison to state-of-
the-art ZipLM approach. Our pruning framework takes 6×
– 8× lesser time to prune the network. Our framework can
also prune 100× larger models than previous state-of-the-art
structured pruning frameworks.

Acknowledgements

This research is supported in part by grants from ONR
(N000142112841 and N000142212665). We acknowledge
the MIT SuperCloud and Lincoln Laboratory Supercom-
puting Center for providing HPC resources that have con-
tributed to the research results reported within this paper.
Additionally, we thank Google for providing us with Google
Cloud Credits to run some of the computational experiments
reported in this paper. We thank Wenyu Chen and Riade
Benbaki for helpful discussions.

Impact Statement
Structured Pruning approaches are used to improve the effi-
ciency of large models for inference. We do not see direct,
negative societal impacts from this research.

9

OSSCAR: One-Shot Structured Pruning

References
Perplexity of fixed-length models, 2022. URL https:
//huggingface.co/docs/transformers/
perplexity.

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. Struc-
tured sparsity through convex optimization. Statistical
Science, 27(4):450–468, 2012.

Benbaki, R., Chen, W., Meng, X., Hazimeh, H., Pono-
mareva, N., Zhao, Z., and Mazumder, R. Fast as chita:
Neural network pruning with combinatorial optimization.
In International Conference on Machine Learning, pp.
2031–2049. PMLR, 2023.

Bertsimas, D., King, A., and Mazumder, R. Best subset
selection via a modern optimization lens. The Annals of
Statistics, 44(2):813–852, 2016.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Chen, T., Ji, B., Ding, T., Fang, B., Wang, G., Zhu, Z.,
Liang, L., Shi, Y., Yi, S., and Tu, X. Only train once: A
one-shot neural network training and pruning framework.
Advances in Neural Information Processing Systems, 34:
19637–19651, 2021a.

Chen, T., Liang, L., Ding, T., Zhu, Z., and Zharkov, I.
Otov2: Automatic, generic, user-friendly. arXiv preprint
arXiv:2303.06862, 2023.

Chen, X., Cheng, Y., Wang, S., Gan, Z., Wang, Z., and Liu,
J. EarlyBERT: Efficient BERT training via early-bird
lottery tickets. In Zong, C., Xia, F., Li, W., and Navigli,
R. (eds.), Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 2195–2207, Online,
August 2021b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.171. URL https:
//aclanthology.org/2021.acl-long.171.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dong, X., Chen, S., and Pan, S. Learning to prune deep
neural networks via layer-wise optimal brain surgeon.

In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017.

Fan, A., Grave, E., and Joulin, A. Reducing trans-
former depth on demand with structured dropout. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=SylO2yStDr.

Frantar, E. and Alistarh, D. SparseGPT: Massive lan-
guage models can be accurately pruned in one-shot.
In Krause, A., Brunskill, E., Cho, K., Engelhardt,
B., Sabato, S., and Scarlett, J. (eds.), Proceedings of
the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pp. 10323–10337. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/frantar23a.html.

Guo, Y., Yao, A., and Chen, Y. Dynamic network surgery for
efficient dnns. In Proceedings of the 30th International
Conference on Neural Information Processing Systems,
NIPS’16, pp. 1387–1395, Red Hook, NY, USA, 2016.
Curran Associates Inc. ISBN 9781510838819.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural networks. In
Proceedings of the 28th International Conference on Neu-
ral Information Processing Systems - Volume 1, NIPS’15,
pp. 1135–1143, Cambridge, MA, USA, 2015. MIT Press.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural network with pruning, trained
quantization and huffman coding. In Bengio, Y. and Le-
Cun, Y. (eds.), 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016.

Hassibi, B. and Stork, D. Second order derivatives for
network pruning: Optimal brain surgeon. In Hanson,
S., Cowan, J., and Giles, C. (eds.), Advances in Neu-
ral Information Processing Systems, volume 5. Morgan-
Kaufmann, 1992.

Hastie, T., Tibshirani, R., and Wainwright, M. Statistical
learning with sparsity: the lasso and generalizations.
CRC press, 2015.

Hazimeh, H. and Mazumder, R. Fast best subset selec-
tion: Coordinate descent and local combinatorial opti-
mization algorithms. Operations Research, 68(5):1517–
1537, 2020.

10

https://huggingface.co/docs/transformers/perplexity
https://huggingface.co/docs/transformers/perplexity
https://huggingface.co/docs/transformers/perplexity
https://aclanthology.org/2021.acl-long.171
https://aclanthology.org/2021.acl-long.171
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html

OSSCAR: One-Shot Structured Pruning

Hazimeh, H., Mazumder, R., and Saab, A. Sparse regression
at scale: Branch-and-bound rooted in first-order optimiza-
tion. Mathematical Programming, 196(1-2):347–388,
2022.

Hazimeh, H., Mazumder, R., and Radchenko, P. Grouped
variable selection with discrete optimization: Computa-
tional and statistical perspectives. The Annals of Statistics,
51(1):1–32, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, Y., Zhang, X., and Sun, J. Channel pruning for
accelerating very deep neural networks. In 2017 IEEE
International Conference on Computer Vision (ICCV),
pp. 1398–1406, Los Alamitos, CA, USA, oct 2017. IEEE
Computer Society. doi: 10.1109/ICCV.2017.155. URL
https://doi.ieeecomputersociety.org/
10.1109/ICCV.2017.155.

He, Y., Kang, G., Dong, X., Fu, Y., and Yang, Y. Soft
filter pruning for accelerating deep convolutional neu-
ral networks. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence, IJCAI’18, pp.
2234–2240. AAAI Press, 2018a. ISBN 9780999241127.

He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. Filter prun-
ing via geometric median for deep convolutional neural
networks acceleration. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
4335–4344, 2018b.

Hou, L., Huang, Z., Shang, L., Jiang, X., Chen, X., and
Liu, Q. Dynabert: Dynamic bert with adaptive width
and depth. In Proceedings of the 34th International
Conference on Neural Information Processing Systems,
NIPS’20, Red Hook, NY, USA, 2020. Curran Associates
Inc. ISBN 9781713829546.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kurtić, E., Frantar, E., and Alistarh, D. Ziplm: Inference-
aware structured pruning of language models. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=d8j3lsBWpV.

Kwon, W., Kim, S., Mahoney, M. W., Hassoun, J., Keutzer,
K., and Gholami, A. A fast post-training pruning frame-
work for transformers. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=0GRBKLBjJE.

Lebedev, V. and Lempitsky, V. Fast convnets using group-
wise brain damage. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 2554–
2564, 2016. doi: 10.1109/CVPR.2016.280.

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
In Touretzky, D. (ed.), Advances in Neural Information
Processing Systems, volume 2. Morgan-Kaufmann, 1989.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. In In-
ternational Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=rJqFGTslg.

Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., and
Shao, L. Hrank: Filter pruning using high-rank feature
map. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1526–1535,
Los Alamitos, CA, USA, jun 2020. IEEE Computer
Society. doi: 10.1109/CVPR42600.2020.00160. URL
https://doi.ieeecomputersociety.org/
10.1109/CVPR42600.2020.00160.

Liu, L., Zhang, S., Kuang, Z., Zhou, A., Xue, J.-H.,
Wang, X., Chen, Y., Yang, W., Liao, Q., and Zhang,
W. Group fisher pruning for practical network com-
pression. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 7021–7032. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/liu21ab.html.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C.
Learning efficient convolutional networks through net-
work slimming. In 2017 IEEE International Conference
on Computer Vision (ICCV), pp. 2755–2763, 2017. doi:
10.1109/ICCV.2017.298.

Luo, J., Wu, J., and Lin, W. Thinet: A filter level pruning
method for deep neural network compression. In IEEE In-
ternational Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017, pp. 5068–5076. IEEE
Computer Society, 2017. doi: 10.1109/ICCV.2017.541.

Luo, J.-H. and Wu, J. Neural network pruning with residual-
connections and limited-data. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 1455–1464, 2020. doi: 10.1109/
CVPR42600.2020.00153.

11

https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.155
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.155
https://openreview.net/forum?id=d8j3lsBWpV
https://openreview.net/forum?id=d8j3lsBWpV
https://openreview.net/forum?id=0GRBKLBjJE
https://openreview.net/forum?id=0GRBKLBjJE
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00160
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00160
https://proceedings.mlr.press/v139/liu21ab.html
https://proceedings.mlr.press/v139/liu21ab.html

OSSCAR: One-Shot Structured Pruning

Malladi, S., Gao, T., Nichani, E., Damian, A., Lee, J., Chen,
D., and Arora, S. Fine-tuning language models with just
forward passes. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=Vota6rFhBQ.

Marcus, M., Kim, G., Marcinkiewicz, M. A., MacIntyre, R.,
Bies, A., Ferguson, M., Katz, K., and Schasberger, B. The
penn treebank: Annotating predicate argument structure.
In Proceedings of the Workshop on Human Language
Technology, HLT ’94, pp. 114–119, USA, 1994. Associa-
tion for Computational Linguistics. ISBN 1558603573.
doi: 10.3115/1075812.1075835. URL https://doi.
org/10.3115/1075812.1075835.

McCarley, J. S. Pruning a bert-based question answering
model. ArXiv, abs/1910.06360, 2019. URL https:
//api.semanticscholar.org/CorpusID:
204575977.

Meng, X., Chen, W., Benbaki, R., and Mazumder, R. Fal-
con: Flop-aware combinatorial optimization for neural
network pruning. In International Conference on Artifi-
cial Intelligence and Statistics, pp. 4384–4392. PMLR,
2024.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In International Conference
on Learning Representations, 2017. URL https://
openreview.net/forum?id=Byj72udxe.

Michel, P., Levy, O., and Neubig, G. Are sixteen heads
really better than one? In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J.
Pruning convolutional neural networks for resource effi-
cient inference. In International Conference on Learning
Representations, 2017. URL https://openreview.
net/forum?id=SJGCiw5gl.

Mozer, M. C. and Smolensky, P. Using relevance to reduce
network size automatically. Connection Science, 1(1):
3–16, 1989.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The lambada dataset: Word prediction
requiring a broad discourse context. arXiv preprint
arXiv:1606.06031, 2016.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), jan 2020. ISSN
1532-4435.

Sajjad, H., Dalvi, F., Durrani, N., and Nakov, P. On
the effect of dropping layers of pre-trained trans-
former models. Comput. Speech Lang., 77:101429,
2020. URL https://api.semanticscholar.
org/CorpusID:251005814.

Sui, Y., Yin, M., Xie, Y., Phan, H., Zonouz, S. A., and Yuan,
B. CHIP: CHannel independence-based pruning for com-
pact neural networks. In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=EmeWbcWORRg.

Tang, Y., Wang, Y., Xu, Y., Tao, D., Xu, C., Xu, C., and
Xu, C. Scop: Scientific control for reliable neural net-
work pruning. In Proceedings of the 34th International
Conference on Neural Information Processing Systems,
NIPS’20, Red Hook, NY, USA, 2020. Curran Associates
Inc. ISBN 9781713829546.

Tao, C., Hou, L., Bai, H., Wei, J., Jiang, X., Liu, Q., Luo,
P., and Wong, N. Structured pruning for efficient gen-
erative pre-trained language models. In Findings of the
Association for Computational Linguistics: ACL 2023,
pp. 10880–10895, 2023.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I.
Analyzing multi-head self-attention: Specialized heads
do the heavy lifting, the rest can be pruned. In Ko-
rhonen, A., Traum, D., and Màrquez, L. (eds.), Pro-
ceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 5797–5808,
Florence, Italy, July 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P19-1580. URL
https://aclanthology.org/P19-1580.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning
structured sparsity in deep neural networks. In Proceed-
ings of the 30th International Conference on Neural In-
formation Processing Systems, NIPS’16, pp. 2082–2090,
Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN
9781510838819.

Wolf, T., Debut, L., Sanh, V., et al. Transformers: State-
of-the-art natural language processing. In Liu, Q. and
Schlangen, D. (eds.), Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, Oc-
tober 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

12

https://openreview.net/forum?id=Vota6rFhBQ
https://openreview.net/forum?id=Vota6rFhBQ
https://doi.org/10.3115/1075812.1075835
https://doi.org/10.3115/1075812.1075835
https://api.semanticscholar.org/CorpusID:204575977
https://api.semanticscholar.org/CorpusID:204575977
https://api.semanticscholar.org/CorpusID:204575977
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
https://api.semanticscholar.org/CorpusID:251005814
https://api.semanticscholar.org/CorpusID:251005814
https://openreview.net/forum?id=EmeWbcWORRg
https://openreview.net/forum?id=EmeWbcWORRg
https://aclanthology.org/P19-1580
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6

OSSCAR: One-Shot Structured Pruning

Xia, M., Zhong, Z., and Chen, D. Structured pruning
learns compact and accurate models. arXiv preprint
arXiv:2204.00408, 2022.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. SmoothQuant: Accurate and efficient post-training
quantization for large language models. In Proceedings of
the 40th International Conference on Machine Learning,
2023.

Xu, K., Wang, Z., Geng, X., Wu, M., Li, X., and Lin,
W. Efficient joint optimization of layer-adaptive weight
pruning in deep neural networks. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 17447–17457, 2023.

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li,
C., and He, Y. Zeroquant: Efficient and affordable post-
training quantization for large-scale transformers. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., and Oh, A. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 27168–27183.
Curran Associates, Inc., 2022.

Yu, R., Li, A., Chen, C., Lai, J., Morariu, V. I., Han,
X., Gao, M., Lin, C., and Davis, L. S. Nisp: Pruning
networks using neuron importance score propagation.
In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9194–9203,
Los Alamitos, CA, USA, jun 2018. IEEE Computer
Society. doi: 10.1109/CVPR.2018.00958. URL
https://doi.ieeecomputersociety.org/
10.1109/CVPR.2018.00958.

Yu, X., Serra, T., Ramalingam, S., and Zhe, S. The combi-
natorial brain surgeon: pruning weights that cancel one
another in neural networks. In International Conference
on Machine Learning, pp. 25668–25683. PMLR, 2022.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhang, X., Zou, J., He, K., and Sun, J. Accelerating very
deep convolutional networks for classification and detec-
tion. IEEE transactions on pattern analysis and machine
intelligence, 38(10):1943–1955, 2015.

Zhou, H., Alvarez, J. M., and Porikli, F. Less is more:
Towards compact cnns. In Leibe, B., Matas, J., Sebe,
N., and Welling, M. (eds.), Computer Vision – ECCV
2016, pp. 662–677, Cham, 2016. Springer International
Publishing.

13

https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00958
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00958

OSSCAR: One-Shot Structured Pruning

Supplement

A. Proofs of Main Results
A.1. Proof of Proposition 4.1

We first establish some key notations. For a given matrix H and two subsets of indices I1 and I2, HI1,I2 represents the
submatrix of H that includes rows indexed by I1 and columns indexed by I2; HI1,: represents the submatrix of H containing
only the rows in I1; H:,I2 represents the submatrix of H containing only the columns in I2. Moreover, Ea represents the
identity matrix of size a× a, and 0a×b refers to the zero matrix of dimensions a× b. For any given set S ⊂ [p], we denote
tS = |IS |, where IS =

{
i | i ∈ Cj for some j /∈ S

}
.

Let us assume we have two sets S and S′ with t = |IS∆IS′ |. We have already calculated the quadratic coefficients
H ∈ Rd1×d1 and linear coefficients G ∈ Rd1×d2 in (5). Additionally, we’ve computed the value of

f(S′) = −1

2
Tr
(
G⊤

IS′ ,:(HIS′ ,IS′)
−1GIS′ ,:

)
, (13)

the inverse of HIS′ ,IS′ , and the optimal weight matrix for f(S′), denoted as W (S′). The remaining part of the proof will
demonstrate that the value of f(S), the inverse of HIS ,IS and the optimal weight matrix W (S) for f(S) can be computed
with a time complexity of O(td1(d1 + d2)).

Based on the inclusion relationship of sets IS and IS′ , we consider the following three cases.

Case 1: IS ⊂ IS′ .

In this case we have t = |Ir| := |IS′\IS |. Without loss of generality, we can rearrange the rows and columns of HIS′ ,IS′

such that HIS′ ,IS′ and its inverse are structured as follows:

HIS′ ,IS′ =

 HIS ,IS HIS ,Ir

HIr,IS HIr,Ir

 ,
(
HIS′ ,IS′

)−1
=

 A B

B⊤ C

 , (14)

where A is a submatrix of
(
HIS′ ,IS′

)−1
with the same size as HIS ,IS , B has the same size as HIS ,Ir , and C has the same

size as HIr,Ir . Note that we have computed the
(
HIS′ ,IS′

)−1
, so we have the values of A, B and C.

From the equation

HIS′ ,IS′

(
HIS′ ,IS′

)−1
= EtS′ (15)

it follows that

HIS ,ISA+HIS ,IrB
⊤ = EtS (16)

HIS ,ISB +HIS ,IrC = 0tS×t. (17)

From (17), we deduce
HIS ,Ir = −HIS ,ISBC−1, (18)

and substituting this into (16) yields
(HIS ,IS)

−1
= A−BC−1B⊤. (19)

Given that B is a tS×t matrix, and C is a t×t matrix, computing = A−BC−1B⊤ requires O(t3+t2St) = O(td1(d1+d2))
complexity.

Next, we focus on computing W (S). This is the optimal weight matrix that resolves the following quadratic problem:

min
W

L(W) =
1

2
Tr(W⊤HW)− Tr(G⊤W)

s.t. wi = 0, ∀ i ∈ Qj , j ∈ S.
(20)

14

OSSCAR: One-Shot Structured Pruning

This quadratic problem can be solved analytically, yielding the optimal solution W (S) as:

W
(S)
IS ,: = (HIS ,IS)

−1
GIS ,:, (21)

where all elements in W (S) that do not belong to rows in IS are zero. Similarly, we can express W (S′) as

W
(S′)
IS′ ,: =

(
HIS′ ,IS′

)−1
GIS′ ,: (22)

where all elements in W (S′) that do not belong to rows in IS′ are zero. We may further simplify the expression of W (S′) as

W
(S′)
IS′ ,: =

 W
(S′)
IS ,:

W
(S′)
Ir,:

 =

 A B

B⊤ C

 GIS ,:

GIr,:

 =

 AGIS ,: +BGIr,:

B⊤GIS ,: + CGIr,:

=

 (A−BC−1B⊤)GIS ,: +
(
BGIr,: +BC−1B⊤GIS ,:

)
B⊤GIS ,: + CGIr,:

 =

 W
(S)
IS ,0

0t×d2

+

 BC−1W
(S′)
Ir,:

W
(S′)
Ir,:

(23)

This implies that we can compute W (S) as

W
(S)
IS′ ,: =

 W
(S)
IS ,0

0t×d2

 = W
(S′)
IS′ ,: −

 BC−1

Et×d2

W
(S′)
Ir,:

. (24)

Given that B is a tS × t matrix, C is a t × t matrix, and W
(S′)
Ir,:

is a t × d2 matrix, computing WS requires O(tStd2) =
O(td1(d1 + d2)) time complexity.

Finally, we compute the value of f(S). Given that the optimal weight matrix for f(S′) is W (S′), we can express

f(S′) =
1

2
Tr
(
(W (S′))⊤HW (S′)

)
− Tr

(
G⊤W (S′)

)
. (25)

It follows a similar argument that

f(S) =
1

2
Tr
(
(W (S))⊤HW (S)

)
− Tr

(
G⊤W (S)

)
. (26)

Together with (24), we obtain by some calculations that

f(S′) =
1

2
Tr
(
(W (S′))⊤HW (S′)

)
− Tr

(
G⊤W (S′)

)
=

1

2
Tr
(
(W

(S′)
IS′ ,:)

⊤HIS′ ,IS′W
(S′)
IS′ ,:

)
− Tr

(
G⊤

IS′ ,:W
(S′)
IS′ ,:

)

= f(S) +
1

2
Tr

(W
(S′)
Ir,:

)⊤
[

BC−1 Et×d2

]
HIS′ ,IS′

 BC−1

Et×d2

W
(S′)
Ir,:

+Tr

(
(W

(S′)
Ir,:

)⊤
[
BC−1 Et×d2

] (
HIS′ ,IS′W

(S′)
IS′ ,: −GIS′ ,:

))
= f(S) +

1

2
Tr
(
(W

(S′)
Ir,:

)⊤C−1W
(S′)
Ir,:

)

(27)

Given that C is a t× t matrix, and W
(S′)
Ir,:

is a t× d2 matrix, computing f(S) requires O(t2d2) time complexity.

We emphasize that, unlike Cases 2 and 3, computing f(S) in this case only requires a time complexity of O(t2d2), as
opposed to O(td1(d1 + d2)). This key observation aids in reducing the time cost of Algorithm 1 under certain choices of
parameters. We formally present this observation as a lemma:

15

OSSCAR: One-Shot Structured Pruning

Lemma A.1. Given two sets S and S′ such that IS ⊂ IS′ and t = |IS′\IS |. Suppose we have computed the value of f(S′),
the inverse of HIS′ ,IS′ and the optimal weight matrix for f(S′). The value of f(S) can then be computed within O(t2d1)
time complexity.

Case 2: IS′ ⊂ IS .

In this case we have t = |Ir| := |IS\IS′ |. Without loss of generality, we can rearrange the rows and columns of HIS ,IS

such that HIS ,IS and its inverse are structured as follows:

HIS ,IS =

 HIS′ ,IS′ HIS′ ,Ir

HIr,IS′ HIr,Ir

 , (HIS ,IS)
−1

=

 A B

B⊤ C

 , (28)

where A is a submatrix of (HIS ,IS)
−1 with the same size as HIS′ ,IS′ , B has the same size as HIS′ ,Ir , and C has the same

size as HIr,Ir . Following a similar argument as in Case 1, we deduce that

C =
(
HIr,Ir −HIr,IS′

(
HIS′ ,IS′

)−1
HIS′ ,Ir

)−1

,

B = −
(
HIS′ ,IS′

)−1
HIS′ ,IrC,

A =
(
HIS′ ,IS′

)−1
+BC−1B.

(29)

Given that
(
HIS′ ,IS′

)−1
has already been computed, we can efficiently calculate A, B, and C, and consequently (HIS ,IS)

−1

in O
(
(tS′)2t

)
= O(td1(d1 + d2)) time.

Next, we focus on computing W (S). Using (21), we obtain the following relationship between W (S) and W (S′):

W
(S)
IS ,: =

 W
(S)
IS′ ,:

W
(S)
Ir,:

 =

 A B

B⊤ C

 GIS′ ,:

GIr,:

 =

 AGIS′ ,: +BGIr,:

B⊤GIS′ ,: + CGIr,:

=

 (HIS′ ,IS′)
−1GIS′ ,: +

(
BGIr,: +BC−1B⊤GIS′ ,:

)
B⊤GIS′ ,: + CGIr,:

 =

 W
(S′)
IS′ ,0

0t×d2

+

 BC−1

Et×d2

(B⊤GIS′ ,: + CGIr,:

)
(30)

Given that B is a tS′ × t matrix, C is a t × t matrix, GIS′ ,: is a (tS′) × d2 matrix, and B, C can be computed in
O(td1(d1 + d2)) time, computing W (S) requires O

(
(tS′)td2 + td21

)
= O(td1(d1 + d2)) time complexity.

Finally, we compute the value of f(S). Using the similar argument as (27), we obtain that

f(S) = f(S′) +
1

2
Tr
(
(W

(S)
Ir,:

)⊤C−1W
(S)
Ir,:

)
. (31)

Given that C is a t × t matrix, and W
(S)
Ir,:

can be computed in O(td1(d1 + d2)) time, computing f(S) also requires
O(td1(d1 + d2)) time complexity.

Case 3: no inclusion relationship between IS′ and IS .

We define S′′ = S′ ∪ S, and from the definition of IS , it follows that IS′′ = IS ∩ IS′ . Let’s denote t1 = |IS′\IS′′ | and
t2 = |IS\IS′′ |. The symmetry difference definition implies that t = t1 + t2.

We have already computed f(S′), the inverse of HIS′ ,IS′ , and the optimal weight matrix W (S′). Note that IS′′ ⊂ IS′ ,
we can apply the results from Case 1. This allows us to compute the value of f(S′′), the inverse of HIS′′ ,IS′′ , and the
optimal weight matrix W (S′′) in O(t1d1(d1 + d2)) time. Moreover, since IS′′ ⊂ IS , by applying the results from Case 2,
we conclude that the value of f(S), the inverse of HIS ,IS , and the optimal weight matrix W (S) can also be computed within
O(t2d1(d1 + d2)) time complexity. Therefore, the overall time complexity is O(td1(d1 + d2)). This completes the proof.

16

OSSCAR: One-Shot Structured Pruning

A.2. Proof of Proposition 4.2

We begin by analyzing the time complexity of Algorithm 1 with general parameters ti and pi. To initiate the algorithm, we
need to compute H−1 and H−1G, which has a time complexity of O(d21(d1 + d2)) since H is a d1 × d1 matrix and G is a
d1 × d2 matrix.

During iteration i of Algorithm 1, a local search is conducted by approximately solving (10) with S′ = Si−1, t̂ = ti, and
p̂ = pi. As outlined in Section 4.2, to address (10), it suffices to calculate the impact of each element in [p], as defined in (11).
Assuming uniform group size Q, for any j ∈ Si−1, |ISi−1\{j}∆ISi−1

| = Q, and for any j /∈ Si−1, |ISi−1∪{j}∆ISi−1
| = Q.

Having computed f(Si−1), the inverse of HISi−1
,ISi−1

, and the optimal weight matrix for f(Si−1), Proposition 4.1 suggests
that each Bj in (11) can be computed in O(Qd1(d1 + d2)) time. Consequently, computing Bj for all j ∈ [p] takes O(d21d2)
time, given that [d1] is partitioned into p equal-sized disjoint groups Q1, Q2, . . . , Qp and pQ = d1.

Upon solving (10), we obtain the set Si with |S∆S′| ≤ ti, which implies |ISi∆ISi−1 | ≤ tiQ. Applying Proposition 4.1
again, we can calculate f(Si), the inverse of HISi

,ISi
, and the optimal weight matrix for f(Si) in O(tiQd1(d1 + d2)) =

O(d21(d1 + d2)) time complexity. Hence, the total time complexity of Algorithm 1 over T iterations is O(Td21(d1 + d2)).

We now focus on the specific parameter choice where ti = pi for all i ∈ [T]. During iteration i of Algorithm 1, the process
is similar to the previous case in that we still need to solve (10). However, the key difference lies in the fact that since
ti = pi, as outlined in Section 4.2, we won’t remove elements from Si−1. Consequently, it’s only necessary to compute
Bj for j /∈ Si−1. This involves calculating f(Si−1 ∪ {j}) − f(Si−1) for all i /∈ Si−1. Given that ISi−1∪{j} ⊂ ISi−1

and Q = |ISi−1
\ISi−1∪{j}|, Lemma A.1 implies that f(Si−1 ∪ {j})− f(Si−1) can be computed in O(Q2d1) time. Thus,

computing Bj for all j /∈ Si−1 requires O(pQ2d1) = O(Qd21) time.

After solving (10) and obtaining the set Si, similarly, we can apply Proposition 4.1 to compute f(Si), the inverse of HISi
,ISi

,
and the optimal weight matrix for f(Si), all within O(tiQd1(d1 + d2) time. The overall time complexity of Algorithm 1
over T iterations is thus

O
(T∑

i=1

Qd21 + tiQd1(d1 + d2)
)
= O

((T∑
i=1

ti

)
Qd1(d1 + d2)

)
(32)

Notably, with ti = pi for all i ∈ [T], we obtain
∑T

i=1 ti =
∑T

i=1 pi = p′ ≤ d1

Q . Therefore, the overall time complexity in
this case can be reduced to O(d21(d1 + d2)).

Finally, we turn to the memory complexity of Algorithm 1. It’s important to note that, throughout the algorithm, we only
need to maintain the value of f(S), the inverse of HIS ,IS , and the optimal weight matrix for f(S) associated with the
current solution Si. As shown in Proposition 4.1, computing these elements involves matrix multiplication with dimensions
up to d1 × (d1 + d2). Consequently, the overall memory complexity of the algorithm is O(d1(d1 + d2)).

B. Experimental Details
B.1. Experimental setup

All experiments were carried out on a computing cluster. Experiments were run on an Intel Xeon Gold 6248 machine with
20 CPUs and a single NVIDIA V100 GPU. Our machine is equipped with 192GB of CPU RAM and 32GB of CUDA
memory. We will terminate the algorithm if it leads to Out-of-Memory errors. For our experiments, we use the PyTorch
library (Paszke et al., 2017) to implement all neural network models and pruning methods.

B.1.1. CNN EXPERIMENTS

Pruning settings. In our study, we focus exclusively on pruning the convolutional layers within the network. For a layer
with p channels, we prune p′ = τp channels with various τ values to investigate different speedup ratios. To evaluate the
effectiveness of all structured pruning methods, we utilize a calibration dataset consisting of 500 training samples.

Implementation details. Below are the configuration and implementation details for the competing methods and our
framework, OSSCAR. It’s important to note that as we assess the performance of competing methods in a one-shot setting,
we shut down the fine-tuning procedure.

• OSSCAR: We formulate the channel pruning problem as a combinatorial problem (see (10)), and address it using

17

OSSCAR: One-Shot Structured Pruning

Algorithm 1. We set the number of iterations T = p′/2 and ti = pi = 2 for i ∈ [T].

• MP (Mozer & Smolensky, 1989; He et al., 2018a): We implement structured pruning by calculating the Frobenius
norm of weights for each channel as its magnitude and pruning p′ channels with the smallest magnitude.

• CHIP (Sui et al., 2021): We utilize the authors’ algorithm (codes available on GitHub) to prune channels based on
channel independence.

• FPGM (He et al., 2018b): We utilize the authors’ algorithm (codes available on GitHub) for channel pruning via the
geometric median.

• Lasso (He et al., 2017): We utilize our own implementation, as directly applying the authors’ codes to our setting is
challenging. Following (He et al., 2017, Section 3), we convert the channel pruning problem into a ℓ1-regularized
problem. We solve the subproblem related to β repeatedly with increasing ℓ1-penalty coefficients until meeting the
pruning constraint, then address the subproblem related to the weight matrix W . Our implementation of this algorithm
strictly adheres to the description provided by the authors in their paper.

• ThiNet (Luo et al., 2017): We utilize the authors’ algorithm (codes available on GitHub) to conduct channel selection
through a greedy approach, followed by a refining process to minimize reconstruction error.

Pruning strategies. Additionally, to further enhance accuracy, we implement two techniques for all OSSCAR and all
competing methods. Firstly, as advised by (Zhang et al., 2015) and (He et al., 2017, Section 3.2), we solve the channel
pruning problem layer by layer sequentially. For each layer, we minimize the squared loss between the output of the dense
model at this layer and the output produced by the pruned weight W acting on the pruned model’s input feature map. Thus,
our layer-wise pruning objective for the ℓ-th layer is given as:

L(w) =
1

N

N∑
i=1

∥∥∥Conv (ŵ, X̂i
)
− Conv

(
w,Xi

)∥∥∥2 , (33)

Different from (1), here we replace Conv
(
ŵ,Xi

)
by Conv

(
ŵ, X̂i

)
, where X̂ denotes the dense model’s input feature

map, while X represents the pruned model’s input feature map (with the first ℓ− 1 layers pruned). This modification does
not change the nature of the problem, and it enables pruning algorithms to more accurately approximate the output of the
original model.

Secondly, for ResNet20 and ResNet50, following insights from (Luo et al., 2017, Section 3.3), we avoid pruning the first
convolution layer in each residual block. This approach keeps block output dimensions unchanged and avoids extra costs in
executing the residual connection. For MobileNetV1, we focus the channel pruning on the 1× 1 convolutional layers as
pruning the depthwise convolution layers tends to be less impactful and could significantly reduce accuracy. It’s crucial to
highlight that layers not directly pruned in the process are still non-dense in the pruned model. This is because some filters
in these layers will become redundant when the channels they contribute to in subsequent layers are pruned. Hence, these
filters can be pruned too.

B.1.2. LLM EXPERIMENTS

Pruning settings.

As discussed in Section 3, for pruning OPT models, we focus on removing attention heads and reducing the intermediate
dimension in fully connected layers. We convert these two problems into MIQP problems (4), and we set p′ = τp channels
with various τ values to investigate different speedup ratios. Here p is either the number of attention heads or the input
dimension of the fully connected layer, depending on the sublayer we are pruning.

Implementation details. Below are the configuration and implementation details for the competing methods and our
framework, OSSCAR.

• OSSCAR: We utilize Algorithm 1 to solve the combinatorial problem derived from structured pruning. For pruning
attention heads, we set the number of iterations T = p′/2 and ti = pi = 2 for i ∈ [T]. For reducing intermediate
dimensions in fully connected layers, we set the number of iterations T = p′/10 and ti = pi = 10 for i ∈ [T].

18

https://github.com/Eclipsess/CHIP_NeurIPS2021
https://github.com/he-y/filter-pruning-geometric-median
https://github.com/Roll920/ThiNet_Code

OSSCAR: One-Shot Structured Pruning

• MP (Mozer & Smolensky, 1989): This method employs structured pruning by calculating the Frobenius norm of
each weight group Qi, i = 1, 2, . . . , p (as defined in (4)) as its magnitude and then pruning p′ groups with the lowest
magnitude.

• MP+: This approach extends MP by further refining the weights post-pruning. After performing MP, the weight matrix
W is updated following (5) to reduce the approximation loss L(W), where the set S is determined by MP.

• ZipLM (Kurtić et al., 2023): ZipLM’s original implementation targeted models smaller than 340 million parameters.
We adapt their framework for OPT models. In ZipLM’s second stage, a structured SPDY search is performed, involving
a 1000-step neighborhood search for various sparsity configurations across layers. Each configuration’s performance is
assessed on a validation set, with the best-performing configuration in terms of perplexity being selected. However, for
larger OPT models, we found this SPDY search to be computationally prohibitive. For example, based on our estimation,
it would take ∼ 200 days for ZipLM to perform 100 search steps and validate each configuration’s performance for
OPT-2.7B. Consequently, we turn off the SPDY search, using on the original layer-wise sensitivity coefficients to
generate the sparsity configuration.

Pruning strategies. Similar to the strategy used in CNNs, we solve the structured pruning problem layer by layer sequentially
in OPT models. For each layer, our objective is to minimize the squared loss between the output of the dense model at that
particular layer and the output generated by the pruned weight W acting on the pruned model’s input values. It’s important
to note that for LLMs, this strategy is implemented only for OSSCAR, MP, and MP+, and not for ZipLM. In the case of
ZipLM, as outlined in their paper, involves pruning each layer to different sparsity levels. This requires considering the
squared loss between the output from the dense weight Ŵ acting on the dense model’s input values and the output from the
pruned weight W acting on the dense model’s input values.

Saving GPU memory. We employ a layer-by-layer pruning approach for OSSCAR and all competing methods. Consequently,
we only need to load the weights of a single layer into GPU memory at any given time, offloading other weights to the CPU
to conserve GPU memory. Additionally, for our calibration data – comprising 128 segments of 2048 tokens each from the
C4 dataset – we store these segments on the CPU to further save GPU memory. They are loaded to the GPU individually
when we need them for generating H and G in the pruning objective (3). This strategy significantly reduces GPU memory
usage, allowing us to apply OSSCAR for pruning large OPT models with just 32GB of GPU memory.

B.2. Ablation studies and additional results

In this section, we provide additional experimental results and ablation studies focusing on one-shot structured pruning in
both CNNs and LLMs.

B.2.1. PRUNING PERFORMANCE OF OPT MODELS ON PTB AND C4 DATASETS

In this section, we present the perplexity performance of MP, MP+, ZipLM, and OSSCAR on the PTB (test) and C4
(validation) datasets, specifically for pruning OPT-1.3B, OPT-2.7B, and OPT-6.7B models. The results are detailed in Tables
4 and 5. Similar to the trends observed with the Wikitext dataset, OSSCAR demonstrates a significant reduction in perplexity
compared to magnitude pruning based methods and ZipLM (state-of-the-art), particularly at higher speedup ratios.

B.2.2. PRUNING PERFORMANCE OF OPT MODELS ON ZERO-SHOT BENCHMARKS

We evaluate the performance of OPT models pruned by MP, MP+, ZipLM, and OSSCAR on four zero-shot tasks: Piqa,
Lambada, Arc easy, and challenge. We consider pruning OPT-1.3B and OPT-2.7B at two different speedup ratios. Tables
6 and 7 present the detailed results, demonstrating that OSSCAR consistently outperforms other methods by a significant
margin. For instance, when pruning OPT-2.7B with a 1.7x speedup, all methods except OSSCAR fail to deliver meaningful
results on the Lambada dataset, while OSSCAR achieves an accuracy of 38%. These findings are consistent with those from
our perplexity-based evaluations, reinforcing OSSCAR’s efficacy in maintaining pruned models’ performance.

B.2.3. EFFECT OF CALIBRATION DATASET SIZE

In this study, we explore how varying the sample size of the calibration dataset affects the performance of one-shot structured
pruning on LLMs. For all our LLM experiments previously conducted, we utilized a calibration dataset comprising
N = 128 sequences of 2048 tokens each, sampled from C4. We now experiment with different values of N from the

19

OSSCAR: One-Shot Structured Pruning

Table 4: Perplexity performance on PTB for one-shot structured pruning of OPT models
(1.3B, 2.7B, and 6.7B). The speedup ratio denotes the inference time improvement of pruned
models over dense models. For all methods we take ten runs and report the mean and standard
error.

Model Speedup MP MP+ ZipLM OSSCAR

OPT-1.3B

1.2x 164.8 (±0.06) 24.54 (±0.08) 18.57 (±0.21) 19.79 (±0.14)
1.3x 1166 (±0.72) 48.60 (±0.83) 63.61 (±2.63) 24.45 (±0.23)
1.4x 7147 (±20.8) 795.0 (±53.1) 477.9 (±62.0) 30.08 (±0.42)
1.7x 7762 (±31.8) 1646 (±90.8) 1786 (±161) 40.74 (±1.39)
2.0x 6796 (±8.87) 4320 (±224) 3716 (±386) 62.02 (±2.94)
2.6x 8092 (±5.89) 5628 (±124) 5330 (±312) 97.92 (±4.17)
3.3x 9612 (±30.8) 6071 (±127) 9616 (±692) 170.9 (±9.65)

OPT-2.7B

1.2x 365.9 (±1.08) 24.90 (±0.09) 15.15 (±0.03) 17.21 (±0.20)
1.3x 3281 (±123) 38.64 (±0.23) 26.91 (±2.29) 19.80 (±0.30)
1.4x 10062 (±969) 88.62 (±1.14) 257.5 (±58.4) 24.91 (±0.41)
1.7x 7053 (±52.7) 1380 (±152) 1289 (±176) 31.20 (±0.79)
2.0x 8530 (±29.8) 4803 (±248) 3267 (±374) 43.47 (±1.11)
2.4x 6854 (±16.1) 7407 (±166) 8017 (±852) 70.95 (±1.81)
3.0x 10166 (±37.9) 7780 (±171) 12624 (±968) 122.7 (±3.08)

OPT-6.7B

1.1x 208.2 (±0.40) 22.45 (±0.10)

OOM

17.21 (±0.44)
1.2x 4086 (±37.8) 53.57 (±1.64) 18.96 (±0.38)
1.5x 15915 (±186) 1056 (±145) 22.24 (±0.58)
1.7x 15668 (±110) 2858 (±162) 26.78 (±0.57)
2.0x 11537 (±71.3) 5833 (±90.1) 34.80 (±1.10)
2.6x 12524 (±69.0) 7142 (±177) 54.70 (±1.20)
3.3x 13585 (±87.9) 6815 (±220) 102.4 (±3.57)

Table 5: Perplexity performance on C4 for one-shot structured pruning of OPT models (1.3B,
2.7B, and 6.7B). The speedup ratio denotes the inference time improvement of pruned models
over dense models. For all methods we take ten runs and report the mean and standard error.

Model Speedup MP MP+ ZipLM OSSCAR

OPT-1.3B

1.2x 84.29 (±0.03) 18.32 (±0.04) 14.59 (±0.03) 15.58 (±0.04)
1.3x 814.6 (±0.80) 26.24 (±0.21) 41.81 (±1.57) 16.78 (±0.09)
1.4x 5630 (±9.11) 322.1 (±15.4) 332.6 (±37.7) 18.73 (±0.17)
1.7x 6188 (±24.6) 847.5 (±74.7) 943.4 (±39.5) 22.02 (±0.25)
2.0x 6327 (±8.17) 2994 (±46.9) 1823 (±103) 28.60 (±0.42)
2.6x 8046 (±9.65) 4264 (±92.3) 2693 (±100) 46.29 (±0.78)
3.3x 9611 (±21.9) 5365 (±99.5) 5643 (±425) 84.49 (±1.97)

OPT-2.7B

1.2x 296.0 (±0.73) 19.62 (±0.10) 12.63 (±0.00) 13.85 (±0.04)
1.3x 4108 (±164) 27.94 (±0.30) 17.61 (±0.73) 14.88 (±0.08)
1.4x 11538 (±1386) 46.83 (±0.85) 189.3 (±37.4) 16.47 (±0.13)
1.7x 10179 (±87.7) 821.7 (±128) 712.8 (±103) 19.17 (±0.23)
2.0x 10345 (±21.5) 4298 (±213) 1711 (±195) 24.25 (±0.34)
2.4x 9363 (±17.3) 6944 (±167) 3660 (±331) 36.91 (±0.78)
3.0x 14822 (±40.7) 7329 (±111) 6567 (±599) 65.42 (±1.17)

OPT-6.7B

1.1x 226.3 (±0.04) 16.42 (±0.10)

OOM

12.26 (±0.04)
1.2x 3694 (±4.38) 24.89 (±0.41) 13.16 (±0.10)
1.5x 19913 (±142) 271.5 (±16.9) 14.48 (±0.17)
1.7x 17843 (±19.5) 1665 (±122) 16.56 (±0.30)
2.0x 16617 (±51.8) 5834 (±264) 20.31 (±0.43)
2.6x 18948 (±41.6) 7744 (±203) 29.55 (±0.17)
3.3x 20887 (±56.0) 8000 (±126) 49.70 (±1.41)

set {128, 256, 512, 1024, 2048, 4096} to assess its impact on the perplexity of pruned models. The results of applying
OSSCAR to prune OPT models ranging from 1.3B to 30B for a 2x speedup with these varied sample sizes N are shown in
Table 8. It is observed that for a 2x speedup, the performance improves by up to ∼ 3.5 perplexity units when increasing the
sample size N from 128 to 2048. Beyond this point, the performance plateaus, showing no significant change with further
increases in sample size.

As the number of samples increases, the total time required for applying OSSCAR to prune the model also rises. The pruning
process consists of two parts: constructing matrices H and G as defined in (3) for each layer, and solving the structured

20

OSSCAR: One-Shot Structured Pruning

Table 6: Performance on zero-shot tasks (larger values indicate better performance) for
one-shot structured pruning of OPT-1.3B. The speedup ratio denotes the inference time
improvement of pruned models over dense models. For all methods we take ten runs and
report the mean.

Speedup Method Piqa Lambada Arc easy Arc challenge

1x Dense 71.70 53.30 56.99 23.46

1.3x

MP 55.44 0.0 32.45 23.46
MP+ 66.70 26.72 48.53 21.84
ZipLM 61.92 37.34 40.11 20.05
OSSCAR 71.22 45.88 56.44 23.72

1.7x

MP 51.25 0.0 25.80 20.14
MP+ 53.64 0.0 28.66 21.50
ZipLM 55.00 0.5 28.37 21.42
OSSCAR 68.23 31.98 51.81 23.12

Table 7: Performance on zero-shot tasks (larger values indicate better performance) for
one-shot structured pruning of OPT-2.7B. The speedup ratio denotes the inference time
improvement of pruned models over dense models. For all methods we take ten runs and
report the mean.

Speedup Method Piqa Lambada Arc easy Arc challenge

1x Dense 73.83 57.67 60.77 26.88

1.3x

MP 59.25 0.0 37.92 23.72
MP+ 67.74 26.14 49.28 24.23
ZipLM 52.03 50.71 27.31 20.99
OSSCAR 73.50 54.73 59.72 25.94

1.7x

MP 54.13 0.0 27.15 20.65
MP+ 55.77 0.27 31.14 19.03
ZipLM 52.50 0.55 25.97 21.50
OSSCAR 71.49 38.67 53.79 23.72

Table 8: Perplexity performance on Wikitext for applying one-shot structured pruning of OPT models (1.3B, 2.7B, 6.7B,
13B and 30B), with varying sizes of calibration data. All pruned models shown in this table have a 2x improvement in
inference time compared to dense models. For all models and calibration data sizes, we take ten runs and report the mean
and standard error.

Number of Samples OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B

128 38.16 (±0.52) 29.49 (±0.53) 25.03 (±0.73) 22.59 (±0.59) 17.11 (±0.30)
256 37.29 (±0.53) 28.29 (±0.36) 23.92 (±0.21) 22.34 (±0.34) 16.45 (±0.17)
512 36.04 (±0.25) 27.91 (±0.25) 23.25 (±0.25) 22.27 (±0.35) 16.07 (±0.11)

1024 35.91 (±0.09) 27.73 (±0.34) 23.76 (±0.28) 21.79 (±0.29) 15.86 (±0.06)
2048 34.87 (±0.11) 27.09 (±0.12) 23.15 (±0.15) 21.34 (±0.10) 15.77 (±0.04)
4096 34.97 (±0.11) 27.38 (±0.30) 22.91 (±0.17) 20.95 (±0.17) OOM*

∗OOM denotes out of CPU memory here.

pruning problem using Algorithm 1. The time taken to construct matrices H and G grows linearly with the number of
samples. However, the time required to apply Algorithm 1 is largely unaffected by the number of samples. This is because
the dimensions of H and G (d1 and d2) do not depend on N ; hence, as per Proposition 4.2, the time complexity of the
algorithm remains the same. For instance, when pruning the OPT-13B model with N = 128 samples, constructing H and
G takes 20 minutes, and Algorithm 1 takes 25 minutes; for N = 2048 samples, constructing H and G takes 320 minutes,
while Algorithm 1 takes 28 minutes.

21

OSSCAR: One-Shot Structured Pruning

Table 9: Test accuracy for applying OSSCAR to prune CNNs (ResNet20, MobileNetV1 and ResNet50), under different
choices of parameters t̂ = p̂. For all models and parameters, we take ten runs and report the mean and standard error.

Speedup t̂ = p̂
Models

ResNet20 MobileNetV1 ResNet50

1.4x

1 87.69 (±0.14) 68.89 (±0.09) 65.29 (±0.29)
2 87.70 (±0.16) 68.89 (±0.08) 65.32 (±0.27)
5 87.60 (±0.13) 68.88 (±0.10) 65.24 (±0.24)
10 87.51 (±0.11) 68.79 (±0.09) 65.23 (±0.23)

1.9-2.0x

1 81.34 (±0.50) 58.42 (±0.41) 38.56 (±0.64)
2 81.10 (±0.49) 58.39 (±0.36) 38.45 (±0.63)
5 80.89 (±0.42) 58.32 (±0.30) 38.44 (±0.64)
10 80.56 (±0.52) 58.20 (±0.41) 38.23 (±0.36)

Table 10: Perplexity performance on Wikitext for applying
OSSCAR to prune OPT models (1.3B, 2.7B and 6.7B), un-
der different choices of parameters t̂ = p̂. For all models
and parameters, we take ten runs and report the mean and
standard error.

Speedup t̂ = p̂
Models

OPT-1.3B OPT-2.7B OPT-6.7B

1.4x-1.5x

1 20.53 (±0.35) 17.23 (±0.19) 14.94 (±0.19)
5 20.54 (±0.38) 17.20 (±0.20) 14.93 (±0.20)

10 20.50 (±0.36) 17.23 (±0.20) 14.93 (±0.18)
50 20.60 (±0.39) 17.26 (±0.19) 14.84 (±0.20)
100 20.65 (±0.37) 17.28 (±0.20) 14.89 (±0.20)
500 20.65 (±0.37) 17.54 (±0.22) 15.29 (±0.21)

2.0x

1 38.04 (±0.59) 29.58 (±0.47) 24.92 (±0.79)
5 38.08 (±0.55) 29.64 (±0.50) 25.00 (±0.76)

10 38.16 (±0.52) 29.49 (±0.53) 25.02 (±0.73)
50 38.08 (±0.52) 29.63 (±0.52) 25.37 (±0.63)
100 38.03 (±0.51) 29.62 (±0.58) 25.43 (±0.63)
500 38.65 (±0.60) 30.04 (±0.70) 25.76 (±0.63)

Table 11: Pruning time for applying OSSCAR to prune OPT
models (1.3B, 2.7B and 6.7B), under different choices of
parameters t̂ = p̂. For all models and parameters, we take
ten runs and report the mean and standard error.

Speedup t̂ = p̂
Models

OPT-1.3B OPT-2.7B OPT-6.7B

1.4x-1.5x

1 376 (±8.0) 724 (±5.0) 2592 (±10)
5 244 (±21) 434 (±3.0) 1140 (±6.0)

10 201 (±6.0) 384 (±3.0) 974 (±4.0)
50 185 (±4.0) 353 (±5.0) 825 (±5.0)

100 185 (±3.0) 348 (±4.0) 805 (±6.0)
500 183 (±5.0) 347 (±6.0) 802 (±6.0)

2.0x

1 526 (±8.0) 1108 (±6.0) 4009 (±13)
5 256 (±9.0) 500 (±3.0) 1419 (±4.0)

10 218 (±6.0) 418 (±2.0) 1118 (±15)
50 189 (±4.0) 366 (±4.0) 848 (±2.0)

100 189 (±7.0) 361 (±2.0) 821 (±3.0)
500 189 (±3.0) 369 (±11) 798 (±3.0)

B.2.4. PERFORMANCE OF OSSCAR AFTER RETRAINING

In this work, we focus on one-shot pruning due to its significantly lower memory and computational demands. This enables
OSSCAR to scale to models with up to 30B parameters on a single GPU. In contrast, previous studies (Chen et al., 2023;
Benbaki et al., 2023) have shown that while gradual pruning/retraining can further improve model performance, it requires
substantial training time and appropriate parameter choices. For example, OSSCAR can prune a Resnet50 model in less than
10 minutes, whereas retraining can take several days.

Although OSSCAR is a one-shot pruning framework, the models it prunes can be efficiently retrained to achieve high
accuracy. To demonstrate this, we pruned Resnet20 models using OSSCAR and compared them with models pruned by MP,
CHIP, FPGM, Lasso, and ThiNet on the Cifar10 dataset. All models were retrained with a learning rate of 1e-4, momentum
of 0.9, weight decay of 5e-5, and for 10 epochs. The accuracy of the retrained models is shown in Table 12. While
fine-tuning narrows the performance gap between pruned models, OSSCAR still outperforms the others after retraining. This
is likely because OSSCAR achieves higher accuracy during the initial pruning stage, as illustrated in Section 5.1. Moreover,
this suggests that models pruned by other methods require more retraining epochs and parameter tuning to reach the same
performance as those pruned by OSSCAR. Therefore, if sufficient computational resources are available for retraining after
one-shot pruning, OSSCAR is the preferred choice because it requires fewer resources to retrain pruned models to achieve
high accuracy.

B.2.5. PERFORMANCE OF ALGORITHM 1 ACROSS VARIOUS PARAMETER SETTINGS

In this section, we explore how parameters t̂ and p̂ in (10) influence the performance of Algorithm 1.

We begin by setting t̂ = p̂ to assess the impact of t̂ on both the solution quality and the time complexity of the algorithm.
Specifically, we set ti = pi = t̂ for all iterations i ∈ [T] and set the number of iterations T = p′/t̂ for Algorithm 1

22

OSSCAR: One-Shot Structured Pruning

Table 12: Accuracy performance of retrained ResNet20 models on Cifar10, pruned using various structured pruning methods
to achieve different speedup ratios. Each model was retrained with a learning rate of 1e-4, momentum of 0.9, weight decay
of 5e-5, for 10 epochs. The speedup ratio denotes the inference time improvement of pruned models over dense models. For
all methods, we take ten runs and report the mean.

Speedup MP CHIP FPGM Lasso ThiNet OSSCAR

1.3x 89.42 87.64 88.55 89.76 89.66 89.59
1.4x 87.46 86.05 86.82 88.42 88.72 88.80
1.7x 85.53 83.37 85.28 86.99 86.83 87.12
2.0x 83.35 79.21 82.39 84.82 84.59 85.63
2.6x 78.60 73.93 77.50 79.34 79.44 80.46
3.5x 69.78 65.14 69.41 73.06 72.81 74.54

We detail in Table 9 the accuracy performance of OSSCAR for pruning CNNs with different t̂ values. For OPT models, we
display the perplexity performance and pruning time in Tables 10 and 11, respectively. Notably, when pruning attention
heads in OPT models, we consistently set t̂ = 2—in this context, Algorithm 1 typically converges in less than 50 iterations
regardless of parameter choice, and varying t̂ offers no advantage. Different t̂ values are considered when reducing the
intermediate dimension in fully connected layers.

We observe that smaller t̂ values yield marginally better performance, although the difference is not statistically significant.
This suggests that OSSCAR’s accuracy/perplexity performance exhibits low sensitivity to the choice of t̂. In contrast, the
pruning time can be significantly reduced (2-5x) when increasing t̂ from 1 to 100 in the pruning of OPT models. While
Proposition 4.2 suggests that the theoretical complexity of Algorithm 1 does not depend on t̂ when t̂ = p̂, we find that larger
t̂ values can expedite the algorithm in practice, due to benefits from vectorization. Consequently, for OPT models, practical
choices of k̂ = t̂ = 10 or 100 can offer an effective balance of performance and faster pruning times.

Next, we examine the impact of selecting a small p̂ on the performance of our algorithm. In Algorithm 1, the sum of pi
chosen in each iteration needs to be a fixed number. Thus, choosing for a small p̂ for all iterations leads to a substantially
larger number of iterations, potentially degrading performance. To address this, we consider the following two parameter
settings:

1. We set the number of iterations T = p′/t̂ and set ti = pi = t̂ for all iterations i ∈ [T].

2. We set the number of iterations T = p′/t̂ + 30. For the first p′/t̂ iterations, we set ti = pi = t̂, and for the final 30
iterations, we set ti = t̂ and pi = 0.

The first setting aligns with the parameters used in all our previous experiments. In the second setting, we initially follow
the parameters of the first case, then switch to p̂ = 0 for the last 30 iterations to implement a local swapping strategy. This
involves exchanging elements within the set S with more impactful ones from outside S to achieve a set with a lower
objective value, as depicted in the right part of Figure 4. We refer to the first setting as ”nested local search” and the second
as ”non-nested local search”.

We assess the above two parameter settings in our ablation study. For ResNet20 and MobileNetV1, we set t̂ = 5, and for
ResNet50, t̂ = 10. In the case of OPT models, we use t̂ = 2 for pruning attention heads and t̂ = 100 for reducing the
intermediate dimension in fully connected layers. The accuracy results for pruning CNNs are presented in Table 13, and the
perplexity results for pruning OPT models are presented in Table 14.

We observe that OSSCAR with non-nested local search approach tends to yield better results in most scenarios, though the
improvements are not always statistically significant. This finding suggests that in Algorithm 1, we may use a small p̂ for
non-nested local search to further refine the quality of solutions at the expense of more pruning time.

23

OSSCAR: One-Shot Structured Pruning

Table 13: Test accuracy for applying OSSCAR to prune
CNNs (ResNet20, MobileNetV1 and ResNet50), with
nested/non-nested local search. For all models and param-
eters, we take ten runs and report the mean and standard
error.

Model Speedup
OSSCAR

with nested local search
OSSCAR

with non-nested local search

ResNet20

1.3x 89.28 (±0.14) 89.20 (±0.10)
1.4x 87.60 (±0.13) 87.55 (±0.21)
1.7x 84.98 (±0.22) 84.81 (±0.19)
2.0x 80.89 (±0.42) 81.05 (±0.48)
2.6x 72.06 (±0.95) 72.09 (±0.81)
3.5x 60.03 (±1.30) 60.97 (±0.96)

MobileNetV1

1.3x 70.66 (±0.08) 70.68 (±0.08)
1.4x 68.88 (±0.10) 68.89 (±0.10)
1.5x 66.36 (±0.16) 66.40 (±0.09)
1.7x 62.98 (±0.22) 63.05 (±0.25)
1.9x 58.32 (±0.30) 58.48 (±0.39)
2.2x 52.03 (±0.53) 52.06 (±0.52)

ResNet50

1.2x 74.34 (±0.09) 74.37 (±0.06)
1.3x 69.18 (±0.15) 69.20 (±0.20)
1.4x 65.23 (±0.23) 65.21 (±0.24)
1.6x 58.95 (±0.31) 59.05 (±0.44)
1.7x 50.07 (±0.38) 50.10 (±0.59)
1.9x 38.23 (±0.36) 38.25 (±0.52)

Table 14: Perplexity performance on Wikitext for applying
OSSCAR to prune OPT models (1.3B, 2.7B and 6.7B), with
nested/non-nested local search. For all models and param-
eters, we take ten runs and report the mean and standard
error.

Model Speedup
OSSCAR

with nested local search
OSSCAR

with non-nested local search

OPT-1.3B

1.2x 15.50 (±0.09) 15.38 (±0.06)
1.3x 17.40 (± 0.11) 17.30 (±0.10)
1.4x 20.76 (±0.20) 20.62 (±0.18)
1.7x 26.83 (±0.32) 26.55 (±0.35)
2.0x 39.96 (±0.65) 39.38 (±0.60)
2.6x 76.51 (±1.97) 73.66 (±1.86)
3.3x 160.9 (±6.12) 156.7 (±4.57)

OPT-2.7B

1.2x 13.30 (±0.08) 13.17 (±0.07)
1.3x 15.17 (±0.13) 15.05 (±0.13)
1.4x 17.43 (±0.14) 17.33 (±0.16)
1.7x 21.88 (±0.25) 21.68 (±0.26)
2.0x 30.58 (±0.33) 30.24 (±0.33)
2.4x 54.90 (±1.04) 53.11 (±0.82)
3.0x 107.0 (±2.35) 105.3 (±2.77)

OPT-6.7B

1.1x 11.55 (±0.03) 11.36 (±0.03)
1.2x 12.98 (±0.08) 12.79 (±0.08)
1.5x 15.00 (±0.10) 14.94 (±0.13)
1.7x 18.97 (±0.23) 18.92 (±0.22)
2.0x 26.01 (±0.36) 26.05 (±0.36)
2.6x 47.55 (±0.72) 46.63 (±0.76)
3.3x 106.9 (±3.88) 100.8 (±3.01)

24

