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Abstract
In this paper, we present two key theorems that
should have significant implications for machine
learning practitioners working with binary clas-
sification models. The first theorem provides a
formula to calculate the maximum and minimum
Precision-Recall AUC (AUCPR) for a fixed Re-
ceiver Operating Characteristic AUC (AUCROC ),
demonstrating the variability of AUCPR even
with a high AUCROC . This is particularly rel-
evant for imbalanced datasets, where a good
AUCROC does not necessarily imply a high
AUCPR. The second theorem inversely estab-
lishes the bounds of AUCROC given a fixed
AUCPR. Our findings highlight that in certain
situations, especially for imbalanced datasets, it
is more informative to prioritize AUCPR over
AUCROC . Additionally, we introduce a method
to determine when a higher AUCROC in one
model implies a higher AUCPR in another and
vice versa, streamlining the model evaluation pro-
cess.

1. Introduction
Building upon existing research, this paper delves deeper
into the complex relationship between Receiver Operating
Characteristic (ROC) Area Under the Curve (AUC) and
Precision-Recall (PR) AUC in binary classification models.
Our study is different by its analytical depth, addressing
specific questions directly relevant to researchers and practi-
tioners in machine learning. This paper makes the following
contributions:

1. We establish an exact analytical expression for the
transformation between ROC and PR curves. This
expression, that we have not found elsewhere, offers

1Glanceable, France. Correspondence to: François Castagnos
<francois@glanceable.io>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

a stronger version of the theorem presented in (Davis
& Goadrich, 2006) and is the basis for the two main
theorems which will follow.

2. We determine, for a given AUCROC , the exact bounds
for the corresponding AUCPR. This finding demon-
strates that a high AUCROC does not guarantee a simi-
larly high AUCPR, especially for imbalanced datasets.
This challenges the conventional reliance on AUCROC

as the sole metric of model performance. We mir-
ror our analysis for AUCPR, deriving the bounds for
AUCROC when AUCPR is fixed. This contributes a
new perspective on the interplay between these two
metrics.

3. Through these analytical developments, we provide
a rigorous justification for preferring AUCPR over
AUCROC for imbalanced datasets, a debate that has
been prevalent in the machine learning community.

4. We address a common comparative scenario in model
evaluation: determining whether a higher AUCROC

for one model implies a higher AUCPR compared to
another model, and vice versa. Our findings offer a
more efficient approach for this comparison, potentially
reducing the computational burden in model evalua-
tion.

5. The theoretical results are complemented with graphi-
cal illustrations and empirical experiments, providing a
practical and visual understanding of the implications
of our findings.

Each of these contributions is aimed at enhancing the un-
derstanding and application of AUCROC and AUCPR in
binary classification, particularly in the context of imbal-
anced datasets. The analytical nature of our approach should
offer a significant advancement in the field, providing clear,
actionable guidance for evaluating and comparing binary
classification models.

2. Related Work
In binary classification, the relationship between Receiver
Operating Characteristic (ROC) Area Under the Curve
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(AUCROC) and Precision-Recall (AUCPR) has been ex-
tensively studied (Fawcett, 2006). A key work by (Davis &
Goadrich, 2006) established the fundamental link between
these metrics, especially for imbalanced datasets. Extending
this, (Boyd et al., 2012) made a significant contribution by
identifying an ’unachievable region’ in PR space, reshaping
the understanding of AUCPR. This region, determined by
class skew, affects the interpretation of AUCPR and the ef-
fectiveness of various evaluation methodologies. To address
this, they proposed the Normalized AUCPR (AUCNPR), a
metric that adjusts for the unachievable region and offers a
more meaningful comparison across datasets. Their insights
allowed a deeper understanding of AUCPR, especially in
contexts with imbalanced class distributions.

The discourse on the preference of AUCPR over AUCROC

in scenarios involving imbalanced datasets has been fur-
thered by several studies. (Saito & Rehmsmeier, 2015)
made significant contributions to this conversation, provid-
ing valuable insights for practitioners dealing with class
imbalances. (Ozenne et al., 2015) focused on the advan-
tages of PR curves in medical data analysis, especially in
the context of rare diseases, arguing for the superiority of
AUCPR in such imbalanced situations. Similarly, (Sofaer
et al., 2019) extended the application of AUCPR to eco-
logical studies, such as rare species distribution, thereby
broadening the relevance of AUCPR across diverse fields.
(Cook & Ramadas, 2020) also underscores the importance
to use AUCPR for imbalanced datasets with a focus on
fraud detection.

Recent discussions have also brought to light the usefulness
of the Matthews correlation coefficient (MCC) as a com-
prehensive alternative to AUCROC in binary classification.
Studies like (Chicco & Jurman, 2023) have emphasized the
MCC’s ability to reflect all aspects of a confusion matrix,
making a strong case for its adoption in binary classification
evaluation. It is interesting to mention that papers studying
MCC tend not to discuss AUCPR.

Collectively, these papers enhance the understanding of
when and how AUCROC and AUCPR should be applied,
highlighting their strengths and limitations in various con-
texts. Our work integrates these perspectives and offers new
analytical expressions and insights into the AUC relation-
ships.

3. Results
In this section we will present and demonstrate the main
results.

3.1. Notations

We denote by N the size of the dataset, N+ the number of
positive examples and N− the number of negatives ones.

N+ and N− are assumed to be fixed and let’s denote by
a = N−

N+ a coefficient which measures the imbalanced nature
of the dataset and which we will subsequently assume is
strictly positive.

We use the usual notations TP the number of true positives,
FP the number of false positives, TN the number of true
negatives and FN the number of False negatives.

The metrics considered below are:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

True Positive Rate (TPR) =
TP

TP + FN
= Recall

False Positive Rate (FPR) =
FP

FP + TN

The area under the ROC curve will be denoted AUCROC

and the area under the precision recall curve will be denoted
AUCPR.

3.2. Transformation between ROC and Precision Recall
(PR) space

Theorem 3.1. The transformation between a point (x, y)
on the ROC curve and a point on the PR curve is given by
the following expression:

(x, y) → (y,
y

y + ax
) (1)

The transformation between a point (x, y) in the PR curve
and a point in the ROC curve has the simple form:

(x, y) → (
1

a

x(1− y)

y
, x) (2)

Demonstration 3.2. Let (x, y) be a point on the ROC curve
then x is the TPR and y is the FPR. By definition we have:
x = FP

N− and y = TP
N+ and then Precision = TP

TP+FP =
N+y

N+y+N−x = y
y+ax . As recall = y the corresponding point

in PR space will be (y, y
y+ax )

By reversing this relation we find the expression of the trans-
formation between a point on the PR curve and a point on
the ROC curve

Remark 3.1. Let’s denote by R̂OC the space
(TPR,FPR) which is just a symmetry by the first
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bisector of the ROC space. The calculation will be easier in
this space. In fact, the transformation between R̂OC and
PR space is:

(x, y) → (y, x) → (x,
x

x+ ay
) (3)

using equation 1

Corollary 3.3. We say that one curve dominates another
curve if it is always above (for all abscissa). The theorem
3.2 in (Davis & Goadrich, 2006) which stipulates that: one
curve dominates a second curve in ROC space if and only
if the first dominates the second in Precision-Recall space
can then be proven faster than in their article.

Demonstration 3.4. One curve dominates a second in the
ROC space if and only if the first curve is below the second
one in the R̂OC space.

At fixed x ∈ (0, 1), if we denote by y1(x) the value of the first
curve in the R̂OC space at abscissa x and y2(x) the value
of the second curve, we have the following equivalences:

y1(x) ≤ y2(x) ⇔ x+ ay1(x) ≤ x+ ay2(x)

⇔ x

x+ ay1(x)
≥ x

x+ ay2(x)
(4)

which means than in the PR space, the first curve is above
the second one with equation 3.

Remark 3.2. Moreover, the expression found in equation
(3) gives a more precise information than the theorem 3.2
in (Davis & Goadrich, 2006) because it shows that if, at a
given abscissa, a curve is below another one in the R̂OC
space then, in the PR space, the first one will be above the
second.

3.3. Main theorem: Minimum and Maximum of
AUCPR at fixed AUCROC

We will denote by AUC ′
ROC = 1−AUCROC the area un-

der the curve in the R̂OC space. We will see that the results
will be expressed more easily as a function of AUC ′

ROC .

Theorem 3.5. At AUC ′
ROC = 1 − AUCROC = c fixed,

the maximum of the AUCPR is equal to:

AUCmax
PR = 1− a ln(

1 + a

1− c+ a
). (5)

and the minimum of the AUCPR is equal to:

AUCmin
PR = 1− ac ln(

1 + ac

ac
). (6)

Remark 3.3. Here we find relatively simple analytical ex-
pressions.

Demonstration 3.6. For this demonstration we will place
ourselves in R̂OC space.

First, let’s remark that the ROC curve is always increasing,
not necessarily continuously. As a result, in the R̂OC space,
the curve will also be increasing. Here we fix c ∈ (0, 1) and
we want to answer the question: at fixed AUC ′ = c what is
the maximum of the AUCPR?

Mathematically, with equation (3) the problem takes the
form:



sup
increasing function f

∫ 1

0

x

x+ af(x)
dx

subject to

f(0) = 0, f(1) = 1 and
∫ 1

0

f(x) dx = c

(7)

Before proceeding to the proof of the theorem 3.5, we will
demonstrate a lemma that will allow us to restrict ourselves
to step functions.

Lemma 3.7. Let’s denote by T (f) =
∫ 1

0
x

x+af(x)dx. Then
for f and g two positive and increasing functions we have:

|T (f)− T (g)| ≤ 2
√
2a

√
||f − g||∞ (8)

where ||.||∞ is the infinity norm

This lemma allows us to see that if two functions f and g
are close for the infinity norm, then T(f) and T(g) are also
close.

Proof of the Lemma: First, we remind that as f is increasing
on [0, 1] then f is Lebesgue integrable (it is even Riemann
integrable) and as 0 ≤ x

x+af(x) ≤ 1,∀x ∈ [0, 1], the inte-

gral
∫ 1

0
x

x+af(x)dx is well defined.

Then

|T (f)− T (g)| =
∣∣∣∣∫ 1

0

(
x

x+ af(x)
− x

x+ ag(x)

)
dx

∣∣∣∣
(9)

Let’s denote by α a given real number in (0, 1), we have by
triangular inequality:

|T (f)− T (g)| ≤
∣∣∣∣∫ α

0

(
x

x+ af(x)
− x

x+ ag(x)

)
dx

∣∣∣∣
+a

∣∣∣∣∫ 1

α

x

(x+ af(x))(x+ ag(x))
(g(x)− f(x))dx

∣∣∣∣
(10)
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And then, by applying the triangular inequality and observ-
ing that for all x ∈ [0, 1] we have:

0 ≤ x

(x+ af(x))
≤ 1, (11)

and
0 ≤ x

(x+ ag(x))
≤ 1, (12)

and for x ∈ [α, 1] we have:

x

(x+ af(x))(x+ ag(x))
≤ 1

x
≤ 1

α
, (13)

we thus have for every α ∈ (0, 1):

|T (f)− T (g)| ≤ 2α+
a

α
||f − g||∞) (14)

By studying the variations of the function

h : α 7−→ 2α+
1

α
||f − g||∞

and by taking it’s minimum, we then find (8) which com-
pletes the proof of the lemma.

With Lemma 3.7, as the step functions are dense in the
increasing space function for the infinity norm (||.||∞), we
can restrict ourselves to step functions.

We will then prove that the step function which maximizes
the system 7 is the following step function (see figure 1):

f :


[0, 1] −→ [0, 1]

x 7−→

{
0 if x ∈ [0, 1− c)

1 if x ∈ [1− c, 1]

(15)

Demonstration 3.8. In order to prove that the step function
which maximizes (7) is the function describe above (15)
we will prove that if we have an increasing step function
denoted f0 with f0(0) = 0 and f0(1) = 1 and with

∫ 1

0
f0 =

c which is not equal to 0 before 1− c, then we can construct
an other increasing step function denoted f1 with f1(0) = 0

and f1(1) = 1 and
∫ 1

0
f1 = c and T (f1) > T (f0). The

result will follow.

As the value of the integral does not depend on the values of
the function at a few points, we will assume, without loss of
generality, that the step functions are right continuous.

Let’s denote by x0 ∈ [0, 1 − c) the point such that f0 is
equal to 0 on [0, x0) and f0(x0) = y0 > 0. Let’s denote by
x1 ∈ (x0, 1) such that ∀x ∈ [x0, x1) , f0(x) = f0(x0) =
y0

Then, let’s take ϵ small enough and define the following f1
function (see Figure 1):

f1 :


[0, 1] −→ [0, 1]

x 7−→


0 if x ∈ [0, x0 + ϵ)

y1 = y0
x1−x0

x1−x0−ϵ if x ∈ [x0 + ϵ, x1)

f0(x) otherwise

0 1

0

1

x0

y0

x0 + 1 cx1

y1

f
f0
f1

Figure 1. Step Functions. f is the step function that maximizes
equation (7)

We can take ϵ small enough such that f1 is well defined
and increasing. Moreover, the condition on y1 implies that∫ 1

0
f1=

∫ 1

0
f0

As f1 and f0 are equal outside [x0, x1] we have:

T (f1)− T (f0) =

∫ x1

x0

(
x

x+ af1(x)
− x

x+ af0(x)
)dx

=

∫ x0+ϵ

x0

1 dx+

∫ x1

x0+ϵ

x

x+ ay1
dx−

∫ x1

x0

x

x+ ay0
dx

(16)

Then by integrating the previous relation we find that:

T (f1)− T (f0) = ϵ+ [x− ay1 ln(x+ ay1)]
x1
x0+ϵ−

[x− ay0 ln(x+ ay0)]
x1
x0

(17)

And thus:

T (f1)− T (f0) =− ay1 ln(x1 + ay1)

+ ay1 ln(x0 + ϵ

+ ay1)

+ ay0 ln(x1 + ay0)

− ay0 ln(x0 + ay0)

(18)
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By doing a first-order Taylor expansion in ϵ, after a few
calculations, we find that:

ay1 ln(x1 + ay1) = ay0 ln(x1 + ay0)+

ϵ(
ay0

x1 − x0
ln(x1 + ay0) +

a2y20
(x1 − x0)(x1 + ay0)

) + o(ϵ)

(19)

and

ay1 ln(x0 + ϵ+ ay1) = ay0 ln(x0 + ay0)+

ϵ

(
ay0

x1 − x0
ln(x0 + ay0) +

ay0
x0 + ay0

)
+

ϵa2y20
(x1 − x0)(x0 + ay0)

+ o(ϵ)

(20)

By replacing the expressions of (19) and (20) in (18) we
find that:

T (f1)− T (f0) = ϵ(− ay0
x1 − x0

ln(x1 + ay0)+

ay0
x1 − x0

ln(x0 + ay0) +
ay0

x0 + ay0
−

a2y20
(x1 − x0(x1 + ay0)

+
a2y20

(x1 − x0)(x0 + ay0)
) + o(ϵ)

(21)

Thus

T (f1)− T (f0) = ϵ(− ay0
x1 − x0

ln(
x1 + ay0
x0 + ay0

)+

ay0
x0 + ay0

+
ay0

(x0 + ay0)

ay0
(x1 + ay0)

) + o(ϵ)
(22)

By writing

ln(
x1 + ay0
x0 + ay0

) = ln(1 +
x1 − x0

x0 + ay0
) (23)

and using the concavity inequality for the logarithm:

ln(1 +
x1 − x0

x0 + ay0
) <

x1 − x0

x0 + ay0
(24)

we find that the first term in ϵ in T (f1)− T (f0) is greater
than:

ay0
(x0 + ay0)

ay0
(x1 + ay0)

(25)

0.0 0.2 0.4 0.6 0.8 1.0
AUCROC

0.0

0.2

0.4

0.6

0.8

1.0

AU
C P

R

a=0.1
a=0.25
a=0.5
a=1
a=2
a=4
a=10

Figure 2. Maximum and Minimum of the AUCPR as a function
of the AUCROC

which is strictly positive.

Thus, for ϵ small enough, T (f1) − T (f0) > 0 which com-
pletes the demonstration.

It follows directly that the maximum of the AUCPR is equal
to:

∫ 1−c

0

1 +

∫ 1

1−c

x

x+ a
dx = 1− c+

∫ 1

1−c

1− a

x+ a
dx

(26)

And therefore, by integrating in the previous equation (26),
the maximum value is equal to:

AUCmax
PR = 1− a log(

1 + a

1− c+ a
) (27)

With the same arguments, we demonstrate that the minimum
is reached for the function constant equal to c. And therefore,
the minimum of the AUCPR is equal to:

AUCmin
PR =

∫ 1

0

x

x+ ac
dx = 1− ac ln(

1 + ac

ac
) (28)

3.4. Minimum and Maximum of AUCROC at fixed
AUCPR

We can reverse the formulas of theorem 3.5 to find the
minimum and the maximum of AUCROC at fixed AUCPR.
More precisely we have the following theorem:

Theorem 3.9. At AUCPR = k fixed, if we denote by F the

function:
F : (0,+∞) → R

x 7→ x ln( 1+x
x )

,
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the maximum of the AUCROC is equal to:

AUCmax
ROC = 1− F−1(1− k)

a
(29)

and the minimum of the AUCROC is equal to:

AUCmin
ROC = 1− (e

1−k
a − 1)

e
1−k
a

(1 + a) (30)

Demonstration 3.10. Let’s denote as previously,
AUC ′

ROC = 1 − AUCROC . We suppose that
k ∈ [1− a ln( 1+a

a ), 1] is the AUCPR and is fixed.

With theorem 3.5, and as illustrated by the Figure 2 we have
that c = AUCmin′

ROC satisfies

1− ac ln(
1 + ac

ac
) = k (31)

and thus, by setting x = ac, we have F (x) = 1 − k then
x = F−1(1− k) and then c = F−1(1−k)

a .

Finally:

AUCmax
ROC = 1−AUCmin′

ROC = 1− F−1(1− k)

a
(32)

Regarding the minimum we use the same method,
AUCmax′

ROC = c satisfies with theorem 3.5 the relationship:

1− a ln(
1 + a

1− c+ a
) = k (33)

and then:
ln(

1 + a

1− c+ a
) =

1− k

a
, (34)

then:
(1 + a) = e

1−k
a (1− c+ a), (35)

then:

c =
(e

1−k
a − 1)

e
1−k
a

(1 + a). (36)

As AUCmax′
ROC = 1 − AUCmin

ROC , we find the expression of
AUCmin

ROC .

3.5. Short demonstration of the global minimum of
AUCPR

In their article (Boyd et al., 2012), the authors find in their
Theorem 2 an expression of the global minimum of the
AUCPR, that is to say the minimum over all the possible
AUCROC which is naturally achieved for an AUCROC =
0. They use this minimum value to define a normalized
AUCPR which, like the AUCROC , can take all values be-
tween 0 and 1.

We can notice that this result is weaker than ours because
it determines the global minimum of the AUCPR and not
the minimum of the AUCPR at fixed AUCROC . Moreover,
this result is a simple corollary of our theorem 3.5:

0.0 0.2 0.4 0.6 0.8 1.0
AUCPR

0.0

0.2

0.4

0.6

0.8

1.0

AU
C R

O
C

a=0.1
a=0.25
a=0.5
a=1
a=2
a=4
a=10

Figure 3. Maximum and Minimum of the AUCROC as a function
of the AUCPR

Corollary 3.11. In their article, (Boyd et al., 2012) find
that the global minimum of the AUCPR is equal to:

AUCglobalmin
PR = 1 +

(1− π) ln(1− π)

π
(37)

where π = N+

N

Using our theorem 3.5, we can find that the global minimum
of AUCPR is equal to AUCglobalmin

PR = AUCmax
PR (c :=

1) = AUCmin
PR (c := 1) = 1− a ln( 1+a

a )

Finally, as 1 − π = N−

N+ and 1 + a = N
N+ , we get a

1+a =
N−

N = 1− π and then we have:

1+
(1− π) ln(1− π)

π
= 1+a ln(

a

a+ 1
) = 1−a ln(

a+ 1

a
)

(38)
which shows that the two results are identical.

4. Consequences of the Previous Theorems
4.1. Good AUCROC does not mean good model

0.0 0.2 0.4 0.6 0.8 1.0
AUCROC

0.0

0.2

0.4

0.6

0.8

1.0

AU
C P

R

ymin1 = 0.038

Range of the AUCPR for a = 100
Classifier 1
Classifier 2

Figure 4. How the example classifiers presented by (Davis & Goad-
rich, 2006) compare to the range limits we found for the AUCPR

6



Interplay of ROC and Precision-Recall AUCs: Theoretical Limits and Practical Implications in Binary Classification

In their article, (Davis & Goadrich, 2006) prove that al-
gorithms that optimize the AUCROC do not necessarily
optimize the AUCPR by giving the example of 2 clas-
sifiers for a dataset with a = 100: Classifier1 and
Classifier2. AUCROC of Classifier2 is greater than
the Classifier1’s one (0.875 versus 0.813); however,
the AUCPR of the Classifier1 is way greater than the
Classifier2’s one (0.514 versus 0.038).

Interestingly, as depicted by Figure 4, when choosing a
classifier that performed really bad on the AUCPR score,
they found a classifier that reached the minimum given
by our theorem 3.5 of the AUCPR for a = 100 and
AUCROC = 0.875. With our theorem, we are not only
able to find examples such as the ones presented by (Davis
& Goadrich, 2006) but we are now able to quantify precisely
how much the AUCPR can vary at fixed a and AUCROC

values. For example, for a = 100, a classifier with a good
AUCROC = 0.875 can have a AUCPR that ranges from
0.038 to 0.876. On the other hand, if a = 1 the AUCPR

ranges from 0.725 to 0.935 (as depicted by Figure 2).

We can thus conclude that the ROC curve is not always
suitable to measure the performance of a model, especially
when the dataset is highly imbalanced. Nevertheless, our
theorem 3.5 ensures that for a balanced dataset, a classifier
with a good AUCROC is bound to have a good AUCPR.

4.2. AUCPR vs AUCROC for imbalanced dataset

It is unclear whether we should always prioritize AUCROC

or AUCPR. However, there is a general trend suggesting
that in the case of imbalanced datasets, AUCPR should
be prioritized. This is notably described in the following
articles (Saito & Rehmsmeier, 2015; Sofaer et al., 2019;
Cook & Ramadas, 2020). The AUCPR is more informa-
tive for imbalanced datasets due to the fact that a good
AUCROC does not necessarily mean a good model when
dealing with imbalanced data. Our results further illustrate
this point, especially for highly imbalanced datasets with
many more negative examples than positive (i.e. a ≫ 1
), which is the case for many real-world binary classifi-
cation problems such as Fraud Detection, Disease Diag-
nosis or Spam Email Detection. In such situations, ma-
chine learning practitioners should use AUCPR instead of
AUCROC . Indeed, a good AUCPR (above 0.7) will nec-
essarily result in a good AUCROC but the opposite is not
true as discussed in the previous section : for a = 100 and
AUCPR = 0.7 the AUCROC ranges from 0.697 to 0.999
while for a AUCROC = 0.7 the AUCPR ranges from 0.016
to 0.703.

4.3. When AUCROC1 ≥ AUCROC2 implies
AUCPR1 ≥ AUCPR2 and vice versa

It is natural to say that a model 1 is better than a model
2 when AUCROC1

≥ AUCROC2
and AUCPR1

≥
AUCPR2

. However, thanks to the theorem 3.5, to check
these two conditions it is sometimes unnecessary to calcu-
late the two AUCs, which can be sometimes really time
consuming. Indeed traditional AUC computation is non-
differentiable and has a time complexity of O(n2). RankOpt
(Herschtal & Raskutti, 2004) which reduces the time com-
plexity to O(n) and more generally the AUC maximization
field, recently surveyed by (Yang & Ying, 2022), shows that
optimizing the AUC computation is of interest. We show
below that computing AUCROC is not always necessary
anymore if AUCPR is already computed and vice versa.
We have the following corollary:

Corollary 4.1. With the expressions of theorem 3.5 and
3.9, by considering the functions c 7→ AUCmin

PR (c), c 7→
AUCmax

PR (c), k 7→ AUCmin
ROC(k), k 7→ AUCmax

ROC(k) we
have:

If AUCmin
PR (1−AUCROC1

) ≥ AUCmax
PR (1−AUCROC2

)
then AUCPR1

≥ AUCPR2

and

If AUCmin
ROC(AUCPR1) ≥ AUCmax

ROC(AUCROC1) then
AUCROC1

≥ AUCROC2

Demonstration 4.2. By the definition of the minimum
we have: AUCPR1

≥ AUCmin
PR (1 − AUCROC1

) and
by the definition of the maximum we have AUCmax

PR (1 −
AUCROC2

) ≥ AUCPR2
and thus if AUCmin

PR (1 −
AUCROC1

) ≥ AUCmax
PR (1 − AUCROC2

) we get
AUCPR1 ≥ AUCPR2 .

Idem for the other inequality.

5. Conclusion
In this paper, we study the relationship between AUCROC

and AUCPR in binary classification models. We estab-
lished an exact analytical expression for the transformation
between ROC and PR curves. More precisely given an
AUCROC we determine exact bounds for the corresponding
AUCPR and vice versa. Our results confirms that in certain
situations, especially for imbalanced datasets, it is more
informative to prioritize AUCPR over AUCROC . The con-
ventional reliance on AUCROC as the sole metric of model
performance might as a result not be optimal in this situa-
tion. These findings provide clear, actionable guidance for
evaluating and comparing binary classification models. We
believe that these results will enhance the understanding and
application of AUCROC and AUCPR in binary classifica-
tion, particularly in the context of imbalanced datasets.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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