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Abstract
We discuss the inhomogeneous spiked Wigner
model, a theoretical framework recently intro-
duced to study structured noise in various learning
scenarios, through the prism of random matrix the-
ory, with a specific focus on its spectral properties.
Our primary objective is to find an optimal spec-
tral method and to extend the celebrated (Baik
et al., 2005) (BBP) phase transition criterion —
well-known in the homogeneous case— to our
inhomogeneous, block-structured, Wigner model.
We provide a thorough rigorous analysis of a trans-
formed matrix and show that the transition for the
appearance of 1) an outlier outside the bulk of
the limiting spectral distribution and 2) a posi-
tive overlap between the associated eigenvector
and the signal, occurs precisely at the optimal
threshold, making the proposed spectral method
optimal within the class of iterative methods for
the inhomogeneous Wigner problem.

1. Introduction
The statistical challenge of inferring a low-dimensional sig-
nal from a noisy, high-dimensional observation is ubiquitous
across statistics, probability, and machine learning. Spiked
random matrix models have recently gained extensive inter-
est, serving as a valuable platform for exploring this issue
(Donoho & Johnstone, 1995; Péché, 2014; Lesieur et al.,
2017). A prominent example is the spiked Wigner model,
where a rank one matrix is observed through a component-
wise homogeneous noise, that has been studied extensively
in random matrix theory (Baik et al., 2005).

Most models, with the spiked Wigner model at the fore-
front, have focused however on scenarios where the noise
is “homogeneous”, aiming to understand how the perfor-
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mance of the inference depends on the noise level. Yet in
practice, datasets are inherently structured and the explo-
ration of inhomogeneity plays a pivotal role in unraveling
their complexities. A prototypical model to study this phe-
nomenon is to improve the aforementioned spiked Wigner
model by introducing a block structure in the noise, a model
which has been recently introduced in a series of papers
(Behne & Reeves, 2022; Alberici et al., 2021a; 2022; Guion-
net et al., 2022) and that arises in many different learning
contexts such as community detection (Behne & Reeves,
2022; Guionnet et al., 2022), deep Boltzmann machines
(Alberici et al., 2021b), or the dense limit of the celebrated
degree-corrected stochastic block model (Guionnet et al.,
2022; Karrer & Newman, 2011).

Our goal in this paper is to apply rigorous random matrix the-
ory to such “inhomogenous” spiked models, and to provide
an optimal reconstruction method from a spectral algorithm,
to generalize the seminal work of (Baik et al., 2005) (BBP)
to inhomogenous matrices.

Settings and open questions — The model is defined in
practice by multiplying the Wigner matrix by a variance-
profile matrix, namely one would like to infer in the high-
dimensional setting N ≫ 1, the underlying signal x ∈ RN

from the noisy matrix observation:

Y =

√
1

N
xx⊤ +H ⊙

(
∆⊙1/2

)
, (1)

where ∆ is a block-constant matrix, ⊙ denotes the
Hadamard product (A ⊙ B)ij = AijBij , A⊙α is the
Hadamard power ((A⊙α)ij = Aα

ij) and H is a real-valued
symmetric matrix with independent Gaussian entries of unit
variance above the diagonal. The precise assumptions on x
and ∆ are postponed to the next section.

The study of the inhomogeneous model of Eq. (1) from a
Bayes-optimal point of view has been performed in a series
of work in the asymptotic limit N → ∞ in (Guionnet et al.,
2022; Behne & Reeves, 2022; Chen & Xia, 2022; Chen
et al., 2021) who characterized the fundamental information-
theoretic limit of reconstruction in this model. Recently
(Pak et al., 2023) discussed algorithmic performances of the
Approximate Message Passage (AMP in short) algorithm
introduced in particular a simpler variant of this algorithm
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for this problem (linearized AMP, see also (Aubin et al.,
2019; Mondelli & Montanari, 2018; Maillard et al., 2022))
and conjectured it to be optimal for detection. The lin-
earized version of AMP can be shown to be equivalent to
performing principal component analysis (PCA) on a linear
transformation of the matrix Y , namely estimate the signal
x using the top eigenvector of the matrix:

Ỹ := Y ⊙
(
∆⊙−1

)
− 1√

N
Diag

(
∆⊙−1 1

)
, (2)

where 1 := (1, . . . , 1) ∈ RN and for v ∈ RN ,
Diag(v)ij := viδi,j is the corresponding diagonal matrix
made of the entries of its argument.

Due to the block structure of the noise in the random ma-
trix Ỹ , tracking the (possible) outliers in its spectrum is a
challenging problem and in (Pak et al., 2023) the associated
phase transition for the existence of an outlier has only been
conjectured to occur when a specific parameter (described
below) reaches the value one. While it was hinted by (Pak
et al., 2023) that the spectral method associated with the ma-
trix (2) may be an efficient one for inhomogenous problems,
it was left an open problem.

Our contributions — In this work, we step up to this
challenge, and provide a rigorous analysis of the spectral
method for the inhomogeneous spiked Wigner models of
Eq. (2). More specifically,

1. We proved the conjecture of (Pak et al., 2023) and
show that the spectral method for the matrix Ỹ /

√
N

defined by (2), has a phase transition at the predicted
algorithmic threshold (Guionnet et al., 2022).

2. This makes PCA applied to (2) optimal in detection in
the inhomogenous spiked model (at least in the absence
of a statistical to computation gap, see (Guionnet et al.,
2022)). Our results could also be used as spectral
start (Mondelli & Venkataramanan, 2021) for AMP
algorithms (Pak et al., 2023), making them optimal in
terms of MMSE for these problems.

3. We obtained a complete characterization of the asso-
ciated overlap with the hidden signal, and their phase
transition, further generalizing the BBP results from
homogeneous matrices to inhomogeneous ones.

In particular, we prove that this phase transition occurs when
the top eigenvalue of a certain symmetric matrix ΩK , con-
taining all information of the model (proportion of each com-
munity, the noise level inside and between different commu-
nities), takes the value one. This critical value λ1(ΩK) = 1
corresponds to the phase transition of AMP for this model
(Pak et al., 2023), and more generically to the algorithmic
threshold of efficient inference of the problem (Guionnet

et al., 2022) (see e.g. (Zdeborová & Krzakala, 2016; Ban-
deira et al., 2018; 2022) for discussion of the algorithmic
to statistic gap in such high-dimensional problems). As a
consequence, our result shows that PCA on the transformed
matrix Ỹ also achieves optimal efficient detection for the
model (1).

To the authors’ best knowledge, our work is the first to pro-
vide an exact asymptotic of the phase transition of hetero-
geneous spiked Wigner models, both for the top eigenvalue
and the overlap. To obtain these results, our study relies
on a detailed analysis of large block-structure random ma-
trix models that go beyond the standard tools used in the
spiked homogeneous models and that can be of indepen-
dent interest for analyzing structured matrices in machine
learning.

Other related works — The task of factorizing low-rank
matrices to find a hidden signal in data, ranging from sparse
PCA to community detection and sub-matrix localization.
Many variants of the homogeneous problem have been stud-
ied in the high-dimensional limit, see e.g. (Deshpande et al.,
2015; Lesieur et al., 2017; Barbier et al., 2018; Lesieur et al.,
2017; Alaoui et al., 2020; Lelarge & Miolane, 2019; Barbier
& Reeves, 2020). The inhomogeneous version was intro-
duced and studied in (Behne & Reeves, 2022; Alberici et al.,
2021a; 2022; Guionnet et al., 2022; Pak et al., 2023).

Spectral methods are a popular tool for solving rank-
factorization problems (Donoho & Johnstone, 1995; Péché,
2014; Baik et al., 2005), and this has triggered a large
amount of work in the random matrix theory (RMT) com-
munity. Spiked models with homogeneous noise are well
understood and have been studied extensively in RMT, it
is well known that as one decreases the noise level (that is
the variance of the entries of the Wigner matrix), there is a
phase transition in the behavior of the top eigenvalue which
detaches from the semi-circle distribution, see for example
(Péché, 2005; Féral & Péché, 2007; Capitaine et al., 2009;
2012; Pizzo et al., 2013; Renfrew & Soshnikov, 2013) and
also (Baik & Silverstein, 2006; Paul, 2007; Bloemendal &
Virág, 2013; Benaych-Georges & Nadakuditi, 2011; 2012;
Guionnet et al., 2023) for other variants of these models.

The properties of the spectrum of variance-profile Wigner
matrices (without any small-rank perturbation) are also well
understood (Ajanki et al., 2017a;b; 2019; Alt et al., 2020)
even though there is, in general, no closed-form solution
to the limiting spectral distribution unlike the semi-circle
distribution for Wigner matrices. To the best knowledge
of the authors, only the two works (Bigot & Male, 2020;
Lee & Lee, 2023) performed a spectral analysis of spiked
block-structure Wigner models but in some specific regimes.
(Bigot & Male, 2020) studied the spectrum of a (general-
ization of) models of the form given directly by Eq. (1)
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(instead of the transform Ỹ of Eq. (2) of this paper) using
free probability tools but without studying the overlap or
having a closed expression for the outlier, as it is done in
this paper. (Lee & Lee, 2023) looked at the behavior of the
top eigenvalue in a (restricted version) of (2 × 2) blocks
and our result provides the extension to the (K ×K) case
with K fixed, together with an expression for the overlap.
Eventually, we mention the series of work (Huang & Sellke,
2023a;b) on multi-species spherical models involving ran-
dom matrix tools that are closely related to the ones of this
paper.

Spectral methods are also important as providing a warm
start for other algorithmic approaches. This is the case,
for instance, for approximate message passing algorithms
(AMP) (Mondelli & Venkataramanan, 2021). AMP has at-
tracted a lot of attention in the high-dimensional statistics
and machine learning community, see e.g. (Donoho et al.,
2009; Bayati & Montanari, 2011; Rangan, 2011; Rangan
& Fletcher, 2012), and was written, for the inhomogeneous
spiked problem, in (Pak et al., 2023). AMP algorithms and
the corresponding weak recovery conditions were later de-
veloped for the much larger class of matrix tensor product
models (Rossetti & Reeves, 2023), which includes the in-
homogeneous spiked problem among many others. AMP
algorithms are optimal among first-order methods (Celen-
tano et al., 2020). Equipped with the warm start provided
by our theorem, their reconstruction threshold thus provides
a bound on the algorithmic performances. The link between
AMP and spectral methods was discussed, for instance, in
(Saade et al., 2014; Lesieur et al., 2017; Aubin et al., 2019;
Mondelli & Montanari, 2018; Mondelli et al., 2022; Mail-
lard et al., 2022; Venkataramanan et al., 2022).

2. Main Theoretical Results
2.1. Assumptions and Notations

We denote by H± := {z ∈ C,±Imz > 0} and by H± :=
H± ∪ R, the positive upper (resp. lower) complex plane.
For any positive integer d, we denote by JdK := {1, . . . , d}
and for any subset I of JdK, we denote by |I| the cardinality
of this set.

For two vectors of equal dimension, we introduce the partial
order relation x ≻ y (resp. x ⪰ y) to denote the usual
relations xi > yi (resp. xi ≥ yi) for all i. We say that
a vector x is positive (resp. non-negative) if x ≻ 0 (resp.
x ⪰ 0). We will repeatedly use the simple identity that if
maxi xi ≤ c then x ⪯ c1. We denote by |x| = (|xi|)i the
component-wise absolute value of vector. We denote by
Dx = Diag((xi)) the diagonal matrix obtained from the
vector x.

In the following, when considering a matrix A of size (N ×
N) (or a vector of in RN ) we omit the dependency in the

dimension N and statement involving such a matrix A with
N → ∞ implicitly refer to a sequence A ≡ A(N) of such
matrices. (K × K) matrices and K-dimensional vectors
with K fixed are usually (but not always when it is clear
from the context) denoted with a K index (e.g. AK and
aK) to differentiate them with (N × N) matrices and N -
dimensional vectors. In particular, IK is the identity matrix
of size (K×K), 0K = (0, . . . , 0) and 1K = (1, . . . , 1) are
the K-dimensional vectors of zeroes and ones respectively.

For a symmetric matrix A, we denote by (λi(A))1≤i≤N

its eigenvalues in decreasing order, in particular λ1(A)
is the largest eigenvalue. We also denote by µA :=
1
N

∑N
i=1 δλi(A) the empirical spectral distribution. We say

that an eigenvalue λi(A) of A separates from the bulk if µA

converges weakly almost surely to a limiting spectral distri-
bution µA and limN→∞ minx∈Supp(µA)dist(x, λi(A)) >
0.

For an absolutely continuous distribution µ, we denote by
Supp(µ) := {x ∈ R|µ(x) > 0} its support and by r(µ) :=
sup{Supp(µ)} the rightmost edge of the distribution.

We first formalize the inhomogeneous setting:
Assumption 2.1. There exist an integer K ≥ 1 and a
partition of JNK = B1 ∪ · · · ∪BK , such that if we denote
by ρk(N) = |Bk|/N the proportion of each group (thus∑K

k=1 ρk(N) = 1), we have for any k ∈ JKK:

ρk(N) → ρk ∈ (0, 1) . (3)

Since the eigenproblem is invariant by permutations, one
can assume without loss of generality a block structure for
the model: that is for all k < l, one can assume that we have
i < j if i ∈ Bk and j ∈ Bl, and that inside each group Bk,
the entries are in increasing order. For this reason, we will
refer to the (Bk×Bl) as blocks, also our results are stated in
the generic setting of Assumption 2.1 without assuming this
ordering. This partition structure is used to characterize the
noise profile. We will make the following assumption on the
variance profile matrix to avoid degenerate cases, although
we believe this assumption will not change our final result.
Assumption 2.2. The entries ∆ij of the variance profile
matrix ∆ are independent of N and constant within any
block (Bk × Bl) of the partition of assumption 2.1 with
values given by

∆ij =
1

skl
for any i ∈ Bk, i ∈ Bl , (4)

where skl > 0.

We will denote by (K × K) matrix SK := (skl)k,l, the
(K ×K) symmetric matrix encoding the variance structure.
Assumption 2.3. H = (Hij) is a (N × N) symmetric
matrix with independent entries admitting moments of all
orders, with mean zero and variance EH2

ij = 1.
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We emphasize that our assumption is universal in the sense
that it does not require the Hij to be Gaussian (as stated
originally the conjecture of (Pak et al., 2023)). Our last
assumption concerns the property of the signal vector x:

Assumption 2.4. Under the partition of Assumption 2.1, for
any k ∈ JKK, the signal x satisfies the asymptotic property:

∥(xi)i∈Bk
∥√

|Bk|
a.s.−−−−→

N→∞
1 . (5)

Note that by the law of large numbers, Assumption 2.4 is
satisfied if x ∼ π⊗N where π is a distribution with mean
zero and variance one, as originally stated in the conjecture
of (Pak et al., 2023).

With ∆ as in Assumption 2.3 and Σ = ∆⊙−1, if we intro-
duce the matrices

X := H ⊙Σ⊙1/2 −D(Σ1) , (6)

Z :=

(√
1

N
xx⊤

)
⊙Σ , (7)

one can write the transformed output matrix Ỹ of Eq. (2) as

Ỹ = X + Z . (8)

The asymptotic spectral properties of the output matrix Ỹ
are naturally described by two (K×K) symmetric matrices
encoding all parameters (ρk, skl) of the model:

ΩK := D(ρ⊙1/2) SKD(ρ⊙1/2) , (9)

ΓK := SKDρ = D(ρ⊙−1/2) ΩKD(ρ⊙1/2) . (10)

The matrices ΓK and ΩK are similar and thus share the
same (real) eigenvalues. By Assumptions 2.1 and 2.2, all
elements of ΩK are positive and by Perron-Frobenius the-
orem (see e.g. Chap. 8 of (Meyer & Stewart, 2023)) the
top eigenvalue λ1(ΩK) is simple and corresponds to the
operator norm.

Eventually, we introduce the vector q ∈ RK of the overlap
between the top eigenvector u1 of Ỹ /

√
N and the vector

in each community as:

q :=

(〈 x1

∥x1∥
,u1

〉
, . . . ,

〈 xK

∥xK∥
,u1

〉)
, (11)

where (xk)i := xi for i ∈ Bk and (xk)i = 0 for i /∈ Bk.
Note that the overlap vector q contains by definition the in-
formation on the recovery of the signal for each community
(xi)i∈Bk

. From it, one can obtain the overlap with the entire
vector, m := ⟨u1,x/∥x∥⟩, as we have m = ⟨q,ρ⊙1/2⟩.
Remark 2.5. For simplicity, our results are stated in the
case where Y in Eq. (1) has a rank 1 spike. However, this

is not a crucial model assumption and the analysis can be
extended to a spike of rank-R where R > 1. Indeed, when
working in the eigenbasis of the rank-R spike, the computa-
tions are completely decoupled in the new eigenbasis and
reduce to the rank-1 case. This is also the case for finite
rank spiked homogeneous random matrix models, see for
example (Benaych-Georges & Nadakuditi, 2011).

2.2. Phase Transition for Top Eigenvalue and Top
Eigenvector

Our main theorem (Thm. 2.6 below) of this work indicates
that the top eigenvalue λ1(ΩK) plays the role of the ef-
fective signal-to-noise ratio (SNR) for this block-structure
spiked model where the threshold value λ1(ΩK) = 1 sep-
arates a phase where the top eigenvector has zero overlap
with the signal vector to a phase where it has a positive
overlap with the signal.

The behavior of the SNR with respect to the parameters
(ρk, skl) of the model as well as several explicit examples
are postponed to App. I. In particular, we observe that the
effective SNR for block-structure models satisfy many nat-
ural properties such as monotonicity with respect to the s
parameters in Prop I.1. Under some additional structure on
ΩK , we have explicit forms of and recover classical results
such as the SNR for homogeneous spiked Wigner models
and the asymmetric rank-one homogeneous spiked models
(see App. I.3).

Theorem 2.6. Under Assumptions 2.1,2.3,2.2 and 2.4, one
has the following phase transition for the outlier and the
overlap

• For λ1(ΩK) ≤ 1:

1. there is asymptotically no eigenvalue separating out-
side of the bulk at values higher than r(µX), that is
λ1(Ỹ /

√
N)

a.s.−−−−→
N→∞

r(µX), the rightmost edge of the

bulk distribution.
2. q

a.s.−−−−→
N→∞

0K = (0, . . . , 0).

• For λ1(ΩK) > 1:

1. λ1(Ỹ /
√
N)

a.s.−−−−→
N→∞

1 and separates from the bulk;

2. |q| a.s.−−−−→
N→∞

C−1/2 D(ρ⊙1/2)(1K −g(1)) ≻ 0 with the

positive constant C given by

C := ⟨1K − g(1),Γ⊤
KD(ρ⊙y)ΓK(1K − g(1))⟩ ,

(12)

where y = (ΓK−D−2
g(1))

−11K and g(1) is the contin-
uation at z = 1 of the solution of the quadratic vector
equation of Prop. 3.1.
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We highlight that the expression for the overlap after the tran-
sition involves a quantity g(1) which is a root of a quadratic
vector equation, and in general the solution of this system
of equations does not admit a closed-form expression but
can be evaluated to any precision level.

In Fig. 1, we illustrated the behavior of the theoretical lim-
iting spectral distribution and top eigenvalue of the matrix
Ỹ /

√
N before, at, and after the critical value λ1(ΩK) = 1

for specific values of the parameters. In Fig. 2, we plotted
the value of the overlaps for different models and different
values of the λ1(ΩK).

We recall that inference on inhomogeneous models of the
form given by Eq. (1) are known to exhibit a statistical-
to-computational gap, see Lem. 2.6 of (Guionnet et al.,
2022) and (Aubin et al., 2019; Bandeira et al., 2018) for
other models exhibiting such phenomenon. Our main result
proves Conjecture 2.6 in (Pak et al., 2023) and shows that
the threshold for PCA on the transformed matrix Ỹ matches
the optimal algorithmic recovery threshold for these inho-
mogeneous models, see Part 2 of Lem. 2.6 in (Guionnet
et al., 2022). We also note from Prop. 2.18 of (Guionnet
et al., 2022) that the thresholds for spectral methods on the
original matrix Y or on Y ⊙ (∆⊙−1/2) (which a priori
removes the inhomogeneity in Y at the cost of transforming
the signal vector x) are always strictly worse than this opti-
mal algorithmic recovery. This, in particular, demonstrates
the relevance of using Ỹ , and the interest in the guaranty
we provide, for spectral methods, rather than those two
matrices.

3. Outline of the Proof
We break down the proof of Thm. 2.6 into several steps
by first establishing the spectral properties of the matrices
X/

√
N defined in Eq. (6) and Z defined in Eq. (7), sepa-

rately. Combining these properties, we prove that if there is
an outlier in Ỹ /

√
N , then a certain (K ×K) matrix must

have an eigenvalue at one. For λ1(ΩK) < 1 we show that
this condition is not achievable, while for λ1(ΩK) > 1,
we show that this condition is satisfied and sufficient by
constructing explicitly the corresponding eigenvector. We
also describe how one can obtain the overlap vector q.

3.1. Properties of the Limiting Spectral Distribution and
its Stieltjes Transform

Quadratic Vector Equation — The matrix Ỹ /
√
N is a

fixed-rank perturbation of the variance-profile Wigner ma-
trix X/

√
N . By Weyl’s interlacing theorem, as N goes to

infinity its limiting spectral distribution (LSD) is thus equal
to µX , the LSD of X/

√
N . The latter is well-understood

and has been studied extensively in the series of works
(Ajanki et al., 2017a;b; 2019), which tackle a more general

setting than the block structure of this paper. Even in the
block-structure setting, there is, in general, no closed-form
expression for the density µX . It is however known that this
distribution is supported on a finite union of compact inter-
vals, and the behavior of this distribution at the endpoints of
those intervals is also well understood.

In the following, we will mainly need the following charac-
terization of the Stieltjes transform of the LSD. We recall
from random matrix theory that the Stietljes transform of a
continuous measure µ is defined for any z ∈ C \ Supp(µ)
as gµ(z) :=

∫
Supp(µ)

(z − λ)−1dµ(λ) and this transform
uniquely characterizes the distribution µ. This Stietljes trans-
form is characterized by the following result for variance-
profile Wigner matrices.

Proposition 3.1 (Quadratic Vector Equation for the Stieltjes
Transform). Under Assumptions 2.1, 2.2, 2.3, one has:

(a) the Stieltjes transform gµX
(z) of the limiting spectral

distribution µX of the matrix X/
√
N , admits the de-

composition gµX
(z) :=

∑K
k=1 ρkgk(z) where for any

z ∈ H−, g(z) := (g1(z), . . . , gK(z)) is the unique
solution of the quadratic vector equation (QVE):

1K = zg − g ⊙ ΓK(g − 1K) , (13)

such that
g(z) ∈ (H+)

K . (14)

(b) λ1(X/
√
N)

a.s.−−−−→
N→∞

r(µX) .

Proof. We refer to (Ajanki et al., 2017a;b; 2019) for the
complete proof of part (a) and to App. A for a short sketch
of the proof of this part. Part (b) follows rom Cor. 1.10
of (Ajanki et al., 2017b) (see also Thm. A.9 of (Husson,
2022)).

Evaluation on the Real Line — Thm. 3.1 completely
characterizes the Stieltjes transform outside the real line.
Yet, in many cases, one is interested in understanding the
behavior of this Stietljes transform precisely on this set. The
property of the continuation on R is given the following
result, from the same authors.

Proposition 3.2 (Continuation on the real line). The solu-
tion g(.) of the quadratic vectorial equation of Eq. (13) on
H− extends to 1/3-Hölder continuous function g : H− →
(H+)

K and is analytical on C \ Supp(µX).

Proof. See Corr. 2.7 of (Ajanki et al., 2017a) and Thm. A.2
of (Huang & Sellke, 2023b).

Note that while Prop. 3.2 gives a regularity property for the
continuation on the real line, it does not immediately give
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Figure 1. Eigenvalue Distribution and Top Eigenvalue Position for Different Value of λ1(ΩK). The three figures correspond to a

model with K = 2, ρ = (1/2, 1/2) and SK =

(
t 1/2

1/2 1/4

)
with a value of the parameter t different in each figure and chosen such that

(Left) λ1(ΩK) = 0.5 < 1, (Center) λ1(ΩK) = 1.0 and (Right) λ1(ΩK) = 3.0 > 1. The black curve corresponds to the theoretical
value of the limiting spectral distribution (LSD) obtained by solving the QVE of Eq. (13) numerically, while the colored histogram
corresponds to the empirical distribution of a sample Ỹ /

√
N with N = 3000, and the red triangle corresponds to the empirical value of

its largest eigenvalue. The signal x has been sampled from a standard normal distribution. Before the transition (left), the rightmost edge
is below one and there is no outlier; at the transition (center), the rightmost edge touches the value one; and after the transition (right)
there is an outlier at one.

us a way to know if a certain solution of Eq. (13) evaluated
on R \ Supp(µX) corresponds to the proper analytical con-
tinuation of g(.). Take for example z = 1, then one can
immediately check that 1K is always one solution (among
the 2K possible solutions) of Eq. (13), yet does it corre-
spond to g(1) or to a spurious solution of Eq. (13)? The
following result shows how to discriminate between the two
cases.

Lemma 3.3. Let g̃(λ) ∈ (R∗)
K be any solution of Eq. (13)

at z = λ ∈ R \ Supp(µX) then g̃(λ) = g(λ) is the proper
solution of the QVE if and only if the linear system of equa-
tions

(D−2
g̃(λ) − ΓK)y = 1K , (15)

admits a unique positive solution y ≻ 0K .

Proof. The proof of this result is given in Appendix. B and
relies on studying the behavior of Eq. (13) as we approach
the value z = λ from the lower complex plane. See also
(Huang & Sellke, 2023b) for a similar statement and proof.

Next, we show a necessary and sufficient condition for
Eq. (15) to have a positive solution.

Proposition 3.4. ([Condition for Positive Solution] The
linear system of Eq. (15) admits a unique positive solution
if and only if λ1(D

2
g̃(λ)ΩK) < 1.

Proof. The proof of (a generalized version of) this result is
given in App. C and relies on properties of so-called M - and
Z- matrices and the use of Farka’s lemma to characterize
positive solutions of (15).

Behavior of the Rightmost Edge — To understand if the
top eigenvalue separates from the bulk, we need to under-
stand the behavior of the rightmost edge, which is given by
the following result.

Proposition 3.5 (The rightmost edge is bounded by one).
Let r(µX) be the rightmost edge of the limiting spectral
distribution µX of Ỹ /

√
N then r(µX) ≤ 1 with equality if

and only if λ1(ΩK) = 1.

Proof. This result is given in App. D. It follows from a
characterization of the edge of the spectrum in terms of the
singularities of the solution to the quadratic vector equations
as in Thm. 2.6 of (Ajanki et al., 2017a)

Eventually, we will use the following lemma, characterizing
the Stieltjes transform above the rightmost edge.

Lemma 3.6 (Positivity and Monotonicity of g(.) above the
rightmost edge). Let r(µX) be the rightmost edge of µX ,
then for any λ ∈ (r(µX),∞) one has g(λ) ≻ 0K and
this function is entrywise analytically decreasing on this
interval.

Proof. This is a standard result in complex analysis and
follows from the fact (see (Ajanki et al., 2019)) that for
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Figure 2. Squared Overlap Vector for Different Value of λ1(ΩK) and Different Models. (Left) Value of the square of the overlaps for

a model with K = 2, ρ = (1/3, 2/3) and SK =
(
1/2 t
t 1/2

)
where the range of the parameter t is set such that λ1(ΩK) varies from

0.5 to 3. (Right) Value of the square of the overlaps for a model with K = 3, ρ = (2/9, 3/9, 4/9) and SK =

(
3 1/2 t

1/2 1 t
t t 1

)
where

the range of the parameter t is set such that λ1(ΩK) varies from 0.5 to 3. In both cases, the dots represent an average over 30 samples of
the empirical value of the overlaps for N = 4000, with x sampled from a standard Gaussian distribution.

any k ∈ JKK, gk(z) :=
∫
(z − λ)−1dµk for some positive

measure µk. Since gµX
=
∑

k ρkgk, we must have for any
k ∈ JKK, the rightmost edge r(µk) of µk satisfies the bound
r(µk) ≤ r(µX). Since g′k(z) = −

∫
(z−λ)−2dµk < 0 and

gk(z) ∼
z→∞

1/z, we have the desired result.

Behavior at z = 1 – As stated in our main theorem, the
position z = 1 is peculiar and the behavior of the Stietljes
transform at this point changes depending on the effective
SNR (λ1(ΩK)) value.

Proposition 3.7 (Behavior of the Stietljes at z = 1). We
have

(a) For λ1(ΩK) ≤ 1: g(1) = 1K;

(b) For λ1(ΩK) > 1:

(i) 0 ≺ g(1) ≺ 1K;
(ii) furthermore, if we introduce the vectors:

v
(r)
1 := D(ρ⊙1/2)(1K − g(1)) , (16)

v
(l)
1 := ΩKv

(r)
1 , (17)

w1 :=
D

−1/2
g(1) v

(r)
1

∥D−1/2
g(1) v

(r)
1 ∥

, (18)

then v
(l)
1 ,v

(r)
1 are the (unnormalized) left and

right top eigenvectors of Dg(1)ΩK associated
to the simple top eigenvalue 1 and w1 is the or-
thonormal top eigenvector of D1/2

g(1)ΩKD
1/2
g(1) as-

sociated with the simple top eigenvalue 1.

Proof. At z = 1, the vector 1K is one solution of the QVE
(13).
(a): For λ1(ΩK) ≤ 1, Prop. 3.4 gives us immediately Part
(a) of the claim.
(b)-(i): Conversely for λ1(ΩK) > 1, we must have g(1) ̸=
1K by the same proposition, and since r(µX) < 1 (Prop.
3.5) and the positivity property of the Stieltjes (Lem. 3.6),
we also have g(1) ≻ 0K . An analysis of the solution of the
QVE described in App. E allows one to conclude.
(b)-(ii): Using the identity a⊙ b ≡ Dab and the definition
of the matrix ΓK of Eq. (10), we can write the QVE (13)
as:

(Dg(1)ΩK)v
(r)
1 = v

(r)
1 , (19)

and from Part (b)-(i) of this proposition, we have

v
(r)
1 ≻ 0K , (20)

since Dg(1)ΩK is entrywise positive, v(r)
1 corresponds, by

Perron Frobenius theorem, to its (right) top eigenvectorand
the corresponding eigenvalue is equal to one (Eq. (19)) and
is simple. The result for v

(l)
1 (resp. w1) is obtained by

right-multiplying Eq. (20) by ΩK (resp. by D
−1/2
g(1) ).

3.2. Eigendecomposition of the Small-Rank Matrix

Next, we turn our attention to the small-rank matrix Z given
by Eq. (7). It is the Hadamard product of a rank-one matrix
and an a priori rank-K matrix and thus is a priori also of
rank-K by standard properties of Hadamard product (see
e.g. (Johnson, 1990)). Our next result expresses Z as a
rotation of the matrix ΩK , up to a small error.
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Proposition 3.8. Under Assumptions 2.1 and 2.4, one has
almost surely for N large enough,

Z/
√
N = V (ΩK +EK)V⊤ , (21)

where EK is a (K ×K) matrix such that ∥EK∥op
a.s.−−−−→

N→∞
0, V :=

[
v(1), . . . ,v(K)

]
∈ RN×K and the v(k)’s are

orthonormal vectors satisfying the block structure property
(v(k))i := xi/∥(xi)i∈Bk

∥ for i ∈ Bk and (v(k))i = 0 for
i /∈ Bk.

Proof. By definition of Z/
√
N ,for N large enough if we

denote for any k ∈ JKK, the vector xk where (xk)i := xi

for x ∈ Bk and (xk)i = 0 for i /∈ Bk as defined in (11), we
have:

Z√
N

=
1

N

K∑
k,l

skl xkx
⊤
l . (22)

thus, if we normalize the vectors by their norms we get

Z√
N

=

K∑
k,l

skl

√
|Bk||Bl|
N

∥xk∥∥xl∥√
|Bk||Bl|

xk

∥xk∥

( xl

∥xl∥

)⊤
,

(23)

where we have dropped the dependency in N for Bk(N) for
clarity. By Assumption 2.1 we have |Bk|/N → ρk ∈ (0, 1)

and by Assumption 2.4 ∥xk∥/
√
|Bk|

a.s−−−−→
N→∞

1. Since

(ΩK)kl = skl
√
ρk

√
ρl, the remainder term converges al-

most surely to zero, and hence the operator norm of the
associated matrix EK converges also almost surely to zero
by matrix norm equivalence and the fact its dimension K is
fixed, thus we have the desired result.

The condition N large enough is only needed to ensure the
existence of the partition introduced in Assumption 2.1.

3.3. Proof of the Phase Transition for the Top
Eigenvalue

Condition for the Existence of an Outlier – We are now
ready to combine the previous results describing the spec-
trum and eigenvectors of the matrices X/

√
N and Z to

describe the spectrum of the matrix Ỹ /
√
N and in partic-

ular, its potential outliers. The following proposition gives
our first result in this direction.
Proposition 3.9 (Equation for outliers). Under the same
assumptions as in Thm. 2.6, z is the position of an outlier
separating from the bulk, if and only if z is an almost-sure
solution of

det
(
IK −Dg(z) ΩK

)
= 0 , (24)

where g(z) = (g1(z), . . . , gK(z)), is the analytical continu-
ation on the real line of the solution of the QVE of Prop. 3.1.

Proof. The proof of this result is given in App. F. It relies
on using (a generalized version of) the matrix determinant
lemma, together with the eigendecomposition of Prop. 3.8
and deterministic equivalent for the resolvent of the matrix
X/

√
N .

Existence of a (Top) Outlier at One in the Regime
λ1(ΩK) > 1 – This is an immediate consequence of Part
(b)-(ii) of Prop. 3.7, since for λ1(ΩK) > 1, 1 is the highest
eigenvalue of Dg(1)ΩK , hence z = 1 is the position of an
outlier separating from the bulk since r(µX) < 1 (Prop. 3.5)
in this regime. Since g is entrywise decreasing (Lem. 3.6)
for any z > 1, λ1(Dg(z)ΩK) < λ1(Dg(1)ΩK) and hence
1 is the position of the top outlier.

Non-Existence of an Outlier Above the Rightmost Edge
in the Regime λ1(ΩK) ≤ 1 – We show that Prop. 3.9 is
incompatible with the properties of the Stietljes transform
derived in Sec. 3.1:

• On the one hand, we have that z > r(µX), with
r(µX) ≤ 1 (Prop. 3.5), is a position of an outlier
if there is a k ∈ JKK such that λk(Dg(z)ΩK) = 1.
Since λ1(Dg(z)ΩK) ≥ λk(Dg(z)ΩK), we must have
by operator norm inequality:

1 ≤ λ1(Dg(z)ΩK) ≤ λ1(Dg(z)) λ1(ΩK) . (25)

Since g is entrywise decreasing on (r(µX),∞)
(Lem. 3.6) and g(1) = 1K (Prop. 3.7-(a)), this can
only be satisfied if there exists a z ∈ (r(µX), 1) for
which we have

g(z) ≻ 1K . (26)

• On the other hand, for any z ∈ (r(µX), 1), the analyti-
cal continuation of the Stietljes transform must satisfy
by Prop. 3.4:

λ1(D
2
g(z)ΩK) < 1 . (27)

To see that these two conditions are incompatible we will
make use of the following lemma, which is a consequence
of the operator norm inequality:

Lemma 3.10 (Reversed Operator Norm Inequality). Let
A ∈ Rd×d such that λ1(A) ≥ · · · ≥ λd(A) > 1 and
B ∈ Rd×m then we have ∥B∥op < ∥AB∥op.

Proof. Since A is diagonalizable with non-zero eigenvalue,
its inverse exists and we have by the operator norm in-
equality ∥B∥op = ∥A−1AB∥op ≤ λ1(A

−1)∥AB∥op ≤
∥AB∥op

λd(A) < ∥AB∥op.

8
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If there exists an outlier at z ∈ (r(µX), 1) with g(z) satis-
fying Eq. (26), we must have by Lem. 3.10:

λ1(D
2
g(z)ΩK) > λ1(Dg(z)ΩK) ≥ 1 , (28)

where the last inequality follows from Eq. (25) and is in-
compatible with Eq. (27), such that there is no outlier above
the rightmost edge in this regime.

3.4. Outline of the Proof for the Overlap Vector

To compute the limiting value of the overlap vector q, let
us first notice that this vector can be written in terms of
eigenmatrix V of Prop. 3.8 as

q = V⊤u1 , (29)

where we recall that u1 is the eigenvector associated with
the top eigenvalue of Ỹ /

√
N .

Next, the resolvent of Ỹ /
√
N is defined for any z ∈ C \

Spec(Ỹ /
√
N) by

G Ỹ√
N

(z) :=
(
z − Ỹ√

N

)−1

, (30)

=

N∑
i=1

(
z − λi

( Ỹ√
N

))−1

uiu
⊤
i . (31)

As λ1(Ỹ /
√
N)

a.s.−−−−→
N→∞

1, separates from the bulk and is

simple if λ1(ΩK) > 1, we have the following identity:

Lemma 3.11. For λ1(ΩK) > 1, we have

lim
N→∞

qq⊤ = lim
z→1

(z − 1) · lim
N→∞

V⊤G Ỹ√
N

(z)V . (32)

From this identity, we first obtain the following intermediate
result:

Proposition 3.12 (The Overlap Vector is Proportional to the
Right Top Eigenvector). For λ1(ΩK) > 1, we have:

qq⊤ a.s.−−−−→
N→∞

v
(r)
1 (v

(r)
1 )⊤

−ϕ′
1(1) · C0

, (33)

where v
(r)
1 is given by Eq. (16), ϕ1(λ) is the top eigenvalue

of Dg(λ)ΩK , ϕ′
1(.) is the derivative of ϕ1(.) with respect to

λ and C0 = ⟨v(r)
1 ,D−1

g(1)v
(r)
1 ⟩.

Proof. The proof of this result is given in Appendix G. It
relies first on using Woodbury identity to express the resol-
vent of Ỹ /

√
N in terms of the one of X/

√
N , then using

deterministic equivalent to simplify the expression and even-
tually identify the limit in Lem. 3.11 as the derivative of
ϕ1(.) evaluated at one.

To finish the proof, we show that

Proposition 3.13. For λ1(ΩK) > 1, with ϕ′
1(1) as in

Prop. 3.12 we have

−ϕ′
1(1) =

C

C0
, (34)

where C is given by Eq. (12) and C0 is given in Prop. 3.12.

Proof. The proof of this result is given in Appendix H
and relies on perturbation theory for the top eigenvalue
of D1/2

g(1+ϵ)ΩKD
1/2
g(1+ϵ).

Thanks to the definition (16) of v(r)
1 , one has the desired

result for the overlap.

The case λ1(ΩK) ≤ 1 where there is no outlier, follows
from standard results in RMT, see e.g. (Benaych-Georges
& Nadakuditi, 2011).

4. Conclusion
In this work, we studied the behavior of a spiked block-
Wigner matrix model given by Eq. (2). Our first contribution
is the proof of a phase transition for the behavior of the top
eigenvalue of this model, generalizing the seminal work of
(Baik et al., 2005) to inhomogeneous problems, proving
a conjecture stated in (Pak et al., 2023), and providing a
sharp optimal method for detection for the inhomogenous
spiked model (Behne & Reeves, 2022; Alberici et al., 2021a;
2022; Guionnet et al., 2022). Our results could also be used
as spectral start (Mondelli & Venkataramanan, 2021) for
the AMP algorithms of (Pak et al., 2023), making them
optimal in terms of MMSE for these problems in the class
of iterative algorithm (Guionnet et al., 2022).

Our second contribution is a sharp characterization of the
overlap between the associated top eigenvector of this matrix
and the original signal vector, undergoing a similar phase
transition. While we have, for simplicity, considered the
setting where the signal is a rank-one matrix, our computa-
tion can be carried to an arbitrarily fixed rank-R case (see
Rem. 2.5).

An interesting venue for future work is to extend this compu-
tation to a general setting of general variance-profile shape
(not necessarily of block type) and we leave this problem
for future work. Finally, it would also be interesting to un-
derstand the fluctuations of the top eigenvalue around its
limiting value in this inhomogeneous one, which are very
well understood for a homogeneous problem.

9



Spectral Phase Transition and Optimal PCA in Block-Structured Spiked Models

Acknowledgements
The authors would like to thank Alice Guionnet and Alek-
sandr Pak and Lenka Zdeborová for fruitful discussions
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A. Sketch of Proof of the Derivation of the Quadratic Vector Equation
We briefly sketch the proof for the derivation of the Prop. 3.1 and refer the reader interested in the complete rigorous proof
to the series of work (Ajanki et al., 2017a;b; 2019). For simplicity, we w

Let z ∈ H− and denote by GX/
√
N (z) := (z −X/

√
N)−1 the resolvent of X/

√
N . From Schur complement formula,

we have for any i ∈ JNK := {1, . . . , N}:

1

Gii(z)
= z −Xii − ⟨X⃗•i,G

(−i)(z)X⃗•i⟩ , (35)

where to ease notations we denoted by Gij ≡ (GX/
√
N )ij , Xij ≡ (X/

√
N)ij , X⃗•i ∈ RN−1 is the i-th column of X/

√
N

without the (i, i) entry and G(−i)(z) is the resolvent of the
(
(N − 1)× (N − 1)

)
matrix X−(i)/

√
N obtained by removing

the i-th row and i-th column of X/
√
N .

By definition of X/
√
N , we have Xii = Hii

√
(Σ)ii/

√
N − (Σ1)ii/N , with Hii ∼ N (0, 1). Since the first term is of

order O(N−1/2), for large N we have approximately

Xii ≈ − 1

N

N∑
j=1

(Σ)ij = − 1

N

K∑
k=1

∑
j∈Bk

(Σ)ij , (36)

and by assumption (Σ)ij = skl for any i ∈ Bk, j ∈ Bl, such that for any k, the Xii within Bk are (approximately) equal
and given by:

Xii ≈ −
∑
l

sklρl . (37)

The quadratic term in Eq. (35) is given by ⟨X⃗•i,G
(−i)(z)X⃗•i⟩ =

∑
j1,j2 ̸=i Xj1,iXj2,i(G

(−i)(z))ij and can be shown to
concentrate to its average value. Since Xj1,i and Xj2,i are independent and centered (since j1, j2 ̸= i), this averaged sum is
equal to the sum over the (N − 1) term such that j1 = j2 ̸= i. Furthermore, for large N , replacing G(−i)(z) by GX/

√
N (z)

and adding the term j1 = i in the sum only adds a negligible contribution to the sum such that, one has approximately:

⟨X⃗•i,G
(−i)(z)X⃗•i⟩ ≈

1

N

N∑
j=1

(Σ)ijGjj(z) =
1

N

K∑
k=1

∑
j∈Bk

(Σ)ijGjj(z) , (38)

and Eq. (35) is thus approximately given by

1

Gii(z)
≈ z +

K∑
l=1

sklρl −
1

N

N∑
j=1

(Σ)ijGjj(z) . (39)

Using again the block structure of Σ, one deduces from Eq. (39) the approximate identity Gii(z) ≈ Gjj(z) if
i, j ∈ Bk. Furthermore, N−1TrGX/

√
N (z) = N−1

∑N
i=1 Gii(z) → gµX

(z), and if we denote by gk(z) :=

limN→∞ 1/|Bk|
∑

i∈Bk
Gii(z) ≈ Gii(z) for i ∈ Bk, we have gµX

=
∑

k ρkgk with for any k ∈ JKK, gk is solution of

1

gk
= z +

K∑
l=1

sklρl −
K∑
l=1

sklρlgl , (40)

which is nothing else than the scalar version of the QVE of Prop. 3.1.

B. Proof of Prop. 3.3 (Stietljes transform on the Real Line and Positivity Condition for Solution of
Associated Linear System)

For z ∈ H− let’s rewrite the QVE of Eq. (13) with solution g ∈ (H+)
K as:

z1K = f(g(z)) , (41)
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where f : (H+)
K → (H−)

K is defined by

f(g) := g⊙−1 + ΓK(g − 1K) . (42)

Clearly, the function f(.) is continuous and in fact C1 and invertible on (H+)
K with Jacobian given by

(∇gf)(g) = −D−2
g + ΓK , (43)

and the gk(z) :=
∫
(z − λ′)−1dµk(λ

′) are analytical on C \ Supp(µX) for any k ∈ JKK since Supp(µk) ⊆ Supp(µX) for
any k ∈ JKK, from (Ajanki et al., 2019).

Fix any λ ∈ R \ Supp(µX), as we approach λ from the lower complex plane z → λ, g(z) approaches its analytical
continuation g(λ) from the upper complex plane, which means that g′(λ) is well defined and belongs also to (H+)

K . By
the inverse function theorem, if we set ỹ = g′(λ), we must have the equality:

−1K = (∇gf)(g(λ))ỹ , (44)

with the condition ỹ ∈ (H+)
K . Taking the imaginary part of this equation gives the desired result by setting yi = Im(ỹi)

since for λ ∈ R \ Supp(µX), g(λ) ∈ RK and hence we also have (∇gf)(g(λ)) ∈ RK×K . Conversely, for any other
solutions g̃ ∈ (R∗)

K of the QVE at z = λ, one cannot have y ⪰ 0K since f and (∇gf) are well defined on (C∗)
K and

g ∈ (H+)
K is the unique solution of the QVE on the upper complex plane.

C. Proof of Lem. 3.4 (Eigenvalue Condition for Positive Solution of the Linear System)
By multiplying Eq.(15) by D2

g̃, we can re-write Eq. (15) as

(IK −D2
g̃ΓK)y = g̃⊙2 , (45)

since D2
g̃ΓK and D2

g̃ΩK are similar by definition of ΓK , we have λ1(D
2
g̃ΓK) = λ1(D

2
g̃ΩK). To conclude, it is enough to

prove the following result.

Proposition C.1. Let Q ∈ (R+)
d×d with real eigenvalues, r ≻ 0 ∈ Rd then the linear system (I −Q)z = r admits a

unique positive solution z ≻ 0 if and only all eigenvalues of Q are lower than one.

To prove this proposition, following (Plemmons, 1977) and Chap. 6 of (Berman & Plemmons, 1994) (see also Chap. 1 of
(Saad, 2003)), we first introduce the two sets of matrix as:

Definition C.2 (Z- and M -matrices). We say that a square matrix A is a Z-matrix and write A ∈ Z if all its off-diagonal
elements are non-positive. If in addition, all its eigenvalues are positive we say that A is M -matrix and write A ∈ M.

• Let’s first consider the case λ1(Q) < 1. In this case, one can immediately check that M := IK −Q ∈ M and one has
the following lemma for M -matrices.

Lemma C.3 (Inverse Positivity of M -matrices). If A ∈ M and is non-singular then A−1 has all it entries non-negative.

– Proof of Lem. C.3. See Chap. 6 of (Berman & Plemmons, 1994) for the complete proof. We briefly outline the
main idea for completeness. If we denote by a := (A11, . . . , Add) the vector of diagonal elements, we have
a ≻ 0. We can then write A = Da(I − B) with B = (I − D−1

a A) and since (I − B)−1 = A−1Da can be
shown to be entrywise non-negative and D−1

a is positive, we get the desired result for A−1.

As a consequence of this lemma, we have with the notations of Prop. C.1, y = M−1r ≻ 0K .

• Next for λ1(Q) > 1, the same matrix M := IK −Q ∈ Z \M (since it has at least one negative eigenvalue). The
Perron-Frobenius theorem for Z-matrices writes

Lemma C.4 (Perron-Frobenius Z-matrices). If A ∈ Z, there exists a real number σ and a positive vector u ≻ 0 such
that

(a) A⊤u = σu,
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(b) Re(λ) > σ if λ is any characteristic root of A with λ ̸= σ.

– Proof of Lem. C.4. see Chap. 6 of (Berman & Plemmons, 1994). The proof is similar to the standard Perron-
Frobenius theorem for entrywise positive matrix.

As 1−λ1(Q) is the lowest eigenvalue of M⊤, this Perron-Frobenius lemma implies that the corresponding eigenvector
is positive u ≻ 0. In particular, we have ⟨−u,1⟩ < 0 and M⊤(−u) = (λ1(Q) − 1)u ⪰ 0, which allows us to
conclude thanks to Farka’s lemma:

Lemma C.5 (Farka’s lemma). Let A ∈ Rd×r, b ∈ Rr then either

(a) there exists y ∈ Rr solution of Ay = b with y ⪰ 0,
(b) or there exists z ∈ Rd such that A⊤z ⪰ 0 and ⟨z,b⟩ < 0.

– Proof of Farka’s lemma. see Chap. 5 of (Boyd & Vandenberghe, 2004) where the proof follows from linear
programming duality.

Indeed, we have explicitly constructed z = −u such that condition (b) holds for the linear system (IK −Q)y = r and
as such, it does not admit a positive solution y for λ1(Q) > 1.

This concludes the proof of Prop. C.1 since if λ1(Q) = 1 then the matrix M = I −Q is singular and one has no more
uniqueness for the possible solution of the associated linear system, see e.g. Chap. 1 of (Saad, 2003).

D. Proof of Prop. 3.5 (Upper Bound of the Rightmost Edge)
Proposition D.1 (Condition for being an edge). If λ⋆ is the position of an edge then

λ⋆1K = f(g⋆) , (46)

for some g⋆ ∈ (R∗)
K such that (∇gf)(g⋆) is singular.

Proof. This follows from Thm. 2.6 of (Ajanki et al., 2017a).

Lemma D.2. Let g ∈ (R∗)
K , then (∇gf)(g) is singular if there exists w ≻ 0K such that

w⊤(D2
gΓK) = w⊤ . (47)

Proof. First since g ∈ (R∗)
K , (∇gf)(g) is singular if D2

g(∇gf)(g) is, which means from definition (43) that there exists
a w ̸= 0K such that Eq. (47) holds. Recalling Def. C.2, we have M = IK − (D2

gΓK) ∈ Z from which we deduce the
positivity of w by Lem. C.4.

For λ⋆ the position of any edge, let’s denote by w⋆ the corresponding left eigenvector in Lem. D.2. If we left multiply
Eq. (46) by w⊤

⋆ D
2
g⋆

we have

λ⋆⟨w⋆,g
⊙2
⋆ ⟩ = ⟨w⋆,g⋆⟩+ ⟨w⋆, (D

2
g⋆
ΓK)(g⋆ − 1K)⟩ . (48)

Using Eq. (47) this reads

λ⋆ =
⟨w⋆, 2g⋆ − 1K⟩

⟨w⋆,g
⊙2
⋆ ⟩

, (49)

and one gets the desired result thanks to w⋆ ≻ 0K and the identity

1K + g⊙2
⋆ − 2g⋆ = (1K − g⋆)

⊙2 ⪰ 0K , (50)

with equality if and only if g⋆ = 1K which is only attainable at λ1(ΩK) = 1 since g(1) = 1K for λ1(ΩK) ≤ 1 from
Cor. 3.7 and D2

g (∇gf)(1K) is not singular for λ1(ΩK) < 1 from App. C, and is clearly singular for λ1(ΩK) = 1.
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E. Proof of Prop. 3.7 (Behavior of the Stieltjes Transform at z = 1)
We provide the details of the QVE analysis required to complete the proof of Prop. 3.7 part (b)-(i). We want to prove the
following claim

Proposition E.1. If λ1(ΩK) > 1 then the correct solution of the QVE satisfies 0K ≺ g(1) ≺ 1K .

Note that the first inequality is trivial and the hard part is proving the second inequality from which we only know the
condition g(1) ̸= 1K so far. Recall that the QVE at z = 1 can be written as:

0K = (1K − g(1)) + g(1)⊙ ΓK(1K − g(1)) (51)

Let’s introduce y = 1K − g(1), the condition we would like to prove is simply transferred to y ≻ 0K . We can write the
QVE for y as:

0K = y + (1K − y)⊙ ΓK y = y + ΓK y − y ⊙ ΓKy (52)

We will analyze solutions to (52) as a function of the gap between the λ1(ΩK) and 1. We have the following trivial fact

Lemma E.2. If we denote by α = λ1(ΩK)− 1 > 0, then we can write ΩK = (1 + α) ·Ω(1)
K such that λ1(Ω

(1)
K ) = 1.

Proposition E.1 is immediate from the following uniform bound on the Stieltjes transform, which implies that g(α, 1) ≺ 1K

uniformly for all Ω(1)
K and α > 0.

Lemma E.3. Let Ω(1)
K be a fixed parameter matrix such that λ1(Ω

(1)
K ) = 1 and consider the QVE (52) with ΩK(α) =

(1+α) ·Ω(1)
K . For any α > 0, the proper solution y(α) = 1K −g(α, 1) of (52) satisfying (14) at z = 1 satisfies y(α) ≻ 0.

Proof. We need to show that y(α) ≻ 0 for all α. If we write (52) in terms of α, we get

0K = y + (1 + α)(1− y)⊙ Γ
(1)
K y (53)

if we differentiate for α, we have

0K = y′ + (1− y)⊙ Γ
(1)
K y − (1 + α)

(
y′ ⊙ Γ

(1)
K y + (1− y)⊙ Γ

(1)
K y′) (54)

but using the previous equation, this simplifies to

0K = y′ − y

1 + α
− (1 + α)

(
y′ ⊙ Γ

(1)
K y + (1− y)⊙ Γ

(1)
K y′) (55)

Note that when α = 0 we have y(0) = 0 such that we end up with

Γ
(1)
K y′(0) = y′(0) (56)

which means that y′(0) is a multiple of the top eigenvector of Γ(1)
K and since Γ

(1)
K is positive matrix, this eigenvector has

positive entries by Perron Frobenius theorem from which we deduce that the entries of y′(0) have the same sign.

We claim that y′(0) must be non-negative. Suppose for the sake of contradiction that y′(0) ≺ 0, so that y(α) ≺ 0 for
some α sufficiently small. In particular, we assume that g(α, 1) ≻ 1. Using the lower bound for congruent matrices (see
Theo. 4.5.9 of (Horn & Johnson, 2013)), we have that

λ1(Dg(α,1)2ΩK) ≥ λK(Dg(α,1)2)λ1(ΩK) > 1 (57)

since λ1(ΩK) > 1 and all eigenvalues of Dg(α,1)2 are larger than 1. However, this contradicts the consistency equation in
Prop. 3.4 which states that λ1(Dg(α,1)2ΩK) ≤ 1, so y′(0) must be non-negative.

Furthermore, by Cor. 3.7 we have that y = 1K − g(1) is non-zero for all α > 0, so y(0) cannot be the zero vector. This
implies that y(α) ≻ 0 for all α in a neighbourhood of zero. We will now show that y(α) ⪰ 0 for all α ≥ 0. Let α∗ denote
the first crossing time for y(α),

α∗ = inf{α ≥ 0 | y(α) ̸⪰ 0}. (58)
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Suppose for the sake of contradiction that α∗ < ∞. Since y(α) is continuous, we must have that y(α∗)k = 0 for some k
and y(α∗)k′ ≥ 0 for k′ ̸= k. However, examining the QVE for the kth entry of y(α∗) in (53) implies that

0 = (1 + α∗)(Γ
(1)
K y)k (59)

so the fact that (1 +α∗)Γ
(1)
K has positive entries and y(α∗) ⪰ 0 implies that y(α∗) = 0. However, by Cor. 3.7 we have that

y = 1K − g(1) is non-zero for all α > 0 which contradicts the fact that y(α∗) = 0. We can conclude that y ≻ 0 for all α
as required, since the case that y ≡ 0 is ruled out by Cor. 3.7.

F. Proof of Prop. 3.9 (Equation for Outliers)
Let λ not in the spectrum of X/

√
N such that GX/

√
N (λ) := (λ−X/

√
N)−1 is well defined, then from the decomposition

of Eq. (8), we have the identity (
λ− Ỹ√

N

)
=
(
λ− X√

N

)(
I−G X√

N
(λ)Z

)
. (60)

Taking the determinant of this equation with the eigendecomposition of Prop. 3.8 and cyclicity of the determinant, we get
that the characteristic polynomial of Ỹ /

√
N is given by:

det
(
z − Ỹ√

N

)
= det

(
z − X√

N

)(
IK −V⊤G X√

N
(λ)VΩ̃K

)
, (61)

where we have a denoted by Ω̃K := ΩK +EK . Following (Benaych-Georges & Nadakuditi, 2011; 2012) as N → ∞, an
outlier of Ỹ /

√
N separates from the bulk if it is a zero of the following limit of the secular function

h(λ) := lim
N→∞

det
(
IK −V⊤G X√

N
(λ)VΩ̃K

)
, (62)

provided this limit is well-defined.

To tackle this limit, we will use deterministic equivalents for the resolvent.
Lemma F.1 (Anisotropic Deterministic Equivalent). Let z ∈ C\Supp(µX), w1,w2 be two sequences of vectors independent
of X such that for i = 1, 2, ∥wi∥

a.s−−−−→
N→∞

Ci > 0, denote by P the permutation matrix that ordered the groups B1, . . . , Bk,

and introduce G(z) the (N ×N) diagonal matrix

G(z) := P

g1(z)I|B1|
. . .

gK(z)I|BK |

P⊤ , (63)

where the gk(.) are the solutions of the QVE of Prop. 3.1, then we have∣∣∣⟨w1,G X√
N
(z)w2⟩ − ⟨w1,G(z)w2⟩

∣∣∣ a.s−−−−→
N→∞

0. (64)

Proof. This is a direct consequence of the anisotropic local law of Thm. 1.13 in (Ajanki et al., 2017b).

Since (V⊤GX/
√
N (λ)V)kl = ⟨v(k),GX/

√
N (λ)v(l)⟩, the use of Lemma F.1 with the block-structure of the v(k) from

Prop.3.8 implies
V⊤GX/

√
N (λ)V

a.s−−−−→
N→∞

Dg(λ) , (65)

and since also Ω̃K
a.s−−−−→

N→∞
ΩK both in operator norm and entrywise by Prop. 3.8, by continuity of the determinant this

leads to

h(λ)
a.s
= det

(
IK −Dg(λ) ΩK

)
, (66)

which concludes the proof.
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G. Proof of Prop. 3.12 (The Overlap Vector is Proportional to the Right Top Eigenvector v
(r)
1 )

To ease notations, let’s denote by Y̌ = Ỹ /
√
N and X̌ = X̃/

√
N and λi ≡ λi

(
Ỹ√
N

)
, ui are respectively the ordered

eigenvalues and the associated eigenvectors of Y̌ . Thus, we have

V⊤GY̌ (z)V =

N∑
i

(z − λi)
−1V⊤ui

(
V⊤ui

)⊤
(67)

Thus if λ1 is simple we have

qq⊤ = lim
z→λ1

{
(z − λ1) ·V⊤GY̌ (z)V

}
(68)

Lemma G.1 (Resolvent Identities). With GY̌ (z) = (zI − Y̌ )−1 and GX̌(z) = (zI − X̌)−1, we have for any z /∈
(Spec(Y̌ ) ∪ Spec(X̌)):

GY̌ (z) = GX̌(z) +GX̌(z)VΩK

(
I−V⊤GX̌(z)V

)−1

V⊤GX̌(z) (69)

Proof. This is simply a consequence of the Woodbury matrix inequality.

If we denote by G̃ = V⊤GX̌(z)V, we get

V⊤GY̌ (z)V = G̃+ G̃ΩK

(
I− G̃ΩK

)−1

G̃ (70)

and so

lim
N→∞

qq⊤ = lim
N→∞

lim
z→λ1

{
(z − λ1) ·

(
G̃+ G̃ΩK(I− G̃ΩK)−1G̃

)}
, (71)

lim
N→∞

qq⊤ = lim
z→1

{
(z − 1) ·

(
Dg(z) +Dg(z)ΩK(I−Dg(z)ΩK)−1Dg(z)

)}
, (72)

lim
N→∞

qq⊤ = Dg(1)ΩK

(
lim
z→1

{
(z − 1) · (I−Dg(z)ΩK)−1)

})
Dg(1) , (73)

Without loss of generality, we write z = 1 + ϵ with ϵ > 0, such that g(1 + ϵ) ≻ 0 and thus

Dg(1+ϵ)ΩK = D
1/2
g(1+ϵ) · (D

1/2
g(1+ϵ)ΩKD

1/2
g(1+ϵ)) ·D

−1/2
g(1+ϵ) (74)

that is Dg(1+ϵ)ΩK is similar to the symmetric matrix D
1/2
g(1+ϵ)ΩKD

1/2
g(1+ϵ) and we have

lim
ϵ→0+

{
ϵ · (I−Dg(1+ϵ)ΩK)−1

}
= D

1/2
g(1) · lim

ϵ→0+

{
ϵ · (I−D

1/2
g(1+ϵ)ΩKD

1/2
g(1+ϵ))

−1
}
·D−1/2

g(1) (75)

If we denote respectively by ϕi(1 + ϵ) and wi(1 + ϵ), the ordered eigenvalues and corresponding orthonormal eigenvectors
of the matrix D

1/2
g(1+ϵ)ΩKD

1/2
g(1+ϵ), we have

(I−D
1/2
g(1+ϵ)ΩKD

1/2
g(1+ϵ))

−1 =

K∑
i=1

1

1− ϕi(1 + ϵ)
wi(1 + ϵ)w⊤

i (1 + ϵ) , (76)

and since ϕ1(1 + ϵ) → 1 and is simple, we get:

lim
ϵ→0+

{
ϵ · (I−Dg(1+ϵ)ΩK)−1

}
= D

1/2
g(1) · lim

ϵ→0+

{ K∑
i=1

ϵ

1− ϕi(1 + ϵ)
wi(1 + ϵ)wi(1 + ϵ)⊤

}
·D−1/2

g(1) , (77)

lim
ϵ→0+

{
ϵ · (I−Dg(1+ϵ)ΩK)−1

}
= D

1/2
g(1) · lim

ϵ→0+

{ ϵ

1− ϕi(1 + ϵ)
w1(1 + ϵ)w1(1 + ϵ)⊤

}
·D−1/2

g(1) , (78)

lim
ϵ→0+

{
ϵ · (I−Dg(1+ϵ)ΩK)−1

}
=

−1

ϕ′
1(1)

D
1/2
g(1) ·w1(1)w1(1)

⊤ ·D−1/2
g(1) , (79)
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thus we get

lim
N→∞

qq⊤ =
−1

ϕ′
1(1)

·Dg(1)ΩK

(
D

1/2
g(1)w1(1)

)(
D

1/2
g(1)w1(1)

)⊤
. (80)

To conclude, let’s remark that we can rewrite Eq. (19) as

(D
1/2
g(1)ΩKD

1/2
g(1))

(
D

−1/2
g(1) v

(r)
1

)
=
(
D

−1/2
g(1) v

(r)
1

)
(81)

from which we deduce that

w1(1) =
D

−1/2
g(1) v

(r)
1

∥D−1/2
g(1) v

(r)
1 ∥

(82)

and hence if we denote by C0 = ∥D−1/2
g(1) v

(r)
1 ∥2 and C = −ϕ′

1(1), we have

lim
N→∞

qq⊤ =
1

C · C0
·
(
Dg(1)ΩKv

(r)
1

)
(v

(r)
1 )⊤ (83)

which simplifies using Eq. (19) as

lim
N→∞

qq⊤ =
1

C · C0
· v(r)

1 (v
(r)
1 )⊤ (84)

H. Proof of Prop. 3.13 (Value of the Derivative of the Top Eigenvalue)
We recall the standard result concerning the first-order perturbation theory for eigenvalues of symmetric matrices.

Lemma H.1 (Hadamard First Variation Formula). Let A(t) be symmetric and smooth for its parameter t. For t0, assume
that λi(t0) ≡ λi

(
A(t0)

)
is simple with associated eigenvector vi(t0), then λ′

i(t0) is well-defined and given by λ′
i(t0) =

⟨vi(t0),A
′(t0)vi(t0)⟩.

Proof. See for example Chap. 1 of (Tao, 2020). This is simply obtained by combining the differentiation of the eigenvalue
equation A(t)vi(t) = λi(t)vi(t) and the differentiation of the normalization of the top eigenvector ⟨vi(t),vi(t)⟩ = 1.

In particular, since ϕ1(1 + ϵ) is the top eigenvalue of the symmetric matrix D
1/2
g(1+ϵ)ΩKD

1/2
g(1+ϵ) and ϕ(1) is simple, we get

after simplification, the simple formula:

ϕ′
1(1) =

1

C0
· ⟨v(r)

1 ,ΩKDg′(1)ΩKv
(r)
1 ⟩ , (85)

with C0 = ⟨v(r)
1 ,D−1

g(1)v
(r)
1 ⟩. Furthermore, we see from App. B, that g′(1) is by definition given by the solution of

1K = (∇gf)(g(1))g
′(1) , (86)

and since (∇gf)(g(1)) is invertible for λ1(ΩK) > 1, we get using its expression (43):

g′(1) = (D−2
g(1) − ΓK)−11K . (87)

Using the explicit expressions (17) (16) for the left and right eigenvector gives us:

−ϕ′
1(1) =

1

C0
· ⟨1K − g(1),P(1K − g(1))⟩ , (88)

with

P = Dρ⊙1/2ΩKD−g′(1)ΩKDρ⊙1/2 (89)

which gives the desired result using the definition (10) of ΓK and the commutativity of diagonal matrices.
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I. Properties of the Signal-to-Noise Ratio λ1(ΩK).
In this Appendix, we describe simple properties of the Signal-to-Noise Ratio. We recall the assumptions ρk > 0 and skl > 0
for any 1 ≤ k, l ≤ K which implies that λ1(ΩK) is simple with top eigenvector v1 ≻ 0 by Perron-Frobenius theorem.

I.1. Behavior of the SNR with the Block Noise Level

As described in Thm. 2.6, the top eigenvalue λ1(ΩK) plays the role of the signal-to-noise ratio (SNR) for the inhomogeneous
spiked model. We first prove that as we decrease the noise level in any block, which translates into increasing any skl (recall
Yij = (xixj)/

√
N +HijΣ

−1/2
ij with Σij = skl for any (i, j) ∈ Bk ×Bl), we improve the SNR, as one should expect.

Proposition I.1. For any k, l ∈ {1, . . . ,K}2, λ1(ΩK) is an increasing function of skl.

Proof. The matrix ΩK is continuous and differentiable for any skl, with derivative given by d
d(skl)

ΩK =
√
ρkρl(eke

⊤
l +

ele
⊤
k ). Since the top eigenvalue is simple, we have by Hadamard’s first variation formula (see Lem. H.1) that λ1(ΩK) is

differentiable for skl with derivative given by

d

d(skl)
λ1(ΩK) = ⟨v1,

√
ρkρl(eke

⊤
l + ele

⊤
k )v1⟩ = 2

√
ρkρlv1kv1l > 0, (90)

where in the last equality, we have used that v1 = (v11, . . . , v1K) ≻ 0 by the Perron-Frobenius theorem.

I.2. Behavior of the SNR with Compression of the Data

Recall the partition of the signal into its K parts, x = x1 ⊕ · · · ⊕ xK where for any k ∈ {1, . . . ,K}, the k-th species is
given as xk = (x)i∈Bk

and for two vectors x,y ∈ (RN ,RM ), x⊕ y = (x1, . . . , xN , y1, . . . , yM ) ∈ RN+M . Next, let’s
consider that one is not interested in retrieving the entire signal x but only a reduced version of it containing some K ′ < K
species, that is explicitly one is interested in retrieving x(rdc) =

⊕
i∈I xi for some I ⊂ {1, . . . ,K} such that |I| = K ′. A

typical example corresponds to the case x(rdc) = x1 where one is only interested in retrieving one species out of the K
species. One may then ask if it is best

• to consider the transformed matrix Ỹ on the entire data matrix Y of size (N ×N), and then keep only the overlap
with the reduced signal,

• or to consider the transformed matrix Ỹ (rdc) obtained from the reduced data matrix where one removes any component
Yij such that (i, j) /∈ I2. The previous example with K ′ = 1 would correspond to looking at the homogeneous spiked
model made of the top (|B1| × |B1|) left corner of the data matrix Y , instead of the entire matrix Y .

It is natural to expect the second option to be suboptimal to the first one as it loses the information on cross terms Yij where
i ∈ I and j /∈ I which might help retrieve the reduced signal x(rdc). Our next result indicates that this is indeed the case, at
the level of the SNR.

Proposition I.2. If Ω(rdc)
K′ is the parameter matrix for the reduced data matrix Y (rdc), then we have:

λ1(Ω
(rdc)
K′ ) < λ1(ΩK) . (91)

Proof. By symmetry and induction, it is enough to prove λ1(Ω
(rdc)
K−1) < λ1(ΩK), where Ω(rdc)

K−1 corresponds to the parameter
matrix for the reduced data matrix without the |BK | last rows and columns of the data matrix Y . For N ′ = N − |BK |, we
thus have

(Y
(rdc)
ij )1≤i,j≤N ′ =

(xixj√
N

+HijΣ
−1/2
ij

)
1≤i,j≤N ′

, (92)
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In particular, note that in the large N limit, the non-zero eigenvalue of the rank-one matrix has been reduced by a factor
N ′/N < 1 since x(rdc) ∈ RN ′

. If we normalize the matrix

Y (0) =

√
N

N ′Y
(rdc) , (93)

we get back to our original setting with K − 1 species. If we denote by α := limN→∞ N ′(N)/N ∈ (0, 1), the parameters
(ρ

(rdc)
k , s

(rdc)
kl )1≤k,l≤K−1 for this reduced model are related to the ones (ρk, skl)1≤k,l≤K of the entire model by:

• s
(rdc)
k,l =

sk,l

α for any 1 ≤ k, l ≤ K − 1;

• ρ
(rdc)
k = αρk for any 1 ≤ k ≤ K − 1.

Since (Ω(rdc)
K−1)kl =

√
ρ
(rdc)
k ρ

(rdc)
l s

(rdc)
k,l =

√
ρkρlskl, the parameter matrix Ω

(rdc)
K−1 is simply the top left

(
(K−1)×(K−1)

)
minor of ΩK . We can then use the same argument as for the proof of Cauchy interlacing theorem: if we denote by v

(rdc)
1 ≻ 0

the top eigenvector of Ω(rdc)
K−1, and v1 the one of ΩK , we have:

• on the one hand:

λ1(Ω
(rdc)
K−1) = ⟨v(rdc)

1 ,Ω
(rdc)
K−1v

(rdc)
1 ⟩ = ⟨(v(rdc)

1 ⊕ 0),ΩK(v
(rdc)
1 ⊕ 0)⟩ , (94)

where we recall (v(rdc)
1 ⊕ 0) = (v

(rdc)

1,1 , . . . , v
(rdc)

1,K−1, 0).

• on the other hand:

λ1(ΩK) = maxv,∥v∥=1⟨v,ΩKv⟩ = ⟨v1,ΩKv1⟩ . (95)

Since v1 ≻ 0, we must have v1 ̸= v
(rdc)
1 leading to the desired result since λ1(ΩK) is simple.

Note that Prop. I.2 indicates that reducing the data matrix might lead to losing any correlation between the top eigenvector
and the signal since for a model with parameters such that λ1(ΩK) > 1, the overlap between the top eigenvector and each
species xk is positive, and in particular one has also a positive overlap between the (entire) top eigenvector and the reduced
signal vector x(rdc). By reducing the data matrix, one may end up with λ1(Ω

(rdc)
K′ ) < 1 such that there is no positive overlap

between the associated top eigenvector v(rdc)
1 and the reduced signal x(rdc).

I.3. Explicit and Semi-Explicit Form of the SNR in Specific Cases

For K = 1, one has ΩK = s and we retrieve the usual BBP threshold for homogeneous spiked Wigner model.
For K = 2 and ρ = (ρ, 1− ρ), one has

λ1(Ω2) :=
ρs11 + (1− ρ)s22 +

√
4ρs212 + s222 − 2ρs22(s11 + s22) + ρ2((s11 + s22)2 − 4s212)

2
, (96)

in particular, in the limit (not studied in this paper) where s11 = s22 = 0 and s12 ≡ s, one has λ1(Ω2) =
√

(1− ρ)ρ · s,
which is the transition for the asymmetric rank-one homogeneous channel, as one should expect.
Eventually, for a generic K with the same noise level on the diagonal skk = sin for all k ∈ JKK and the same noise level
off-diagonal skl = sout ̸= sin for all k ̸= l, we have ΩK = (sin − sout)Dρ + sout(ρ

⊙1/2)(ρ⊙1/2)⊤, such that λ1(ΩK) is
the highest zero of the secular equation

1 + sout
∑
k

ρk
(sin − sout)ρk − λ

= 0 . (97)

In particular, for the balanced model ρ = (1/K, . . . , 1/K), this is given explicitly by

λ1(ΩK) = sout
(
1− 1

K

)
+

sin
K

. (98)
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