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Abstract
In dense retrieval, deep encoders provide embed-
dings for both inputs and targets, and the softmax
function is used to parameterize a distribution
over a large number of candidate targets (e.g., tex-
tual passages for information retrieval). Signifi-
cant challenges arise in training such encoders
in the increasingly prevalent scenario of (1) a
large number of targets, (2) a computationally
expensive target encoder model, (3) cached tar-
get embeddings that are out-of-date due to ongo-
ing training of target encoder parameters. This
paper presents a simple and highly scalable re-
sponse to these challenges by training a small
parametric corrector network that adjusts stale
cached target embeddings, enabling an accurate
softmax approximation and thereby sampling of
up-to-date high scoring “hard negatives.” We the-
oretically investigate the generalization properties
of our proposed target corrector, relating the com-
plexity of the network, staleness of cached repre-
sentations, and the amount of training data. We
present experimental results on large benchmark
dense retrieval datasets as well as on QA with re-
trieval augmented language models. Our approach
matches state-of-the-art results even when no tar-
get embedding updates are made during training
beyond an initial cache from the unsupervised
pre-trained model, providing a 4-80x reduction in
re-embedding computational cost.

1. Introduction
The softmax function, paired with deep neural encoder mod-
els, is often the parameterization of choice for discrete dis-
tributions over many targets such as in classification (Lo-
geswaran et al., 2019; Yu et al., 2022), retrieval (Reddi et al.,
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2019; Xiong et al., 2020), or reinforcement learning (Dulac-
Arnold et al., 2015; Gottipati et al., 2020). This approach,
often called a “dual encoder,” employs two separate deep
networks, one to map an input to a fixed dimensional vector,
another to map targets to the same vector space. We then
compute softmax logits as the inner product of an input
vector to each target vector (Gillick et al., 2019; Karpukhin
et al., 2020; Xiong et al., 2020).

With the typical softmax cross-entropy loss, exact training
of the parameters of these two encoder networks would
involve using the current parameters to compute the log-
its for all targets, requiring running the target encoder on
all targets at every step of training. Of course, this far-too-
burdensome approach is not used in practice. Instead, vari-
ous approximations have been developed (Reddi et al., 2019;
Rawat et al., 2020; Lindgren et al., 2021; Xiong et al., 2020;
Monath et al., 2023). The typical approximation computes
a truncated softmax on a sampled subset of targets. These
approaches store a cache of “stale” encoded representations
of targets and uses the stale, cached representations to draw
samples from the softmax-parameterized distribution dur-
ing training (Lindgren et al., 2021; Izacard et al., 2022).
Previous work has used these stale representations amidst
other approximations such as index structures (Xiong et al.,
2020; Monath et al., 2023), kernel-methods (Rawat et al.,
2019), and focusing training on subsets of targets (Reddi
et al., 2019). However, inevitably, the staleness of the target
embeddings causes training regret.

In this work, we present a simple, general purpose method
for addressing staleness in softmax-parameterized categor-
ical distributions that is scalable enough to be updated at
every step of training. Our approach improves upon an ex-
isting stale approximation using a learned target corrector
network. The target corrector network, inspired by recent
work on training continuous energy-based models (Han
et al., 2020; Grathwohl et al., 2020; 2021), is a small para-
metric model that accounts for the discrepancy between the
stale approximation and unnormalized logits from the true
distribution. By learning to improve upon the stale approxi-
mation, the target corrector network can be used to produce
a more accurate approximation to the target distribution. We
further extend beyond training large output space classifiers
to latent variable retrieval augmented language models.
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In summary, the contributions of this paper are:

Methodological (§3) - We describe a novel training proce-
dure for large output space models. It is based on approxi-
mating softmax-parameterized categorical distributions by
using a parametric target corrector network that learns to
improve stale approximations of logits.

Theoretical (§4) - We analyze the generalization properties
of the corrector networks in terms of the discrepancy be-
tween the stale approximation and the true distribution, the
complexity of the network, and the amount of training data.

Empirical (§5) - We evaluate our approach in training both
dense retrieval models and latent variable retrieval aug-
mented language models. Our approach matches the perfor-
mance of much more computationally intensive approaches
at a fraction of the computational expense.

2. Background
Softmax Given an input point x, a distribution over a set
of N targets, Y , parameterized by the softmax function is:

P (y|x) =
exp(βsx,y)

Zx ,
∑
y′∈Y exp(βsx,y′)

, (1)

where β is the temperature. In this paper, we focus on appli-
cations in retrieval and latent variable models. For example,
in Natural Questions (Kwiatkowski et al., 2019), x refers to
a question and targets, y, correspond to Wikipedia passages.

Dual-Encoders We compute the unnormalized logits, sx,y ,
using a factorized representation. Deep parametric mod-
els, dual-encoders, map the input, x, and target, y, to D-
dimensional vectors, denoted f(x; Θ), and g(y; Θ):

sx,y = 〈f(x; Θ), g(y; Θ)〉. (2)

Training For a task-specific loss, L, such as cross-entropy,
dual-encoder parameters are optimized by gradient descent
(Rawat et al., 2019). However, exact computation of the
normalizing constant, Zx, is typically intractable during
training, since it would require computing g(y) for millions
or billions of targets. Instead of P (y|x) in L, a tractable (yet
biased) approximation is to optimize the truncated softmax,
P̃ (y|x), including only a subset of targets S(Y) ⊂ Y:

P̃ (y|x) =
exp(βsx,y)∑

y′∈S(Y) exp(βsx,y′)
, (3)

Uniform Sampling Approximation A simple approach
is to define S(Y) to be a uniformly sampled subset of Y
(Karpukhin et al., 2020). The method’s bias decreases with
more samples. However, since the samples are uniform, a
large number of samples may be required.

Top-K / Similarity-based Sampling Approximations
We can instead use an informed strategy using g(y) that
would select higher probability targets by sampling using

similarity scores via Gumbel-Max (Lindgren et al., 2021),
or using the top-k targets in terms of inner product (Xiong
et al., 2020). Work has considered efficient approximations
to find these top k targets without having to compute g(y)
for all y ∈ Y (Xiong et al., 2020; Monath et al., 2023).

Initialization We initialize the parameters of the dual en-
coders, Θ, using pre-trained models, such as pre-trained
language models, T5 and GTR (Devlin et al., 2019; Raffel
et al., 2020; Ni et al., 2022).

Stale Cached Representations When we are training the
parameters, Θ, each target’s vector according to g(y; Θ)
changes at each step of training. Therefore, a commonly
used approach is to define an approximation, g′(y), that
is a lookup for a “stale” cached embedding for the given
target. The stale embedding comes from running the tar-
get encoder at a particular time step t, of training, and
caching the result, i.e., g(y,Θt) in a buffer, B ∈ R|Y|×D,
i.e. g′(yi) , Byi . To find the top-k targets for input x we
compute approximate logits BT f(x) ∈ R|Y| and select the
top-k targets to define S(Y). Even before training, we can
use the pre-trained model to produce embeddings for all
targets Byi = g(yi; Θ0). While B may seem large, this is
considerably more efficient than exact computation and is
possible, on accelerators, for |Y| in the tens of millions.

The bias of this approach (and subsequent degradation in
performance) depends on the staleness or drift of the em-
beddings, i.e., ||Byi − g(yi)|| which will increase as we
update the parameters of g(y). This can be mitigated by
recomputing B periodically throughout training (at notable
cost). This approach of periodically recomputing has been
used (Guu et al., 2020; Izacard et al., 2022; Monath et al.,
2023), but there is still much room for improvement.

3. Improving Training with Target Correctors
Our proposed approach builds upon these stale buffer ap-
proximations by using an additional parametric model. The
additional model aims to improve upon the stale g′(y) to
yield a better approximation of g(y).

We refer to this additional parametric model as a target cor-
rector network, h(·; Ψ) or simply h(·) when the parameters
Ψ are not pertinent. This target corrector network takes as
input the existing stale vector embedding, g′(y), and yields
the following approximation of the softmax function:

Ph(y|x) ∝ exp(β〈f(x), h ◦ g′(y)〉). (4)

With significantly fewer parameters than a typical dual-
encoder, i.e., |Ψ| � |Θ|, this small parameteric model
is efficient enough to provide approximately fresh repre-
sentations of every target at every training step. The target
corrector network presents interesting research questions
regarding whether the network can obviate the need for
re-embedding, what kinds of staleness or drift can be ef-
fectively modeled, and how much training data is required.
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True Target     g(y)
Stale Target   g'(y)
Corrected   h g'(y)
Input point     f(x)

o
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Figure 1. Target Corrector Networks. The corrector network,
h(·), moves the approximate representations of targets, g′(·) to be
closer to their true positions, g(·). The corrector network is trained
to approximate how the targets are transformed from g′(·) to g(·).

Warmup: Training the corrector network in isolation
We begin by considering how we would train only the pa-
rameters of the target corrector network, independently of
the dual-encoders f(x) and g(y). Afterwards, we present
an algorithm for jointly training the target corrector network
and the dual-encoders. To train the parameters Ψ of the
corrector network, h(·; Ψ), we collect training examples of
input data points xi, the exact target embeddings g(y), and
stale embeddings g′(y) for a subset of targets S(Y)i ⊂ Y ,
i.e., {(f(xi), g(yb), g

′(yb)) | yb ∈ S(Y)i}.

We consider two loss functions for training h: the mean-
squared error between representations given by g(y) and
the corrected representations h ◦ g′(y) (Eq. 5) and the cross
entropy loss between the truncated softmax using g(y) and
truncated softmax using h ◦ g′(y) (Eq. 6):

`MSE(yi) = ||g(yi)− h ◦ g′(yi; Ψ)||2 (5)

`d(yi) = log P̃ (y|x)− log P̃h(y|x) (6)

P̃h(y|x) =
exp(β〈f(x), h ◦ g′(y; Ψ)〉)∑

y′∈S(Y)i
exp(β〈f(x), h ◦ g′(y′; Ψ)〉)

.

where P̃ (y|x) is the truncated softmax g(y) (Eq. 3). The
mean-squared error loss directly tries to match the target
encoder model’s embeddings. The cross-entropy loss down-
weights the importance of targets y which do not contribute
substantial probability to P (y|x) and allows for greater use
of model capacity. The parameters of the target corrector
networks are optimized using gradient descent. Empirically,
we find the cross-entropy objective to perform slightly better
(Table 1) and focus the presentation on cross-entropy.

Jointly Training Corrector Networks & Dual-Encoders
We present a method (Algorithm 1) for simultaneously train-
ing dual-encoders for a given task (e.g., retrieval or equiva-
lently large output-space classification) and the target correc-
tor network. The training algorithm will optimize both the
parameters of the target corrector network and additionally
use the corrector network to approximate the softmax. Each

step consists of: (1) using the corrector network to provide
an approximately updated representation of every target, (2)
picking a subset of targets for the truncated softmax using
the output of the corrector network, (3) computing a task
loss for the dual-encoder models and loss for the corrector
networks, (4) updating, according to their respective losses,
the parameters for both the dual-encoders and the corrector
networks using gradient descent.

In more detail, we are given task training data, X =
{(x1, y1), . . . , (xm, ym)}. We are given a task loss func-
tion L and a corrector network loss `. The dual-encoder
models are f(x), g(y) and their initial parameters are Θ0.
Prior to the first training step, we instantiate a buffer of the
targets’ representations, By = g′(y) = g(y; Θ0). We will
avert the need for the expensive updating of the buffer by
re-embedding targets with the target encoder. In each step,
we sample a training point and label pair xi, yi from X . We
apply the target corrector network to all of the stale repre-
sentations in the buffer to obtain h ◦ g′(y) ∀y ∈ Y . This
computation does not require running a dual-encoder; we
use the cached buffer representation of each target as input
to the corrector network. The corrector network is typically
a two-layer MLP and hence efficient enough to be used in
this way. With these representations from h(·), we sample
(or select exact top-k) targets according to Ph(y|x) (Eq. 4)
to form a subset of targets Sxi

(Y) for the truncated softmax.

Given this subset, we compute the task and correction losses
and update their respective model parameters. First, we
compute the task loss, which is cross-entropy. The task
loss will only be used to update the parameters of the
dual-encoders, Θ, not the parameters of the target correc-
tor network. We compute the truncated softmax P̃ (y|x) ∝
exp(β〈f(x), g(y)〉) (Equation 3). We define a one-hot P ?

according to the training data label yi. We compute the
task specific loss L as a function of P̃ and P ?, and up-
date the dual encoder parameters via gradient descent
Θ← Θ− η∇ΘL.

Next, we will use the same sample of targets Sxi
(Y) to

compute the target corrector network’s loss and parameter
update. Importantly, this will only update the parameters
of the target corrector network, Ψ, not the parameters of
the dual-encoders. Here we describe the use of the cross-
entropy loss. However, an analogous update procedure could
be used for other loss functions. We compute the truncated
softmax according to the target corrector network’s output:
P̃h(y|x) ∝ exp(β〈f(x), h ◦ g′(y)〉). We then compute the
target corrector network loss, `, cross-entropy, which tries to
align two truncated distributions P̃h and P̃ . The target cor-
rector network’s parameters are updated by gradient descent
Ψ← Ψ− η∇Ψ`.

Training the target corrector network, which has only a small
number of parameters, is much less computationally inten-
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sive to train than the dual-encoder model. Furthermore, we
are given “for free” the representations g(y) since they are
used to compute P̃ for the task loss. These representations
can then easily be re-used for training the corrector.

The training procedure is summarized in Algorithm 1. At
prediction time, the corrector network is not used, instead
the trained dual-encoder g(y,Θ) is used.

Algorithm 1 Training with target corrector networks
Data: Training data X , Targets Y , Input encoder f(·), Tar-

get encoder g(·), Approximate target encoder g′(·)
(buffer B), target corrector network h(·), tempera-
ture β, task loss L, target corrector network loss `,
learning rate η, number of truncated samples k

while Training do
Sample training data (xi, yi) ∼ X
Compute h ◦ g′(y) for all y ∈ Y using the buffer B
Set Sxi

(Y) using exp(βf(xi)
Th ◦ g′(y)) via top-k

Include supervised label Sxi(Y)← Sxi(Y) ∪ {yi}
Define P̃ (y|xi) = exp(βf(xi)

T g(y))∑
y′∈Sxi

(Y) exp(βf(xi)T g(y′))

Define P̃h(y|xi) = exp(βf(xi)
Th◦g′(y))∑

y′∈Sxi
(Y) exp(βf(xi)Th◦g′(y′))

Define P ? to be a one-hot vector for yi.
Compute task loss L using P̃ and P ?

Compute correction loss ` using P̃ and P̃h
Update dual-encoder parameters Θ← Θ− η∇ΘL
Update corrector network parameters Ψ← Ψ− η∇Ψ`

end

3.1. Latent Variables in Retrieval Augmented Models

Retrieval augmented language models (RLMs) typically
consist of two major architectural components, a retriever
model (e.g., a dual-encoder) and a generative language
model or reader model (Guu et al., 2020; Izacard & Grave,
2020; Izacard et al., 2022). The input to a retrieval aug-
mented language model is a natural language text sequence,
x. This input text will be encoded using a dual-encoder
retrieval model, f(x). Retrieval will be performed over a
corpus of targets, Y , returning k targets relevant to x, de-
noted Sx(Y). The reader model takes as input the retrieved
targets, Sx(Y), and the text x, and generates text.

Concretely, in our experiments, the input text x is a question.
The retrieval corpus contains targets y corresponding to
passages in Wikipedia. The reader model takes as input
the question and retrieved passages and generates a short
answer to the question. We present the remainder of the
section with this question-answering task in mind.

RLMs can be formalized as latent variable models. The
softmax function is used to parameterize the distribution
over a discrete latent variable, which corresponds to the
retrieved targets. We use a to refer to the generated sequence

of text, i.e., the generated answer:

P (a|x) =
∑

y∈Sx(Y)

P (a|y, x)P (y|x). (7)

P (a|y, x) is an autoregressive language model. P (y|x) is
computed by the softmax with logits from Equation 2 using
the encoder models f(x) and g(y).

When training RLMs, we receive supervision in the form of
question, answer pairs, e.g., xi, ai ∼ X . We do not receive
supervision on which targets Sx(Y) should be retrieved. We
will learn the parameters of both the reader model and re-
triever model using these supervised question/answer pairs.

To train the reader and retriever model, we use perplexity
distillation (Izacard et al., 2022) for retriever loss and nega-
tive log-likelihood for the reader loss. Perplexity distillation
is computed as the cross-entropy between two truncated dis-
tributions, one being the retriever’s P̃ (y|x) (Equation 3) and
the other using the reader model to provide a soft-relevance
label for each target in Sx(Y):

Pa(y|x) =
P (a|y, x)∑

y′∈Sx(Y) P (a|y′, x)
. (8)

In words, Pa(y|x) normalizes the likelihood scores of the
reader model generating the correct answer text when con-
ditioned on the given retrieved target y. The reader’s loss
function, negative-log likelihood is simply computed using
the supervised answer text. The two losses are averaged and
parameters optimized with gradient descent.

To facilitate efficient training, we use our proposed target
corrector network to select the subset of retrieved targets
Sx(Y) used at training time. This is done in the same way as
in Algorithm 1, i.e., we pick a subset of k targets Sx(Y) for
x according to exp(βf(x)Th ◦ g′(y)) via top-k or Gumbel-
Max sampling. We can make simple modifications to Al-
gorithm 1, which are presented in Algorithm 2 to train the
RLM. We compute two task-specific losses (perplexity distil-
lation, negative log-likelihood) and optimize both the reader
and retriever parameters. We use cross-entropy to train the
corrector, which is again only used at training time. At pre-
diction time, the trained retriever model is used.

4. Analysis
We will explore the generalization of the proposed target
corrector network in terms of unseen targets for a particular
input data point, and will show the relationship between
generalization error, the complexity of the target corrector
network h, and the discrepancy of the stale representations,
g′, and true representations g. All proofs are in Appendix A.

Let ` : R×R→ R is a loss function for the target corrector
network (Eq. 5 & 6). For any point x, consider the distri-
bution given by the softmax using stale approximation g′:
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Algorithm 2 Training RLMs with corrector models
Data: Training data X , Targets Y , Retriever and Reader

Parameters Θ, Correction Model parameters Ψ, In-
put encoder f(·), Target encoder g(·), Approximate
target encoder g′(·) (buffer B), corrector model h(·),
temperature β, retriever loss L, reader loss L′, correc-
tor model loss `, learning rate η, number of truncated
samples k

while Training do
Sample training data (xi, a) ∼ X
Compute h ◦ g′(y) for all y ∈ Y using the buffer B
Set Sxi

(Y) using exp(βf(xi)
Th ◦ g′(y)) via top-k

Define P̃ (y|xi) = exp(βf(xi)
T g(y))∑

y′∈Sxi
(Y) exp(βf(xi)T g(y′))

Define P̃h(y|xi) = exp(βf(xi)
Th◦g′(y))∑

y′∈Sxi
(Y) exp(βf(xi)Th◦g′(y′))

Define Pa(y|x) = P (a|y,x)∑
y′∈Sx(Y) P (a|y′,x) .

Define PLM(a|x) =
∑
y∈Sx(Y) P (a|y, x)P (y|x).

Compute reader loss L′ using PLM(a|x)
Compute retriever loss L using P̃ (y|xi) and Pa(y|x)
Compute correction loss ` using P̃ and P̃h
Update retriever & reader params Θ← Θ−η∇Θ

L+L′
2

Update corrector network params Ψ← Ψ− η∇Ψ`
end

D̃Y , Pg′(y|x) =
exp(β〈f(x), g′(y)〉)∑

y′∈Y exp(β〈f(x), g′(y′)〉)
, (9)

and similarly define DY , Pg(y|x) as the true distribution,
using g (Eq. 1).

We begin by defining three kinds of risk.

Empirical Risk On a set of n-targets S̃n = {y1, ..., yn}
sampled from D̃Y , we minimize the empirical risk:

R`,φ(S̃n) =
1

n

n∑
i=1

`(φ(yi), g(yi)), (10)

over a function class φ ∈ F .
True Population Risk For generalization error, we are
interested in how large the true population risk can become
over a function class φ ∈ F .

R`,φ(DY ) = EY∼DY
[`(φ(Y ), g(Y ))], (11)

We consider the above quantity because we want to ensure
good alignment between g(y) and φ(y) where there is non-
trivial probability mass under the true distribution.

Stale Population Risk The stale population risk is defined
analogously to true population risk with D̃Y as the distribu-
tion, over a function class φ ∈ F :

R`,φ(D̃Y ) = EY∼D̃Y
[`(φ(Y ), g(Y ))]. (12)

Function Classes The function class φ ∈ F is large. We
will relate this large function class to a restricted class of

functions of the form h ◦ g′ by leveraging the approximate
stale representations, g′. In other words, we restrict F to
Fg′ = {h ◦ g′ : h ∈ H} where H represents the simpler
function class mapping Rd → Rd which can express the
discrepancy between the stale g′ and current g.

First, we provide a bound on the gap between the pop-
ulation risk and stale population risk. We formalize this
in the following lemma. For ease of notation in this ex-
position, we define G`,F as the induced function class:
G`,F = {y 7→ `(φ(y), g(y)) : φ ∈ F}.
Lemma 4.1. Given a target encoder g and its stale approx-
imation g′, the gap between the true population risk and
stale population risk is bounded in the following way:

R`,φ(DY )−R`,φ(D̃Y ) ≤ W(DY , D̃Y ) ≤ ‖g−g′‖1 (13)

whereW is the Wasserstein distance. Furthermore, if the
approximation g′ comes from the same neural model as g
with parameters perturbed by u as in aforementioned stale
approximation, we have: ‖g − g′‖1 ≤ L‖u‖ with L as the
Lipschitz constant.

Next, we connect stale population risk to the empirical risk.

Lemma 4.2. Given a target encoder g, its stale approxima-
tion g′, and a set of n-targets S̃n = {y1, ..., yn} sampled
from D̃Y ,

R`,φ̃n
(D̃Y ) ≤ R`,φ̃n

(S̃n) + RS̃n
(G`,F ), (14)

where RS̃n
(G`,F ) is the Rademacher complexity of G`,F .

Now, we can relate the complexity of function class Fg′ ,
number of samples n, and the discrepancy of the true g and
stale approximate encoders g′:

Theorem 4.3. For a target encoder, g, its stale approxima-
tion, g′, and the Rademacher complexity R̃n(G`,Fg′ ), the
true population risk R`,φ(DY ) is bounded by the following
with probability at least 1− δ:

R`,φ(DY ) ≤ T1 + T2 + T3 (15)

T1 = R`,φ̃n
(S̃n)

T2 =W(DY , D̃Y ) ≤ L‖u‖

T3 = R̃n(G`,Fg′ ) +O
(√ log(1/δ)

n

)
Note the following implications of these theoretical results:

1. If the corrector network h is too complicated or there are
not enough samples n, then h overfits and T3, will dominate.

2. If g and g′ are very different, then term T2 will dominate.

3. If h(·) is too simple and we cannot fit the sampled data
well, then T1 will dominate.

We empirically explore some of these trade-offs in §5.3
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Figure 2. NQ Test Recall@1. We show the computational trade-
offs between the amount of re-embedding during training and the
task performance (GTR initialization). Our proposed target correc-
tor approach achieves matching task performance at a fraction of
the computational expense.

5. Experiments
We evaluate training using target corrector networks in two
settings: supervised dense retrieval and retrieval augmented
language models. We further investigate the properties of the
target corrector networks in synthetic experiments. In sum-
mary, the experiments investigate whether training strategies
can effectively obviate the need to keep cached buffers of tar-
gets up-to-date by re-embedding during training. We answer
this question affirmatively with the following highlights:

No Re-embedding Needed Training using target corrector
networks matches the task performance of exhaustively re-
embed all targets every 500 steps throughout training in both
dense retrieval (Table 1) and retrieval augmented language
models (Table 3). Target correctors achieve this without
ever needing to re-embed targets during training, yielding
significant computational savings (Fig. 2).

Best no re-embedding method Compared to frozen ap-
proaches, stale approaches, and Dynnibal without re-
embedding, target corrector networks achieve over 10 point
improvements in RLM tasks and 4 point improvements
across multiple recall measures in retrieval.

Simpler and Less Computation Target correctors perform
as well or better than Stochastic Negative Mining (SNM)
(Reddi et al., 2019) despite SNM doing more re-embedding.
Similarly, target corrector networks nearly match Dynnibal
(Monath et al., 2023) when Dynnibal uses much more com-
putation (Table 1). Dynnibal is a much more complicated
and difficult to implement method.

5.1. Supervised Dense Retrieval

Setting & Metrics We evaluate training methods for su-
pervised dense retrieval models. Each method is provided
the same supervised data. All methods use a stale buffer of

target representations and use this buffer to form the subset
of targets, S(Y), used in computing the truncated softmax.
All methods use the same loss (cross-entropy) and optimize
parameters of the dual-encoders using gradient descent. The
methods differ in their maintenance of the buffer, and, as
such, differ in their computational requirements of maintain-
ing this buffer. We measure the computational requirements
in terms of how many targets are re-embedding during train-
ing1. We measure re-embedding in terms of the number of
targets encoded to indicate the computational expense (even
if wall clock time is mitigated using a complicated asyn-
chronous computation). Re-embedding every target even
one additional time during training can be problematic if
number of targets is large. Furthermore, the initial buffer,
created using the initial parameters of the dual-encoder (e.g.,
a pre-trained language model) can be computed once and
used for subsequent training jobs.

Data We evaluate on Natural Questions (Kwiatkowski
et al., 2019) with over 21M targets (Wikipedia passages),
about 60K training examples (question, passage pairs), and
about 3K in dev/test, and MSMARCO (Bajaj et al., 2016)
8.8M targets (web passages), and 500K training examples.

Models We initialize the dual encoder models with two
publicly available pre-trained language models, GTR (Ni
et al., 2022), and T5 (Raffel et al., 2020). GTR is an encoder
model initialized from T5 and further pre-trained for dense
retrieval on a large collection of corpora of question/answer
pairs. For MSMARCO, we only use T5 since it is included in
GTR’s training data. We use the base size models,D = 768,
and train separate parameters for f(x) and g(y). For the tar-
get corrector, we use a two layer MLP. We use 8192 hidden
units, a ReLU non-linearity, and a residual connection.

We compare the following approaches: Target Corrector
Networks (this paper): At the first training step, we initial-
ize the buffer with vector representations of every target.
At every subsequent step, we use the target corrector net-
work to produce a new representation of the targets, without
running the target-encoder, simply by running our small
MLP corrector on the stale representations. The stale buffer
representations are never updated during training. Stale: We
initialize the buffer of targets at the first step of training
and do not update it throughout training. We experimented
with both freezing the target encoder parameters g(y) and
allowing them to be updated despite the stale buffer. We
found updating the parameters to be slightly better and re-
port those results. Exhaustive: We exhaustively re-embed
all of the targets in the buffer every 500 steps of training.
Stochastic Negative Mining (SNM; Reddi et al. 2019): In-
stead of storing every target in the buffer, we store a subset
of targets sampled uniformly at random. We re-sample and
re-embed this buffer every 500 steps. We use a buffer size

1Our JAX (Bradbury et al., 2018) implementation run on Cloud
TPUv3 re-embeds ~2184 targets per second on each core.
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Re-embed NQ Dev - Recall (↑) NQ Test - Recall (↑)
Num. (↓) @1 @5 @10 @20 @100 @1 @5 @10 @20 @100

G
T

R
-b

as
e

In-batch 0 17.14 46.77 58.71 69.45 85.54 37.92 64.76 72.54 78.28 87.00
Stale 0 33.11 62.04 70.31 78.13 89.32 46.76 68.64 75.21 80.66 87.48
Dynnibal+ 0 28.73 59.66 70.08 78.14 90.18 44.40 67.53 74.93 80.22 87.23
Corrector 5 (`mse) 0 34.98 65.03 74.01 80.77 90.82 49.61 70.72 77.04 82.33 88.28
Corrector 5 0 35.78 66.74 75.06 81.52 91.37 50.61 71.00 77.73 82.66 88.39

Dynnibal+ 42M 35.86 66.54 75.04 81.40 91.27 50.55 71.69 78.25 83.35 88.73
SNM† 80M 32.03 64.01 73.72 81.37 91.47 49.14 69.89 77.12 82.19 87.95
Exhaustive 1.68B 36.29 67.08 75.55 82.07 91.73 50.30 71.55 78.12 82.83 88.59

T
5-

ba
se

In-batch 0 9.93 28.07 37.17 45.54 64.06 23.40 47.50 56.39 65.34 77.97
Stale 0 16.79 36.85 44.82 51.79 67.35 27.65 50.19 59.28 66.98 78.95
Dynnibal + 0 17.42 39.65 48.75 57.36 73.03 29.72 53.99 63.38 70.61 80.94
Corrector 5 0 23.64 47.69 56.68 64.65 79.03 36.65 59.25 68.06 73.71 83.13

Dynnibal + 42M 23.71 46.63 55.75 63.88 79.46 36.65 59.31 67.65 74.46 83.13
Dynnibal + 80M 24.76 47.69 56.82 64.90 80.15 36.90 59.97 68.23 74.54 83.35
SNM † 80M 22.55 46.86 55.72 64.19 80.40 35.93 59.06 67.48 73.66 82.85
Exhaustive 1.68B 24.70 48.21 57.18 65.39 79.94 37.34 60.42 68.70 74.76 83.41

Table 1. Natural Questions (Kwiatkowski et al., 2019). 5 This paper; † (Reddi et al., 2019)’ + (Monath et al., 2023). We measure
the performance of dense retrieval models trained with different softmax approximations via hard negatives. We find that our proposed
approach nearly matches the performance of exhaustively re-embedding all targets. Similarly, our approach requires significantly less
re-embedding of targets than Dynnibal, which requires at least one exhaustive re-embedding to get competitive results. Bold-face
numbers indicate best performance with zero re-embeddings performed at training time; underlined numbers indicate best performance
using re-embedding at training time.

Hidden Steps/sec R@1 R@20 R@100
Units

Exhaustive - 0.43 36.29 82.07 91.70
Corrector 8192 0.83 35.78 81.52 91.37
Corrector 4096 1.10 35.53 81.63 91.07
Corrector 2048 1.83 35.55 81.07 91.08

Table 2. Steps-Per-Second Comparison. We compare on NQ-dev
the performance and speed of corrector networks and exhaustive
re-encoding. Models are finetuned GTR-base.

of 1M targets. Dynnibal (Monath et al., 2023): This compli-
cated approach maintains a buffer using a low-rank regres-
sion model as a part of tree index structure. The regression
model is updated every 500 steps on a sub-sample of targets,
unlike our approach which is trained jointly. Furthermore, to
get good performance, Dynnibal performs costly full buffer
re-embedding periodically throughout training. We needed
to perform two such re-embeddings. Dynnibal with fewer
refreshes does not perform as well.

In Table 1, our target corrector network approach greatly
improves upon the stale approach, especially in Recall@1,
5, 10. We observe a nearly 5 point improvement at R@10
in the dev set and a 4 point improvement in R@1 on the
test over the stale approach. Our approach nearly matches
the performance of the computationally intensive exhaus-
tive approach. Furthermore, we perform comparably to the

more expensive SNM and Dynnibal methods. We perform
better than Dynnibal for the same amount of re-embedding.
While doubling the number of index refreshes may appear
negligible, having to re-embed the buffer during training
can be computationally burdensome, especially as the num-
ber of targets grows. Using a buffer created from the initial
parameters of the dual-encoder as with our approach, al-
lows the buffer to be constructed once ahead of time and
re-used across both training and tasks. Dynnibal requires
hand tuning to get the re-embedding schedule correct.

Table 1 also compares dual-encoder initialization. GTR is
pre-trained for retrieval and hence achieves better results. T5
is not pre-trained for retrieval and requires more adaptation
for the retrieval task. We observe that SNM struggles more
to match the performance of Exhaustive with T5. Further-
more, Dynnibal requires more full index refreshes to get
competitive results. Our method is able to achieve nearly as
good results as the Exhaustive approach and Dynnibal (with
re-embedding) despite never needing to re-embed.

We also report timing comparisons in terms of steps-per-
second between corrector networks (of two sizes) and ex-
haustive re-encoding of the targets. These can be found in
table 2. We can see that both small and large corrector net-
works lead large speed gains over exhaustive re-encoding
with minimal performance gains. This indicates that cor-
rector networks can have practical training time efficiency
gains over exhaustive methods.
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Re-embed Retr. NQ TQA HPQA
Num. (↓)

No Retr. 0 - 25.4 26.1 14.5

Frozen Retr. 0 GTR 48.4 55.1 28.0
Corrector 0 GTR 52.3 66.4 36.7
Exhaustive 1.1B GTR 52.4 66.5 33.8

Frozen Retr. 0 T5 13.34 12.15 13.37
Corrector 0 T5 48.1 63.73 21.97
Exhaustive 1.1B T5 48.3 66.03 25.45

Table 3. Exact Match Accuracy, RLM Training. We find that
our target corrector approach can match the performance of the
fully refreshed index while never re-embedding the targets across
NQ, TriviaQA (TQA), and HotPotQA (HPQA).

See Appendix B.2 for additional results (MSMARCO, other
ablations) and further discussion.

5.2. Retrieval Augmented Language Models

Setting & Metrics We evaluate the latent variable use case
of training the retriever in a retrieval-augmented language
model (RLM), as described in Section 3.1. We will compare
approaches for training in terms of their re-embedding costs.

Datasets We evaluate on the three question answer-
ing datasets: TriviaQA (Joshi et al., 2017), NQOpen
(Kwiatkowski et al., 2019), and HotPotQA (Yang et al.,
2018). We use 256 token passages from a 2018 Wikipedia
snapshot as the collection of targets, Y , with 28M targets.

Models We initialize the retriever with GTR-base or T5-
base and use T5-base as the reader in Fusion-In-Decoder
(Izacard & Grave, 2020). We use 32 retrieved documents in
all experiments. The target corrector is a two-layer MLP.

We compare the following approaches: Target Corrector
Network: Target corrector is used to retrieve S(Y) at train-
ing time. We embed the targets at the beginning of training
and never update the buffer. No Retrieval (Roberts et al.,
2020): The retriever is not used. The reader model is trained
on the dataset and uses only its parameters to answer the
questions. Frozen Retrieval (Izacard & Grave, 2020): Ev-
ery target is embedded once at the beginning of training.
Only the parameters of the reader model are trained (updat-
ing the retriever parameters did not improve performance).
Exhaustive: Jointly training the retriever and reader, we
exhaustively re-embed all 28M targets every 500 steps.

In Table 3, we report exact match accuracy on the held-
out validation sets. Our proposed target corrector matches
or nearly matches the performance of the exhaustive re-
embedding approach without ever having to re-embed the
buffer. This is a dramatic reduction in computational cost,
as the exhaustive approach ends up embedding all 28M
passages 40 times (1.1B re-embeddings). Target correctors
greatly outperform the approaches that do not use retrieval

Figure 3. Training Sample Size The figure shows the trade-offs
between the complexity of h (parameter count), the approximation
error, KL(P ||Ph), and the fraction of samples used for training.
The left hand side shows only somewhat stale representations. The
right hand side shows significantly stale representations. Using a
higher fraction of training samples is needed with more staleness.

(by more than 20 points) and the frozen retriever approach
(by at least 4 points and by up to 10 points).

5.3. Synthetic Experiments

In these experiments, we measure the ability of proposed
corrector network to approximate categorical distributions
parameterized by the softmax by training the corrector net-
work, h, without training parameters of the dual-encoder.

Setting & Metrics We will measure the ability of proposed
corrector network to approximate categorical distributions
parameterized by the softmax. We do so by training the cor-
rector network, h, in isolation, e.g., only training the param-
eters of the corrector network, Ψ, without training parame-
ters of the dual-encoder for a particular task. We measure
the quality of approximation using the KL-divergence be-
tween the true categorical distribution P (y|x) (Equation 1)
and the approximate distribution given by the corrector net-
work Ph(y|x) (Equation 4). We measure the complexity
of the corrector network by its parameter count, |Ψ|. We
measure staleness, i.e., the difficulty of correcting a set of
stale representations, by the KL-divergence between the
true categorical distribution P (y|x) and the distribution
Pg′(y|x) ∝ exp(β〈f(x), g′(y)〉).

Data Generation We directly generate vector representa-
tions corresponding to data points and targets. That is, rather
than having a dual-encoder model provide the vector rep-
resentation of a data point or target, we directly generate
synthetic data corresponding to f(x), g(y), and g′(y). We
generate 4096 targets in D = 8 dimensions from a mixture
of 20 Gaussians to represent g′(y). To generate g(y), we
transform g′(y) by feeding the points into randomly initial-
ized MLPs with up to 2 hidden layers of size D, 2D, 4D
or 8D, with RELU activation and residual connections. We
vary the complexity of the MLP and variance of the ini-
tialization to create embeddings g(y) to model a variety of
settings of the extent of the staleness (W(DY , D̃Y )).
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Figure 4. Parameter Count We plot the KL divergence using the
stale embeddings (KL(P‖Pg′), on the x-axis) against that of the
trained correction models (KL(P‖Ph), on the y-axis). Parity is
indicated by the dashed red line, demonstrating that the trained
correction model is significantly better than using the stale embed-
dings. Increasing the parameter count of h is more important when
the discrepancy between stale and current embeddings is higher,
indicated by a larger improvement toward the right of this plot.

Corrector Network In these experiments, we vary the pa-
rameter count of the corrector network h and number of hid-
den layers, using between 0 and 2 hidden layers with hidden
dimension ofD, 2D, 4D, or 8D. We use ReLU nonlinearity
with residual connections. We optimize the parameters of
the corrector network using Adam with learning rate 0.03,
and stop when the loss has not improved for at least 100
epochs or we reach 1000 epochs of training.

Varying |S(Y)|, number of targets used for training In
Figure 3, we explore trade-offs between the complexity in
terms of the parameter count |Ψ| of h (x-axis); the approxi-
mation error KL(P‖Ph) after applying the trained correc-
tion model (y-axis); and the fraction of samples used for
training h. We report the complexity of the transformation
from g′ to g in terms of KL(P‖Pg′) above each pane. Using
a higher fraction of training samples is needed when there
is more staleness. When the drift is more significant (right-
hand pane), we observe that using increased parameters
with a smaller fraction of samples does lead to overfitting.
In this setting, it seems that sampling 10% of the targets is
generally sufficient.

Varying Complexity of the Target Corrector Network
In order to explore how the KL divergence of our approx-
imation may change with respect to the staleness of the
embeddings g′, we train our embedding model to approxi-
mate the distributions P . In Figure 4, we explore how the
KL divergence of our approximation may change with re-
spect to the staleness of the embeddings g′, We can obtain
a significant reduction in KL divergence via the correction
model (on the y-axis) across a wide variety of drifts (as mea-
sured by KL(P‖Pg′)). Increasing parameter count is always
effective, but it yields greater benefit when approximating a
distribution with greater divergence.

6. Related work
Energy-based Models Many similar ideas of training
small parametric models to aid the training of other models
has been widely studied in energy-based models, such as
CoopNets (Xie et al., 2018), VERA (Grathwohl et al., 2021),
and others (Grathwohl et al., 2020). In this setting models
can be trained to skirt around intractable computations re-
quired in main-model training.

Amortized Inference There are many approaches that
speed up sampling by fitting parametric models such as
feed-forward neural networks (Marino et al., 2018; Naderi-
parizi et al., 2022).

Softmax Approximations Previous work has considered
approximations to softmax via kernel methods (Blanc &
Rendle, 2018; Rawat et al., 2019) when there are train-
able parameters for every target (rather than an encoder).
Sampling-based approaches are widely used as well (Vembu
et al., 2009; Zaheer et al., 2017; Monath et al., 2023).

Adapters Adapter methods, which train small parametric
components of larger networks (Houlsby et al., 2019) bear
resemblance to our approach. However, our approach is
distinct in that it operates only on the output layer of the
neural models, not intermediate layers.

7. Conclusion
We present target corrector networks for approximating the
softmax function during the training of dual encoder mod-
els and retrieval augmented language models. The target
corrector networks learn to update a stale buffer of target
representations. We investigate the generalization properties
of the corrector models theoretically. We furthermore show
empirically how our correct model approach can be used to
train models (both supervised retrievers and retrieval aug-
mented language models) matching the accuracy of models
that use 4x-80x the computational budget during training.

Impact Statement
Our work proposes new more efficient ways of training of
retrieval models. Retrieval models both in their own right
and in combination with language models have wide and
applicable uses. The techniques of this paper are about im-
proving training efficiency. As such, better models could
be produced faster, bringing to bear all the responsibilities
of model creators in terms of understanding the successes,
limitations, and biases of the model. Future work could con-
sider the question of how different training strategies affect
the way in which retrieval models have broad impact. Of
particular interest to this paper could be the way in which
staleness when computing the truncated softmax plays a
role in such a study.
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A. Analysis: Proofs
Lemma 4.1. Given a target encoder g and its stale approximation g′, the gap between the true population risk and stale
population risk is bounded in the following way:

R`,φ(DY )−R`,φ(D̃Y ) ≤ W(DY , D̃Y ) ≤ ‖g − g′‖1 (13)

whereW is the Wasserstein distance. Furthermore, if the approximation g′ comes from the same neural model as g with
parameters perturbed by u as in aforementioned stale approximation, we have: ‖g − g′‖1 ≤ L‖u‖ with L as the Lipschitz
constant.

Proof. We bound the gap between true population risk and stale population risk. Recall that G`,F is the induced function
class: G`,F = {y 7→ `(f(y), g(y)) : f ∈ F}. Now note that

R`,f (DY )−R`,f (D̃Y ) (16)
= EY∼DY

[`(f(Y ), g(Y )]− EY ′∼D̃Y
[`(f(Y ′), g(Y ′)]

≤ sup
λ∈G`,F

(
EY∼DY

[λ(X)]− EY ′∼D̃Y
[λ(Y ′)]

)
(i)
= L · sup

λ∈G`,F

(
EY∼DY

[
λ(Y )

L

]
− EY ′∼D̃Y

[
λ(Y ′)

L

])
(ii)

≤ L · sup
λ∈Lip1(ρ)

(
EX∼DY

[λ(X)]− EY ′∼D̃Y
[λ(Y ′)]

)
,

(iii)
= W(DY , D̃Y ) (17)

(iv)

≤ ‖DY − D̃Y ‖TV (18)
(v)
=

1

2

∑
y∈Y
|softmax(g(y))− softmax(g′(y))| (19)

(vi)

≤ 1

2
‖g − g′‖1 (20)

where (i) follows by dividing and multiply by L; (ii) follows as, for any λ ∈ Gh`,F , we have λ
L to be 1-Lipschitz; (iii)

follows from Kantorovich-Rubinstein duality (Villani et al., 2008); (iv) follows from Corollory 6.14 in Villani et al. (2008);
(v) follows from definition; and (vi) follows from softmax Lipschtiz constant being 1. As g and g′ are output from the same
neural network but with parameters perturbed by u, then it follows that ‖g − g′‖1 ≤ L‖u‖.
Lemma 4.2. Given a target encoder g, its stale approximation g′, and a set of n-targets S̃n = {y1, ..., yn} sampled from
D̃Y ,

R`,φ̃n
(D̃Y ) ≤ R`,φ̃n

(S̃n) + RS̃n
(G`,F ), (14)

where RS̃n
(G`,F ) is the Rademacher complexity of G`,F .

Proof We need to connect the stale population risk to the empirical risk we are actually minimizing:

R`,f̃n(D̃Y ) = ED̃Y
[`(f̃n(Y ), g(Y ))]

≤ ES̃n
[`(f̃n(Y ), g(Y ))] + sup

f∈F

∣∣ED̃Y
[`(f(Y ), g(Y ))]− ES̃n

[`(f(Y ), g(Y ))]
∣∣

(i)
= ES̃n

[`(f̃n(Y ), h(X))] + sup
g∈G`,F

∣∣∣ED̃Y
[g(Y )]− ES̃n

[g(Y )]
∣∣∣

(ii)

≤ ES̃n
[`(f̃n(Y ), h(X))] + RS̃n

(G`,F )

= R`,f̃n(S̃n) + RS̃n
(G`,F ), (21)

where inequality (i) follows from the definition of G`,F and (ii) from the standard symmetrization argument (Devroye
et al., 2013; Mohri et al., 2018) for Radamacher complexity.
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Theorem 4.3. For a target encoder, g, its stale approximation, g′, and the Rademacher complexity R̃n(G`,Fg′ ), the true
population risk R`,φ(DY ) is bounded by the following with probability at least 1− δ:

R`,φ(DY ) ≤ T1 + T2 + T3 (15)

T1 = R`,φ̃n
(S̃n)

T2 =W(DY , D̃Y ) ≤ L‖u‖

T3 = R̃n(G`,Fg′ ) +O
(√ log(1/δ)

n

)
Proof. As mentioned in the text F might be too large function class and we would like to utilize the restricted function class
Fg′ . The previous derivation would go through using this restricted class and we will obtain the Rademacher complexity of
RS̃n

(G`,Fg′ ) instead. To compare the two Rademacher complexity, observe that

RS̃n
(G`,Fg′ ) =

1

n
Eσ

∣∣∣∣∣ sup
λ∈G

`,Fg′

∑
i

σiλ(yi)

∣∣∣∣∣
(i)
=

1

n
Eσ

∣∣∣∣∣sup
h∈H

∑
i

σi`(h ◦ g′(y), g(y))

∣∣∣∣∣
=

1

n
Eσ

∣∣∣∣∣ sup
f∈Fg′

∑
i

σi`(f(y), g(y))

∣∣∣∣∣
(ii)

≤ 1

n
Eσ

∣∣∣∣∣sup
f∈F

∑
i

σi`(f(y), g(y))

∣∣∣∣∣
=

1

n
Eσ

∣∣∣∣∣ sup
λ∈G`,F

∑
i

σiλ(yi)

∣∣∣∣∣
= RS̃n

(G`,F ), (22)

where (i) follows from definition of G`,Fg′ and Fg′ ; and (ii) holds because Fg′ ⊂ F .

Now, the standard concentration results for empirical Rademacher complexity implies that, with probability at least 1− δ,
we have the following.

RS̃n
(G`,Fg′ ) ≤ ES̃n∼D̃⊗n

Y

[
RS̃n

(G`,Fg′ )
]

+O
(√ log(1/δ)

n

)
(23)

= R̃n(G`,Fg′ ) +O
(√ log(1/δ)

n

)
. (24)

Combining results from Eq. 16, 21, and 23, we obtain that with probability at least 1− δ,

R`,f (DY ) ≤ R`,f̃n(S̃n) +W(DY , D̃Y )︸ ︷︷ ︸
≤L‖u‖

+R̃n(G`,Fg′ ) +O
(√ log(1/δ)

n

)
(25)
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Figure 5. A toy experiment where stale and true targets are distributed around the unit circle, and the corrected targets based on the learned
approximation are also depicted. The associated distribution over targets (β = 20) based on the point identified.

Performance Num. Re-Embed R@1 R@5 R@10 R@100

Stale 0 10.11 27.70 36.33 63.69
SNM 20M 18.18 43.48 54.68 82.18
Dynnibal 8M 18.23 43.15 54.56 82.24
Target Corrector 0 17.07 40.78 51.56 79.29
Exhaustive 352M 18.18 44.97 55.58 83.69

Table 4. MSMARCO, T5 Initialization. In this experiment, we measure performance of methods on MSMARCO. With fewer targets
than Natural Questions, the gap between stochastic negative mining and the refreshed index is reduced.

B. Experiments
B.1. Experimental Details

Training Details We train all models, the dual-encoders and the corrector model, jointly using Adam (Kingma & Ba, 2014).
We implement the training procedure using stop-gradients so that the corrector model loss only changes the corrector model
parameters and dual-encoder loss the dual-encoder ones. We form the subset of targets for the truncated softmax, S(Y)x,
using the top-64 closest targets to the given query according to a particular training procedure’s buffer and 64 targets chosen
uniformly at random. We use a minibatch size of 128 examples and share the truncated softmax targets across all examples
in the minibatch mb , e.g.,

⋃
x∈mb S(Y)x. We use 40K steps for retrieval training and 20K steps for RLM training. We

combine the task losses and corrector network loss together. We experimented with a weight parameter applied to the
corrector network. We use a weight value of 10.0.

B.2. Additional Dense Retrieval Results

In Table 4, we report performance on MSMarco using T5-base as the encoder. Here, with fewer targets, Stochastic Negative
Mining provides a better approximation as a larger fraction of targets is re-encoded. Our method is still able to nearly match
the performance of the exhaustive approach. We are able to achieve such results without having to re-embed the buffer.

Using Accelerator Memory to Store the Buffer In these experiments, we store the buffer of targets on the accelerator,
making implementation of our approach training extremely easy. However, it could be the case that not all targets can fit into
a buffer on accelerator memory. In such settings, our approach could still be used in the following ways: (1) subsample
targets randomly (perhaps changing the subset periodically) to fit on device memory akin to a combination of our corrector
approach stochastic negative mining, which would require no re-encoding of targets, or (2) use our approach to re-rank stale
representations initially retrieved from CPU memory.

Comparisons to 2-Round Training Several recent works such as (Qu et al., 2021) which addresses difficulties of training
dense retrieval models proposes to train in 2 stages. First all targets are encoded (using random or pre-trained model). Then
the model is trained for one half of the desired iterations. Then the new model’s parameters are used to re-encode the targets
a single time. Then the model is trained for the remaining steps using these re-encoded targets. We compare this approch
with corrector networks in Table 5. We see that when using GTR-base, the performance for all methods is quite similar
(with corrector networks and exhaustive re-encoding slightly outperforming). When T5-base is used though, we find the
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Method Base R@1 R@5 R@10 R@20 R@100

Two Round T5 29.50 53.40 62.49 70.64 80.94
Corrector T5 36.65 59.25 68.06 73.71 83.13
Exhaustive T5 37.34 60.42 68.70 74.76 83.41

Two Round GTR 49.06 70.06 76.76 81.17 87.95
Corrector GTR 49.61 70.72 77.04 82.33 88.28
Exhaustive GTR 50.30 71.55 78.12 82.83 88.59

Table 5. Comparison with 2-round training. We compare the performance of corrector networks, exhaustive re-encoding, and 2-round
training. Results are presented on the NQ Test set.

Method Base R@1 R@100

With Uniform T5 24.70 79.94
Without Uniform T5 24.87 79.82

With Uniform GTR 36.29 91.73
Without Uniform GTR 36.53 91.70

Table 6. Uniform Negatives Comparison. We compare the performance of exhaustive re-encoding with and without the addition of
uniform (in-batch) negatives. Results are presented on the NQ Dev set.

performance of corrector networks and exhaustive re-encoding to notably out-perform the 2-step procedure. We attribute
this to GTR being a better initialization for the model. In this case we would expect its parameters (and therefore its target
embeddings) to change less from pre-training to fine-tuning, meaning that there is less embedding drift and therefore less
bias when using the 2-step procedure.

Comparisons with and without uniform negatives In our main experiments (as stated in Appendix B.1) we train
with hard negatives and uniform negatives. Initial experiments showed that adding uniform negatives lead to improved
performance in some settings. We provide some additional results ablating this choice using exhaustive re-encoding. These
can be found in Table 6. We can see that this choice provides negligible improvement on the reported benchmarks (although
we believe its worth trying in other settings).

B.3. Retrieve and Read

Note that in this setting we do not share the subset of targets S(Y) across the examples in the batch, nor do we use targets
sampled uniformly at random.

The versions of the retrieve-and read datasets are:

• TriviaQA: https://www.tensorflow.org/datasets/catalog/trivia_qa#trivia_
qaunfilterednocontext

• NQOpen https://www.tensorflow.org/datasets/catalog/natural_questions_open

• HotPotQA https://www.tensorflow.org/datasets/community_catalog/huggingface/
hotpot_qa
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Performance P@10 P@20 P@100

g′(·) 67.57 67.73 57.57
h ◦ g′(·) 76.87 73.32 53.55

Table 7. Approximating Large Models with Small Models On the dataset Arguana (Wachsmuth et al., 2018), we use our method to
warp the embedding space of GTR Small so that it is better aligned with GTR Large. Note that here we present nearest neighbor precision,
i.e., the overlap in the top-K neighbors from the large model at 10, 20, and 100. We use 32 samples for each query to train the correction
model.

B.4. Beyond Stale Representations: Approximating Large Models with Small Models

In this experiment, we focus on sampling in isolation. We sample a batch of input points and we measure the ability of our
method to approximate one dual encoder model with another. In particular, we study a case where we approximate a large
dual encoder with a small model. We approximate the GTR large model (Ni et al., 2021) (e.g., g(·)) with the GTR small
model(e.g., g′(·)). In Table 7, we report nearest neighbor precision, i.e., measuring the overlap in the top-K neighbors from
the large model’s neighbors at 10, 20, and 100 on the dataset Arguana (Wachsmuth et al., 2018) and other BEIR benchmark
datasets (Thakur et al., 2021). We use 32 samples for each query to train the correction model. We find that overlap amongst
smaller K seems to be better aligned using our method.
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