
DFlow: A Generative Model Combining Denoising AutoEncoder and
Normalizing Flow for High Fidelity Waveform Generation

Chenfeng Miao 1 Qingying Zhu 1 Minchuan Chen 1 Wei Hu 1 Zijian Li 2 Shaojun Wang 1 Jing Xiao 1

Abstract
In this work, we present DFlow, a novel genera-
tive framework that combines Normalizing Flow
(NF) with a Denoising AutoEncoder (DAE), for
high-fidelity waveform generation. With a tact-
fully designed structure, DFlow seamlessly inte-
grates the capabilities of both NF and DAE, result-
ing in a significantly improved performance com-
pared to the standard NF models. Experimental re-
sults showcase DFlow’s superiority, achieving the
highest MOS score among the existing methods
on commonly used datasets and the fastest synthe-
sis speed among all likelihood models. We further
demonstrate the generalization ability of DFlow
by generating high-quality out-of-distribution au-
dio samples, such as singing and music audio.
Additionally, we extend the model capacity of
DFlow by scaling up both the model size and train-
ing set size. Our large-scale universal vocoder,
DFlow-XL, achieves highly competitive perfor-
mance against the best universal vocoder, BigV-
GAN.

1. Introduction
Deep Generative Models (DGMs) have gained remarkable
success in the wave generation task in recent years. Start-
ing with WaveNet (Oord et al., 2016), many DGMs have
flourished in the waveform generation field, including Gen-
erative Adversarial Networks (GAN) (Kong et al., 2020;
Kumar et al., 2019; You et al., 2021; Yang et al., 2020) and
likelihood-based models, such as autoregressive (AR) mod-
els (Oord et al., 2016; Kalchbrenner et al., 2018; Valin &
Skoglund, 2019), normalizing flows (NF) (Kim et al., 2019;
Prenger et al., 2019), and diffusion models (Chen et al.,
2021; Kong et al., 2021). Compared with other generative

1Ping An Technology, Shanghai, China 2Georgia Institute
of Technology, GA, US. Correspondence to: Chenfeng Miao
<miao chenfeng@126.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

models, NFs have many theoretical advantages, including
exact likelihood evaluation, efficient training and inference,
and controllable latent representation, making them espe-
cially attractive. Unfortunately, on many generation tasks,
the standard NFs generally do not have competitive genera-
tion performance against GAN-based models (Kong et al.,
2020; Lee et al., 2023; Brock et al., 2019) or other likelihood
models (Oord et al., 2016; Chen et al., 2021; Kong et al.,
2021; Ho et al., 2020). These other generative models, on
the other hand, also have pragmatic drawbacks over NFs.
For example, AR or diffusion models require multiple steps
to generate the output, while GAN models often suffer from
mode collapse when scaling up the model size (Lee et al.,
2023; Brock et al., 2019).

In this work, we aim to construct a powerful generative
framework that inherits the advantages of NFs while over-
coming their limitations, thus further holding the potential
to surpass other generative models across various aspects.
For this purpose, we begin this work by investigating the
limitations of standard NF models. We find that NF-based
models are not robust to small input variations and often
encounter initial errors during inference. This inspires us to
enhance the NF model with a denoising autoencoder (DAE)
(Vincent et al., 2008). However, our preliminary results
indicate that simple integration of NF and DAE poses sig-
nificant challenges to stable training. To address this issue,
we tactfully designed the model structure by having an au-
toregressive flow module acting as the denoising encoder,
constraining the primary flow to be volume-preserving, and
utilizing a feed-forward decoder. These design choices
empower our model, the DFlow, with stable training and
surprisingly improved performance. To summarize, DFlow
has the following advantages:

• Stable and efficient training. DFlow is trained from
scratch, using only one training stage. Moreover,
DFlow enjoys very efficient training thanks to its fully
convolutional and fully parallel structure.

• Fast synthesis. The synthesis speed of DFlow is sig-
nificantly faster than the standard NF models. To the
best of our knowledge, DFlow sets a new benchmark
of synthesis speed among likelihood-based waveform
generation models and is approaching the speed of

1

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

GAN models.

• High-quality generation. The audio quality of DFlow
is significantly improved compared to the standard NF
models, and even better or at least comparable to the
GAN models.

• High robustness. We demonstrate the impressive gener-
alization capabilities of DFlow, which, though trained
only on speech data, performs exceptionally well in
synthesizing out-of-domain non-speech waveforms, in-
cluding singing and music waveforms, where standard
NF models often fail.

Furthermore, the contemporary landscape of machine learn-
ing exhibits a tendency towards large-scale models, as evi-
denced by previous studies (Brock et al., 2019; Henighan
et al., 2020) suggesting that increasing the dataset scale and
model size can enhance the model performance. Taking
inspiration from this, we proceeded to train DFlow-XL, an
expanded version of DFlow, by increasing both the train-
ing set scale and the model size of DFlow. Experimental
findings suggest that as the model size increases, DFlow
exhibits noteworthy performance improvements, thereby
showcasing its scalability.

Our audio samples are available on the demo website1, and
the implementation of our model is provided as open source
to ensure reproducibility and facilitate future research ef-
forts2.

2. Background
In this section, we briefly describe the basic concepts of
normalizing flows (NFs) and then discuss the limitations of
NF-based generative models.

2.1. Normalizing Flows

Normalizing flows (NFs) are a category of generative mod-
els that model one distribution pX(x) as a parametric invert-
ible transformation fθ to another distribution pZ(z), where
pX(x) is the unknown data distribution on the data space
X and pZ(z) is a known distribution, such as a multivariate
Gaussian, on the latent space Z. Following the change of
variable formula, the likelihood of a data sample x ∈ X
can be exactly computed as:

pX(x) = pZ(fθ(x))

∣∣∣∣det∂fθ∂x

∣∣∣∣ (1)

where ∂fθ
∂x is the Jacobian matrix of fθ at x. An NF model

is typically trained by maximizing the log-likelihood of the
training data with respect to the model parameter θ. For

1https://mcf330.github.io/DFlowDemo/
2https://github.com/mcf330/DFlowCode

better expressiveness, fθ is often parameterized by stacking
multiple invertible transformations, where each individual
transformation has an exact computation of the Jacobian de-
terminant and the inverse transformation. In practice, these
individual transformations are often designed as triangu-
lar mappings such that the time complexity of computing
the determinant of such n× n Jacobian matrix is O(n) as
opposed to O(n3) for an unconstrained matrix.

AR transformations vs. Non-AR transformations. A
particular type of invertible transformation that is often used
as building blocks of NFs is the autoregressive (AR) trans-
formation (Germain et al., 2015; Papamakarios et al., 2017).
Due to the autoregressive nature, the Jacobian of this type
of transformation is triangular by design and, hence, can
be easily computed. A drawback of AR transformation is
recursive sampling, which is inefficient on parallel devices
such as GPUs. Therefore, modern NF models tend to use
non-AR transformations (Dinh et al., 2015; 2017; Kingma
& Dhariwal, 2018). Unlike invertible AR transformations,
non-AR transformations enable parallel computation for
both training and sampling.

VP transformations vs. NVP transformations. Invertible
transformations can be categorized into volume-preserving
(VP) transformations and non-volume-preserving (NVP)
transformations according to different Jacobian determi-
nants. Specifically, a VP transformation has a unit Jacobian
determinant (Dinh et al., 2015) while an NVP (Dinh et al.,
2017; Kingma & Dhariwal, 2018) transformation does not.

2.2. Limitations of NF-based generative models

The model capability of NF models relies exclusively on
maximizing likelihood estimation (MLE). Unfortunately,
much evidence shows that the penalties and priorities im-
posed by MLE are not always aligned with human percep-
tion (Theis et al., 2016; Espuña I Fontcuberta, 2022; Grover
et al., 2018). As for waveform generation, the likelihood of
the time-domain signal does not consistently match human
evaluations. Human judgment of waveform quality relies
heavily on the frequency-domain information. However, as
natural signals, even minor variations in the time domain
can induce perceptible changes in the frequency domain.
For example, as shown in Fig. 1, from a frequency-domain
perspective, the harmonic components of the waveform
generated by WaveGlow are quite blurry compared to the
ground truth. Thus, to ensure high-quality waveform genera-
tion, the model has to be sufficiently robust to small changes
in its input data.

In addition, NF models often suffer from the initial error of
mismatch between p(fθ(x)) and p(z) (Ramasinghe et al.,
2022). Moreover, nonlinear systems, such as NF-based
models, often amplify initial errors and yield substantially
distinct outputs even with minor variations in the input data

2

https://mcf330.github.io/DFlowDemo/
https://github.com/mcf330/DFlowCode

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

WaveGlow DFlow Ground Truth

Figure 1. Mel-spectrograms of waveforms generated by WaveGlow, DFlow, and the ground truth, with zoomed-in views of high-frequency
details. Both the waveforms generated by DFlow and the ground truth exhibit clear harmonic components. However, the one generated by
WaveGlow not only has blurry harmonic components but also periodic noises.

(Higham, 2002; Lanckriet et al., 2002). In the context of
waveform generation, it is a common practice to transform
the one-dimensional waveform into a multi-dimensional
vector using a Squeeze (Prenger et al., 2019; Ping et al.,
2020) operation. This step is necessary for the widely em-
ployed affine coupling layer (Dinh et al., 2017; Kingma &
Dhariwal, 2018). However, the periodic operation intro-
duces biases into p(fθ(x)) during training. Consequently,
it leads to initial errors during the sampling process, result-
ing in periodic artifacts in the generated waveforms. The
throughout horizontal lines peculiar to the mel-spectrogram
of the waveform generated by WaveGlow in Fig. 1 are
visualizations of these periodic artifacts.

3. Method
3.1. Overview

Given the standard NF often encounters errors during infer-
ence, a natural solution to address this problem is to train
a refinement module that enhances the capacity of the stan-
dard NF. In considering this, we split the generation of the
complex data distribution p(x) into two steps: a generation
step that learns a noisy data distribution p(x̃) and a refine-
ment step that learns the clean data distribution based on
the noisy data distribution p(x|x̃). Here, the noisy data x̃
is obtained by adding a random Gaussian noise ϵ with a
small scalar β to each clean data sample: x̃ = x+ βϵ. The
generation of p(x̃) is formulated as an NF model, while the
refinement step p(x|x̃) is a DAE.

As presented in Fig. 2a, the proposed framework consists
of 3 modules: the Auxiliary Flow network f , the Primary

Flow network g, and the Decoder network m. The Auxiliary
Flow plays two fundamental roles at the same time. On the
one hand, the two NF modules, the Auxiliary Flow and
the Primary Flow, formulate a standard NF that serves as
an invertible transformation from the noisy input x̃ into a
Gaussian prior zp. On the other hand, the Auxiliary Flow
also acts as the DAE encoder that transforms the noisy input
x̃ into the latent variable zl, from which the DAE decoder
m learns to reconstruct the clean signal.

The sampling is processed by first inverting the Primary
Flow module: zl = g−1(zp) and then producing the output
through the decoder: x̂ = m(zl). The Auxiliary Flow
module f is excluded from the sampling phase.

3.2. Training objective

The primary goal of probabilistic generative modeling is
to maximize the marginal log-likelihood of each training
sample x ∈ X with respect to the model parameters θ. This
requires the marginalization of any latent variables in the
model:

log pθ(x) = log

∫
pθ(zl) pθ(x|zl)dzl (2)

Here, θ refers to the generative parameters from network g
and m. Since the Auxiliary Flow network f is an invertible
flow module, Eq. 2 can be rewritten as:

log pθ(x)

= log

∫
pθ(zl)pϕ(x̃|zl)pϕ(zl|x̃) pθ(x|zl)dzl dx̃

= log

∫
pθ,ϕ(x̃) pθ,ϕ(x|x̃)dx̃ (3)

3

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

V16

Primary
Flow

Additive
Coupling

Flip
× �

Squeeze

Auxiliary
Flow

AR Flow (L R)

AR Flow (R L)

Train
Inference

��

�

�

Auxiliary
Flow �

�� Decoder
�

Primary
Flow �

�
+��

(a) Overall Structure

V16

Primary
Flow

Additive
Coupling

Flip
× �

Squeeze

Auxiliary
Flow

AR Flow (L R)

AR Flow (R L)

Train
Inference

��

�

�

Auxiliary
Flow �

�� Decoder
�

Primary
Flow �

�
+��

(b) Auxiliary Flow

V16

Primary
Flow

Additive
Coupling

Flip
× �

Squeeze

Auxiliary
Flow

AR Flow (L R)

AR Flow (R L)

Train
Inference

��

�

�

Auxiliary
Flow �

�� Decoder
�

Primary
Flow �

�
+��

(c) Primary Flow

Figure 2. Architecture of DFlow.

Here, ϕ refers to the parameters of f . This integration is
still intractable, so instead, we optimize a lower bound on
the marginal likelihood following the variational principle:

log pθ(x) = log

∫
pθ,ϕ(x̃) pθ,ϕ(x|x̃)dx̃

= log

∫
qβ(x̃|x)
qβ(x̃|x)

pθ,ϕ(x̃) pθ,ϕ(x|x̃)dx̃

≥ Eqβ(x̃|x)[log pθ,ϕ(x|x̃)
+ log pθ,ϕ(x̃)− log qβ(x̃|x)] (4)

This bound is often referred to as the evidence lower
bound (ELBO). The first term corresponds to the expected
negative reconstruction error of DAE and the last two
terms can usually be combined as the KL divergence be-
tween the approximated posterior and the prior distribution:
DKL(qβ(x̃|x) || pθ,ϕ(x̃)). Notice that β is a constant that
does not depend on the model parameters, therefore the last
term in Eq. 4 does not need to be optimized during training.
Then the training objective can be rewritten as the combina-
tion of negative log-likelihood of x̃ given by the NF and the
reconstruction error Lrec given by the DAE:

Lall = − log p(x̃) + Lrec (5)

Negative log-likelihood. Following Eq. 1, the negative
log-likelihood (NLL) of x̃ can be computed as:

− log p(x̃) = − log(p(zp))− log(|det(J(f))|)
− log(|det(J(g))|) (6)

= − log(p(zp))− log(|det(J(f))|) (7)

where zp ∼ N(0, I), det(J(f)) and det(J(g)) are the
Jacobian determinants of f and g respectively. Here g is
designed to be a VP flow, therefore det(J(g)) = 1 as men-
tioned in section 2.1, and thus log(|det(J(g))|) = 0.

Reconstruction error. The reconstruction error of DAE
is measured by MAE (Mean Absolute Error) between the

predicted audio x̂ and clean audio x. The MAE is multiplied
by a positive scalar 1/β, which is consistent with those noise
learning models and diffusion models (Lee et al., 2021;
Kong et al., 2021):

Lrec =
1

β
||x− x̂||1 (8)

In the next subsections, we discuss the model in detail.

3.3. Noise injection

It is noteworthy that, in the absence of noise injection into
the input x, the network f and m together form a plain
AutoEncoder (AE), in which the decoder serves as an es-
timated inverse of the encoder. However, in this scenario,
the proposed g +m generation process would yield inferior
results compared to directly inverting the g + f NF module,
as the estimated inverse provided by m would inevitably be
less accurate than the exact inverse of f . Therefore, from a
design perspective, we aim for the decoder m to offer more
than just an estimated inverse of f . To achieve this, we intro-
duce noise through the use of a DAE, which confers several
advantages to the model. Firstly, the Decoder m now learns
beyond the exact input, implying the potential for superior
performance compared to the standard NF model. Secondly,
the incorporation of noise injection enables the model to
acquire expressive latent representations that exhibit height-
ened sensitivity and robustness to minor input variations.
Consequently, this enhances the model’s ability to generate
accurate high-frequency details. Thirdly, the Decoder be-
comes more resilient to minor errors arising from inverting
the Primary Flow network during inference, thereby further
improving the overall quality of the generated outputs.

3.4. Auxiliary Flow

The Auxiliary Flow f is made up of a stack of invertible AR
transformations. As previously mentioned, it serves both as
part of the standard NF and as the encoder of the DAE.

4

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

One could query the rationale behind designing the DAE
encoder f to be invertible here. The invertible encoder in
DFlow provides explicit computing of its Jacobian determi-
nant, therefore allowing us to train a standard NF directly
on x̃, an observable variable with a fixed distribution. This
key feature sets DFlow apart from Latent Flows Models
(LFM) (Böhm & Seljak, 2022; Xiao et al., 2019), in which
a standard NF is trained on the latent variables of an AE.
Unfortunately, LFMs face a common limitation where, in
the cause of stable training, the latent space variable must be
separately learned before training the NF model. This often
leads to separate training stages (Böhm & Seljak, 2022) or
separate optimization using a stop gradient operation (Xiao
et al., 2019). We direct readers to (Xiao et al., 2019) for
detailed explanations. Unlike LFMs, DFlow computes the
log-likelihood on a variable of a fixed distribution, rather
than on a variable of an unfixed distribution as in LFMs, thus
overcoming the challenges of training stability encountered
by LFMs. Additionally, unlike traditional NF models that re-
quire explicit and efficient computation of both the Jacobian
determinant and the inverse of the transformation, in our
scenario, concerns about inverting f can be disregarded as
f is completely excluded from the sampling process. This
gains us the freedom to build f with invertible AR trans-
formations, avoiding the drawback of slow inverse while
enjoying the benefits outlined below. Firstly, invertible AR
transformations are typically much more expressive than
NAR transformations (Papamakarios et al., 2017; Ping et al.,
2020) and often require fewer layers. Secondly, AR transfor-
mations have no Squeeze operation that may hurt the overall
performance as discussed in Section 2.2. Thirdly, some
invertible AR transformations, for instance, those utilizing
causal convolutions (Oord et al., 2016), conduct parallel
training and therefore offer high training efficiency.

As shown in Fig. 2b, the Auxiliary Flow comprises one
left-to-right block and one right-to-left block. As a result,
the model might exhibit inductive bias in both directions.
Each block contains 4 single-directional AR transforma-
tions, which are specified as follows (taking the left-to-right
transformation for example):

log si, bi,h
′
i = WaveNet(x1:i−1,h1:i−1) (9)

x′
i = si · xi + bi (10)

where, WaveNet(·, ·) is the standard casual WaveNet block
(Oord et al., 2016), h ∈ RDh×T is a hidden variable with
a dimensionality of Dh. For each block, h is initialized as
a zero vector and passed through all AR transformations
within this block. The variable hi has no impact on the
Jacobian determinant because it is derived from previous
samples x1:i−1, which means that ∂hi

∂xi
= 0. We purpose-

fully set Dh ≫ 1 so that the model could carry extensive
information from one transformation to the next. This ef-
fectively addresses the bottleneck limitation of NF-based

models mentioned in several earlier researches (Chen et al.,
2020; Grcić et al., 2021).

3.5. Primary Flow

Aside from the considerations on stable training mentioned
in Section 3.4, obtaining an expressive yet steady latent
variable zl is also essential as the final output x̂ is derived
from zl. Here, the Primary Flow g is specifically designed
as a VP flow. If both f and g were NVP flows, then the
NLL of x̂ would become Eq. 6 rather than Eq. 7. The
constraint on maximizing the Jacobian determinant of f is
then weakened since there is an extra term in Eq. 6 con-
tributing to the NLL. In this case, f is not forced to explore
the latent space, resulting in zl having a particularly small
variance and therefore less expressive. The training is also
less stable as zl is under-constrained but the reconstruction
process relies heavily on it. By constraining g to be volume-
preserving, zl is guaranteed to have the same variance as zp,
which works as a regularization constraint on zl, making it
steady. The volume-preserving constraint also encourages
f to produce zl with variance, making it more expressive,
thereby enhancing the overall performance.

In detail, as shown in Fig. 2c, a Squeeze layer is used to
rearrange the 1-dimentional latent variable zl ∈ R1×T into
a 4-dimensional vector z′

l ∈ R4×T/4. The squeezed vector
z′
l is then passed through a stack of additive coupling layers

(Dinh et al., 2015). The order of the channels is reversed
by a flip layer after each coupling layer. We developed
a UNet(·) structure to parameterize the additive coupling
since the computational efficiency of the additive coupling
layers is essential to the overall model efficiency:

x1,x2 = Split(x) b = UNet(x2) (11)

x′
1 = x1 + b x′

2 = x2 x′ = Concat(x′
1,x

′
2) (12)

The UNet(·) structure contains a downsampling stage fol-
lowed by an upsampling stage. Three strided and three
transposed convolutional layers are used to perform the
downsampling and upsampling respectively, with residual
blocks of dilated convolutions between every single layer.
The input vector is downsampled by factors of (4, 4, 4) and
then upsampled with the same factors, while the channel
size of each residual block gradually increases or decreases
by a factor of 2 for the downsampling or upsampling process.
We add as many residual connections as possible between
the downsampling and upsampling stages. The detailed
implementation of the residual blocks and UNet(·) can be
found in Appendix A.1.

3.6. Decoder

The Decoder m is formulated by a stack of feed-forward con-
volution layers that do not need to be invertible. Specifically,

5

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

the Decoder is constructed using a series of UNet layers
mentioned in Section 3.5. These UNet layers provide the
model with the required inductive bias for high-resolution
and high-quality waveform generation, including a large
scale of the receptive field and efficient computation. In-
spired by (Kong et al., 2020), a tanh activation is employed
to generate the final output. Further implementation details
can be found in Appendix A.1.

To facilitate a better understanding of each module within
DFlow, we provide a concise summary of their individual
characteristics in Table 1.

4. Related work
To the best of our knowledge, DFlow is the first model that
jointly trains NF and DAE. Prior to our work, (Böhm &
Seljak, 2022) proposes a hybrid model for image generation
that cascades an NF and an AE using sequential training
stages. Another approach, as seen in (Xiao et al., 2019),
attempts to combine NF with an AE by employing a stop
gradient operation on the latent variable. To address the
topological constraint problem, (Horvat & Pfister, 2021)
uses a denoising training objective to train the NF model
by bidirectionally running the model during training. Con-
current to our work, (Silvestri et al., 2023) proposes to train
a VAE model using an NF-based encoder and a Gaussian
decoder. DFlow offers several advantages over the afore-
mentioned models, including end-to-end training and a fully
deterministic generative network. Most importantly, DFlow
demonstrates strong generative performance, further distin-
guishing it from the aforementioned models.

In the waveform generation field, GAN approaches are the
dominant techniques due to their efficacy in achieving high-
quality outputs and efficient synthesis (Kong et al., 2020;
Kumar et al., 2019; Lee et al., 2023; Miao et al., 2022).
Recently, diffusion models (Kong et al., 2021; Chen et al.,
2021), which are built from a hierarchy of DAEs, have been
shown to achieve high-quality results. Although diffusion
models do not exhibit mode collapse or training instabilities
as GAN models, they suffer from slow synthesis speed.
Flow-based neural vocoders (Prenger et al., 2019; Kim et al.,
2019; Ping et al., 2020; Lee et al., 2020; Luong & Tran,
2022) are an important line of research for our work. Most
of these models (Ping et al., 2020; Luong & Tran, 2022; Ping
et al., 2020) focus on developing powerful invertible layers,
while some models (Ping et al., 2020; Lee et al., 2020;
Luong & Tran, 2022) focus on reducing the model footprint.
This work, on the other hand, focuses on addressing the
common limitations of standard normalizing flows, allowing
for better expressiveness, robustness, and model efficiency.

From a broader perspective, the proposed model can be
seen as a special case of Variational AutoEncoder (VAE)

(Kingma & Welling, 2014) (which we referred to as the stan-
dard VAE), where qβ(x̃|x) acts as a non-trainable approxi-
mate posterior encoder, pf+m(x|x̃) and pf+g(x̃) serve as
the decoder and the prior respectively. However, there is a
key distinction between DFlow and the standard VAE: the
standard VAE employs a stochastic encoder, whereas DFlow
utilizes a deterministic encoder. The stochastic structure of
standard VAE raises the reconstruction error between the
input and the estimated output, while the reconstruction in
DFlow is much easier to learn. For instance, in the high-
fidelity waveform generation field, the standard VAE models
are often accompanied by an adversarial training objective
to minimize the reconstruction error (Kim et al., 2021; Miao
et al., 2024) while DFlow is adversarial-free. Another no-
table distinction between DFlow and the standard VAE is
that the standard VAE typically assumes a latent variable
with a known distribution, often the Gaussian distribution.
In contrast, DFlow does not impose such a constraint on the
latent variable, allowing for more flexibility in modeling the
underlying data distribution.

Inverse autoregressive flow (IAF) (Kingma et al., 2016)
is also similar to DFlow as they both employ autoregres-
sive flows to enhance the capacity of posterior distributions.
However, the autoregressive flow module in DFlow serves
not only as an enhancement module of the posterior distribu-
tion but also as an integral component of a general NF that
collectively forms the prior distribution in conjunction with
the rest of the flow modules. In addition, IAF is built on top
of the standard VAE framework, whereas DFlow is quite
different from standard VAEs as discussed in the last para-
graph. The unique combination of DAE and NF in DFlow
sets it apart from both IAF and standard VAEs, enabling
improved performance and distinct modeling capabilities.

DFlow is trained by injecting noise into the training data,
making it closely related to prior efforts on improving NF
via dequantization (Ho et al., 2019; Yoon et al., 2020). The
proposed noise injection can be viewed as a form of de-
quantization applied to the 16-bit discrete waveform sig-
nals. However, it is important to note that our approach
differs from conventional dequantization approaches. In
prior works like (Ho et al., 2019; Yoon et al., 2020), the
injected noises are maintained at a very small scale to ensure
the noisy data remains indistinguishable from the original
clean data. In contrast, DFlow introduces unconstrained
noise, resulting in noisy data that may significantly differ
from the original clean data. Moreover, our design perspec-
tive goes beyond mere data dequantization. Our empirical
findings suggest that training DFlow with small-scale noise
(e.g., setting β = 0.0001), which is sufficient for dequan-
tization purposes, performs only at a comparable level to
the standard NF. However, we noticed a significant improve-
ment when we intended to ”inject noise” into the input data
and trained the model with larger-scale noises (e.g., setting

6

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

Table 1. Summary of characteristics of each DFlow module.
Modules VP / NVP AR / NAR Invertible In sampling Building block
Auxiliary Flow NVP AR yes no WaveNet
Primary Flow VP NAR yes yes UNet
Decoder - NAR no yes UNet

β = 0.01).

5. Evaluations on commonly used datasets
5.1. Setup

To facilitate the comparison of results across different mod-
els, we first conduct experiments on two commonly used
speech datasets: a single-speaker speech dataset named LJ-
Speech (Ito, 2017) with a total length of approximately 24
hours and a multi-speaker speech dataset named VCTK (Ya-
magishi et al., 2019) with 109 speakers and a total length of
about 44 hours. All audio samples were resampled to 22.05
kHz despite their original sampling rates varied. We used
80-band mel-spectrograms as the input conditions. The FFT
size, window length, and hop size were set to 1024, 1024,
and 256, respectively. We upsampled mel-spectrograms
to different length scales (4×, 16×, 64×, 256×) through 4
transposed 1-D convolution layers, with the upsampling
rates of [4, 4, 4, 4]. Each transposed convolution layer is
followed by a Leaky ReLU activation. The upsampled mel-
spectrograms of different length scales are fed as conditions
to each causal WaveNet layer and each UNet layer of DFlow.
The detailed model configurations of DFlow are shown in
Appendix A.2. We trained the DFlow models on 4 Nvidia
Tesla V100 GPU (16G), with a batch size of 32 per GPU.
The AdamW optimizer (Loshchilov & Hutter, 2019) with
β1 = 0.8, β2 = 0.99 is used to train the models. The initial
learning rate is 2 × 10−4 and it decays at every training
epoch with a decay rate of 0.997. We trained each model
for a total of 1M iterations. The subjective evaluations are
conducted through the Mean Opinion Score (MOS) test and
the side-by-side Comparative Mean Opinion Score (CMOS)
test. Details of these tests are discussed in Appendix A.3.

5.2. Benchmarking baseline models

We first evaluate DFlow on the mel-spectrogram inversion
task by comparing it with several publicly available models
on the LJ-Speech dataset, such as an AR model WaveNet
(MoL) (Yamamoto, 2018), a standard NF model WaveG-
low (Valle, 2018), an adversarial model HiFi-GAN (Kong,
2020), and a diffusion model DiffWave (LMNT, 2022). For
all these models, we took the pretrained models on the
LJ-Speech dataset from their GitHub pages for our evalua-
tions. Inspired by (Lee et al., 2023), five objective metrics
were introduced to measure various types of the distance

between the ground-truth audio and the generated audio,
including: 1) Multi-resolution STFT error (M-STFT); 2)
Perceptual evaluation of speech quality (PESQ); 3) Mel-
cepstral distortion (MCD); 4) Periodicity error and 5) F1
score of voiced/unvoiced classification (V/UV F1). Please
refer to (Lee et al., 2023) for more details on these met-
rics. The objective evaluation results, along with the 5-scale
MOS results of different models, are presented in Table 2.
For the objective evaluations, DFlow outperforms baseline
models on most metrics except M-STFT, on which HiFi-
GAN achieves the best. One possible reason for this is that,
among these models, HiFi-GAN is the only one trained with
a spectrogram loss. For subjective evaluation, we find that
DFlow exhibits slightly better performance than HiFi-GAN
but significantly better than WaveGlow and WaveNet. In
particular, DFlow achieves a MOS of 4.42, with a gap of
0.11 to the ground truth, indicating its superiority.

5.3. Model size and efficiency

Table 2 presents a comparison of DFlow and the baseline
models in terms of model size, computation cost, and syn-
thesis speed. Despite having a large model size, DFlow
exhibits significantly low computation cost, with nearly 10
times fewer operations (39.2 BFLOPs/second) compared to
WaveGlow (368.36 BFLOPs/second). As a result, DFlow
achieves a much faster inference speed, nearly 3 times faster,
than WaveGlow on GPU. In fact, DFlow runs significantly
faster than all the above likelihood models and is approach-
ing HiFi-GAN. These improvements can be attributed to
two factors. Firstly, DFlow requires only one generation
step, which significantly boosts the model efficiency com-
pared to AR or diffusion models. Secondly, the utilization of
UNet layers in DFlow contributes to its overall efficiency, as
they are more efficient and faster compared to the commonly
used WaveNet layers in previous works (Prenger et al., 2019;
Ping et al., 2020; Kong et al., 2021). In particular, DFlow
can generate 22.05 kHz audio samples at a speed 71 times
faster than real-time on GPU.

5.4. Ablation Study

To verify the effectiveness of each design choice of DFlow,
we conducted a 7-scale CMOS test on ablation models of
DFlow on the LJ-Speech dataset. We also trained a model
with a standard NF structure for comparison. The detailed
descriptions of these ablation models are shown in Appendix

7

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

Table 2. Objective and subjective metrics of DFlow and the baselines, evaluated on the LJ-Speech test set.
Models M-STFT (↓) PESQ (↑) MCD (↓) Periodicity (↓) V/UV (↑) MOS (↑)
Ground Truth - - - - - 4.53±0.06
WaveNet (MOL) 1.18 2.32 1.91 0.132 0.91 4.08±0.09
WaveGlow 1.29 3.01 2.41 0.141 0.92 3.92±0.07
HiFi-GAN 0.99 3.11 0.92 0.152 0.94 4.39±0.08
DiffWave 1.23 3.08 2.58 0.101 0.94 4.31±0.07
DFlow 1.21 3.43 0.71 0.104 0.95 4.42±0.06

Table 3. The model size, synthesis speed, and memory usage of different models. All models were benchmarked using the same hardware.
The FLOPs represent the number of Floating Points Operations for generating a one-second waveform. One Nvidia V100 GPU was used
for the GPU benchmark. The time cost of transferring data between CPU and GPU was excluded from the GPU speed evaluation. For the
CPU benchmark, an Intel(R) Xeon(R) Gold 6130 CPU server with 48 CPU cores was used.

Models # param FLOPs/second (↓) GPU RTF (↓) CPU RTF (↓)
WaveNet (MoL) 24.7M 53.3B 317.92 -
WaveGlow 87.7M 368.3B 0.045 3.4
HiFi-GAN 13.9M 30.5B 0.008 0.13
DiffWave 2.62M 28.7B×50 1.23 -
DFlow 105.3M 39.2B 0.014 0.26

Table 4. Ablation study on LJ-Speech dataset.
Model CMOS (↑)
DFlow 0.0
w/o Noise Injection -0.25
w/o AR Flow on f -0.19
w/o Invertible Constraint on f not converge
w/o VP Constraint on g -0.18
Standard NF -0.18

A.4. All the ablation models are trained for 500k iterations
and the results are shown in Table 4. The absence of the
invertible constraint on Auxiliary Flow leads to unstable
training, resulting in the model’s failure to converge. Other
ablations all achieve substantially worse results than DFlow,
demonstrating the significance of our design choices. Re-
moving noise injection causes the most significant decrease
in perceptual quality, and it performs even worse than the
Standard NF model. This confirms the hypothesis we dis-
cussed in Section 3.3, that the absence of noise injection
would result in DFlow falling behind a standard NF model.
Removing the VP constraint on g also raises the recon-
struction errors and therefore causes a decrease in model
performance.

We also provide a detailed comparison of the test log-
likelihood between various models with different implemen-
tations of invertible transformations in Appendix B.1. This
additional comparison further confirms the effectiveness of
our design choices.

5.5. Generalization on OOD samples

To evaluate the generalization ability of DFlow, we run a
MOS test where DFlow and the baseline models are trained
on the multi-speaker dataset VCTK. The baseline models
in this experiment include a pretrained HiFi-GAN model
and a WaveGlow model which we trained on VCTK using
its default training configuration. We perform evaluations
on both in-domain (IND) and out-of-domain (OOD) audio
samples. The IND samples are from the test set of VCTK
while the OOD samples are collected from external datasets.
Specifically, we collected two OOD test sets, one containing
speech waveforms of unseen languages from the Multilin-
gual TEDx Corpus (Salesky et al., 2021), and another con-
taining non-speech waveforms from MUSDB18-HQ (Rafii
et al., 2017) and YouTube. As shown in Table 5, DFlow
outperforms HiFi-GAN by a slight margin on the IND test
set while exhibiting a notable performance improvement on
the OOD test sets, especially on the non-speech OOD test
set. The standard NF model, WaveGlow, performs poorly
on both the IND and OOD test sets.

5.6. Manipulation of latent variables

We further demonstrate that DFlow inherits the latent vari-
able manipulation capability from the standard NF, where
DFlow also exhibits excellent performance. Results on low-
temperature sampling and partial editing can be found in
Appendix B.2.

8

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

Table 5. The 5-scale MOS results of different models trained on
VCTK dataset, evaluated on both in-domain (IND) and out-of-
domain (OOD) datasets.

Models IND OOD
speech

OOD
non-speech

Ground Truth 4.54±0.08 4.21±0.06 4.34±0.09
WaveGlow 4.01±0.11 3.71±0.09 3.24±0.09
HiFi-GAN 4.34±0.06 3.94±0.08 3.84±0.08
DFlow 4.39±0.07 4.05±0.09 4.02±0.08

6. DFlow with Large-scale Training
In previous experiments, we have showcased the generaliza-
tion ability of DFlow in synthesizing OOD audio samples,
indicating its potential as a universal neural vocoder (Jang
et al., 2021; Lee et al., 2023). In this section, we further
explore the capacity of DFlow with a large-scale training
set and a large model size. We found that the current archi-
tecture of DFlow could be easily scaled up. We built our big
model, denoted as DFlow-XL, by increasing the number of
invertible layers in the Primary Flow and the number of the
UNet layers in the Decoder, resulting in approximately dou-
bling the number of parameters compared to DFlow. To eval-
uate the performance gain from expanding the model size,
we also trained a moderate-sized version of DFlow, denoted
as DFlow-L. The configurations of DFlow-L and DFlow-
XL can be found in Appendix A.2. We use all training data
(train-clean-100, train-clean-360 and train-other-500, with
a total length of 585 hours.) of the LibriTTS (Zen et al.,
2019) dataset with the original sampling rate of 24 kHz
for training. The best-performing universal neural vocoder
BigVGAN (Lee et al., 2023) was chosen as our baseline.
For a fair comparison, we strictly follow BigVGAN’s mel-
spectrogram settings: 100-band log-scale mel-spectrograms
with a frequency range of [0, 12] kHz were extracted from
the original audio clips with 1024 FFT size, 1024 window
size, and 256 hop size. Both DFlow-L and DFlow-XL were
trained on 8 Nvidia V100 (16G) GPUs for 2M steps, with
a batch size of 16 per GPU with FP16. The segment size
was 8192 and the initial learning rate was 1 × 10−4. The
official pretrained BigVGAN model from GitHub (Corpo-
ration, 2023), which was trained with SnakeBeta activation
on the LibriTTS dataset for 5M training steps, was used for
comparison. This version of BigVGAN was claimed by the
authors to have the best performance.

Results for MOS evaluations are presented in Table 6.
DFlow-XL achieves almost equal MOS to BigVGAN, indi-
cating that DFlow-XL is among the best-performing univer-
sal vocoders. We further observe that for a dataset of this
scale, we see a noticeable improvement in expanding the
model capacity from DFlow-L to DFlow-XL, indicating that
DFlow is easily scalable. We also report the detailed quan-

titative results of large models in Appendix B.3, where we
showcase the superiority of training DFlow-XL compared
to BigVGAN.

In addition to the above evaluations, we also compared
DFlow-XL with a large version of HiFi-GAN with 114M
model parameters (Lee et al., 2023), denoted as Big-HiFi-
GAN. We directly collect the audio samples of Big-HiFi-
GAN from BigVGAN’s demo page for comparison (Sang-
gil Lee, 2023). The results in Appendix B.4 indicate that
although both DFlow-XL and Big-HiFi-GAN do not employ
any periodic activate function as BigVGAN does, DFlow-
XL outperforms Big-HiFi-GAN by a considerable margin.
Note that the periodic activate functions such as SnakeBeta
proposed by (Lee et al., 2023) can be easily adapted to
DFlow as well, we leave this for future work.

Table 6. The 5-scale MOS results of different models trained on
LibriTTS dataset, evaluated on both in-domain (IND) and out-of-
domain (OOD) datasets.

Models IND OOD
speech

OOD
non-speech

Ground Truth 4.41±0.08 4.12±0.07 4.24±0.14
BigVGAN 4.30±0.07 3.99±0.09 4.04±0.11
DFlow-L 4.23±0.07 3.89±0.08 3.91±0.08
DFlow-XL 4.30±0.08 4.01±0.08 4.06±0.11

7. Conclusion
We introduce DFlow, a new generative model for high-
fidelity waveform synthesis. Relative to existing models,
DFlow has many advantages, including stable training, fast
generation speed, a high level of robustness, and the ability
to generate audio samples of high quality. We evaluated
DFlow on two widely used speech datasets. The results
demonstrate that DFlow establishes a new benchmark of
both the model performance and efficiency among likeli-
hood models. It even achieves better or at least comparative
performance than GAN models. Moreover, we further tested
DFlow’s performance by increasing both the model size and
dataset scale. The evaluations on OOD datasets demon-
strate that our larger model, DFlow-XL, achieves highly
competitive performance against the best universal vocoder,
BigVGAN.

The combination of our results makes DFlow a very at-
tractive approach for generative modeling, since it simul-
taneously has the properties of fast sampling, strong mode
coverage, and sample quality, thereby addressing the well-
known generative learning trilemma (Xiao et al., 2022) that
exists in conventional generative approaches. Our findings
suggest that DFlow holds great promise as a prospective
avenue for future research in various generative tasks.

9

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

Impact Statement
Neural vocoders including DFlow, are widely adopted for
tasks that require naturally synthesized audio, such as
speech synthesis, music generation, and audio processing.
These techniques have practical applications in fields like en-
tertainment, virtual reality, and human-computer interaction.
Therefore, utilizing neural vocoders with the potential to
generate realistic and high-fidelity waveform generation can
contribute to enhancing user experiences in these domains.
Moreover, the fast synthesis speed of the proposed model
would also be beneficial for service providers that provide
real-time audio synthesis. However, because of the abil-
ity to synthesize realistic audio, especially speech, neural
vocoders could be exploited for malicious purposes, such as
generating realistic fake audio or impersonating individuals.
It is crucial to consider the ethical implications and potential
safeguards when developing and deploying such models.

References
Böhm, V. and Seljak, U. Probabilistic autoencoder. Trans-

actions on Machine Learning Research, 2022.

Brock, A., Donahue, J., and Simonyan, K. Large scale GAN
training for high fidelity natural image synthesis. In ICLR,
2019.

Chen, J., Lu, C., Chenli, B., Zhu, J., and Tian, T. VFlow:
More expressive generative flows with variational data
augmentation. In ICML, 2020.

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and
Chan, W. WaveGrad: Estimating gradients for waveform
generation. In ICLR, 2021.

Corporation, N. NVIDIA/BigVGAN. https://github.
com/NVIDIA/BigVGAN, 2023.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-linear
independent components estimation. In ICLR, 2015.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estima-
tion using real NVP. In ICLR, 2017.

Espuña I Fontcuberta, A. Analyzing the negative log-
likelihood loss in generative modeling. Master’s thesis,
2022.

Germain, M., Gregor, K., Murray, I., and Larochelle, H.
MADE: Masked autoencoder for distribution estimation.
In ICML, 2015.

Grcić, M., Grubišić, I., and Šegvić, S. Densely connected
normalizing flows. NeurIPS, 2021.

Grover, A., Dhar, M., and Ermon, S. Flow-GAN: Com-
bining maximum likelihood and adversarial learning in

generative models. In Proceedings of the AAAI confer-
ence on artificial intelligence, 2018.

Henighan, T., Kaplan, J., Katz, M., Chen, M., Hesse, C.,
Jackson, J., Jun, H., Brown, T. B., Dhariwal, P., Gray, S.,
Hallacy, C., Mann, B., Radford, A., Ramesh, A., Ryder,
N., Ziegler, D. M., Schulman, J., Amodei, D., and Mc-
Candlish, S. Scaling laws for autoregressive generative
modeling. CoRR, 2020.

Higham, N. J. Accuracy and stability of numerical algo-
rithms. SIAM, 2002.

Ho, J., Chen, X., Srinivas, A., Duan, Y., and Abbeel, P.
Flow++: Improving flow-based generative models with
variational dequantization and architecture design. In
International conference on machine learning, pp. 2722–
2730. PMLR, 2019.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In NeurIPS, 2020.

Horvat, C. and Pfister, J.-P. Denoising normalizing flow.
NeurIPS, 2021.

Ito, K. The LJ speech dataset. https://keithito.
com/LJ-Speech-Dataset/, 2017.

Jang, W., Lim, D., and Yoon, J. Universal MelGAN: A ro-
bust neural vocoder for high-fidelity waveform generation
in multiple domains. In ICASSP, 2021.

Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S.,
Casagrande, N., Lockhart, E., Stimberg, F., van den Oord,
A., Dieleman, S., and Kavukcuoglu, K. Efficient neural
audio synthesis. In ICML, 2018.

Kim, J., Kong, J., and Son, J. Conditional variational au-
toencoder with adversarial learning for end-to-end text-to-
speech. In International Conference on Machine Learn-
ing, 2021.

Kim, S., Lee, S., Song, J., Kim, J., and Yoon, S.
FloWaveNet: A generative flow for raw audio. In ICML,
2019.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow with
invertible 1x1 convolutions. In NeurIPS, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In ICLR, 2014.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X.,
Sutskever, I., and Welling, M. Improved variational infer-
ence with inverse autoregressive flow. Advances in neural
information processing systems, 2016.

Kong, J. hifi-gan. https://github.com/jik876/
hifi-gan, 2020.

10

https://github.com/NVIDIA/BigVGAN
https://github.com/NVIDIA/BigVGAN
https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/
https://github.com/jik876/hifi-gan
https://github.com/jik876/hifi-gan

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

Kong, J., Kim, J., and Bae, J. HiFi-GAN: Generative ad-
versarial networks for efficient and high fidelity speech
synthesis. In NeurIPS, 2020.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
DiffWave: A versatile diffusion model for audio synthesis.
In ICLR, 2021.

Kumar, K., Kumar, R., de Boissiere, T., Gestin, L., Teoh,
W. Z., Sotelo, J., de Brebisson, A., Bengio, Y., and
Courville., A. MelGAN: Generative adversarial networks
for conditional waveform synthesis. In NeurIPS, 2019.

Lanckriet, G. R., Ghaoui, L. E., Bhattacharyya, C., and
Jordan, M. I. A robust minimax approach to classification.
Journal of Machine Learning Research, 3(Dec):555–582,
2002.

Lee, S., Kim, S., and Yoon, S. Nanoflow: Scalable normaliz-
ing flows with sublinear parameter complexity. NeurIPS,
2020.

Lee, S., Ping, W., Ginsburg, B., Catanzaro, B., and Yoon, S.
BigVGAN: A universal neural vocoder with large-scale
training. In ICLR, 2023.

Lee, W.-H., Ozger, M., Challita, U., and Sung, K. W. Noise
learning-based denoising autoencoder. IEEE Communi-
cations Letters, 25(9):2983–2987, 2021.

LMNT. DiffWave. https://github.com/
lmnt-com/diffwave, 2022.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In ICLR, 2019.

Luong, M. and Tran, V. Flowvocoder: A small footprint
neural vocoder based normalizing flow for speech synthe-
sis. In Ko, H. and Hansen, J. H. L. (eds.), Interspeech,
2022.

Miao, C., Chen, T., Chen, M., Ma, J., Wang, S., and Xiao,
J. A compact transformer-based GAN vocoder. In Inter-
speech. ISCA, 2022.

Miao, C., Zhu, Q., Chen, M., Ma, J., Wang, S., and Xiao,
J. EfficientTTS 2: Variational end-to-end text-to-speech
synthesis and voice conversion. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 32:1650–
1661, 2024.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,
and Kavukcuoglu, K. Wavenet: A generative model for
raw audio. In The 9th ISCA Speech Synthesis Workshop,
Sunnyvale, CA, USA, 13-15 September 2016, 2016.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. NeurIPS, 30,
2017.

Ping, W., Peng, K., Zhao, K., and Song, Z. Waveflow: A
compact flow-based model for raw audio. In ICML, 2020.

Prenger, R., Valle, R., and Catanzaro, B. WaveGlow: A
flow-based generative network for speech synthesis. In
ICASSP, 2019.

Rafii, Z., Liutkus, A., Stöter, F.-R., Mimilakis, S. I., and
Bittner, R. The MUSDB18 corpus for music separation,
2017.

Ramasinghe, S., Fernando, K., Khan, S., and Barnes, N. Ro-
bust normalizing flows using Bernstein-type polynomials.
In BMVC, 2022.

Salesky, E., Wiesner, M., Bremerman, J., Cattoni, R., Negri,
M., Turchi, M., Oard, D. W., and Post, M. The multilin-
gual tedx corpus for speech recognition and translation.
In Interspeech. ISCA, 2021.

Sang-gil Lee. BigVGAN demo page. https://
bigvgan-demo.github.io/, 2023.

Silvestri, G., Roos, D., and Ambrogioni, L. Deterministic
training of generative autoencoders using invertible layers.
In ICLR, 2023.

Theis, L., Oord, A. v. d., and Bethge, M. A note on the
evaluation of generative models. 2016.

Valin, J.-M. and Skoglund, J. LPCNet: Improving neural
speech synthesis through linear prediction. In ICASSP.
IEEE, 2019.

Valle, R. NVIDIA/waveglow. https://github.com/
NVIDIA/waveglow, 2018.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.
Extracting and composing robust features with denoising
autoencoders. In ICML, 2008.

Xiao, Z., Yan, Q., and Amit, Y. Generative latent flow. arXiv
preprint arXiv:1905.10485, 2019.

Xiao, Z., Kreis, K., and Vahdat, A. Tackling the generative
learning trilemma with denoising diffusion GANs. In
ICLR, 2022.

Yamagishi, J., Veaux, C., and MacDonald, K. CSTR VCTK
Corpus: English multi-speaker corpus for CSTR voice
cloning toolkit (version 0.92). University of Edinburgh.
The Centre for Speech Technology Research (CSTR),
2019.

Yamamoto, R. wavenet vocoder. https://github.
com/r9y9/wavenet_vocoder/, 2018.

11

https://github.com/lmnt-com/diffwave
https://github.com/lmnt-com/diffwave
https://bigvgan-demo.github.io/
https://bigvgan-demo.github.io/
https://github.com/NVIDIA/waveglow
https://github.com/NVIDIA/waveglow
https://github.com/r9y9/wavenet_vocoder/
https://github.com/r9y9/wavenet_vocoder/

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

Yang, G., Yang, S., Liu, K., Fang, P., Chen, W., and Xie,
L. Multi-band MelGAN: Faster waveform generation for
high-quality text-to-speech. In Interspeech, 2020.

Yoon, H.-W., Lee, S.-H., Noh, H.-R., and Lee, S.-W. Audio
dequantization for high fidelity audio generation in flow-
based neural vocoder. InterSpeech, 2020.

You, J., Kim, D., Nam, G., Hwang, G., and Chae, G. GAN
vocoder: Multi-Resolution discriminator is all you need.
In Interspeech, 2021.

Zen, H., Dang, V., Clark, R., Zhang, Y., Weiss, R. J., Jia,
Y., Chen, Z., and Wu, Y. LibriTTS: A corpus derived
from librispeech for text-to-speech. In Interspeech. ISCA,
2019.

12

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

A. Model details
A.1. Module details

The detailed implementation of Residual Block, UNet(·), Additive Coupling, and Decoder is shown in Fig. 3.

Conv1d, k=3, d=1

LeakyReLU

Conv1d, k=3, d=3

LeakyReLU

𝐶
(a) Residual Block

Downsample

ResBlock

Downsample

ResBlock

Upsample

ResBlock

Upsample

ResBlock

ResBlock

Downsample

Upsample

ResBlockLinear

Linear

Linear

Linear

𝐶1 𝐶2 𝐶3 𝐶4

ResBlock

(b) UNet

Split

𝑥1 𝑥2

Linear

Concat

UNet

Linear

𝑥1
′ 𝑥2

𝑥

𝑥′

{𝑐𝑖}𝑖

(c) Additive Coupling

Linear

𝑧𝑙

UNet

{𝑐𝑖}𝑖

Conv1d

Tanh

LeakyReLU

×N

ො𝑥

(d) Decoder

Figure 3. Model details.

A.2. Model configurations and hyper-parameters

The detailed model configurations and hyper-parameters of DFlow, along with DFlow-L and DFlow -XL, are presented in
Table 7.

A.3. MOS and CMOS evaluation details

To evaluate the audio quality of waveforms generated by different models, we use the 5-scaled Mean Opinion Score (MOS)
as the subjective metric in Section 5.2, Section 5.5, Section 6, and Appendix B.4. There were 20 raters participating in the
MOS test. Audio samples generated by each comparative model are randomly selected and provided to raters. Raters are

13

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

Table 7. Hyperparameters.
Modules Hyper-parameter

Auxiliary Flow

InvertibleLayers = 8 (4 for left-to-right flow and 4 for right-to-left flow),
WaveNetConvLayers = 8,
WaveNetDilations = [1,2,4,8,16,32,64,128],
WaveNetResidualchannels = 32,
WaveNetGatechannels = 64,

Primary Flow

AddtiveCouplingLayers = 12 (DFlow), or 16 (DFlow-L), or 20 (DFlow-XL),
SqueezeSize = 4,
UNetChannels = [64,128,256,512,512,256,128,64],
UNetUpsamplingScales = [4,4,4],
UNetDownsamplingScales = [4,4,4],

Decoder

UNetLayers = 3 (DFlow), or 4 (DFlow-L), or 6 (DFlow-XL),
UNetChannels = [32,64,128,256,512,512,256,128,64,32],
UNetUpsamplingScales = [4,4,4,4],
UNetDownsamplingScales = [4,4,4,4],
LastConvKernelSize = 11,

Training parameters β = 0.01 if TrainingStep <300k else 0.002

asked to rate the audio quality of audio samples on a 5-scale score (1 = Bad; 2 = Poor; 3 = Fair; 4 = Good; 5 = Excellent)
with rating increments of 0.5. For each model, about 25 audio samples were selected for comparison, resulting in around
500 unique ratings per model. We filtered out scores from raters who scored the ground-truth samples as 3 or lower.

In Section 5.4, we conducted the 7-scale side-by-side Comparative Mean Opinion Score (CMOS) to examine our design
choices. Twenty-five audio groups were provided to the same raters as in the MOS test. Each audio group contains the same
audio sample generated by all different ablation models, together with the one generated by standard DFlow as the control
item. Raters were asked to compare the audio quality of audio samples generated by ablation models to the control item on
a 7-scaled score (-3 as significantly worse to 3 as significantly better) with a rating increments of 0.5.

A.4. Detail setting of ablation models

The CMOS evaluation reported in Table 4 is conducted on the ablation models of the following settings:

• w/o Noise injection: The model is trained on clean audio signal x rather the noisy one x̃.

• w/o AR flow on f: The invertible AR transformations of Auxiliary Flow f are replaced with the same number of
WaveGlow (Prenger et al., 2019) blocks, while the affine coupling layers of these blocks are formulated using the
proposed UNet structure.

• w/o Invertible constraint on f: The Auxiliary Flow f is formulated using the same number of UNet layers, without the
invertible constraint.

• w/o VP constraint on g: The additive coupling layers in the Primary Flow g are replaced with the non-volume-preserving
affine coupling layers (Prenger et al., 2019)

• Standard NF: A standard NF model with WaveGlow blocks, with the affine coupling layers of these blocks formulated
using the proposed UNet structure.

B. More results
B.1. Test log-likelihood

To further verify the effectiveness of our design details, we report comparisons of test log-likelihood between DFlow and
its variants. For all these models, we remove the noisy injection and decoder m from the training and only maximize the
log-likelihood of input x. We consider the following models for comparison:

14

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

• w/o UNet: Replacing the UNet architecture with WaveNet layers with the same number of convolution layers.

• w/o AR: Replacing the AR transformations in the Auxiliary Flow f with the same number of WaveGlow blocks.

• w/o bidirectional: Replacing the bidirectional AR transformations in the Auxiliary Flow f with single directional
transformations.

• w/o h: Removing h in Equation 9.

In Table 8, we compare the likelihood of these relative models of DFlow at 500k training steps, which is not enough for these
models to converge, but far enough to observe their performance differences. Switching from the UNet layer to the WaveNet
layers decreases the performance most. Replacing the AR transformations in Auxillary Flow with NAR transformations also
causes a significant decrease in log-likelihood.

Table 8. Comparison of likelihood under different settings.
Model Likelihood (↑)
Base 5.14
w/o UNet 4.89
w/o AR 4.92
w/o bidirectional 5.08
w/o h 5.07

B.2. Manipulating on latent variables

Low-temperature sampling. One interesting property of NF models is the ability to perform low-temperature sampling
by decreasing the variance of the known prior zp during the sampling phase. This decreases the diversity of the samples,
however, increases the quality of each individual sample. Similar to standard NF models, DFlow inherits the ability of
low-temperature sampling from NF and even performs better. In Fig 4, we present the mel-spectrogram visualizations of
waveforms generated by WaveGlow and DFlow under different temperature factors t. We have the following observations:

• For both DFlow and WaveGlow, the harmonic components of the waveforms become more clear as the value of t
decreases.

• At each value of t, DFlow consistently achieves significantly better harmonic quality compared to WaveGlow.

• WaveGlow exhibits a lack of robustness to different values of t. It encounters the periodic noise as the value of t
decreases. In contrast, DFlow remains no periodic noise for various values of t.

These results indicate that DFlow could be a better model for low-temperature sampling, compared to standard NF models.

Partial editing. Although DFlow does not have an exact inverse as the standard NF models do, DFlow inherits the ability
of partial editing from the standard NF models. In Fig. 5, we provide the wave plots of an audio sample (first row) along
with its edited version (second row), while the unchanged part is colored in blue and the edited part is highlighted in red.
We simultaneously performed duration change and resampling on the edited part. The manipulation is performed in the
following steps:

• The original waveform x is inputted into the Auxillary Flow and then passed through the Primary Flow to obtain the
latent variable zp = g(f(x)).

• We randomly picked a length range as the target for editing, which, in this case, is approximately the last half of the
original waveform. We denote the fixed part as zp1 (blue part in the first plot) and the target part as zp2 (red part in the
first plot).

• We randomly sampled a vector z
′

p2from the Gaussian distribution with a length of 1.2 times the length of zp2 and then
replaced zp2 with z

′

p2. The new latent variable z
′

p is obtained by concatenating zp1 and z
′

p2.

15

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

DFlow

WaveGlow

𝑡 = 0.5 𝑡 = 0.7 𝑡 = 1.0

Figure 4. Mel-spectrogram visualizations of waveforms generated by WaveGlow and DFlow of different temperature factors, with
a zoomed-in view of high-frequency details. The mel-spectrograms presented in the top row are generated by DFlow, whereas the
mel-spectrograms in the bottom row are from WaveGlow.

• To match the length of z
′

p, we also stretched the corresponding part of the mel-spectrogram of this audio by nearest
neighbor interpolation.

• The new latent variable z
′

p is then sequentially inputted into the inverse of Primary Flow and the Decoder to produce
the manipulated waveform x

′
= m(g−1(z

′

p)), with the stretched mel-spectrogram as a condition.

As can be seen in Fig. 5, though DFlow does not provide a theoretical inverse, the fixed part remains identical after
reconstruction, with the phase information being highly preserved. For the target part, both duration and phase information
are sufficiently changed after editing, but the edited part still conjuncts with the fixed part smoothly, indicating continuous
phase changes across the two segments.

B.3. Quantitative results of large models

In Table 9, we list some quantitative results of our big models and BigVGAN. These results were obtained on a single GPU
without using FP16 training. Here the batch size was set to 4 for each model. Although having a larger footprint, DFlow
models have faster training speed and more efficient memory usage compared to BigVGAN.

Table 9. Model size, training speed, training memory usage, and synthesis speed of big models.

Models # param Training Speed
(ms/step) (↓)

Training Memory Use
(GB) (↓) GPU RTF (↓)

BigVGAN 112M 932 10.6 0.036
DFlow-L 140M 654 6.5 0.024
DFlow-XL 183M 852 7.3 0.032

16

DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow

Figure 5. Waveform plots of an audio sample before and after partial editing.

B.4. Comparison with Big-HiFi-GAN

We also compared our big models with a 114M HiFi-GAN provided by BigVGAN, denoted as Big-HiFi-GAN, through a
subjective test. Specifically, we downloaded both the ground truth audio and the sample audio of Big-HiFi-GAN from the
demo page of BigVGAN (Sang-gil Lee, 2023). Then we synthesized the waveforms using our big models by conditioning on
the same ground-truth mel-spectrograms Big-HiFi-GAN used. As can be seen, DFlow-L and DFlow-XL achieve significantly
better quality than Big-HiFi-GAN.

Table 10. The MOS results of different big models.
Model MOS (↑)
Ground Truth 4.51±0.12
Big-HiFi-GAN 4.11±0.11
DFlow-L 4.34±0.13
DFlow-XL 4.41±0.11

17

