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Abstract
Diffusion models have achieved notable success
in image generation, but they remain highly vul-
nerable to backdoor attacks, which compromise
their integrity by producing specific undesirable
outputs when presented with a pre-defined trig-
ger. In this paper, we investigate how to pro-
tect diffusion models from this dangerous threat.
Specifically, we propose TERD, a backdoor de-
fense framework that builds unified modeling for
current attacks, which enables us to derive an
accessible reversed loss. A trigger reversion strat-
egy is further employed: an initial approxima-
tion of the trigger through noise sampled from a
prior distribution, followed by refinement through
differential multi-step samplers. Additionally,
with the reversed trigger, we propose backdoor
detection from the noise space, introducing the
first backdoor input detection approach for dif-
fusion models and a novel model detection al-
gorithm that calculates the KL divergence be-
tween reversed and benign distributions. Exten-
sive evaluations demonstrate that TERD secures
a 100% True Positive Rate (TPR) and True Neg-
ative Rate (TNR) across datasets of varying res-
olutions. TERD also demonstrates nice adapt-
ability to other Stochastic Differential Equation
(SDE)-based models. Our code is available at
https://github.com/PKU-ML/TERD.

1. Introduction
In recent years, we have witnessed significant advancements
in generative models (Goodfellow et al., 2014; Kingma &
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Welling, 2013; Kingma & Dhariwal, 2018), with diffusion
models emerging as a particularly notable representative
(Ho et al., 2020; Rombach et al., 2022a; Yang et al., 2023).
These models have demonstrated their marvelous perfor-
mances in a diverse range of applications from image gener-
ation (Rombach et al., 2022a), content editing (Meng et al.,
2022), zero-shot classification (Li et al., 2023) to adversar-
ial purification (Nie et al., 2022). However, the widespread
application of diffusion models raises concerns about their
security issues like backdoor attacks (Gu et al., 2017; Chen
et al., 2017), where models can be manipulated to produce
harmful outputs under specific conditions, posing significant
legal and ethical risks. Therefore, in this paper, we explore
how to defend against backdoor attacks for diffusion models,
which is less investigated before.

Unlike common classification models, diffusion models op-
erate on noise outputs rather than class logits, making them
impervious to conventional defenses (Wu & Wang, 2021;
Wu et al., 2022) designed for classification tasks. The chal-
lenge is exacerbated by the complexity of their input-output
dynamics over various timesteps, e.g., the model’s behav-
ior changes across different timesteps and the underlying
formulation is often inaccessible to defenders. This signifi-
cantly hinders the ability to effectively identify and mitigate
backdoor triggers.

To address this challenge, in this paper, we propose a novel
defense strategy that begins by systematically character-
izing existing backdoor attacks in diffusion models. Our
approach involves creating unified formulations of backdoor
attacks, enabling us to derive an accessible reversed loss.
For the accessibility of inputs, we introduce a two-stage
trigger reversion process: we first estimate the trigger us-
ing noise sampled from a prior distribution, followed by
refinement through differential multi-step samplers. This
process allows for accurate identification and neutralization
of backdoor inputs. Equipped with the estimated trigger, we
can detect backdoor attacks from both the input and model
perspectives in the noise space, leveraging the statistical
characteristics of noise distributions to distinguish between
benign and malicious inputs. We refer to this comprehen-
sive defense framework as TERD (Trigger Estimation and
Refinement for Diffusion). TERD has demonstrated remark-
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able success across diverse datasets, achieving a 100% True
Positive Rate (TPR) and True Negative Rate (TNR). Further,
TERD works well against a wide range of attack scenarios,
including those with varied poisoning rates, trigger sizes,
and even sophisticated adaptive attacks. Beyond the dif-
fusion models, TERD also shows promise for defending
other Stochastic Differential Equation (SDE)-based models
against backdoor attacks. In summary, our main contribu-
tions are listed as follows:

• We specially design a novel trigger reversion algorithm
based on the unified modeling against backdoor at-
tacks in diffusion models, which can accurately reverse
triggers with high quality.

• With the reversed trigger, we develop an input and
model detection method in the noise space to protect
the diffusion models from backdoors.

• Extensive experiments show the efficacy of our defense
across varied scenarios and its potential applicability
to broader SDE-based generative models.

2. Related Work
2.1. Backdoor Attacks in Diffusion Models

Backdoor attacks, also known as Trojan attacks (Gu et al.,
2017; Chen et al., 2017), were initially studied in the con-
text of classification models. These attacks involve implant-
ing pre-defined malicious behaviors into neural networks.
While the victim models maintain normal functionality with
benign inputs, the presence of a trigger in the input causes
the model to exhibit malicious behaviors, such as misclassi-
fication or illegal content generation. Recent studies, such
as Chou et al. (2023a) and Chen et al. (2023), have demon-
strated that diffusion models are also vulnerable to these
attacks. In these scenarios, a trigger is added to noise sam-
pled from a prior distribution. Images generated from this
altered noise become target images, resulting in unexpected
sequences. VillianDiffusion (Chou et al., 2023b) further
extends it to continuous diffusion models. Additional re-
search has shown that backdoor attacks can be executed
using natural language prompts (Zhai et al., 2023; Huang
et al., 2023; Struppek et al., 2023) (specifically for text-to-
image diffusion models) or by poisoning the training set
(Pan et al., 2023). However, these attacks can be easily
defended by purifying the text encoder or additional human
inspection. Therefore, in this paper, we focus on defending
against backdoor attacks from the pixel level, which not
only has good stealthiness but also endangers all existing
diffusion models.

2.2. Existing Backdoor Defense

Similar to defenses against adversarial attacks (Li et al.,
2020; Wang et al., 2019b; 2020; Wu et al., 2020; Mo et al.,

2022), current backdoor defenses mainly focus on classi-
fication models. These defenses can be categorized into
two types: input-level and model-level defenses. Input-level
defenses aim to detect whether an input sample is a back-
door sample. Previous studies have shown that backdoor
samples can be identified through neural activations (Chen
et al., 2018) or frequency analysis (Zeng et al., 2021). Tech-
niques from other fields, such as differential privacy and
explainable visualization tools, further enhance detection
success rates (Doan et al., 2020; Du et al., 2019), as back-
door samples often appear as outliers relying on local spuri-
ous features. Model-level defenses work by first detecting
whether a model has been implanted with a backdoor and
then mitigating the backdoor effect. Regarding backdoors as
shortcuts between the real and target classes, methods like
(Wang et al., 2019a; Tao et al., 2022; Hu et al., 2021) em-
ploy reverse engineering by maximizing the classification
loss across all classes to identify potential triggers. Once
the model is identified as backdoored, purification-based
defenses such as fine-tuning (Sha et al., 2022; Xiong et al.,
2023), pruning (Wu & Wang, 2021; Chai & Chen, 2022), or
unlearning (Liu et al., 2022; Wei et al., 2023) are employed
to reduce the attack success rate while maintaining benign
accuracy. However, these defenses fail to protect diffusion
models because the input to a diffusion model is Gaussian
noise rather than natural images, and diffusion models pre-
dict added Gaussian noise rather than discriminative results
of natural images.

The most relevant work to ours is Elijah (An et al., 2023),
the method designed specifically for backdoor defense in
diffusion models. However, Elijah does not establish a uni-
fied loss for current attacks, assuming the trigger is part of
the model output, which does not apply to state-of-the-art
attacks such as TrojDiff (Chen et al., 2023). Additionally,
Elijah’s model detection method assumes that backdoor
models generate images with higher similarity, a claim con-
tradicted by Chen et al. (2023), which demonstrates that
target images can consist of multiple images with diverse
and colorful patterns.

3. Preliminary
3.1. Discrete Diffusion Model

Based on the Markov chain, Denoising Diffusion Probabilis-
tic Models (DDPM) (Ho et al., 2020) connects the data and
prior distribution (e.g., Gaussian distribution) by defining
a forward diffusion and backward denoising process. In its
forward process, Gaussian noise is gradually added to im-
ages and the conditional distribution p(xt|xt−1) is defined
as N (

√
αtxt−1, (1− αt)I) where αt ∈ (0, 1). According

to Bayes Rule, given x0, we can sample xt of timestep t
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(0< t ≤ T ) directly from the following equation:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (1)

where ᾱt =
t∏

i=1

αi. The boundary conditions require that

lim
t→T

ᾱt = 0 to ensure that p(xt|x0) converges to N (0, I).

Therefore, in the denoising process, we first sample xT

from N (0, I) and then generate xt−1 step-by-step using
p(xt−1|xt,x0) = p(xt|xt−1,x0)p(xt−1|x0)

p(xt|x0)
. According to

Equation 1, we can estimate x0 with xt−
√
1−ᾱtFθ(xt,t)√

ᾱt
once

the network Fθ predicts ϵ:

min
θ
||Fθ(xt, t)− ϵ||2. (2)

3.2. Continuous Diffusion Model

In Song et al. (2020b), a unified Stochastic Diffusion Equa-
tion (SDE)-based framework is proposed to encapsulate the
diffusion model. When t becomes continuous, the diffusion
process is characterized by the following forward SDE:

dxt = f(xt, t)dt+ g(t)dw, (3)

where t ∈ [0, T ] and f(xt, t), g(t) are the drift and diffusion
coefficients, respectively. According to Anderson (1982),
the denoising process corresponds to a reversed SDE:

dxt = [f(xt, t)− g(t)2∇x log pt(xt)]dt+ g(t)dw. (4)

We cannot solve the above equation directly due to the
existence of term∇x log pt(xt, ϵ). However, in the forward
diffusion process, we can train the model Fθ with xt and
the time step t to fit it:

min
θ
||Fθ(xt, t)−∇x log pt(xt)||2. (5)

Thus in the sampling stage, we can generate images by
solving Equation 4 with appropriate samplers, such as Heun
solver (Karras et al., 2022) and DPM solver (Lu et al., 2022).

3.3. Backdoor Diffusion Model

Only a few works, such as Chou et al. (2023a); Chen et al.
(2023); Chou et al. (2023b), explored backdoor attacks in
diffusion models. In their threat models, attackers have
access to the training process of diffusion models. They
develop a backdoor diffusion process to ensure that when
a trigger is attached to the sampled noise, the generated
images transform into predefined target images. The trigger
and target images are tensors with the same shape as benign
images and are inaccessible to defenders. To maintain the
benign utility of the model, the benign training loss, as
defined in Sections 3.1 and 3.2, is also incorporated into the
training process.

BadDiffusion (Chou et al., 2023a). Designed for discrete
diffusion models, BadDiffusion inserts backdoors by gradu-
ally attaching triggers to noisy images. Its backdoor diffu-
sion process is defined as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ+ (1−

√
ᾱt)r, (6)

where x0 refers to target images instead of benign images,
and r is the trigger.

TrojDiff (Chen et al., 2023). Similar to BadDiffusion, Tro-
jDiff aims to insert backdoors into discrete diffusion models.
However, it introduces both patch-based and whole-image
triggers using a new variable, γ. The backdoor diffusion
process of TrojDiff is formulated as:

xt =
√
ᾱtx0 +

√
1− ᾱtγϵ+

√
1− ᾱtr. (7)

VillanDiffusion (Chou et al., 2023b). VillanDiffusion devel-
ops a backdoor attack for continuous diffusion models. The
backdoor SDE is modified from the benign forward SDE to
incorporate the trigger into the backdoor diffusion process:

dxt = f(xt, t)dt+H(t)r+ g(t)dw, (8)

where H(t) is a continuous function inaccessible to defend-
ers and meets the boundary condition

∫ t

0
H(t)dt = 1 to

ensure the backdoor attack can be accurately triggered by r.

4. Reverse Engineering
4.1. A Unified Loss for Trigger Reversion

As summarized in Section 3, in addition to the benign diffu-
sion process, current backdoor attacks for diffusion models
define an additional diffusion process i.e., backdoor dif-
fusion process for target image generation. Despite the
differences in the details among the attacks, we can unify
their formulations with the following equation1:

xt = a(x0, t)x0 + b(t)ϵ+ c(t)r. (9)

Here, a(x0, t) and b(t) are two coefficients that follow the
benign diffusion process and the backdoor coefficient c(t)
is defined by attackers. To ensure that the backdoor effect
can be triggered by r, c(t) needs to first satisfy the follow-
ing boundary condition: lim

t→T
c(t) = 1. In addition, with

the initial condition: xt = x0, we can get: lim
t→0

c(t) = 0.
According to the formulations in Section 3.3, we summarize
their corresponding relations with existing attacks in Table 1.
Meanwhile, we also established a unified form of backdoor
training loss for those attacks:

min
θ

Et,ϵ||Fθ(xt, t)− f(xt, ϵ) + d(t)r||2, (10)

1The blending coefficient γ is omitted for TrojDiff because we
regard it as part of the trigger and optimize it for TrojDiff during
the trigger reversion process.
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Table 1. Designed choices adopted by current attacks and their relationship to our unified formulation. As long as the coefficient cannot
be derived from the benign diffusion process in one of the attacks, we consider it inaccessible to the defenders.

BadDiffusion TrojDiff VillanDiffusion Accessible to defenders(Chou et al., 2023a) (Chen et al., 2023) (Chou et al., 2023b)

Diffusion Process
a(x0, t)

√
ᾱt

√
ᾱt

∫ t

0
f(xt, t)dt/x0 + 1 ✓

b(t)
√
1− ᾱt

√
1− ᾱt

√∫ t

0
g2(t)dt ✓

c(t) 1−
√
ᾱt

√
1− ᾱt

∫ t

0
H(t)dt ✗

Training Loss f(xt, ϵ) ϵ ϵ ∇x log pt(xt, ϵ) ✓

d(t)
√
1−ᾱt

1+
√
αt

0 H(t)
g(t)2 ✗

where f(xt, ϵ) is the training target for the benign loss. For
example, for the DDPM model, it denotes the gaussian
noise added to the noisy image. The detailed formulation
of d(t) is related to the specific attack adopted by attackers,
such as d(t) ≡ 0 for TrojDiff and a black-box function for
VillanDiffusion. Therefore, it indicates that it is not feasible
to reverse the trigger directly through Equation 10. Note
that in Elijah (An et al., 2023), they heuristically assume
d(t) = 0.5 and make a trade-off between BadDiffusion and
TrojDiff ( lim

t→T

√
1−ᾱt

1+
√
αt

= 1 for BadDiffusion). This could

lead to the failure of defense, particularly in some difficult
cases. Therefore, it is necessary to first establish a unified
loss to more accurately characterize the relation between the
trigger and the model output. Observe that for Equation 10,
we can divide it with the losses of two independent noises
ϵ1, ϵ2 respectively. Furthermore, we can employ the triangle
inequality to obtain a lower bound for direct optimization:

Et,ϵ1,ϵ2

1

2
||Fθ(xt(ϵ1, r), t)− f(xt(ϵ1, r), ϵ1) + d(t)r||2

+
1

2
||Fθ(xt(ϵ2, r), t)− f(xt(ϵ2, r), ϵ2) + d(t)r||2

≥ 1

2
Et,ϵ1,ϵ2 ||Fθ(xt(ϵ1, r), t)− f(xt(ϵ1, r), ϵ1)

−Fθ(xt(ϵ2, r), t) + f(xt(ϵ2, r), ϵ2)||2.
(11)

Due to the non-negative property of the norm operation,
when Equation 10 is optimized to 0, the lower bound in
Equation 11 also reaches a minimum point. It means that
we can substitute Equation 10 with Equation 11 for trigger
reversion. To avoid r collapses to the full-zero vector, we
introduce l1 norm for penalization and λ as the trade-off
coefficient:

L(r,xt) = ||(Fθ(xt(ϵ1, r), t)− f(xt(ϵ1, r), t), ϵ1)

− Fθ(xt(ϵ2, r), t) + f(xt(ϵ2, r), t), ϵ2)||2 − λ||r||2
(12)

Note that Equation 12 unifies the expression of all current
attacks from the reversed loss, free of the trade-off between
the detailed formulations. In order to obtain a high-quality
reversed trigger, our proposed reverse engineering approach
is composed of the following two steps, including the prelim-
inary estimation of the trigger with a surrogate distribution

and further refinement with a differential generation process.

4.2. Trigger Estimation

Although in Equation 12, we built a unified loss to eliminate
the difference in formulations for various attacks, it still
needs further improvement to perform reverse engineering.
The obstacle is that xt is unknown to defenders, which is
simultaneously decided by the target images x0 and the
coefficient c(t). However, the property of diffusion models
guarantees that when t approaches T , xt will converge to
the prior distribution that is little affected by x0. Therefore,
we can substitute x0 with a surrogate image x̂0 sampled
from a substitute distribution, e.g., the standard gaussian
distribution p̂prior, to estimate xt. Here, we also prove this
property from a theoretical perspective:

Theorem 4.1. Given the target image x0 ∼ ptarget and
a surrogate image x̂0 ∼ p̂prior, let pt and qt denotes the
distribution of x0 and x̂0 at timestep t. we can prove that:

∂DKL(pt||qt)

∂t
≤ 0. (13)

For the proof of Theorem 4.1, please refer to Appendix A
for details. Following (Song et al., 2021; Nie et al., 2022),
we first prove that the current backdoor diffusion processes
are all Wiener Processes. Then we finished the proof with
its property. Equation 13 means that the divergence between
pt and qt will monotonically decrease with t during the
diffusion process. Thus pt and qt will become indistin-
guishable when t is large. Therefore, for t ∈ [T − δ, T ] and
δ ≪ T , we can substitute x0 with x̂0 and simplify Equation
9 to the following equation:

x
(1)
t = a(x̂0, t)x̂0 + b(t)ϵ+ r. (14)

Here we omit c(t) because c(t) ≈ 1 when t ∈ [T − δ, T ].
Substituting xt in Equation 12 with x

(1)
t , and we can get:

L1(r) = ||Fθ(x
(1)
t (ϵ1, r), t)− f(x

(1)
t (ϵ1, r), t), ϵ1)

− Fθ(x
(1)
t (ϵ2, r), t) + f(x

(1)
t (ϵ2, r), t), ϵ2)||2 − λ||r||2.

(15)

Directly optimizing it with a commonly used optimizer such
as SGD (Bottou, 2010), we can preliminarily reverse the
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(a) Trigger Estimation (b) Trigger Refinement
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Figure 1. An illustration for our proposed reverse engineering method.

trigger. However, if we could represent x0 with a more
precise formulation, the quality of the reversed trigger could
be further improved.

4.3. Trigger Refinement

Recall that in those early studies for diffusion models, the
sampling processes are time-consuming because they fol-
low the reversed Markovian chain, which consists of thou-
sands of steps. To save the computational cost, following-
up works, such as the Denoising Diffusion Implicit Model
(DDIM) sampler (Song et al., 2020a) propose that multiple
denoised steps are equal to a non-Markovian process with
fewer steps. It indicates that we can obtain high-quality
images even with a few steps of sampling. Note that the
operations in the denoised process are all differential. Thus
it motivates us to estimate xt with multi-step generations. If
Φn(·) denotes n-steps DDIM sampler 2, we can obtain the
target image x0 with the trigger r:

x0 = Φn(r) (16)

Similar to Equation 14, we can obtain a more precise for-
mula for xt when t ∈ [T − δ, T ] and δ ≪ T :

x
(2)
t = a(Φn(r), t)Φn(r) + b(t)ϵ+ r. (17)

Substitute xt with x
(2)
t , Equation 12 becomes:

L2,1(r) = ||Fθ(x
(2)
t (ϵ1, r), t)− f(x

(2)
t (ϵ1, r), t), ϵ1)

− Fθ(x
(2)
t (ϵ2, r), t) + f(x

(2)
t (ϵ2, r), t), ϵ2)||2 − λ||r||2

(18)

In addition to the ending constraint for Equation 9, we can
also simplify it with the beginning constraint: Know that
lim
t→0

xt = x0. Therefore, for t ∈ [0, δ] and δ ≪ T , xt can

be approximated with x
(3)
t :

x
(3)
t = Φn(r). (19)

2For continuous diffusion models, it denotes n steps Heun
sampler

0.45 0.50 0.55 0.60 0.65 0.70
Mr

0.000
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V r

clean model
backdoor model

Figure 2. Mr and Vr for clean and backdoor models.

Substitute xt with x
(3)
t , Equation 12 becomes:

L2,2(r) = ||Fθ(x
(3)
t (ϵ1, r), t)− f(x

(3)
t (ϵ1, r), t), ϵ1)

− Fθ(x
(3)
t (ϵ2, r), t) + f(x

(3)
t (ϵ2, r), t), ϵ2)||2 − λ||r||2

(20)

For simplicity, we average L2,1 and L2,2 to get our final
loss for trigger refinement:

L2(r) =
1

2
L2,1(r) +

1

2
L2,2(r) (21)

For the overall algorithm for trigger reversion, please refer
to Appendix B.1 for details.

5. Backdoor Detection
5.1. Input Detection

As demonstrated in Section 2.2, in the inference stage, be-
cause the inputs for diffusion models are sampled noises
instead of natural images, current input detection methods,
including (Chen et al., 2018; Zeng et al., 2021), fail to pro-
tect diffusion models from backdoor attacks. However, if
we regard the reversed trigger as the mean of the backdoor
distribution, we can further detect the backdoor input from
the probabilistic perspective: Note that currently, there are
two distributions obtained: One is the benign distribution
N (0, I), known to defenders even without defense and the
other is the reversed backdoor distribution, N (r,γ2). Here
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γ is equal to I for Baddiffusion and VillanDiffusion. For
TrojDiff, it is co-optimized with the triggers. Given any
input noise ϵ̄, we can calculate its probabilities in the benign
or backdoor distributions, which are denoted as Φbe(ϵ̄) and
Φbd(ϵ̄), respectively. Empirically, if ϵ̄ is a backdoor input,
Φbd(ϵ̄) will be greater than Φbe(ϵ̄) and vice versa. There-
fore, we will keep ϵ whose Φbe(ϵ̄) ≥ Φbd(ϵ̄) and filter out
those noises with Φbe(ϵ̄) < Φbd(ϵ̄) because they might be
backdoor inputs.

5.2. Model Detection

In (An et al., 2023), they propose Elijah, the first backdoor
model detection method for diffusion models. They first
generate the target images with the triggers and further per-
form backdoor model detection with additional assumptions
for target distribution. First, they assume that target images
are those with high similarity. Unfortunately, this contra-
dicts the proposition by TrojDiff, in which they demonstrate
that the attacks that include multiple target images can also
be applied to implant backdoors for the diffusion models. In
addition, because of the discrepancy between the reversed
and the original triggers, target images can not be properly
generated with multiple-step generations in some hard situ-
ations. Therefore, our proposed model detection method is
performed in the trigger space rather than the image space.

Recall that in Section 4.1, we prove that r is a non-zero
minimum point for the lower bound in Equation 11. How-
ever, for the benign models, optimizing Equation 12 will
finally converge to the point that is close to a full-zero tensor
because there are non-zero solutions for them. Therefore,
we introduce Kullback-Leibler (KL) divergence, a metric
that measures the distance between the reversed distribution
N (r,γ2) and benign distribution N (0, I). If r is flattened
with a n-dimensional tensor, we can easily calculate the
dimensional-wise divergence, dr between the known be-
nign and the reversed distributions. Further, we can squeeze
dr to a scalar by calculating its mean and variance over
dimensions:

Mr =
1

n

n−1∑
i=0

dr[i],

Vr =
1

n

n−1∑
i=0

(dr[i]−Mr)
2

(22)

For the whole-image attacks, the trigger will cause a large
Mr because the offsets of distribution have appeared across
the entire image. For the patch-based attacks, the trigger is
only attached to a small region, which will lead to a large
Vr. Only the benign models can obtain low values in both
Mr and Vr. In Figure 2, we show that the backdoor and
benign models can be easily detected with these extracted
features. If both benign and backdoor models are available
for defenders, we can train a one-layer network for model
detection. We also consider a benign-only (BO) scenario, in

which only benign models are accessible. We can calculate
the mean and variance of Mr and Vr, denoted as (µm,γm)
and (µv,γv). According to the 3σ criterion, any model that
achieves Mr > µm + 3 ∗ γm or Vr > µv + 3 ∗ γv will be
regarded as the backdoor model.

6. Experiment
6.1. Experimental Settings

Dataset: Our experiments are mainly performed on the
CIFAR-10 (Krizhevsky et al., 2009) dataset. In Section
6.3, we extend our experiments to large datasets, including
CelebA (Liu et al., 2015) and CelebA-HQ (Karras et al.,
2017).

Attack: We evaluate the performances of our defense
against all known pixel-level backdoor attacks for diffu-
sion models, including BadDiffusion, TrojDiff, and Vil-
lanDiffusion. We select the DDPM (Ho et al., 2020) as
the victim model for both BadDiffusion and TrojDiff. For
VillanDiffusion, the backdoor is inserted in EDM (Karras
et al., 2022). To ensure a comprehensive and fair evalua-
tion, on the CIFAR-10 dataset, we report the results that
are the average of six different settings for each attack. For
large datasets, all default settings from the original paper
are included. Please refer to Appendix D for more details.

Defense: As far as we know, Elijah (An et al., 2023) is
the first and only existing work that specifically designs
backdoor defense for diffusion models and we select it as
the baseline. For its hyperparameter setting, we keep in line
with the original paper. As for our proposed TERD, the
iterations for trigger estimation are 3000 and 1000 for fur-
ther refinement. We choose SGD as our optimizer with 0.5
learning rate which is adaptively adjusted with the cosine
learning rate schedule. The trade-off coefficient γ is set as
5e-5 for CIFAR-10 and 5e-4 for larger datasets. δ is set as
0.01T and the step number, n, for multi-step generation is
set as 10. For the model detection with a neural network,
we trained the model with 5 benign models and 50 back-
door models which are poisoned by the grey-box-hat setting
under the BadDiffusion attack. For the benign-only (BO)
backdoor detection, we calculate the threshold with 100
benign models only which are trained with the baddiffusion
open-source code.

Metrics: To evaluate the performance of our proposed re-
versed engineering approach, we select the l2 norm of the
difference between reversed trigger r and the original trigger
ro to access the quality of the method, denoted as ||r−ro||2.
For the backdoor detection methods, we use TPR (True Pos-
itive Rate) and TNR (True Negative Rate): the proportion of
the benign or backdoor input/model is successfully detected.
For input detection, the metrics are calculated over 50000
points sampled from the benign or the backdoor distribu-
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Table 2. Performance of our proposed defense against current diffusion backdoor attacks on CIFAR-10 dataset. Elijah is chosen as our
baseline. The better results are in bold.

Attack Defense ||r− ro||2 ↓
Input Detection Model Detection Model Detection (BO)

TPR(%)↑ TNR(%)↑ TPR(%)↑ TNR(%)↑ TPR(%)↑ TNR(%)↑

BadDiffusion Elijah 32.90 - - 100.00 51.67 68.00 21.55
Ours 20.69 100.00 100.00 100.00 100.00 100.00 100.00

TrojDiff Elijah 22.60 - - 0.00 100.00 60.00 47.50
Ours 4.26 100.00 100.00 100.00 100.00 100.00 100.00

VillanDiffusion Elijah 43.03 - - 3.00 62.33 50.00 58.33
Ours 30.03 100.00 100.00 100.00 100.00 100.00 100.00

(a) Original triggers (b) Triggers reversed by Elijah (c) Triggers reversed by TERD

Figure 3. Reversed results. From left to right: one of the triggers inserted by badiffusion, TrojDiff and VillanDiffusion. As can be seen,
TERD more accurately reverses the triggers.

tions. For model detection, we report the results that include
100 benign models and 120 backdoor models (20 models
for each of the settings). All experiments are performed on
the NVIDIA A100 GPUs.

6.2. Main Result

We summarize the performances of TERD against current
attacks on the CIFAR-10 dataset in Table 2. In addition,
we compare TERD with Elijah from both the numerical
results in Table 2 and empirical visualization in Figure 3.
First, for the reversed engineering methods, the results re-
veal that compared to Elijah, our proposed TERD can more
accurately reverse the triggers. It is because compared to
Elijah, TERD not only establishes a unified loss for trigger
reversion and considers both the initial and the ending condi-
tions of current attacks. Besides, our proposed progressively
reversed strategy can help us initially estimate the trigger
and improve its quality with further refinement.

Attribute to the success of our trigger reversion approach,
our proposed backdoor detection method obtains 100% TPR
and TNR in all settings. From the perspective of input
detection, we successfully detect the noises sampled from
the backdoor distribution with the calculated probabilities.
As for model detection, considering we only include one
setting of the BadDiffusion attack to train the detection
model, our proposed defense shows its better transferability
than Elijah across different settings within the same attack
and the settings across attacks. With further analysis, we
find the reason is that the quality of generated images with
the reversed triggers by Elijah will severely decline in some
circumstances. Instead of detecting the poisoned models
with the generated images, our proposed TERD performs

model detection with the KL divergence of the reversed
trigger. This helps TERD obtain steady performances in all
settings.

6.3. Performance on High-Resolution Dataset

In addition to small datasets e.g. CIFAR-10, recent ad-
vancements in diffusion models show their outstanding per-
formances in high-resolution image generation (Rombach
et al., 2022b). Unfortunately, recent studies show that back-
doors can be successfully implanted even for those complex
datasets (Chou et al., 2023a). Therefore, it is necessary to
evaluate TERD on large datasets to study whether it can pro-
vide assistance for diffusion models in all situations. With
the open-source code provided by current attacks, we evalu-
ate TERD on CelebA and CelebA-HQ datasets. Since our
extracted features for model detection are agnostic to the im-
age size, we use the same detection model and the threshold
adopted by the CIFAR-10 dataset. The results are summa-
rized in Table 3 and for all settings, we obtain 100% TPR
and TNR. Note that the entry for attacks means the kind of
attack, the victim model and the poison datasets. The results
reveal that TERD is effective on high-resolution datasets
and has good transferability across datasets. It means we
can detect the backdoor models with TERD trained on large
datasets with a detector, trained on small datasets. It can
largely decrease the computation cost, considering training
a diffusion model on large datasets usually requires huge
computational resources.

6.4. Transferability to SDE-based Models

In (Chou et al., 2023b), they propose an SDE-based frame-
work to implant a backdoor for diffusion models. Previous
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Table 3. Performance (%) of our proposed defense against current diffusion backdoor attacks on high-resolution datasets.

Attack Input Detection Model Detection Model Detection (BO)

TPR↑ TNR↑ TPR↑ TNR↑ TPR↑ TNR↑
BadDiffusion-DDPM-CelebHQ 100.00 100.00 100.00 100.00 100.00 100.00

TrojDiff-DDPM-CelebA 100.00 100.00 100.00 100.00 100.00 100.00
VillanDiffusion-LDM-CelebHQ 100.00 100.00 100.00 100.00 100.00 100.00

Table 4. Performance (%) of our proposed defense against current backdoor attacks on other SDE-based Models.

Model Input Detection Model Detection Model Detection (BO)

TPR↑ TNR↑ TPR↑ TNR↑ TPR↑ TNR↑
Score-based Model 100.00 100.00 100.00 100.00 100.00 100.00
Consistency Model 100.00 100.00 100.00 100.00 100.00 100.00

studies in (Song et al., 2020b; 2023) propose that SDE can
also be used to depict the dynamics of other kinds of gen-
erative models including the score-based models (Song &
Ermon, 2019) and consistency models (Song et al., 2023).
Unfortunately, it also indicates that with some appropriate
adaptations, VillanDiffusion will pose a threat not only to
diffusion models but also to other models designed by sim-
ilar dynamics. To study whether TERD can be applied to
those models, we evaluate its performance in Table 4. We
report the results that are the average of six configurations
of VillanDiffusion and we use the same detector as this used
in Section 6.2. Surprisingly, we show that TERD can be
flexibly adapted and safeguard those models. This is be-
cause TERD provides the overall framework for backdoor
defense and we can instantiate its details based on different
circumstances. This demonstrates the good transferability
of TERD to SDE-based models and its excellent scalabil-
ity even for some unknown models designed with similar
principles.

6.5. Ablation Study

We study the effect of each component to the performance
of our proposed defense. In addition, we consider defending
attacks with varied trigger sizes and different poison rates.
We report the results that are the averages of BadDiffusion,
TrojDiff, and VillanDiffusion attacks.

Influence of each Component: We compare TERD with
two variants, including (1) TERD with only TE (Trigger
Estimation) applied. (2) TERD with only TR (Trigger Re-
finement) applied on the CIFAR-10 dataset. For both of
the variants, we simply substitute the loss function of the
removed stage with this of the kept stage and keep other
hyperparameters unchanged. As shown in Table 5, although
applying either TE or TR alone can yield decent perfor-
mance, combining them together can obtain a more pow-
erful defense: lower l2 norm between the reversed and the

original trigger, both TPR and TNR reaches 100%. The
reason is that TE estimates the target image with a surro-
gate distribution which might introduce randomness to the
trigger reversion. And TR involves multiple forward or
backward propagations through the network increasing the
difficulty of optimization when it is initialized with random
noises. Therefore, we propose to use TE to boost TR: by
initializing noise with a rough trigger reversed by TE, the
performances of TR can be further improved thus boosting
the performances of both input and model detections.

Trigger Size and Poison Rate: We also investigate whether
the success of TERD will be affected by the configurations
of attacks. Here we consider two key factors: the size of
the trigger and the poison rate. Four different settings are
chosen for each factor. The minimum poison rate is set to
2% because any value below this threshold would render the
attack unsuccessful. We summarize the results in Table 9
of Appendix D. The results demonstrate that TERD obtains
100% successful detection rates in all settings. It reveals that
TERD exhibits excellent adaptability to attack with different
configurations.

6.6. Adaptive Attack

Because we perform the backdoor detection from the distri-
bution view, one intuitive adaptive attack is when the benign
and backdoor distributions are close enough, it might bypass
our proposed defense. Therefore, we introduce the hyperpa-
rameter η (0 < η < 1), which scales the original trigger ro
to η ∗ ro and evaluate the performance of TERD for each
settings of the attack. The TNR for model detection is sum-
marized in Figure 4, which is the average of the results with
a network and statistical detector. For the performances of
the input detection, please refer to Figure 5 for details. We
observe that when η is extremely low, e.g. 0.1 for TrojDiff,
the performance of TERD will degrade. Nevertheless, with
further inspection in Table 10, we find that the benign utility
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Table 5. The effect of each component on the final performances of
our proposed defense. The best results are in bold.

Metrics TE TR TE+TR

||r− ro||2 ↓ 21.90 23.56 18.33

Input Detection TPR(%) 100.00 100.00 100.00
TNR(%) 94.44 89.19 100.00

Model Detection TPR(%) 33.33 100.00 100.00
TNR(%) 88.89 77.78 100.00

Model Detection (BO) TPR(%) 33.33 100.00 100.00
TNR(%) 88.89 83.33 100.00
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0

20

40
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Figure 4. The performance of our proposed model detection against
the adaptive attack.

will be severely hurt by current attacks. This is because the
backdoor and benign distributions at this time have largely
overlapped. Even without TERD, the anomalies can be eas-
ily noticed by the defenders with human inspection. This
illustrates the robustness of TERD to adaptive attack.

6.7. Complexity and Time Cost

In previous sections, we illustrate the outstanding perfor-
mances of TERD in various settings. Here, we analyze the
complexity of TERD to investigate whether it is practical
to deploy it in real life. For our proposed reversed engineer-
ing method, the time cost is the sum of those in both stages.
First, for trigger estimation, because xt can be directly repre-
sented with one equation, the computational complexity for
Equation 12 is O(1). If we denote the number of iterations
for the trigger estimation as m1, the computational com-
plexity for trigger estimation can be represented as O(m1).
For the trigger refinement stage, we can first obtain that
the complexity for obtaining x0 is O(n) because it needs n
steps of generative iterations to obtain x0 and the complex-
ity for each step is O(1). Following the previous analysis
for trigger estimation, we can further obtain that the overall
computational complexity for the trigger refinement stage is
O(nm2) (m2 is the number of optimizations in the second
stage.). Suming the results of both stages, the overall com-
putational complexity for our method is O(nm2+m1). For
the analysis of the input and model detection, please refer
to Appendix E for details.

In addition to the theoretical perspective, we also evaluate
the time consumption with experiments. Evaluated on a
single A100 GPU, we record the time consumed by TERD
and the cost of training a diffusion model from scratch on the
CIFAR-10 dataset in Table 6. Firstly, the results indicate that
compared to the training cost of diffusion models, the cost
for TERD is marginal (< 1%). This demonstrates the cheap
computational cost of TERD, which can be afforded by most
defenders. Secondly, it also reveals that the detection task
can be finished in less than 0.003 seconds, demonstrating
our proposed method is appropriate to deploy online. It will

Table 6. The time cost of TERD on CIFAR-10 dataset. The time is
recorded based on our experiments on a single A100 GPU.

Time BadDiffusion TrojDiff VillanDiffusion

Training 29h41min 45h29min 54h28min

Reverse Engineering 11.13min 14.80 min 24.45min

Model Detection 0.0009s 0.0008s 0.0009s

Input Detection 0.0028s 0.0025s 0.0027s

have a negligible effect on the experience of users and can
quickly finish the filtering mission even if thousands of user
requests are sent to the central server.

7. Conclusion
In this paper, we propose TERD, a defense framework to
protect diffusion models from backdoor attacks. First, we
establish a unified form for current attacks and achieve an
accessible loss for reversion by applying the triangle inequal-
ity. Furthermore, we develop a two-step trigger reversion
algorithm, including estimating the trigger with a substi-
tuted distribution and refining its quality with a multi-step
sampler. In addition, we propose the first input detection
approach by comparing probabilities across distributions
and a brand new model detection method by selecting the
KL divergence between the reversed and benign distribu-
tions as the metrics. We hope TERD, including the trigger
reversion and backdoor detection partitions, will serve as the
cornerstone to improve the backdoor robustness of diffusion
models in the future.
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Impact Statement
Backdoor attacks have emerged as a significant threat to
contemporary state-of-the-art diffusion models. In response,
we propose the use of TERD as a defense mechanism to
safeguard these models, offering the potential to enhance
their overall security. Our approach is aligned with the ethi-
cal utilization of generative models, actively discouraging
the generation of harmful or inappropriate content. How-
ever, it is essential to consider its environmental impact, as
it may contribute to additional carbon dioxide emissions.
Furthermore, it is crucial to emphasize that this paper does
not intend to instill over-optimism regarding the security of
diffusion models within communities. The backdoor attack,
while noteworthy, is just one aspect of the potential risks
faced by diffusion models. Achieving secure and trustwor-
thy diffusion models is still a complex and ongoing journey,
with many challenges ahead.

References
An, S., Chou, S.-Y., Zhang, K., Xu, Q., Tao, G., Shen, G.,

Cheng, S., Ma, S., Chen, P.-Y., Ho, T.-Y., et al. How
to remove backdoors in diffusion models? In NeurIPS
Workshop, 2023.

Anderson, B. D. Reverse-time diffusion equation models.
Stochastic Processes and their Applications, 1982.

Bottou, L. Large-scale machine learning with stochastic
gradient descent. In COMPSTAT, 2010.

Chai, S. and Chen, J. One-shot neural backdoor erasing via
adversarial weight masking. In NeurIPS, 2022.

Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Ed-
wards, B., Lee, T., Molloy, I., and Srivastava, B. Detecting
backdoor attacks on deep neural networks by activation
clustering. In arXiv, 2018.

Chen, W., Song, D., and Li, B. Trojdiff: Trojan attacks on
diffusion models with diverse targets. In CVPR, 2023.

Chen, X., Liu, C., Li, B., Lu, K., and Song, D. Targeted
backdoor attacks on deep learning systems using data
poisoning. In arXiv, 2017.

Chou, S.-Y., Chen, P.-Y., and Ho, T.-Y. How to backdoor
diffusion models? In CVPR, 2023a.

Chou, S.-Y., Chen, P.-Y., and Ho, T.-Y. Villandiffusion: A
unified backdoor attack framework for diffusion models.
In NeurIPS, 2023b.

Doan, B. G., Abbasnejad, E., and Ranasinghe, D. C.
Februus: Input purification defense against trojan attacks
on deep neural network systems. In ACSA, 2020.

Du, M., Jia, R., and Song, D. Robust anomaly detection
and backdoor attack detection via differential privacy. In
arXiv, 2019.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. In NeurIPS, 2014.

Gu, T., Dolan-Gavitt, B., and Garg, S. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. In arXiv, 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In NeurIPS, 2020.

Hu, X., Lin, X., Cogswell, M., Yao, Y., Jha, S., and Chen,
C. Trigger hunting with a topological prior for trojan
detection. In arXiv, 2021.

Huang, Y., Guo, Q., and Juefei-Xu, F. Zero-day backdoor
attack against text-to-image diffusion models via person-
alization. In arXiv, 2023.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of gans for improved quality, stability, and
variation. In arXiv, 2017.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models. In
NeurIPS, 2022.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow with
invertible 1x1 convolutions. In NeurIPS, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In arXiv, 2013.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Li, A. C., Prabhudesai, M., Duggal, S., Brown, E., and
Pathak, D. Your diffusion model is secretly a zero-shot
classifier. In arXiv, 2023.

Li, M., He, L., and Lin, Z. Implicit euler skip connections:
Enhancing adversarial robustness via numerical stability.
In ICML, 2020.

Liu, Y., Fan, M., Chen, C., Liu, X., Ma, Z., Wang, L., and
Ma, J. Backdoor defense with machine unlearning. In
INFOCOM, 2022.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. Dpm-
solver: A fast ode solver for diffusion probabilistic model
sampling in around 10 steps. In NeurIPS, 2022.

10



TERD: A Unified Framework for Safeguarding Diffusion Models Against Backdoors

Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.-Y., and
Ermon, S. SDEdit: Guided image synthesis and editing
with stochastic differential equations. In ICLR, 2022.

Mo, Y., Wu, D., Wang, Y., Guo, Y., and Wang, Y. When
adversarial training meets vision transformers: Recipes
from training to architecture. Advances in Neural Infor-
mation Processing Systems, 35:18599–18611, 2022.

Nie, W., Guo, B., Huang, Y., Xiao, C., Vahdat, A., and
Anandkumar, A. Diffusion models for adversarial purifi-
cation. In ICML, 2022.

Pan, Z., Yao, Y., Liu, G., Shen, B., Zhao, H. V., Kompella,
R. R., and Liu, S. From trojan horses to castle walls:
Unveiling bilateral backdoor effects in diffusion models.
In arXiv, 2023.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In CVPR, 2022a.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022b.

Sha, Z., He, X., Berrang, P., Humbert, M., and Zhang, Y.
Fine-tuning is all you need to mitigate backdoor attacks.
In arXiv, 2022.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In ICLR, 2020a.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. In NeurIPS, 2019.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In ICLR, 2020b.

Song, Y., Durkan, C., Murray, I., and Ermon, S. Maximum
likelihood training of score-based diffusion models. In
NeurIPS, 2021.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models. In ICML, 2023.

Struppek, L., Hintersdorf, D., and Kersting, K. Rickrolling
the artist: Injecting backdoors into text encoders for text-
to-image synthesis. In ICCV, 2023.

Tao, G., Shen, G., Liu, Y., An, S., Xu, Q., Ma, S., Li, P.,
and Zhang, X. Better trigger inversion optimization in
backdoor scanning. In CVPR, 2022.

Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng,
H., and Zhao, B. Y. Neural cleanse: Identifying and
mitigating backdoor attacks in neural networks. In S&P,
2019a.

Wang, Y., Ma, X., Bailey, J., Yi, J., Zhou, B., and Gu, Q. On
the convergence and robustness of adversarial training.
In ICML, 2019b.

Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., and Gu, Q.
Improving adversarial robustness requires revisiting mis-
classified examples. In ICLR, 2020.

Wei, S., Zhang, M., Zha, H., and Wu, B. Shared adversarial
unlearning: Backdoor mitigation by unlearning shared
adversarial examples. In arXiv, 2023.

Wu, B., Chen, H., Zhang, M., Zhu, Z., Wei, S., Yuan, D., and
Shen, C. Backdoorbench: A comprehensive benchmark
of backdoor learning. In NeurIPS, 2022.

Wu, D. and Wang, Y. Adversarial neuron pruning purifies
backdoored deep models. In NeurIPS, 2021.

Wu, D., Xia, S.-T., and Wang, Y. Adversarial weight pertur-
bation helps robust generalization. In NeurIPS, 2020.

Xiong, Z., Wu, D., Wang, Y., and Wang, Y. Rethinking the
necessity of labels in backdoor removal. In ICLR 2023
Workshop on Backdoor Attacks and Defenses in Machine
Learning, 2023.

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y.,
Zhang, W., Cui, B., and Yang, M.-H. Diffusion models:
A comprehensive survey of methods and applications.
ACM Computing Surveys, 2023.

Zeng, Y., Park, W., Mao, Z. M., and Jia, R. Rethinking the
backdoor attacks’ triggers: A frequency perspective. In
ICCV, 2021.

Zhai, S., Dong, Y., Shen, Q., Pu, S., Fang, Y., and Su, H.
Text-to-image diffusion models can be easily backdoored
through multimodal data poisoning. In arXiv, 2023.

11



TERD: A Unified Framework for Safeguarding Diffusion Models Against Backdoors

A. The Proof of Theorem 4.1.
We first prove that the current backdoor diffusion processes are all Wiener processes in A.1. Then we further illustrate that
the non-negativity of the derivative for DKL(pt||qt).

A.1. Wiener Processes

TrojDiff: According to (Chen et al., 2023), for ∀t ∈ Z+, the relationship between xt and the target image x0 can be
formulated as:

xt =
√
ᾱtx0 +

√
1− ᾱtγϵ1 +

√
1− ᾱtr, ϵ1 ∼ N (0, I). (23)

where 0 < ᾱt < 1 and it monotonically increases with t. γ is the blending coefficient and r denotes the trigger. For another
timestep, ∀t′ ∈ Z+ and t′ ≤ t, we can have the similar representation:

xt′ =
√
ᾱt′x0 +

√
1− ᾱt′γϵ2 +

√
1− ᾱt′r, ϵ2 ∼ N (0, I). (24)

It could be further re-formulized as:

x0 =
xt′ −

√
1− ᾱt′r√
ᾱt′

−
√
1− ᾱt′√
ᾱt′

γϵ2. (25)

Substitute x0 in Equation 23 with Equation 25:

xt =
√
ᾱt{

xt′ −
√
1− ᾱt′r√
ᾱt′

−
√
1− ᾱt′√
ᾱt′

γϵ2}+
√
1− ᾱtγϵ1 +

√
1− ᾱtr. (26)

Because ϵ1 is independent of ϵ2, we can combine them together and introduce a new variable ϵ:

xt =

√
ᾱt

ᾱt′
xt′ −

√
ᾱt

ᾱt′

√
1− ᾱt′r+

√
1− ᾱtr+

√
1− ᾱt

ᾱt′
γϵ, ϵ ∼ N (0, I). (27)

A more symmetric form is

xt

γ
√
ᾱt
−
√
1− ᾱt

γ
√
ᾱt

r =
xt′

γ
√
ᾱt′
−
√
1− ᾱt′

γ
√
ᾱt′

r+

√
1

ᾱt
− 1

ᾱt′
ϵ. (28)

We can replace it with new variables:{
st = 1

ᾱt
− 1

ᾱ0
, t ∈ Z+

yst = xt

γ
√
ᾱt
−

√
1−ᾱt

γ
√
ᾱt

r− { x0

γ
√
ᾱ0
−

√
1−ᾱ0

γ
√
ᾱ0

r}.
(29)

For all: sT > sT−1 > · · · > s0 = 0, and{
y0 = 0

ys′ − ys =
√
s′ − sϵ, ϵ ∼ N (0, I), s′ > s.

(30)

It proves that ys′ is a Wiener process.

BadDiffusion: According to (Chou et al., 2023a), for ∀t ∈ Z+, the relationship between xt and the target image x0 can be
defined as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ1 + (1−

√
β̄t)r, ϵ1 ∼ N (0, I). (31)

Here we share the same symbolic meanings with TrojDiff. In (Chou et al., 2023a), they set: β̄t = ᾱt. However, here we
consider a more general case: {β̄t}Tt=1 could be a different sequence with {ᾱt}Tt=1. For t′ ∈ Z+ and t′ ≤ t, this formulation
becomes:

xt′ =
√
ᾱt′x0 +

√
1− ᾱt′ϵ2 + (1−

√
β̄t′)r, ϵ2 ∼ N (0, I). (32)

Similar to TrojDiff, we can re-formulized this equation:

x0 =
xt′ − (1−

√
β̄t′)r√

ᾱt′
−
√
1− ᾱt′√
ᾱt′

ϵ2 (33)
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Substitute x0 in Equation 31 with Equation 33, we get

xt =
√
ᾱt{

xt′ − (1−
√
β̄t′)r√

ᾱt′
−
√
1− ᾱt′√
ᾱt′

ϵ2}+
√
1− ᾱtϵ1 + (1−

√
β̄t)r (34)

Simplify Equation 34 and combine ϵ1 and ϵ2 together with ϵ, we get:

xt =

√
ᾱt

ᾱt′
xt′ −

√
ᾱt

ᾱt′
(1−

√
β̄t′)r+ (1−

√
β̄t)r+

√
1− ᾱt

ᾱt′
ϵ ϵ ∼ N (0, I) (35)

A more symmetric form is

xt√
ᾱt
− 1−

√
β̄t√

ᾱt
r =

xt′√
ᾱt′
− 1−

√
β̄t′√

ᾱt′
r+

√
1

ᾱt
− 1

ᾱt′
ϵ (36)

Replace it with new variables, st and yst : st = 1
ᾱt
− 1

ᾱ0
, t ∈ Z+

yst = xt√
ᾱt
− 1−

√
β̄t√

ᾱt
r− { x0√

ᾱ0
+

1−
√

β̄0√
ᾱ0

r}
(37)

Thus for all: sT > sT−1 > · · · > s0 = 0, we have{
y0 = 0

ys′ − ys =
√
s′ − sϵ, ϵ ∼ N (0, I), s′ > s.

(38)

Thus we prove that ys′ is a Wiener process.

VillianDiffusion: It serves as a continuous version of BadDiffusion which means t is extended to [0,+∞) and αt, βt are
assumed to be a continuous functions, where lim

t→∞
ᾱt = 0, lim

t→∞
β̄t = 0 and lim

t→0
β̄t = 1. Therefore, we could extend s to

[0,+∞) as well and prove VillianDiffusion is also a Wiener process similarly.

A.2. Proof 4.1

∂DKL(ps||qs)

∂s
=

∂

∂s

∫
p(ys)log

p(ys)

q(ys)
dy

=

∫
∂p(ys)

∂s
log

p(ys)

q(ys)
dy +

∫
∂p(ys)

∂s
dy +

∫
∂q(ys)

∂s

p(ys)

q(ys)
dy

(39)

Then if we assume p(ys) and q(ys) are smooth and fast decaying, then
∫ ∂p(ys)

∂s = 0 and ∂q(ys)
∂s = 0. In other words, the

integration of second term is 0. Then

∂DKL(ps||qs)

∂s
=

∫
∂p(ys)

∂s
log

p(ys)

q(ys)
dy +

∫
∂q(ys)

∂s

p(ys)

q(ys)
dy (40)

We know for Wiener process ys, both q(ys) and p(ys) satisfy:

∂p(ys)

∂s
=

1

2

∂2p(ys)

∂y2
s

∂q(ys)

∂s
=

1

2

∂2q(ys)

∂y2
s

(41)

Substitute ∂p(ys)
∂s and ∂q(ys)

∂s in Equation 40 with Equation 41, we get

∂DKL(ps||qs)

∂s
=

1

2

∫
∂2p(ys)

∂y2
s

log
p(ys)

q(ys)
dy +

∫
∂2q(ys)

∂y2
s

p(ys)

q(ys)
dy (42)

Using integration by parts and
∂p(ys)

∂ys
=

1

p(ys)

∂logp(ys)

∂ys
(43)
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, it becomes

∂DKL(ps||qs)

∂s
= −1

2

∫ (
∂p(ys)

∂ys

∂log p(ys)
q(ys)

∂ys
+
∂q(ys)

∂ys

∂ p(ys)
q(ys)

∂ys
dy

)
dy (44)

= −1

2

∫ (
p(ys)

∂logp(ys)

∂ys

∂log p(ys)
q(ys)

∂ys
+ q(ys)

∂logq(ys)

∂ys

p(ys)

q(ys)

∂log p(ys)
q(ys)

∂ys

)
dy (45)

= −1

2

∫
p(ys)

∂log p(ys)
q(ys)

∂ys

(
1

p(ys)

∂p(ys)

∂ys
+

1

q(ys)

∂q(ys)

∂ys

)
dy (46)

= −1

2

∫
p(ys)

(
∂log p(ys)

q(ys)

∂ys

)2

dy (47)

= −1

2
E
[(

∂log p(ys)
q(ys)

∂ys

)2]
(48)

It is Fisher information. And we know

DF (pt||qt) = E
[(

∂log p(ys)
q(ys)

∂ys

)2]
≥ 0 (49)

Therefore,

∂DKL(ps||qs)

∂s
= −1

2
DF (ps||qs) ≤ 0 (50)

B. Algorithm for TERD
B.1. Trigger Reversion

Algorithm 1 Trigger reversion.

1: Input: Diffusion model Fθ, random initialize r, iteration e1 e2, learning rate η, n-step sampler Φn(·), trade-off
coefficient λ, the substituted distribution p̂prior.

2: Output: Reversed trigger r.
3: for i← 1, . . . , e1 do
4: Init x̂0 from p̂prior
5: Sample t from U [T − δ, T ]
6: Sample ϵ1 ,ϵ2 from N (0, I)
7: Derive x1

t (ϵ1, r),x
1
t (ϵ2, r) with x̂0

8: r← r− η∇rL1(r) {Equation 15}
9: end for

10: for j ← 1, . . . , e2 do
11: x0 ← Φn(r)
12: Sample t1 from U [T − δ, T ]
13: Sample ϵ1, ϵ2 from N (0, I)
14: Derive x2

t (ϵ1, r), x
2
t (ϵ2, r) with x0

15: Sample t2 from U [0, δ]
16: Sample ϵ1, ϵ2 from N (0, I)
17: Derive x3

t (ϵ1, r), x
3
t (ϵ2, r) with x0

18: r← r− η∇rL2(r) {Equation 21}
19: end for
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B.2. Input detection

Algorithm 2 Input detection.

1: Input: Input noise ϵ̄, potential backdoor distribution N (r,γ2).
2: Output: Φbd(x̄) ≤ Φbe(x̄). {1 means ϵ̄ is a clean input, otherwise is a backdoor input.}
3: Φbe(ϵ̄)← The probability of ϵ̄ in distribution N (0, I)
4: Φbd(ϵ̄)← The probability of ϵ̄ in distribution N (r,γ2)

B.3. Model Detection

Algorithm 3 Feature extraction of model detection.

1: Input: Input model θ.
2: Output: Mr, Vr.
3: r← TriggerReversion(θ)
4: dr ← KL divergence between N (r,γ2) and N (0, I)

5: Mr ← 1
n

n−1∑
i=0

dr[i]

6: Vr ← 1
n

n−1∑
i=0

(dr[i]−Mr)
2

Algorithm 4 Model detection via a network

1: Input: K models for training: {Mi}Ki=1, and its label: {yi}Ki=1, epoch e, learning rate η, unknown model ϕ.
2: Output: Cθ(fϕ).
3: Dtrain ← {ExtractFeature(Mi), yi}Ki=1

4: Randomly init classifier Cθ

5: for j ← 1, . . . , e do
6: θ ← θ − η · ∇θL(θ,Dtrain)
7: end for
8: fϕ ← ExtractFeature(ϕ)

Algorithm 5 Model detection with only benign models

1: Input: K benign models: {Bi}Ki=1, unknown model ϕ.
2: Output: ϕ is a clean model or not.
3: M← {ExtractFeature(Bi)[Mr]}Ki=1

4: V ← {ExtractFeature(Bi)[Vr]}Ki=1

5: ψm ←mean(M) + 3 ∗ std(M)
6: ψv ←mean(V) + 3 ∗ std(V)
7: m, v ← ExtractFeature(ϕ)
8: if m > ψm or v > ψv then
9: ϕ is a backdoor model

10: else
11: ϕ is a clean model
12: end if
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C. Detailed Configurations for Backdoor Attacks

Table 7. Patterns of triggers and target images for Baddifusion and VillianDiffusion attacks.

CIFAR-10 (32 × 32) CelebA-HQ (256 × 256)

Triggers Targets Triggers Targets

Grey Box Stop Sign Corner Shoe Hat Eyeglasses Cat

Table 8. Patterns of triggers and target images for TrojDiff attack on both CIFAR-10 and CelebA datasets.

Triggers Targets

Patch-based Blend-based In-D2D attack Out-D2D attack D2l attack

Baddifusion: Following the settings of backdoor attacks in (Chou et al., 2023a), two triggers and three target images (6
combinations) are considered for the CIFAR-10 dataset. For the experiments on the CelebA-HQ dataset, we adopt the default
setting: eyeglasses trigger and cat target to implant the backdoor. The detailed patterns of them are illustrated in Table 7. To
save the computational cost, the backdoor is implanted by fine-tuning with the Adam optimizer. For the CIFAR-10 dataset,
the learning rate is 2e-4 and the batch size is 128. For the CelebA-HQ dataset, the learning rate and batch size are 8e-5 and
64, respectively.

TrojDiff: We include all settings of TrojDiff and blend all triggers and the sampled Gaussian noises with a coefficient of
0.6. As shown in Table 8, the image of HelloKitty is chosen as the trigger for the blend-based attack, while the classific
checkerboard trigger is selected for the patch-based attack. As for target selections, we include all attack scenarios in
TrojDiff with target images from in-domain images (In-D2D), out-domain images (Out-D2D), and an individual image
(D2I). In the In-D2D setting, the target class corresponds to class 7, which translates to “horse” on the CIFAR-10 dataset
and “faces with heavy makeup, mouth slightly open, smiling” in CelebA. For the Out-D2D setting, the handwritten number
“7” extracted from the MNIST dataset serves as the target. As for the Out-D2I setting, the target image is a single image, the
Mickey Mouse image. Details are shown in Table 8 and the images are resized to different sizes according to the resolutions
of the datasets. For the hyperparameter configurations, we employ the Adam optimizer with a learning rate of 0.0002 to
fine-tune the pre-trained diffusion models to implant backdoor attacks. The decay rate of the Exponential Moving Average
(EMA) is set as 0.9999 and the batch size is set to 128 which follows the original paper.

VillianDiffusion: As for VillianDiffusion, triggers and target images for CIFAR10 and CelebA-HQ are the same as those of
Baddifusion, shown in Table 7. We fine-tune the pre-trained EDM on the CIFAR-10 dataset with learning rate 2e-4 and 128
batch size for 200000 iterations. For the experiments on the CELEBA-HQ dataset, we insert backdoors for LDM with the
open-source code provided by VillianDiffusion.
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D. Performances of TERD with varied attack configurations

Table 9. The performances of our proposed defense with attacks of different trigger sizes and poison rates.

(a) trigger size

Trigger Input Model Model
Size Detection Detection Detection (BO)

4× 4 100.00 100.00 100.00
8× 8 100.00 100.00 100.00
11× 11 100.00 100.00 100.00
14× 14 100.00 100.00 100.00

(b) poison rate

Poison Input Model Model
Rate Detection Detection Detection (BO)

2% 100.00 100.00 100.00
5% 100.00 100.00 100.00
10% 100.00 100.00 100.00
20% 100.00 100.00 100.00

E. Computational Analysis for the Detection Method
Model detection: The computational cost for our proposed model detection method is mainly caused by computing the
metrics Mr and Nr. We can first assume that the reversed trigger r ∈ R3×k×k. According to the formulation of KL
divergence, the computational overhead for computing dr is only proportional to the dimension of r, and can be formulated
as O(3k2). Furthermore, according to the formulation in Equation 22, the computational complexity for calculating Mr and
Vr is also O(3k2). Therefore, the overall computational complexity is O(3k2).

Input detection: Similar to the analysis for model detection, we can also assume that the reversed trigger r ∈ R3×k×k .
According to the probability density function of the multivariate Gaussian and the independence across dimensions. The
computational complexity for calculating the probability in the backdoor or benign distribution are both O(3k2). Therefore,
summing them together is also O(3k2).

F. The Performances of TERD against the adaptive attack
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Figure 5. The performances of our proposed input detection method against the adaptive attacks.
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Table 10. The generated images of benign noise with varied η.

η 0.05 0.1 0.15 0.2 0.25 0.3

BadDiffusion

TrojDiff

VillianDiffusion

18


