
Slot Abstractors: Toward Scalable Abstract Visual Reasoning

Shanka Subhra Mondal 1 Jonathan D. Cohen 2 Taylor W. Webb 3

Abstract
Abstract visual reasoning is a characteristically
human ability, allowing the identification of re-
lational patterns that are abstracted away from
object features, and the systematic generaliza-
tion of those patterns to unseen problems. Re-
cent work has demonstrated strong systematic
generalization in visual reasoning tasks involv-
ing multi-object inputs, through the integration
of slot-based methods used for extracting object-
centric representations coupled with strong induc-
tive biases for relational abstraction. However,
this approach was limited to problems contain-
ing a single rule, and was not scalable to visual
reasoning problems containing a large number of
objects. Other recent work proposed Abstractors,
an extension of Transformers that incorporates
strong relational inductive biases, thereby inherit-
ing the Transformer’s scalability and multi-head
architecture, but it has yet to be demonstrated how
this approach might be applied to multi-object vi-
sual inputs. Here we combine the strengths of the
above approaches and propose Slot Abstractors,
an approach to abstract visual reasoning that can
be scaled to problems involving a large number of
objects and multiple relations among them. The
approach displays state-of-the-art performance
across four abstract visual reasoning tasks, as well
as an abstract reasoning task involving real-world
images.

1. Introduction
Abstract visual reasoning problems contain visual objects,
the features of which collectively exemplify an abstract

1Department of Electrical and Computer Engineering, Prince-
ton University, Princeton, NJ, US 2Princeton Neuroscience In-
stitute, Princeton University, Princeton, NJ, US 3Department of
Psychology, University of California Los Angeles, Los Angeles,
CA, US. Correspondence to: Shanka Subhra Mondal <smon-
dal@princeton.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

pattern or rule. These are a common testbed of human in-
telligence. Given a few example demonstrations of such
problems, humans can easily identify the abstract pattern
or rule, and then systematically generalize it to novel stim-
uli (Raven, 1938; Kotovsky & Gentner, 1996; Fleuret et al.,
2011; Lake et al., 2015). Neural networks, on the other hand,
often struggle to perform this type of abstract visual reason-
ing, tending to overfit to the concrete details of problems
in the training data, and failing to extract the underlying
abstract pattern or rule (Lake & Baroni, 2018; Barrett et al.,
2018; Ricci et al., 2018).

To build models that can demonstrate human-like systematic
generalization, several methods have recently been proposed
(Webb et al., 2020; 2021; Kerg et al., 2022; Altabaa et al.,
2023) to promote inference of relations among objects in the
internal representations of neural networks. These methods
implement a simple architectural inductive bias for rela-
tional abstraction, called the “relational bottleneck” (Webb
et al., 2023a), that drives the network to abstract over the
features of objects, and identify relations among them that
are necessary to perform the task. These methods demon-
strated the learning and strong systematic generalization of
abstract patterns from a few training examples, but were lim-
ited to inputs with pre-segmented visual objects. To address
this, subsequent work proposed Object-Centric Relational
Abstraction (OCRA) (Webb et al., 2023b), an approach that
integrates a relational bottleneck with object-centric rep-
resentation learning methods (Greff et al., 2019; Burgess
et al., 2019; Locatello et al., 2020; Engelcke et al., 2021).
Though OCRA extends the capacity for strong abstract vi-
sual reasoning to images with more than one object, it is not
scalable to problems with a large number of objects (exam-
ple problem in Figure 1). This is because OCRA computes
relational embeddings for all pairs of N objects in a given
scene, which are then further processed by a Transformer
(Vaswani et al., 2017), resulting in a combined complex-
ity of O(N4). Moreover, OCRA’s reasoning capacity was
limited to problems involving a single relation.

Recently, Abstractors (Altabaa et al., 2023) were proposed
as an extension of Transformers (Vaswani et al., 2017) for
modeling relations between objects disentangled from the
object features. The Abstractor implements a relational
bottleneck using relational cross-attention, a variant of the
attention mechanisms in Transformers. Though this ap-

1



Slot Abstractors

Slot 
attention

𝒛!"#	 𝒛!"$	

𝒎!"$	𝒎!"#	

𝒛	
𝒔%"&	

Relational
Cross-Attention Feedforward➕

Feature embeddings 

Position embeddings 

Relation 
embeddings

Abstractor layer

Slot 
attention

Slot 
attention

⋯
⋯

⋯
⋯

⋯
⋯

⋯

Abstractor%"#	 𝒔%"#	 Abstractor%"(	 𝒔%"(	 ⋯ 𝒔)*#	 Abstractor)	 𝒔)	

𝒛	

𝒔%*#	

𝒒	

𝒗	
𝒌	 ➕ ➕ ➕ 𝒔%	Self-Attention Feedforward

Figure 1. Slot Abstractor. The Slot Abstractor consists of two major components. First, object-centric representations are extracted
using Slot Attention (Locatello et al., 2020). Relation embeddings are then computed using a series of Abstractor layers (Altabaa et al.,
2023). Example problem on left is from the PGM dataset (Barrett et al., 2018), consisting of a 3× 3 matrix of image panels populated
with objects. The task is to identify the abstract pattern among the image panels, and use this pattern to fill in the missing panel (bottom
right), selecting from a set of eight choices. To generate scores for each answer choice, the corresponding image panel is inserted into the
problem. Slot attention is then used to extract feature embeddings zk=1...K , and position embeddings mk=1...K for each panel. Relation
embeddings s are then computed through a series of Abstractor layers. Each layer consists of relational cross-attention, self-attention, and
feedforward layers, with residual connections after each of these. Relational cross-attention uses feature embeddings to generate keys
k and queries q, and the relation embeddings from the previous layer to generate values v. Relation embeddings are initialized using
position embeddings. After L Abstractor layers, relation embeddings are averaged and passed through a linear layer to generate a score y.

proach exhibits superior sample efficiency and improved
generalization performance compared to other relational ar-
chitectures (Shanahan et al., 2020; Kerg et al., 2022), it has
yet to be applied to visual problems involving multi-object
inputs (Fleuret et al., 2011; Barrett et al., 2018; Webb et al.,
2023b). Here, we address this challenge, taking a step to-
ward the development of scalable abstract visual reasoning
algorithms that can be effectively applied to problems with a
large number of objects and multiple relations among them.

Specifically, we combine Slot Attention (Locatello et al.,
2020), a method for unsupervised object-centric representa-
tion learning, with Abstractors (Altabaa et al., 2023). The
combined approach, Slot Abstractors (Figure 1), inherits the
O(N2) complexity of Transformers, allowing it to be scaled
to much more complex problems than previous abstract
visual reasoning methods. The approach also inherits the
Transformer’s multi-head architecture, enabling it to solve
problems involving multiple relations. We evaluate the Slot
Abstractor on five abstract visual reasoning tasks (including
a task involving real-world images), with a diverse range of
visual and rule complexity. We find that the Slot Abstractor
is capable of strong systematic generalization of learned ab-
stract rules, and can be scaled to problems with multiple rule
types and more than 100 objects, significantly improving
over a number of competitive baselines in most settings.

2. Approach
Figure 1 shows a schematic description of our approach
(described in detail in Algorithm 1). The Slot Abstractor
consists of two major components: 1) extraction of object-
centric representations; and 2) extraction of relational repre-
sentations abstracted away from the object-level represen-
tations. We describe these two components in detail in the
following sections.

2.1. Object-Centric Representation Learning

The Slot Abstractor employs slot attention (Locatello et al.,
2020) in the same way as OCRA (Webb et al., 2023b),
to extract object-centric representations from multi-object
visual inputs.

Given an image x, slot attention learns to extract a set of
latent embeddings (i.e., slots), each of which captures a fo-
cused representation of a single visual object, when trained
to reconstruct the image through decoding the object repre-
sentations. The entire process is done without ground truth
segmentation data and hence is completely unsupervised.

To accomplish this, the image is first passed through a con-
volutional encoder, which generates a feature map feat ∈
RH×W×D. A position code (encoding the four cardinal
directions) is passed through a linear layer, which generates
positional embeddings pos ∈ RH×W×D. Feature and posi-
tion embeddings are additively combined, and then passed

2



Slot Abstractors

through a series of 1x1 convolutions, followed by flattening
to generate inputs ∈ RN×D (where N = H ×W ).

Then, a set of K slots ∈ RK×D is randomly initialized
(from a normal distribution with learnable shared mean
and variance parameters). The image is then presented,
and the slots attend over the pixels of the feature map,
through a transformer-style cross-attention. Specifically,
each slot emits a query q(slots) ∈ RK×D (through a lin-
ear projection), and each location in the feature map emits
a key k(inputs) ∈ RN×D and a value v(inputs) ∈
RN×D. An attention distribution over the feature map
attn = softmax( 1√

D
k(inputs) · q(slots)⊤) is gener-

ated for each slot, and a weighted mean of the values
updates = attn · v(inputs) is used to update the slot
representations using a Gated Recurrent Unit (Cho et al.,
2014), followed by a feedforward network with residual
connection. After T iterations of slot attention, the updated
slot representations are passed through a spatial broadcast
decoder (Watters et al., 2019), which generates both a re-
constructed image and a mask for each slot. The masks are
normalized using a softmax across the slots, and the normal-
ized masks are used to compute a weighted average of the
slot-specific reconstructions, which generates a combined
reconstruction of the input image.

To compute relational representations, it is crucial to rep-
resent position distinctly from other object features. For
a given input image, we used the final attention map
attnT ∈ RK×N after T iterations of slot attention, to
compute feature- and position-specific embeddings for each
slot:

zk = attnT flatten(feat)[k] (1)

mk = attnT flatten(pos)[k] (2)

where feat and pos represent the feature- and position-
embeddings before being additively combined. The position
embeddings help to keep track of which relations correspond
to which objects.

Although slot attention works well for synthetic images,
it is not as effective for real-world images (Seitzer et al.,
2022). To extend our approach to problems involving real-
world images, we used DINOSAUR (Seitzer et al., 2022),
an approach in which slot attention is applied to the features
obtained from DINO (Caron et al., 2021) (a large-scale pre-
trained vision transformer (ViT) (Dosovitskiy et al., 2020)).
This approach has been shown to be an effective method for
unsupervised instance segmentation of real-world images.
The final attention map is used with the ViT’s positional
embeddings to compute position-specific embeddings for
each slot as described in Equation (2). The slot embeddings

obtained after performing slot attention over the ViT’s fea-
tures constituted the feature-specific embeddings for each
slot.

We assume that human visual representations are generally
not learned from scratch when performing each new task.
Instead, visual object representations are shaped by a wide
variety of non-task-specific prior experiences. To model the
effects of this prior experience, we pre-trained slot attention
on a reconstruction objective, using a slot-based autoencoder
framework (more details in Section 4.3).

2.2. Relational Representation Learning

The Slot Abstractor employs the Abstractor module (Al-
tabaa et al., 2023) to process the object-centric represen-
tations extracted by the Slot Attention mechanism. The
core operation of the Abstractor module is relational cross-
attention (RCA), a variant on the standard form of cross-
attention found in Transformers (Vaswani et al., 2017). Like
Transformers, the Abstractor also employs a multi-head
architecture, enabling it to model problems with multiple
distinct relations.

The Abstractor module computes abstract relational repre-
sentations s over a series of L layers. The initial relational
representations sl=0 are formed using the position-specific
embeddings m obtained from slot attention. Then, at each
layer l, these representations are updated using multi-head
relational cross-attention between the feature-specific em-
beddings z:

sl = RCA(z, sl−1) (3)

RCA(z, sl−1) = concat(s̃h=1, .., s̃h=H)Wo (4)

s̃h = softmax

(
(zWq

h)T (zWk
h)√

D

)
sl−1Wv

h (5)

where Wq
h ∈ RD×D,Wk

h ∈ RD×D,Wv
h ∈ RD×D are

the linear projection matrices used by the hth head to gen-
erate queries, keys, and values respectively; s̃h is the result
of relational cross-attention in the hth head; and Wo are the
output weights through which the concatenated outputs of
all H heads are passed. The key difference relative to stan-
dard cross-attention is that queries and keys are generated
from the input features, enabling the relations between those
features to be modeled through inner products, and the val-
ues are generated from a separate set of (position-specific)
embeddings. This relational variant on cross-attention im-
plements a relational bottleneck (Webb et al., 2023a), in
that downstream processing (which only has access to s) is

3



Slot Abstractors

driven only by the relations between objects, as represented
by inner products (see Altabaa and Lafferty (2024) for theo-
retical considerations regarding the use of inner products to
represent relations), and thus is disentangled from the indi-
vidual features of those objects. We hypothesized that this
relational bottleneck would enable systematic generalization
to problems with previously unseen object features.

In each layer, multi-head relational cross-attention was com-
posed together with feedforward networks and standard
multi-head self-attention, with residual connections after
each of these, as depicted in Figure 1, and described in
detail in Algorithm 1. The application of multiple layers
of relational and self-attention enabled the Slot Abstractor
to flexibly model higher-order relations (relations between
relations), which play an important role in abstract visual
reasoning. Crucially, this approach retains the quadratic
complexity of standard Transformers (given K slots, Slot
Abstractors have O(K2) complexity), making it feasible
to scale the approach to visual inputs containing a large
number of objects. After L layers, the relational representa-
tions were averaged over the K slots, and passed through a
task-specific output layer to generate a score y. Depending
on the task, a score y was generated for each answer choice,
and the abstractor module was trained using cross entropy
loss. More details can be found in the last paragraph of
Section 4.3.

3. Related Work
A number of neural network models have been proposed
(Barrett et al., 2018; Steenbrugge et al., 2018; Zhang et al.,
2019b; Zheng et al., 2019; Spratley et al., 2020; Jahrens &
Martinetz, 2020; Wang et al., 2020; Wu et al., 2020; Benny
et al., 2021; Hu et al., 2021; Zhuo & Kankanhalli, 2022;
Zhang et al., 2022; Yang et al., 2023) to solve abstract vi-
sual reasoning problems (Barrett et al., 2018; Zhang et al.,
2019a; Teney et al., 2020) based on Raven’s Progressive
Matrix (RPM) (Raven, 1938). Many of these models in-
corporate problem-specific inductive biases, and therefore
cannot be applied to other types of visual reasoning prob-
lems. To address this, the Slot Transformer Scoring Network
(STSN) was proposed (Mondal et al., 2023), combining a
transformer reasoning module with a general-purpose induc-
tive bias for object-centric visual processing (Greff et al.,
2019; Burgess et al., 2019; Locatello et al., 2020; Engelcke
et al., 2021; Dittadi et al., 2021; Jiang et al., 2023). This
approach achieved state-of-the-art performance on RPM-
based abstract visual reasoning tasks, consistent with re-
sults from object-centric models in other visual reasoning
tasks (Ding et al., 2021; Wu et al., 2022). However, unlike
human abstract reasoning, these approaches generally re-
quire very large training sets, and tend to generalize poorly
out-of-distribution.

To address these limitations, neural network architectures
have recently been proposed that incorporate strong rela-
tional inductive biases (Webb et al., 2021; Kerg et al., 2022).
By constraining downstream processing to focus only on the
relations between inputs (and to ignore the concrete features
of those inputs), these architectures demonstrated human-
like systematic generalization of learned abstract rules from
a few training examples. This approach has more gener-
ally been referred to as the “relational bottleneck” principle
(Webb et al., 2023a). Some of these architectures, however,
have been limited by their dependence on inputs consisting
of pre-segmented visual objects.

One recent approach, Object-Centric Relational Abstraction
(OCRA) (Webb et al., 2023b), combined both strong rela-
tional and object-centric inductive biases (specifically Slot
Attention (Locatello et al., 2020)) to demonstrate systematic
generalization for abstract visual reasoning problems based
on multi-object inputs. This approach was limited, how-
ever, both by its inability to process problems with multiple
relations, and by its computational complexity (O(N4)),
preventing it from being scaled to problems containing a
large number of objects.

Another recent work proposed Abstractors (Altabaa et al.,
2023), an extension of Transformers (Vaswani et al., 2017)
that implemented the relational bottleneck using a relational
variant of cross-attention. This approach demonstrated
strong sample efficiency and generalization performance,
but has yet to be explored for abstract visual reasoning prob-
lems with multi-object inputs (Fleuret et al., 2011; Barrett
et al., 2018; Webb et al., 2023b). Abstractors inherit the
quadratic complexity of Transformers, making it feasible
to scale them to problems with a large number of objects.
Abstractors also employ a multi-head architecture, similar
to Transformers, allowing them to model multiple distinct
relations. Here we combine an unsupervised object-centric
encoding mechanism, Slot Attention (Locatello et al., 2020)
with Abstractors, enabling abstract visual reasoning to be
scaled to problems involving a large number of objects and
multiple relations.

Though our proposed model employed previously designed
components (slot attention and relational cross-attention),
combining these components into an effective architecture
necessitated many novel design choices. We have proposed
a factorized slot representation, in which the position em-
beddings are used for the initial relational representations
sl=0, whereas the feature embeddings are used to compute
the keys and queries for the relational cross attention. We
also find that relational cross attention was most effective
when it was interleaved with self attention and feedforward
layers in a particular manner. In Section 5.1, we show
through ablation experiments targeted toward the use of the
factorized slot representation (Row 4 of Table 6), and the

4



Slot Abstractors

interleaved relational-cross-attention/self-attention (Row 3
of Table 6), that these design choices are essential for obtain-
ing strong performance. Thus, the novel contribution of our
work is to identify an effective way for combining object-
centric and relational components, yielding an architecture
that achieves state-of-the-art performance on challenging
abstract reasoning tasks.

4. Experiments
4.1. Datasets

We evaluated the Slot Abstractor on five challenging abstract
visual reasoning datasets, ART (Webb et al., 2021), SVRT
(Fleuret et al., 2011), CLEVR-ART (Webb et al., 2023b),
PGM (Barrett et al., 2018), and V-PROM (Teney et al.,
2020). Problems in ART and SVRT datasets consist of
simple 2D shapes, whereas CLEVR-ART consists of more
complicated and realistic 3D shapes. Each problem of ART,
SVRT, and CLEVR-ART contains a small number of objects
and is governed by a single rule among them. Problems
from the PGM dataset contain a much larger number of
objects, with multiple rules among them. V-PROM is a
matrix reasoning task (similar to PGM) involving real-world
images. The datasets are described in more detail below.

4.1.1. ART

The Abstract Reasoning Tasks (ART) dataset was proposed
by Webb et al. (2021). It consists of four visual reason-
ing tasks (‘same/different’, ‘relational-match-to-sample’,
‘distribution-of-3’, ‘identity rules’), each defined by a differ-
ent abstract rule (Figure 3). This dataset was created using
100 unicode character objects, and generalization regimes
of varying difficulty were created defined by the number of
unique objects used to instantiate the rules during training.
We focused on the most difficult generalization regime, in
which the training set consists of problems that are created
using 5 out of the 100 possible objects, and the test problems
are created using the remaining 95 objects. This is a difficult
test of systematic generalization, as it requires learning of
an abstract rule from a very small set of examples (Table 7),
with little perceptual overlap between training and test sets.
Consistent with previous work (Webb et al., 2023b) we in-
vestigated a version of the tasks with multi-object displays
and random spatial jitter (random translation of up to 5
pixels in any direction) applied to each object (which has
previously been shown to increase task difficulty for some
relational architectures (Vaishnav & Serre, 2023)).

4.1.2. SVRT

The Synthetic Visual Reasoning Test (SVRT) dataset
(Fleuret et al., 2011) consists of 23 binary classification
tasks. Each task consists of synthetic 2D shapes, with an

underlying abstract pattern among the shapes, and can be
broadly grouped into two categories: those that are defined
by same/different relations (Figure 4(a)), and those that are
defined by spatial relations (Figure 4(b)). We used a small
training set of 500 or 1000 examples per task, consistent
with previous work (Vaishnav & Serre, 2023).

4.1.3. CLEVR-ART

This dataset (Figure 5) was proposed by Webb et al. (2023b),
and created using photorealistic synthetic 3D shapes from
CLEVR (Johnson et al., 2017). It consists of two visual
reasoning tasks from ART: relational-match-to-sample and
identity rules. The training set consists of images created
using small and medium-sized rubber cubes in four colors
(cyan, brown, green, and gray). The test set consists of
images created using large-sized metal spheres and cylin-
ders in four other colors (yellow, purple, blue, and red).
The features of objects in the training and test set are com-
pletely different, which tests the systematic generalization of
learned abstract rules to previously unseen object features.

4.1.4. PGM

The Procedurally Generated Matrices (PGM) dataset was
proposed by Barrett et al. (2018), and is also based on
Raven’s Progressive Matrices problem sets (Raven, 1938).
Each problem consists of a 3 × 3 matrix of image panels
populated with objects of varying shape, size, and color
(Figure 6). The task is to identify the abstract pattern among
the image panels in the first two rows and/or columns of
the matrix, and use that pattern to fill the panel in the third
row and column from a set of eight choices. The maximum
number of objects possible in an image panel is 16, with 9
panels per problem, yielding a total maximum of 144 objects
per problem (compared to a maximum of 6 objects per
problem in the other three datasets). Each matrix problem in
PGM is defined by the abstract structure S = {[r, o, a] : r ∈
R, o ∈ O, a ∈ A}, where R = {progression, XOR, AND,
OR, consistent union} are the set of rules, O = {shape,
line} are the set of objects, and A = {size, type, position,
color, number} are the set of attributes. Problems consist of
multiple rules (up to 4) governed by triples [r, o, a].

The PGM specifies eight different generalization regimes
of varying difficulty. Each regime consists of 1.2M train-
ing problems, 20K validation problems, and 200K testing
problems. The neutral regime is the easiest generaliza-
tion regime, with training and test sets sampled from the
same distribution. The other seven regimes — interpolation
(Intp.), extrapolation (Extp.), heldout attribute shape color
(H.O.S-C), heldout attribute line type (H.O.L-T), heldout
triples (H.O.Triples), heldout triple pairs (H.O.T.P.), heldout
arribute pairs (H.O.A.P.) — test out-of-distribution (OOD)
generalization (see Appendix A.4.1 for more details).

5



Slot Abstractors

4.1.5. V-PROM

The Visual Progressive Matrices (V-PROM) dataset was
proposed by Teney et al. (2020). V-PROM is a matrix rea-
soning dataset (similar to PGM), but unlike standard matrix
reasoning tasks, the problems in V-PROM are constructed
from real-world images (Figure 7). The maximum number
of objects possible in an image is 10, and since there are 9
panels per problem, the total maximum number of objects
is 90. Like PGM, each problem consists of multiple abstract
rules and the dataset consists of generalization regimes of
varying difficulty. In this work, we focused only on the
Neutral regime, with around 139K training problems, 8K
validation problems, and 73K test problems.

4.2. Baselines

For the ART, SVRT, and CLEVR-ART datasets, we com-
pared the Slot Abstractor to baseline methods reported in
Webb et al. (2023b), which includes the OCRA model, the
GAMR architecture proposed by Vaishnav and Serre (2023),
ResNet-50 (He et al., 2016), a version of ResNet that uses
self-attention (Attn-ResNet) (Vaishnav et al., 2022), and
a set of baselines that combined pre-trained slot attention
with various reasoning architectures (GAMR, Transformer,
ESBN (Webb et al., 2021), CorelNet (Kerg et al., 2022),
Relation Net (RN) (Santoro et al., 2017), and Interaction
Net (IN) (Watters et al., 2017)).

For the PGM dataset, we compared the Slot Abstractor to
the PredRNet model (Yang et al., 2023) and several state-of-
the-art methods reported in Zhang et al. (2022), including
their proposed ARII model. Since our main focus was on
systematic generalization, for comparison we only included
models that were evaluated on at least one OOD regime.
For the V-PROM dataset, we compared the Slot Abstractor
to the best performing model (RN) reported in Teney et al.
(2020). We didn’t use any auxiliary information (i.e., rule
labels), and hence for a fair comparison we only compared
to baselines that were trained without auxiliary loss.

4.3. Experimental Details

We pre-trained slot attention using a reconstruction (i.e., au-
toencoding) objective. For ART, SVRT, and CLEVR-ART
datasets we used the pre-trained model from Webb et al.
(2023b)1. For PGM and V-PROM, we pre-trained slot atten-
tion on the neutral regime training set. Table 8 and Table 9
describe the hyperparameters for the convolutional encoder
and the slot-based spatial broadcast decoder respectively,
whereas the pre-training hyperparameters are described in
Table 12 for the PGM dataset. For the V-PROM dataset, Ta-
ble 10 describes the hyperparameters for the convolutional

1https://github.com/Shanka123/OCRA

encoder used on top of the pre-trained ViT 2 features, Ta-
ble 11 describes the hyperparameters for the decoder, and
Table 13 describes the pre-training hyperparameters. After
pre-training, we selected the model from the epoch with the
lowest mean squared error on the validation set. The slot
attention parameters were frozen after pre-training, except
for the V-PROM dataset where they were also finetuned on
the reasoning task.

We resized the images to 128 × 128 for ART, SVRT, and
CLEVR-ART, and resized the image panels (of which there
are 9 per problem) to 80×80 for PGM, and 224×224 for V-
PROM. Pixels were normalized to the range [0, 1] for ART,
and to [−1, 1] for SVRT, CLEVR-ART, and PGM datasets.
For V-PROM, we applied a channel-wise mean and standard
deviation normalization with values of [0.485, 0.456, 0.406]
for the mean, and [0.229, 0.224, 0.225] for the standard de-
viation corresponding to the RGB channels, after converting
the pixel values to the range [0, 1]. For SVRT, we also ap-
plied random horizontal and vertical flips, consistent with
prior work (Vaishnav & Serre, 2023; Webb et al., 2023b).

The hyperparameters for the Abstractor module of the Slot
Abstractor are described in Table 14. We initialized Wq and
Wk (the linear projection matrices used to generate queries
and keys) with the same values, but allowed them to vary
during training. To generate the output, we took the mean
of the K final relational representations sL, and passed this
through a task-specific output layer. For the same/different
ART task and SVRT tasks, this layer had a single unit and
a sigmoid activation, and the model was trained with bi-
nary cross entropy loss. For the other ART tasks, PGM,
and the V-PROM datasets, each candidate answer choice
was inserted into the problem before being fed as input to
the model, and the output was a linear layer with a single
unit. This output was treated as a score for the answer
choice in each input. A softmax activation was then applied
over the scores for all answer choices, and the model was
trained with cross-entropy loss. More experimental details
can be found at Appendix A.2. The code is available at
https://github.com/Shanka123/Slot-Abstractor.

5. Results
Table 1 shows the results on the four ART tasks. The
Slot Abstractor achieved state-of-the-art accuracy on
three tasks (same/different, relational-match-to-sample, and
distribution-of-3), beating the next best baseline (OCRA) by
as much as 9%. It also demonstrated an average improve-
ment of 3% over all tasks compared to previous state-of-the-
art model (OCRA).

2we used the features of ViT (token dimensionality 768, 12
heads, patch size 16) pre-trained using DINO, and provided by
the timm library (Wightman et al., 2019), with the model name
vit base patch16 224.dino.

6

https://github.com/Shanka123/OCRA
https://github.com/Shanka123/Slot-Abstractor


Slot Abstractors

Table 1. Results on the four tasks of the ART dataset. Results reflect test accuracy averaged over 10 trained networks(± standard error).

MODEL SAME/DIFFERENT RELATIONAL-MATCH-TO-SAMPLE DISTRIBUTION-OF-3 IDENTITY RULES

RESNET 66.60±1.5 49.89±0.2 50.07±1.3 54.84±2.4
SLOT-CORELNET 50.50±0.2 49.82±0.2 26.80±0.8 43.50±5.2
SLOT-ESBN 50.02±0.2 49.99±0.2 25.56±0.1 50.33±2.8
SLOT-GAMR 62.98±1.4 59.55±2.7 32.77±1.0 61.92±0.9
SLOT-RN 77.26±1.9 61.62±1.1 52.10±0.7 65.96±1.1
SLOT-IN 59.23±2.3 56.93±0.8 49.48±1.8 72.82±1.6
SLOT-TRANSFORMER 68.46± 2.0 73.99± 3.0 60.61± 1.9 78.32± 1.8
GAMR 83.49± 1.4 72.20± 3.0 68.62± 1.8 66.23± 4.8
OCRA 87.95± 1.3 85.31± 2.0 86.42± 1.3 92.8± 0.3
SLOT-ABSTRACTOR 96.36± 0.4 91.64± 1.6 95.22± 0.4 96.41±0.4

Table 2. Results on the two task categories of the SVRT dataset. Results reflect test accuracy averaged over different tasks from each
category (± standard error), for 1 trained network for each task.

MODEL SAME/DIFFERENT SPATIAL RELATIONS
DATASET SIZE =0.5K DATASET SIZE =1K DATASET SIZE =0.5K DATASET SIZE = 1K

RESNET 54.97±2.2 56.88±2.5 85.18±4.3 94.87±1.6
ATTN-RESNET 62.30±3.5 68.83±4.4 94.80±1.4 97.66±0.7
SLOT-CORELNET 52.95±1.4 57.13±2.6 60.95±3.7 74.59±3.7
SLOT-ESBN 53.83±1.1 51.67±1.1 61.30±2.3 62.69±2.4
SLOT-GAMR 63.06±3.7 66.87±3.2 84.90±2.4 86.99±2.2
SLOT-RN 71.48±4.8 81.79±4.4 91.73±1.8 96.20±1.4
SLOT-IN 68.23±4.8 74.99±4.9 90.23±2.0 94.86±1.4
SLOT-TRANSFORMER 76.54±5.1 89.85±4.2 94.06±1.6 97.86±0.9
GAMR 76.80±4.9 82.05±4.4 97.40±0.7 98.74±0.3
OCRA 79.89±4.5 90.30±4.1 89.25±2.5 95.02±2.4
SLOT-ABSTRACTOR 82.20±4.7 91.86±4.0 91.74±2.2 97.26±1.1

Table 3. Results on the two tasks (relational-match-to-sample
(RMTS) and identity rules (ID)) of the CLEVR-ART dataset. Re-
sults reflect test accuracy averaged over 5 trained networks (±
standard error).

MODEL RMTS ID

SLOT-CORELNET 49.87±0.2 24.80±0.3
SLOT-ESBN 62.53±0.1 28.87±0.7
SLOT-GAMR 52.56±0.5 39.83±0.9
SLOT-RN 64.79±0.5 60.27±0.6
SLOT-IN 66.72±3.7 67.22±1.7
SLOT-TRANSFORMER 87.54±0.7 78.81±1.6
GAMR 70.40±5.8 74.15±4.0
OCRA 93.34±1.0 77.06±0.7
SLOT-ABSTRACTOR 96.34±0.5 91.61±0.2

Table 2 shows the results on the two task categories for
the SVRT dataset. The Slot Abstractor displayed compara-
ble overall performance with previous state-of-the-art mod-
els (GAMR, OCRA), demonstrating a marginal improve-
ment on tasks defined by same/different relations, whereas
GAMR performed slightly better on tasks defined by spatial
relations.

Table 3 shows the results on the two CLEVR-ART tasks.
The Slot Abstractor achieved state-of-the-art accuracy beat-
ing previous state-of-the-art model (OCRA) by as much
as 14%. This demonstrates that the Slot Abstractor’s ca-
pacity for systematic generalization can also be extended
to abstract reasoning problems with more complicated and
realistic visual inputs.

Table 4 shows the results on the PGM generalization
regimes. The Slot Abstractor demonstrated notable im-
provements on many of the OOD generalization regimes
(Intp., H.O.T.P., Extp.) with as much as 21% compared
to the previous state-of-the-art model (PredRNet), and an
average improvement of around 5% over all the regimes.
It is also worth noting that OCRA, previously the state-of-
the-art model for ART, SVRT, and CLEVR-ART datasets,
could not be trained on the PGM dataset due to memory
issues. It was not possible to train the model on an A100
GPU with 80GB memory, even when using a batch size of 1
(given 144 slots, OCRA would need to process 1442 ≈ 20k
relational embeddings). This highlights the benefits of the
Slot Abstractor’s improved complexity (O(N2) vs. O(N4)
in OCRA), allowing it to be effectively applied to problems
involving a much larger number of objects.

7



Slot Abstractors

Table 4. Results on different generalization regimes of the PGM dataset. Results reflect test accuracy for 1 trained model for each regime.

MODEL NEUTRAL INTP. H.O.A.P. H.O.T.P. H.O.TRIPLES H.O.L-T H.O.S-C EXTP.

WREN β = 0 62.6 64.4 27.2 41.9 19.0 14.4 12.5 17.2
VAE-WREN 64.2 - 36.8 43.6 24.6 - - -
MXGNET β = 0 66.7 65.4 33.6 43.3 19.9 16.7 16.6 18.9
DCNET 68.6 59.7 - - - - - 17.8
REL-BASE 85.5 - - - - - - 22.1
MRNET 93.4 68.1 38.4 55.3 25.9 30.1 16.9 19.2
MLRN 98.0 57.8 - - - - - 14.9
STSN 98.2 78.5 - - - - - 20.4
ARII 88.0 72.0 50.0 64.1 32.1 16.0 12.7 29.0
PREDRNET 97.4 70.5 63.4 67.8 23.4 27.3 13.1 19.7
SLOT-ABSTRACTOR 91.5 91.6 63.3 78.3 20.4 16.7 14.3 39.3

Table 5. Results on the PGM Neutral regime when trained on a
subset (20% vs. 100%) of the training data. Results reflect test
accuracy for 1 trained model.

MODEL % TRAINING DATA
20% 100%

STSN 53.35 98.2
SLOT-ABSTRACTOR 71.25 91.5

On V-PROM, the Slot Abstractor displayed state-of-the-
art performance achieving 67.7% test accuracy, compared
to 51.2% by the previous best model, Relation Net. This
demonstrates that the Slot Abstractor’s systematic gener-
alization capacity can also be extended to abstract visual
reasoning problems involving real-world images.

To evaluate the Slot Abstractor’s sample efficiency, we
trained it on 20% of the training data in the PGM neutral
regime. We also compared it to the state-of-the-art model in
the neutral regime, STSN (Mondal et al., 2023), using the
publicly available code 3. As done in the original implemen-
tation, slot attention parameters were initialized using the
same pre-trained slot attention as used in the Slot Abstractor,
but then fine-tuned while training on the downstream task.
Table 5 shows the results. When trained on only 20% of the
training data, the Slot Abstractor significantly outperforms
STSN, demonstrating the Slot Abstractor’s superior sample
efficiency.

5.1. Ablation Study

To understand the importance of each of the Slot Abstrac-
tor’s major components, we performed an ablation study us-
ing the ART dataset (Table 6). First, we removed Slot Atten-
tion, instead dividing the feature map feat into a 4×4 grid
(treating each location within the feature map as an ‘object’),
and trained the model end to end. We noticed a significant

3https://github.com/Shanka123/STSN

drop in performance for the relational-match-to-sample and
same/different tasks. This demonstrates the importance of
using object-centric representations (even when pre-trained
DINO ViT features are used, as described in A.3). Sec-
ond, we removed different components from the Abstractor
module. In one case, we removed the self-attention and the
subsequent feedforward layer. This impaired performance
on the relational-match-to-sample, distribution-of-3, and
identity rules tasks, where the ablation of self-attention re-
sulted in 4-7% drop in test accuracy. This demonstrates
the importance of modeling higher-order relations through
self-attention. In another case, we ablated the factorized
slot representations, using the standard slot representations
instead of separate feature and position embeddings. The
relation embeddings sl=0 were initialized using learned pa-
rameters. We observed a significant drop in performance
(as much as 40%) for all tasks except identity rules. This
demonstrates the importance of using factorized feature and
position embeddings, which allow the Slot Abstractor to
keep track of the correspondence between relations and
objects. Finally, we replaced the relational cross-attention
(RCA) with standard cross-attention (CA), where keys and
values are formed from feature embeddings, and queries
are formed from position embeddings, thereby removing
the relational bottleneck. This significantly impaired perfor-
mance for all tasks (by as much as 52%). This reflects the
centrally important role of the relational bottleneck as an
inductive bias underlying the Slot Abstractor’s capacity for
generalization.

The removal of slot attention (Row 2 of Table 6) and the
replacement of relational cross-attention with standard cross-
attention (Row 5 of Table 6), resulted in a significant drop
in performance, which demonstrates the importance of com-
bining slot attention with relational cross-attention in Ab-
stractors. The removal of self-attention and the subsequent
feedforward layer after relational cross-attention (Row 3 of
Table 6) and the use of standard slot representations without
factorizing into position and feature specific embeddings

8

https://github.com/Shanka123/STSN


Slot Abstractors

Table 6. Ablation study on tasks of the ART dataset. Results reflect test accuracy averaged over 10 trained networks(± standard error).

MODEL SAME/DIFFERENT RELATIONAL-MATCH-TO-SAMPLE DISTRIBUTION-OF-3 IDENTITY RULES

SLOT-ABSTRACTOR 96.36± 0.4 91.64± 1.6 95.22± 0.4 96.41±0.4
W/O SLOT ATTENTION 89.29±0.8 49.85±0.2 89.10±1.2 86.09±1.3
W/O SELF ATTENTION 95.26±0.9 85.41±2.0 93.83±0.6 92.58±0.7
W/O FACTORIZED REPS. 77.24±2.8 50.02±0.1 64.4±1.5 85.08±1.5
REPLACE RCA WITH CA 80.04±1.4 58.24±1.5 43.90±1.3 60.02±1.0

(Row 4 of Table 6) explored different design choices of
combining slot attention with the relational cross-attention
in Abstractors, both of which significantly underperformed
compared to the proposed method, thereby demonstrating
that these design choices are essential for obtaining strong
performance.

5.2. Visualization of Abstractor’s Relation Embeddings

2 1 0 1 2 3
Principal Component 1

1.0

0.5

0.0

0.5

1.0

1.5

Pr
in

cip
al

 C
om

po
ne

nt
 2

Same
Different

Figure 2. Visualization of Abstractor’s Relation Embeddings.
The output of the first head of relational cross attention, after
projecting to the first two principal components for 100 examples
from the test set of same/different ART task. Two different clusters
are formed corresponding to problems with the same and different
relation among the objects.

To demonstrate that the Abstractor can capture the different
relations present in the tasks, we performed a qualitative
analysis of the relational cross-attention head. Specifically,
we visualized the output of the relational cross-attention
corresponding to the first head (s̃1 in Equation (5)) for 100
examples from the test set of same/different ART task, with
equal number of examples belonging to same and different
category. We applied principal component analysis (PCA)
to the output features after taking the mean over the K
slots, to reduce it to 2 dimensions. Figure 2 shows that
the two-dimensional output form two different clusters cor-
responding to images belonging to the same and different
categories, indicating that the first relational cross-attention
head was able to capture the same/different relation.

6. Conclusion and Future Directions
In this work, we developed Slot Abstractors, by combining
slot-based object-centric encoding mechanisms with Ab-
stractors, a recently proposed approach for implementing
the relational bottleneck using a relational variant of cross-
attention. We evaluated the Slot Abstractor on five abstract
visual reasoning tasks including one involving real-world
images, finding that it achieves overall state-of-the-art sys-
tematic generalization of learned abstract rules, and can also
be scaled to problems containing a large number of objects
and multiple rules.

Finally, we discuss some limitations of our work and poten-
tially interesting directions for future work. First, although
Slot Abstractors demonstrated state-of-the-art performance
in many of the OOD generalization regimes of PGM (and
achieved state-of-the-art average performance across all
regimes), there is still significant room for improvement in
some of these regimes. Even for some regimes on which
the Slot Abstractor achieved state-of-the-art performance,
that performance was sometimes well below what would
be expected of human reasoners (e.g., especially for the
‘Extrapolation’ regime). Second, the number of slots in
slot-based models is fixed, which may pose a challenge for
settings in which there are large variations in the number of
objects that must be processed. Recent work (Löwe et al.,
2023; Stanić et al., 2023) has built methods addressing this
limitation by doing away with slots entirely, and future work
might explore how such non-slot-based methods can be in-
tegrated with relational inductive biases. Finally, future
work could also improve the quadratic complexity of Slot
Abstractors by using more efficient attention mechanisms
(Dao et al., 2022; Dao, 2023).

Acknowledgements
Shanka Subhra Mondal was supported by Office of Naval
Research grant N00014-22-1-2002 during the duration of
this work. We would like to thank the reviewers for their
valuable feedback, and the Princeton Research Computing,
especially William G. Wischer and Josko Plazonic, for their
help with scheduling training jobs on the Princeton Univer-
sity Della cluster.

9



Slot Abstractors

Impact Statement
This paper presents work the goal of which is to advance
the field of Machine Learning. There are many potential
societal consequences of our work, none of which we feel
must be specifically highlighted here.

References
Altabaa, A. and Lafferty, J. Approximation of relation

functions and attention mechanisms. arXiv preprint
arXiv:2402.08856, 2024.

Altabaa, A., Webb, T., Cohen, J., and Lafferty, J. Ab-
stractors: Transformer modules for symbolic mes-
sage passing and relational reasoning. arXiv preprint
arXiv:2304.00195, 2023.

Barrett, D., Hill, F., Santoro, A., Morcos, A., and Lillicrap,
T. Measuring abstract reasoning in neural networks. In
International conference on machine learning, pp. 511–
520. PMLR, 2018.

Benny, Y., Pekar, N., and Wolf, L. Scale-localized abstract
reasoning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 12557–
12565, 2021.

Burgess, C. P., Matthey, L., Watters, N., Kabra, R., Higgins,
I., Botvinick, M., and Lerchner, A. Monet: Unsupervised
scene decomposition and representation. arXiv preprint
arXiv:1901.11390, 2019.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,
Bojanowski, P., and Joulin, A. Emerging properties in
self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 9650–9660, 2021.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Ding, D., Hill, F., Santoro, A., Reynolds, M., and Botvinick,
M. Attention over learned object embeddings enables
complex visual reasoning. Advances in neural informa-
tion processing systems, 34:9112–9124, 2021.

Dittadi, A., Papa, S., De Vita, M., Schölkopf, B., Winther,
O., and Locatello, F. Generalization and robustness
implications in object-centric learning. arXiv preprint
arXiv:2107.00637, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Engelcke, M., Parker Jones, O., and Posner, I. Genesis-
v2: Inferring unordered object representations without
iterative refinement. Advances in Neural Information
Processing Systems, 34:8085–8094, 2021.

Fleuret, F., Li, T., Dubout, C., Wampler, E. K., Yantis, S.,
and Geman, D. Comparing machines and humans on a
visual categorization test. Proceedings of the National
Academy of Sciences, 108(43):17621–17625, 2011.

Greff, K., Kaufman, R. L., Kabra, R., Watters, N., Burgess,
C., Zoran, D., Matthey, L., Botvinick, M., and Lerchner,
A. Multi-object representation learning with iterative
variational inference. In International Conference on
Machine Learning, pp. 2424–2433. PMLR, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hu, S., Ma, Y., Liu, X., Wei, Y., and Bai, S. Stratified rule-
aware network for abstract visual reasoning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 1567–1574, 2021.

Jahrens, M. and Martinetz, T. Solving raven’s progressive
matrices with multi-layer relation networks. In 2020 Inter-
national Joint Conference on Neural Networks (IJCNN),
pp. 1–6. IEEE, 2020.

Jiang, J., Deng, F., Singh, G., and Ahn, S. Object-centric
slot diffusion. arXiv preprint arXiv:2303.10834, 2023.

Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei,
L., Lawrence Zitnick, C., and Girshick, R. Clevr: A
diagnostic dataset for compositional language and ele-
mentary visual reasoning. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 2901–2910, 2017.

Kerg, G., Mittal, S., Rolnick, D., Bengio, Y., Richards, B.,
and Lajoie, G. On neural architecture inductive biases for
relational tasks. arXiv preprint arXiv:2206.05056, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

10



Slot Abstractors

Kotovsky, L. and Gentner, D. Comparison and categoriza-
tion in the development of relational similarity. Child
Development, 67(6):2797–2822, 1996.

Lake, B. and Baroni, M. Generalization without systematic-
ity: On the compositional skills of sequence-to-sequence
recurrent networks. In International conference on ma-
chine learning, pp. 2873–2882. PMLR, 2018.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran,
A., Heigold, G., Uszkoreit, J., Dosovitskiy, A., and Kipf,
T. Object-centric learning with slot attention. Advances
in Neural Information Processing Systems, 33:11525–
11538, 2020.

Löwe, S., Lippe, P., Locatello, F., and Welling, M. Ro-
tating features for object discovery. arXiv preprint
arXiv:2306.00600, 2023.

Mondal, S. S., Webb, T. W., and Cohen, J. D. Learning to
reason over visual objects. In 11th International Confer-
ence on Learning Representations, ICLR, 2023.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Raven, J. C. Progressive matrices: A perceptual test of
intelligence, individual form. London: Lewis, 1938.

Ricci, M., Kim, J., and Serre, T. Same-different prob-
lems strain convolutional neural networks. arXiv preprint
arXiv:1802.03390, 2018.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M.,
Pascanu, R., Battaglia, P., and Lillicrap, T. A simple
neural network module for relational reasoning. Advances
in neural information processing systems, 30, 2017.

Seitzer, M., Horn, M., Zadaianchuk, A., Zietlow, D., Xiao,
T., Simon-Gabriel, C.-J., He, T., Zhang, Z., Schölkopf,
B., Brox, T., et al. Bridging the gap to real-world object-
centric learning. arXiv preprint arXiv:2209.14860, 2022.

Shanahan, M., Nikiforou, K., Creswell, A., Kaplanis, C.,
Barrett, D., and Garnelo, M. An explicitly relational
neural network architecture. In International Conference
on Machine Learning, pp. 8593–8603. PMLR, 2020.

Spratley, S., Ehinger, K., and Miller, T. A closer look
at generalisation in raven. In European Conference on
Computer Vision, pp. 601–616. Springer, 2020.

Stanić, A., Gopalakrishnan, A., Irie, K., and Schmidhuber,
J. Contrastive training of complex-valued autoencoders
for object discovery. arXiv preprint arXiv:2305.15001,
2023.

Steenbrugge, X., Leroux, S., Verbelen, T., and Dhoedt, B.
Improving generalization for abstract reasoning tasks us-
ing disentangled feature representations. arXiv preprint
arXiv:1811.04784, 2018.

Teney, D., Wang, P., Cao, J., Liu, L., Shen, C., and van den
Hengel, A. V-prom: A benchmark for visual reasoning
using visual progressive matrices. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pp. 12071–12078, 2020.

Vaishnav, M. and Serre, T. Gamr: A guided attention model
for (visual) reasoning. In 11th International Conference
on Learning Representations, ICLR, 2023.

Vaishnav, M., Cadene, R., Alamia, A., Linsley, D., Van-
Rullen, R., and Serre, T. Understanding the computational
demands underlying visual reasoning. Neural Computa-
tion, 34(5):1075–1099, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, D., Jamnik, M., and Lio, P. Abstract diagrammatic
reasoning with multiplex graph networks. arXiv preprint
arXiv:2006.11197, 2020.

Watters, N., Zoran, D., Weber, T., Battaglia, P., Pascanu,
R., and Tacchetti, A. Visual interaction networks: Learn-
ing a physics simulator from video. Advances in neural
information processing systems, 30, 2017.

Watters, N., Matthey, L., Burgess, C. P., and Lerchner, A.
Spatial broadcast decoder: A simple architecture for learn-
ing disentangled representations in vaes. arXiv preprint
arXiv:1901.07017, 2019.

Webb, T., Dulberg, Z., Frankland, S., Petrov, A., O’Reilly,
R., and Cohen, J. Learning representations that support
extrapolation. In International conference on machine
learning, pp. 10136–10146. PMLR, 2020.

Webb, T. W., Sinha, I., and Cohen, J. D. Emergent symbols
through binding in external memory. In 9th International
Conference on Learning Representations, ICLR, 2021.

11



Slot Abstractors

Webb, T. W., Frankland, S. M., Altabaa, A., Krishnamurthy,
K., Campbell, D., Russin, J., O’Reilly, R., Lafferty, J.,
and Cohen, J. D. The relational bottleneck as an in-
ductive bias for efficient abstraction. arXiv preprint
arXiv:2309.06629, 2023a.

Webb, T. W., Mondal, S. S., and Cohen, J. D. Systematic
visual reasoning through object-centric relational abstrac-
tion. arXiv preprint arXiv:2306.02500, 2023b.

Wightman, R. et al. Pytorch image models, 2019.
URL https://github.com/huggingface/
pytorch-image-models.

Wu, Y., Dong, H., Grosse, R., and Ba, J. The scattering
compositional learner: Discovering objects, attributes,
relationships in analogical reasoning. arXiv preprint
arXiv:2007.04212, 2020.

Wu, Z., Dvornik, N., Greff, K., Kipf, T., and Garg, A. Slot-
former: Unsupervised visual dynamics simulation with
object-centric models. arXiv preprint arXiv:2210.05861,
2022.

Yang, L., You, H., Zhen, Z., Wang, D., Wan, X., Xie, X.,
and Zhang, R.-Y. Neural prediction errors enable ana-
logical visual reasoning in human standard intelligence
tests. In International Conference on Machine Learning,
pp. 39572–39583. PMLR, 2023.

Zhang, C., Gao, F., Jia, B., Zhu, Y., and Zhu, S.-C. Raven: A
dataset for relational and analogical visual reasoning. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5317–5327, 2019a.

Zhang, C., Jia, B., Gao, F., Zhu, Y., Lu, H., and Zhu, S.-C.
Learning perceptual inference by contrasting. Advances
in neural information processing systems, 32, 2019b.

Zhang, W., Mo, S., Liu, X., Song, S., et al. Learning robust
rule representations for abstract reasoning via internal
inferences. Advances in Neural Information Processing
Systems, 35:33550–33562, 2022.

Zheng, K., Zha, Z.-J., and Wei, W. Abstract reasoning with
distracting features. Advances in Neural Information
Processing Systems, 32, 2019.

Zhuo, T. and Kankanhalli, M. Effective abstract rea-
soning with dual-contrast network. arXiv preprint
arXiv:2205.13720, 2022.

12

https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models


Slot Abstractors

A. Appendix
A.1. Algorithm for Slot Abstractors

Algorithm 1 Slot Abstractors: The inputs are the feature map obtained by passing an image x through a convolutional
encoder, a position code (encoding the four cardinal directions) which is passed through a linear layer to generate positional
embeddings, and K slots which are initialized from shared mean and variance parameters.

Inputs: feature map feat ∈ RN×D ; positional embeddings pos ∈ RN×D ; slots ∼ Normal(µ, σ) ∈ RK×D, µ ∈
RD, σ ∈ RD

Parameters: q, k, v linear projection matrices for slot attention, relational cross-attention, self-attention; GRU; FeedFor-
ward; slot attention iterations T ; attention heads H; Abstractor layers L
inputs = FeedForward(feat+ pos)
for t = 1 to T do
attnt = softmax( 1√

D
k(inputs) · q(slots)⊤, axis = ‘slots’)

updates = attnt · v(inputs)
slots = GRU(inputs = updates , hidden state = slots )
slots = FeedForward(slots) + slots

end for
zk = attnT flatten(feat)[k]
mk = attnT flatten(pos)[k]
z = {z1, ...zK}
m = {m1, ...mK}
Initialize s0 = m
for l = 1 to L do
sl = RelationalCrossAttention(z, sl−1) + sl−1

sl = FeedForward(sl) + sl

sl = SelfAttention(sl) + sl

sl = FeedForward(sl) + sl

end for
Output: sL

A.2. More Experimental Details

For ART and CLEVR-ART tasks, we used a learning rate of 8e− 5, batch size of 16, and the number of training epochs are
described in Table 15. For SVRT, we used a learning rate of 4e− 5, a batch size of 32, and trained for 2000 epochs on each
task. We used a single A100 GPU with 80GB memory for training on ART, SVRT, and CLEVR-ART tasks. For training
on PGM regimes, we used 4 A100 GPUs with 80GB memory each, a learning rate of 8e− 5, and a batch size of 24 per
GPU. The number of training epochs for each PGM generalization regime is displayed in Table 16. For training on the
V-PROM neutral regime, we also used 4 A100 GPUs with 80GB memory each, a learning rate of 8e− 5, and a batch size of
12 per GPU, and trained for 30 epochs. For optimization, we used the ADAM (Kingma & Ba, 2014) optimizer, and for
implementation, we used the PyTorch library (Paszke et al., 2017).

A.3. Importance of Slot Attention in DINOSAUR

To justify the importance of the slot attention component, when the DINOSAUR model is used with the Abstractor, we
conducted an ablation experiment on the V-PROM neutral regime, by removing the slot attention component from the
DINOSAUR model, and used the pre-trained DINO ViT features with the Abstractor. Since, it wasn’t possible to train the
ablation model using the patchwise DINO ViT features on an A100 GPU of 80GB memory even with a batch size of 1
(given 9 image panels and 196 patches for each panel, the size of the matrix which models relations between the features
would be 1764×1764), and hence we used the CLS output of the DINO ViT features, as feature embeddings z to Abstractor.
On V-PROM, the ablation model achieved a test accuracy of 30.01%, compared to 67.7% by our proposed method. This
result suggests the importance of slot attention as an effective way of finding a low-dimensional representation, with slots
bound to objects in the image.

13



Slot Abstractors

A.4. Datasets

1 2

Same / different
Relational 

match-to-sample

1 2 3 41 2 3 4

Distribution-of-3 Identity rules

Figure 3. Abstract Reasoning Tasks (ART) Dataset. The ‘same/different’ task, requires identifying whether two objects are the same
or different. The ‘relational-match-to-sample’ task requires selecting a pair of objects, out of two pairs called the target objects that
has the same relation, as the relation (‘same’ or ‘different’) among a source pair of objects. We presented the problem as a 2× 2 array
format, with the source pair of objects in the top row, and a target pair in the bottom row (separate images for each target pair). In the
‘distribution-of-3’ task, the first row contains a set of three objects, and the second row contains an incomplete set. The task is to select
the missing object from a set of four choices. We presented the problem as a 2× 3 array format, with one of the choices inserted in the
bottom right cell (separate images for each choice). In the ‘identity rules’ task, the first row contains three objects that follow an abstract
pattern (ABA, ABB, or AAA), and the task is to select the choice that would result in the same relation being instantiated in the second
row. We presented the problems in the same format as the ‘distribution of-3’ task.

Table 7. Number of training examples for ART tasks.

SAME/DIFFERENT RELATIONAL-MATCH-TO-SAMPLE DISTRIBUTION-OF-3 IDENTITY RULES

40 480 360 8640

Category 1 Category 2

(a) Examples of same/different task.

Category 1 Category 2

(b) Examples of spatial relation task.

Figure 4. Synthetic Visual Reasoning Test (SVRT) Dataset. (a) Examples of task depicting same/different relation. Each row shows an
example from each of the two categories. In category 1 there are three sets of two identical shapes. In category 2 there are two sets of
three identical shapes. (b) Examples of task depicting spatial relation. Each row shows an example from each of the two categories. In
category 1 three out of four shapes are touching each other. In category 2 there are two sets of two shapes touching each other.

14



Slot Abstractors

Identity rules

Relational match-to-sample Identity rules

Relational match-to-sample

Relational-match-to-sample Identity rules 

Figure 5. CLEVR-ART Dataset. Relational-match-to-sample: An example depicting ‘different’ relation between the source pair (back
row) of objects and the target pair (front row) of objects. Problems were presented in the same format as the ‘relational match-to-sample’
task of the ART dataset. Identity rules: An example problem depicting ABA rule among the back row and front row of objects. Problems
were presented in the same format as the ‘identity rules’ task of the ART dataset.

Figure 6. Procedurally Generated Matrices (PGM) Dataset. Examples of problems with only shapes (left), only lines (middle), and
both shapes and lines (right). In each problem, the task is to identify the abstract pattern among the image panels in the first two rows
and/or columns of the matrix, and use that pattern to fill the panel in the third row and column from a set of eight choices.

A.4.1. PGM OOD REGIMES

Each matrix problem in PGM is defined by the abstract structure S = {[r, o, a] : r ∈ R, o ∈ O, a ∈ A}, where R =
{progression, XOR, AND, OR, consistent union} are the set of rules, O = {shape, line} are the set of objects, and A =
{size, type, position, color, number} are the set of attributes. Problems consist of multiple rules (upto 4) governed by triples
[r, o, a]. The PGM dataset contains seven OOD regimes of varying difficulty. The interpolation regime involves training on
even-indexed feature values for color and size attributes, and testing on all odd-indexed values, whereas the extrapolation
regime involves training on the lower half of feature values and testing on the upper half of feature values. In the heldout
attribute shape color (H.O.S-C) regime, the training set problems doesn’t contain shape objects and color attribute, whereas
all problems in the test set contain at least shape objects and color attribute. Similarly in the heldout attribute line type
(H.O.L-T) regime, the training set problems doesn’t contain line objects and type attribute. The heldout triples (H.O.Triples)
regime, involves randomly holding out seven triples out of 29 possible unique triples [r, o, a] for test set problems. In heldout
triple pairs (H.O.T.P.) regime, the problems in both the training and test set contain at least two triples, and out of 400
possible pairs of triples, randomly chosen 40 pairs of triples are used only for test set problems. The heldout arribute pairs

15



Slot Abstractors

(H.O.A.P.) regime, involves holding out 4 attribute pairs out of possible 20 pairs for test set problems.

Figure 7. Visual Progressive Matrices (V-PROM) Dataset. Example problems of Raven’s Progressive Matrices involving real-world
images. Similar to PGM dataset, the task is to identify the abstract pattern among the images in the first two rows and/or columns of the
3× 3 matrix, and use that pattern to fill the missing image in the third row, by selecting one among a set of eight choices.

A.5. Visualization of Slot-wise Reconstruction

Figure 8. Visualization of the individual slot-wise reconstruction for all the 16 slots for an image panel from the PGM dataset.

Figure 9. Visualization of the individual slot-wise reconstruction for all the 16 slots for an image panel from the PGM dataset.

A.6. Training Details and Hyperparameters

Table 8. CNN encoder hyperparameters for PGM dataset.

TYPE CHANNELS ACTIVATION KERNEL SIZE STRIDE PADDING

2D CONV 32 RELU 5×5 1 2
2D CONV 32 RELU 5×5 1 2
2D CONV 32 RELU 5×5 1 2
2D CONV 32 RELU 5×5 1 2
POSITION EMBEDDING - - - - -
FLATTEN - - - - -
LAYER NORM - - - - -
1D CONV 32 RELU 1 1 0
1D CONV 32 - 1 1 0

16



Slot Abstractors

Table 9. Slot decoder hyperparameters for PGM dataset.

TYPE CHANNELS ACTIVATION KERNEL SIZE STRIDE PADDING

SPATIAL BROADCAST - - - - -
POSITION EMBEDDING - - - - -
2D CONV 32 RELU 5×5 1 2
2D CONV 32 RELU 5×5 1 2
2D CONV 32 RELU 5×5 1 2
2D CONV 2 - 3×3 1 1

Table 10. CNN encoder hyperparameters for V-PROM dataset.

TYPE CHANNELS ACTIVATION KERNEL SIZE STRIDE PADDING

LAYER NORM - - - - -
1D CONV 768 RELU 1 1 0
1D CONV 256 - 1 1 0

Table 11. Slot decoder hyperparameters for V-PROM dataset.

TYPE CHANNELS ACTIVATION KERNEL SIZE STRIDE PADDING

SPATIAL BROADCAST - - - - -
POSITION EMBEDDING - - - - -
1D CONV 2048 RELU 1 1 0
1D CONV 2048 RELU 1 1 0
1D CONV 2048 RELU 1 1 0
1D CONV 769 - 1 1 0

Table 12. Slot attention pretraining hyperparameters for PGM dataset.

SLOT DIMENSIONALITY D 32
NO OF ITERATIONS T 3
NO OF SLOTS K 16
BATCH SIZE 16
LEARNING RATE 4e− 4
LEARNING RATE WARMUP STEPS 75000
EPOCHS BEFORE LEARNING RATE DECAY 5
LEARNING RATE DECAY RATE 0.5
LEARNING RATE DECAY STEPS 100000
EPOCHS 8

Table 13. Slot attention pretraining hyperparameters for V-PROM dataset.

SLOT DIMENSIONALITY D 256
NO OF ITERATIONS T 3
NO OF SLOTS K 11
BATCH SIZE 48
LEARNING RATE 4e− 4
LEARNING RATE WARMUP STEPS 10000
EPOCHS 80

17



Slot Abstractors

Table 14. Hyperparameters of the Abstractor module of the Slot Abstractor. For both multi-head relational cross-attention and multi-head
self-attention, H is the number of heads, L is the number of layers, Dhead is the dimensionality of each head. DMLP is the dimensionality
of the MLP hidden layer in the feedforward network.

ART SVRT CLEVR-ART PGM V-PROM

H 8 8 8 8 8
L 6 24 24 24 24
Dhead 64 64 64 32 256
DMLP 512 512 512 512 512
DROPOUT 0 0 0 0 0.1

Table 15. Number of training epochs for ART and CLEVR-ART tasks.

SAME/DIFFERENT RELATIONAL-MATCH-TO-SAMPLE DISTRIBUTION-OF-3 IDENTITY RULES

ART 600 400 400 100
CLEVR-ART - 50 - 200

Table 16. Number of training epochs for PGM generalization regimes.

NEUTRAL INTERPOLATION H.O.A.P. H.O.T.P. H.O.TRIPLES H.O.L-T H.O.S-C EXTRAPOLATION

PGM 73 50 90 90 90 65 65 115

18


