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Abstract
A topic of great current interest is Causal Repre-
sentation Learning (CRL), whose goal is to learn
a causal model for hidden features in a data-driven
manner. Unfortunately, CRL is severely ill-posed
since it is a combination of the two notoriously
ill-posed problems of representation learning and
causal discovery. Yet, finding practical identifia-
bility conditions that guarantee a unique solution
is crucial for its practical applicability. Most ap-
proaches so far have been based on assumptions
on the latent causal mechanisms, such as temporal
causality, or existence of supervision or interven-
tions; these can be too restrictive in actual appli-
cations. Here, we show identifiability based on
novel, weak constraints, which requires no tempo-
ral structure, intervention, nor weak supervision.
The approach is based on assuming the observa-
tional mixing exhibits a suitable grouping of the
observational variables. We also propose a novel
self-supervised estimation framework consistent
with the model, prove its statistical consistency,
and experimentally show its superior CRL perfor-
mances compared to the state-of-the-art baselines.
We further demonstrate its robustness against la-
tent confounders and causal cycles.

1. Introduction
Causal discovery aims to learn causal interactions among
observed variables in a data-driven manner (Pearl, 2000).
The goal is to estimate a causal graph, also called an adja-
cency matrix, from passively observed data, with minimal
assumptions. It plays an important role in a wide variety
of fields, enabling fundamental insight into causal mecha-
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nisms latent in the data; importantly, this is possible without
conducting expensive and time-consuming interventional
experiments. However, the problem is ill-posed in general,
and thus the main focus of causal discovery research is to
find conditions where the causal graph can be uniquely deter-
mined (Andersson et al., 1997; Spirtes et al., 2001). A large
number of studies have been conducted so far; they have
basically found that imposing some asymmetricity into the
model, such as nonlinearity or non-Gaussianity, enables its
unique identification (Hoyer et al., 2008a; Peters et al., 2014;
Shimizu et al., 2006; 2011; Zhang & Hyvärinen, 2009).

A crucial and implicit assumption of most causal discovery
research is that we know exactly what constitutes the causal
variables; in most cases, we implicitly assume that each ob-
servational variable corresponds to a single causal variable,
i.e. a node in the causal graph. However, this is not necessar-
ily true, for example when what is actually observed is raw,
high-dimensional sensory data. Consider natural images:
we do not really know in advance what kinds of objects are
present, while the causal interactions should probably be
modeled on the level of the objects. Therefore, in order to
understand what kind of causal mechanism is generating
such low-level sensory data, we also need to extract the
“high-level” causal variables constructing the causal graph
by performing representation learning (Bengio et al., 2013)
simultaneously.

Nonlinear representation learning has its own problems of
identifiability. Recent work has solved the identifiability
problem in the context of Nonlinear Independent Compo-
nent Analysis (NICA) by assuming temporal structure or an
additional (conditioning, possibly unobservable) auxiliary
variable (Hyvärinen & Morioka, 2016; Hälvä et al., 2021;
Sprekeler et al., 2014). However, if the components are
mutually independent, it seems impossible to model causal
connections between them, and thus such theory is not di-
rectly applicable to this case. Thus, we need to go beyond
independent components (Zhang & Hyvärinen, 2010; Khe-
makhem et al., 2020b) and build an explicit model of the
dependencies resulting from their causal interactions.

Such simultaneous learning of the causal variables (repre-
sentation learning) and their causal graph (causal discovery)
has been a focus of intense attention recently, resulting is
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what is called as Causal Representation Learning (CRL)
(Schölkopf et al., 2021). Since both of the two separate
problems combined here are known to be ill-posed, CRL
seems to be even more severely ill-posed, and much less is
known on identifiability of CRL. Yet, finding identifiability
conditions is crucial for its interpretability, applicability, and
reproducibility. So far very limited frameworks were pro-
posed, and many of them are based on heavy assumptions on
the causal mechanisms, such as supervision or intervention
on latent variables or causal graphs (Brehmer et al., 2022;
Shen et al., 2022; Yang et al., 2021), or temporal causality
(dynamics) (Lachapelle et al., 2022; Lippe et al., 2022).

Here, we propose a new model for CRL based on a novel ap-
proach assuming that the observed variables follow a certain
grouping structure known a priori, as illustrated in Fig. 1c.
Such grouping is common and naturally appears in many
practical situations. For example, the variables could be
grouped based on which measurement sensor they come
from in multimodal data; or which time point in causal dy-
namics, or geographical location in sensor networks they
are measured at. We further assume that the causal inter-
actions are pairwise as in some Markov network models.
Under these assumptions, we prove identifiability with much
weaker, and very different, constraints than previous work.
The model in particular is able to consider instantaneous
causal relations rather than temporal (Granger) causality,
while autoregressive (AR) dynamics are further contained
as a special case. Nor does our model assume any supervi-
sion or interventions. Our experiments on synthetic data as
well as a realistic high-dimensional image and gene regula-
tory network datasets show that our framework can indeed
extract latent causal variables and their causal structure, with
better performance than the state-of-the-art baselines.

2. Related Works
The general form of the CRL problem can be defined as
an estimation of a set of causally-related latent variables
s = [s1, . . . , sDS ]T ∈ RDS , or causal variables for short, to-
gether with their causal structure. We typically assume that
the observed data x ∈ RDX with DX ≥ DS are obtained
via an unknown observational mixing f : RDS → RDX as

x = f(s), (1)

where the latent causal variables s1, . . . , sDS are not mutu-
ally independent but follow a causal model to be specified.
Typically, the causal model would be a Structural Equation
Model (SEM) (Shen et al., 2022; Yang et al., 2021) which
has a well-defined causal semantics, or something simpler
such as a Bayesian network (BN) as a kind of proxy.

In this work we only consider the case of independent and
identically distributed (i.i.d.) sampling, which means the
different observations of x are independent of each other and

there is no time structure. This obviously implies the causal
relations must also be instantaneous. Note that estimating
instantaneous causality is more challenging compared to
temporal causality (Lachapelle et al., 2022; Li et al., 2020;
Lippe et al., 2022; 2023; Yao et al., 2022a;b), since we
do not have prior knowledge about the causal direction
or causal ordering between variables (from past to future;
Fig. 1b) in instantaneous causality.

CRL can be seen as a generalization of NICA and causal
discovery, both of which are known to be ill-posed without
any specific assumptions. NICA can actually be seen as
a special case of CRL, where the latent variables follow
the degenerate causal graph in the sense of not having any
causal relations. Recent studies have shown that NICA
can be given identifiability by assuming temporal structure
(Hyvarinen et al., 2019; Hälvä et al., 2021; Klindt et al.,
2021; Sprekeler et al., 2014) instead of i.i.d. sampling. On
the other hand, causal discovery is also a special case of
CRL, where the causal variables are observed directly. Many
studies have shown that some kind of asymmetricity of the
statistical causal model enables the identifiability (Hoyer
et al., 2008a; Park & Raskutti, 2015; Peters et al., 2014;
Shimizu et al., 2006; 2011; Zhang & Hyvärinen, 2009).

The CRL model thus violates the important assumptions
of the both problems (mutual independence, non-i.i.d., and
direct observability). The research goal of CRL is thus to
find the practical conditions for the identifiability of the
model. Some studies have shown the identifiability in the
instantaneous causality case, but they require supervision or
intervention on the causal variables (Ahuja et al., 2022a;b;
Brehmer et al., 2022; Shen et al., 2022; Yang et al., 2021)
(Fig. 1a), or access to some latent information such as mix-
ture oracles (Kivva et al., 2021), which might be too re-
strictive in actual applications. Recently some CRL studies
proposed to use a grouping of variables instead of supervi-
sions (Daunhawer et al., 2023; Lyu et al., 2022; Morioka
& Hyvarinen, 2023; Sturma et al., 2023; Yao et al., 2023),
similarly to this study. Most of them, except for Morioka &
Hyvarinen (2023), especially focused on the intersections
between groups. Sturma et al. (2023) showed identifiability
of the intersection of the latent variables across all groups,
based on linearity of the causal and observational models.
Daunhawer et al. (2023); Lyu et al. (2022); Yao et al. (2023)
considered more general causal and observational models,
though the identifiability is limited to up to intersection-
wise transformations. Morioka & Hyvarinen (2023) and our
study instead focus on the group-specific causal variables
not shared across groups. Morioka & Hyvarinen (2023) as-
sumed a component-wise dependency as in NICA, and can
be seen as a very special case of this study (see Section 8). A
more detailed discussion about the related works are given
in Supplementary Material I.
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b Temporal
+ supervision or interventions

c Proposal: Instantaneous 
+ grouping of variables

a Instantaneous
+ supervision or intervention

(Eq. 2)

Pairwise BN
(Eq. 3)

Exogenous 
variables

Figure 1. Comparison of the graphical models of major CRL frame-
works whose goal is to estimate latent causal variables s from the
low-level observations x, usually with supervision or intervention
u. Our proposal in (c) is based on the grouping of variables (Eq. 2;
M = 4 groups here) and the causal model based on a pairwise
BN (Eq. 3), and does not require any supervision or intervention,
greatly generalizing the existing models.

3. Model Definition
Our basic idea is to impose some constraints on the observa-
tional model f , based on grouping of the observed variables,
together with some Markov-like (pairwise) constraints on
the causal interactions between the groups (Fig. 1c). Next
we first define our observational model and then the causal
model.

Observation Model As the original approach in our
model, we assume that the observational mixing can be
separated into M > 1 non-overlapping groups, as found in
many practical cases. After appropriate permutations of the
elements of s and x without loss of generality, we assume
that the observation model Eq. 1 can be expressed as

x =
[
x1, . . . , xM

]
= f(

[
s1, . . . , sM

]
)

=
[
f1(s1), . . . , fM (sM )

]
, (2)

where xm = [xm1 , . . . , x
m
dmX

]T ∈ RdmX and sm =

[sm1 , . . . , s
m
dmS

]T ∈ RdmS are the m-th group of the obser-
vational and latent variables respectively. Each element of
the latent and the observational variables belongs to only
one of the groups with index inM = {1, . . . ,M}, which
means that the m-th observational group xm is generated
only as a function of sm, without any observational con-
taminations from the other groups: i.e., xm = fm(sm),
DS =

∑M
m=1 d

m
S , and DX =

∑M
m=1 d

m
X . The number of

variables in a group can be different across groups. We usu-
ally denote the group index as a superscript, which should
not be confused with an exponent; the element index as
denoted by a subscript. Note that when M = 1 this model
corresponds to the general CRL (Eq. 1), and whenM = DS
this model simply leads to the ordinary causal discovery
problem without observational mixing.

Such grouping structure is not anything unrealistic, and
can be seen in many practical situation, as described in the
following illustrative examples.

Illustrative Example 1: Causally Related Sensor Mea-
surements The most intuitive example would be where
m is a sensor index. Data is then obtained from a set of M
sensors, each measuring different but causally-related mul-
tidimensional physical quantities xm(n) ∈ RdmX for each
sample n. For example, in single-cell multiomics data
(Burkhardt et al., 2022), each cell (n) could be measured to
give chromatin accessibility (DNA) as x1(n), gene expres-
sions (RNA) as x2(n), and protein levels as x3(n). These
are all multi-dimensional quantities representing causally-
interacting latent high-level features {sm}m. There exist
many other possible applications consistent with this obser-
vational model; e.g., multimodal biomedical data (Acosta
et al., 2022), simultaneous measurements of brain and behav-
ior (Hebart et al., 2023), climate monitoring sensor networks
(Longman et al., 2018), and so on, where m corresponds
to sensor modalities or locations (see Section 8 for more
details).

Illustrative Example 2: Causal Dynamics Although we
focus on independent data samples rather than dynamics,
our model can also implement dynamics with dependency
across time by simply defining the group-index m as time-
index t (see Figs. 1b and c). We then obtain low-level ob-
servations xt (such as images) from high-level latent causal
process composed of multidimensional variable st through
time-dependent mixing model xt = f t(st) for each time
point t. In this case, our model gives a generic form of
a time series model, which is actually more general com-
pared to some existing studies of CRL based on dynam-
ics (Lachapelle et al., 2022; Lippe et al., 2022; Yao et al.,
2022a;b) in the sense that the mixing function f t changes as
a function of time t, which can happen in many practical sit-
uations (such as changes of the camera angle capturing the
images). In this case, we assume we observe the same time-
series many times, i.e. we have xt(n) where n is the index
of the time series realization (e.g., capturing images with
multiple sequences n with the same transition of camera
angles across t every time).

Causally Structured Latent Variable Next we model
the causal structure of the latent variables based on a BN,
which is in particular pairwise, in the spirit of pairwise
Markov random fields. Denote by φ(·, ·) a potential function
representing causal relations between two variables, which
is the same for all variable pairs. Further, denote by φ̄m

group-wise potential functions representing causal relations
inside a group, i.e. between the elements of sm, which
are not restricted in any way. We assume that the joint
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distribution is factorized as

p(s) ∝

[ ∏
m∈M

exp
(
φ̄m(sm)

)]
(3)

×
∏
m 6=m′

∏
(a,b)∈Vm

S ×Vm′
S

exp
(
λmm

′

ab φ(sma , s
m′

b )
)
,

where we denote the set of indices of the latent variables
belonging to the m-th group by VmS (|VmS | = dmS ). The idea
is to have a model of dependencies between variables which
is so general that the estimation of the representation is not
biased towards independent components. The variables in
one group sm can causally affect all variables on the other
groupsm′ 6= m, and also in the same groupm, in a complex
manner, thus breaking any independence of variables. The
coefficient λmm

′

ab ∈ R modulates the strength of the causal
relation sma → sm

′

b , which is constantly zero if sma is not
a direct causal parent of sm

′

b . The sets of the coefficients
L = {Lmm′}(m,m′),Lmm

′
= (λmm

′

ab )a∈Vm
S ,b∈Vm′

S
can be

interpreted as (inter-group) weighted adjacency matrices.

This model is rather general, and includes a form of expo-
nential family BNs (see Supplementary Material B). This
allows for assigning causal semantics to the model by con-
sidering its equivalence to some SEMs, such as causal ad-
ditive models (CAMs; Bühlmann et al. (2014)), which are
more general than linear SEMs on which some CRL frame-
works are based (Shen et al., 2022; Sturma et al., 2023; Yang
et al., 2021). Our model is not even restricted to Gaussian
BNs as in CAMs. Although Morioka & Hyvarinen (2023)
used a similar causal model, their model can be seen as a
very special case of ours (see Section 8); especially, Eq. 3
does not require any mutual independence across variables.

Note that Eq. 3 just represents the factorization of the joint
distribution and does not incorporate any causal directional
assumptions between variables. We thus need some addi-
tional assumptions for the identifiability of this factorization
model as a causal model as shown in Theorems below, sim-
ilarly to causal discovery based on BN.

Illustrative Example 1: Causally Related Sensor Mea-
surements In the single-cell multiomics example, the
model says there are causal relations between (and within)
the groups, which can be consistent with what is known as
the central dogma in molecular biology; DNA (x1)→ RNA
(x2) → Protein (x3). Our model considers that they are
interacting on some high-level latent space {sm}m, such as
something related to transcription factors.

Illustrative Example 2: Causal Dynamics In the tem-
poral dynamics example above, it is natural to have causal
relations across the time-index t (which is the same as the
group-index m). Our model extends the previous mod-
els in the sense that any pairs of latent variables can be

causally related across time (no sparseness is required un-
like Lachapelle et al. (2022)). It is also worth mentioning
that temporal causality from the past to the present is a spe-
cial case in our model since our model (Eq. 3) does not
restrict the causal directions between the groups.

4. Identifiability of Representation Learning
Based on the grouping assumption of the observational
model (Eq. 2), together with the latent variable model given
above (Eq. 3), we can prove new identifiability results of
the CRL model. In this section, we first consider identifia-
bility of the latent variables. We assume that each mixing
function fm is invertible and a C2 diffeomorphism (thus
dmS = dmX ; we later discuss the case dmS < dmX ). Apart
from that, we do not assume any parametric form for each
fm. We consider the situation where the support of the
distribution of each variable is connected (i.e. an interval),
and without loss of generality, the same across all vari-
ables, denoted as S̄ . We denote φ112(x, y) = ∂3

∂x2∂yφ(x, y),

φ122(x, y) = ∂3

∂x∂y2φ(x, y), and φ12(x, y) = ∂2

∂x∂yφ(x, y).
Those functions are said to be uniformly dependent (Defi-
nition 2 in Supplementary Material B) if the set of zeros of
the function does not contain any open subset in the support
of the input distribution. (Neighbor) For a variable sma , we
call sm

′

b in some other group a neighbor if either or both
of the adjacency coefficients λmm

′

ab and λm
′m

ba are non-zero.
The identifiability condition is then given in the following
Theorem, proven in Supplementary Material C;
Theorem 1. Assume the generative model given by Eqs. 2
and 3, and also the following:

A1 (Nondegeneracy of the graph) For any group m in
M (or in a subset ofM, that we call “the groups of
interest”), each variable has a (at least one) neighbor
in some other group, and the collection of inter-group
adjacency matrices L̄m given below has full row-rank
after removing all-zero rows:

L̄m =

[
Lm1, . . . , LmM

(L1m)T, . . . , (LMm)T

]
, (4)

A2 (Causal function) φ12, φ112, and φ122 have uni-
form dependency, and for any open subset B of
S̄, there exist some z1 6= z2 ∈ S̄ such that any
of the following conditions does not hold for φ12:
φ12(s, z1) = c1φ

12(s, z2), φ12(z1, s) = c2φ
12(z2, s),

and φ12(s, z1) = c3φ
12(z1, s) for all s ∈ B with some

constants c1, c2, c3 ∈ R.

Then, for all groups m inM (or in the groups of interests),
sm can be recovered up to permutation and variable-wise
invertible transformations from the distribution of x.

The Assumption A1 is rather intuitive, and requires the
variables (rows) in each group m to have distinctive sets of
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(or causal strengths to) neighbors (columns), for both causal
directions (upper and lower halves), as expressed by the full
row-rank condition. This indicates nondegeneracy of the
graph, which is known to be crucial in CRL (Kivva et al.,
2021; Morioka & Hyvarinen, 2023). Note that A1 does not
require the causal graph to be directed as in Theorem 3 given
below, though requires it to be asymmetric. Note also that
the variables need to have neighbors only on some of the
other groups but not on all of them; e.g. in practice, groups
somehow “near-by” in space or time. This condition can be
evaluated separately for each group m; we cannot identify
the latent variables of the groups not satisfying A1, while
they do not affect the identifiability of the other groups.

The Assumption A2 requires the (cross-derivative of) φ to
be non-factorizable (the first two equations) and asymmetric
(the last equation). The asymmetricity is a well-known re-
quirement for causal discovery (Hoyer et al., 2008a; Peters
et al., 2014), which excludes linear Gaussian SEMs, and
thus reasonable for CRL as well. The non-factorizability
cannot be satisfied when the cross-derivative of φ is fac-
torized into variable-wise scalar functions, which in turn
requires sufficiently complex dependency of variables. In
the exponential family BN characterization of Eq. 3, the
models with model order more than 1 can satisfy this (Sup-
plementary Material B). We can give an alternative con-
dition not requiring this non-factorizability, by some ad-
ditional constraints on the causal graph (Proposition 1 in
Supplementary Material D), which then allows exponential
family BNs with order 1, including CAMs. This resembles
the requirement for some representation learning (e.g., non-
quasi-Gaussianity in Hyvarinen & Morioka (2017)), and is
thus reasonable for CRL as well.

5. Representation Learning Algorithm
We now propose a self-supervised estimation framework
called Grouped Causal Representation Learning (G-CaRL).
Again, we start by learning the representation, i.e. learning
to invert the mixing functions {fm}. To this end, we pro-
pose a new contrastive learning method where the pretext
task is to discriminate (classify) the following two datasets
obtained from the same observations:

x(n) =
[
x1(n), . . . , xM(n)

]
vs. x(n∗) =

[
x1(n1

∗), . . . , xM(nM
∗ )
]

(5)

where n indicates the sample index, while nm∗ is a shuffled
index, generated in practice by randomly selecting a sam-
ple index separately for each group m (note that different
groups have different sample indices in x(n∗)). We then
learn a nonlinear logistic regression (LR) system which dis-
criminates the two classes, using a cross-entropy loss with a

specific form of the regression function with

r(x) = c+
∑
m∈M

ψ̄m(hm(xm)) (6)

+
∑
m6=m′

∑
(a,b)∈Vm

S ×Vm′
S

wmm
′

ab ψ(hma (xm), hm
′

b (xm
′
)),

where hm : RdmX → RdmS is a group-wise (nonlinear) fea-
ture extractor, hma is the a-th element of hm, ψ̄m : RdmS →
R and ψ : R2 → R are scalar-valued nonlinear functions,
and wmm

′

ab and c ∈ R are weight and bias parameters. Im-
portantly, this regression function is designed to be con-
sistent with the causal model defined in Section 3 (Eq. 3):
the feature extractors hm and the weight parameters wmm

′

ab

correspond to the causal variables sm and the adjacency
coefficients λmm

′

ab in the causal model (Eq. 3), respectively.
This indicates that learning those parameters in a data-driven
manner should lead to CRL automatically, as justified in
the following Theorems. The observational grouping in-
dices are assumed to be given in advance, while we only
need the information of the size of groups dmS for the la-
tent variables. The nonlinear functions are typically learned
as neural networks with universal approximation capacity
(Hornik et al., 1989). Any optimization method can be used
to minimize the loss (see Supplementary Algorithm 1 for
example), though the theorem below assumes it gives the
optimal solution without getting stuck in a local optimum.
After the convergence, we obtain the following consistency
Theorem, proven in Supplementary Material E;

Theorem 2. Assume the same as those in Theorem 1, and:

B1 (Learning) We train a nonlinear LR system (Eq. 6) with
universal approximation capability to discriminate two
datasets x(n) and x(n∗) (Eq. 5).

B2 (h) The functions hm are C2 diffeomorphisms.

Then, for all groups m inM (or in the groups of interests in
A1), in the limit of infinite samples n, the function hm(xm)
gives the latent variables on the m-th group sm, up to per-
mutation and variable-wise invertible transformations.

Interestingly, in spite of the lack of clear relevance of this
pretext task to CRL at first sight, this theorem actually shows
that learning the correct representation is achieved by learn-
ing the functions hm(·) through the optimization of the
regression function Eq. 6. This Theorem is basically based
on the well-known properties of the logistic regression (Gut-
mann & Hyvärinen, 2012). Intuitively, the group-wise shuf-
fling applied to x(n∗) (Eq. 5) breaks the causal relations
between groups, which means for the LR to discriminate
the two datasets in Eq. 5 properly, it needs to capture the
inter-group causal relations in the latent space, by disentan-
gling the observational mixing. Thanks to the compatibility
of the factorization assumptions in the generative (Eq. 3)
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and in the regression model (Eq. 6) as mentioned above, the
optimal model is achievable only when hm essentially gives
the inverse model of fm, which automatically leads to CRL.

6. Identifiability of Causal Discovery
Next, we consider how to learn the causal graph L. In our
model, this can be achieved by estimating the (weighted)
adjacency coefficients λmm

′

ab in Eq. 3 from the observations
in a data-driven manner, similarly to many causal discovery
frameworks based on BN (Choi et al., 2020; Park & Park,
2019b). We can actually achieve this simultaneously with
the representation learning by using the self-supervised algo-
rithm in Section 5, where the adjacency coefficients {λmm′ab }
are learned as the weight parameters {wmm′ab } jointly with
the inverse models hm in the regression function (Eq. 6).

The identifiability of L requires additional assumptions on
L and φ, given in the following Theorem, proven in Supple-
mentary Material F. We first give the definitions of some
terms used in the Theorem. (Directed) We call a causal
relation between two variables sma and sm

′

b directed if only
one of λmm

′

ab and λm
′m

ba has a non-zero value. (Co-parent
and co-child) For a variable sma , we call sma′ in the same
group a co-parent (respectively co-child) of sma if it shares
at least one child (respectively parent) sm∗b on some other
group (m∗ ∈M \m) with sma . The sm∗b can be arbitrarily
selected for each co-parent and co-child.

Theorem 3. Assume the same as those in Theorem 1, and:

C1 (Causal graph) The inter-group causal relations of
variables are all directed, and for every group-pair
(m,m′) in the groups of interest, all variables in a
group m (and m′) have both a co-parent and a co-
child in the same group. In addition, any variables in
the group m (and m′) can be reached from any other
variables in the same group by moving from a variable
to one of its co-parents, possibly by multiple hops (and
similarly for co-children).

C2 (Asymmetricity) There is no open subset B of S̄ such
that for all x 6= y ∈ B, it holds

φ12(x, y) = cφ12(y, x) (7)

with some constant c ∈ R.

Then, for all group-pairs (m,m′) satisfying A1 and C1,
(Lmm

′
,Lm

′m) are identifiable up to permutation of vari-
ables, linear scaling, and matrix transpose.

This theorem shows that we can identify the causal graphs
L from the data distribution up to linear scaling and ma-
trix transpose. This also indicates that the graph can be
estimated indeed consistently by the learning algorithm in

Section 5 as claimed above (we omit the proof of the con-
sistency since it can be easily shown by following those of
Theorems 2 and 3). The indeterminacy of matrix transpose
comes from the lack of specification of the functional form
of φ; a transposition of the adjacency matrix could be com-
pensated by switching the order of the two arguments of φ,
which can be resolved by some prior information on φ.

The function φ is required to be asymmetric (C2), which is a
well-known requirement for causal discovery as mentioned
in Section 4, though C2 is a bit stronger than that in A2.

The causal graph assumption (C1) is a special condition
related to the grouping of variables (we can also consider
alternative condition which requires only either co-parent
or co-child for each variable; Supplementary Material G).
This would be fulfilled as long as the connections between
groups are not too sparse (See Supplementary Material H for
some illustrative discussion). One typical example would
be fully-connected causal effects from one group to another;
e.g., fully-connected causality DNA→ RNA and RNA→
Protein on their latent space in Illustrative Example 1, and
fully-connected temporal causality to some (or all) subse-
quent time-point(s) in Illustrative Example 2, since in those
cases all other variables in the same group are either (or
both) co-parents or co-children. Of course they do not need
to be fully-connected in practice, and denseness is not a
necessary condition in theory. The graph is required to be
directed though not necessarily acyclic.

7. Experiments
To validate the effectiveness of our framework, we com-
pare it to several baselines in two simulation settings and
two more realistic scenarios (see Supplementary Material J
for the details; the implementation of G-CaRL is available
at https://github.com/hmorioka/GCaRL). The
baselines only include unsupervised frameworks with in-
stantaneous (causal) interactions, since our experimental
setting does not include supervision, intervention, nor tem-
poral causality. Specifically, we compared with three CRL
frameworks MVCRL (Yao et al., 2023), CausalVAE (Yang
et al. (2021) in unsupervised setting), and CCL (Morioka
& Hyvarinen, 2023), and three representation learning (RL)
frameworks MFCVAE (Falck et al. (2021); Kivva et al.
(2022)), VaDE (Jiang et al. (2017); Kivva et al. (2022);
Willetts & Paige (2022)), and β-VAE (Higgins et al., 2017).
See Supplementary Material K for the details. Daunhawer
et al. (2023); Lyu et al. (2022) are not applicable since they
are limited to two-group settings. We also applied Kivva
et al. (2021) but it failed due to the difficulty of the estima-
tion of the mixture model in our data. For a fair comparison,
we used group-wise structures for the encoders of those
baselines similarly to G-CaRL. For baselines which do not
estimate the (part of) causal graph, we additionally applied a
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causal discovery framework to the estimated latent variables
as post-processing, from a wide variety of choices so as
to maximize the performances (see Supplementary Fig. 4).
We only evaluated the inter-group causal graphs, since only
those are identifiable in our model (Theorem 3).

7.1. Simulation 1: DAG

We first examined the performance with latent DAG models
(Supplementary Fig. 7a shows some examples). The number
of groups (M ) was fixed to 3, the number of variables was
10 for each group (dmS = 10, DS = 30). The latent variables
are observed through nonlinear mixings randomly generated
as a multilayer-perceptron (MLP) for each group.

The latent variables and the causal graphs were recon-
structed reasonably well by G-CaRL, with much higher
performances than the baselines (Fig. 2a). The baselines
did not work well basically because of the lack of represen-
tation capability (CCL), lack of supervision in our setting
(CausalVAE), or lack of explicit considerations of the latent
causality (others). The worst performance of CCL indicates
the inadequacy of assuming mutual independence among
some variables in this dataset.

Supplementary Fig. 5a shows how the complexity of the
mixing model (L), the number of variables DS , groups M ,
and sample size n affect the performances; a higher L, DS ,
and M make learning more difficult, while a larger n makes
it possible to achieve higher performances, as expected.

7.2. Simulation 2: Cyclic Graphs with Latent
Confounders

To show the robustness of G-CaRL on more complex causal
models, we next examined the performances with directed
cycles and latent confounders with the same number as the
observable variables (Fig. 2b; see Supplementary Fig. 7b for
the difficulty of this setting). G-CaRL showed reasonably
good performance even in this difficult condition, though it
requires larger number of samples than Simulation 1 (Sup-
plementary Fig. 5b). Note that this causal model is difficult
even for the conventional causal discovery frameworks di-
rectly applied to the true latent variables (Supplementary
Fig. 4). This result shows the effectiveness of the causal
model of G-CaRL against the existence of causal cycles and
latent confounders. Supplementary Fig. 5b shows the effects
of the model complexity to the estimation performances, and
they show a trend similar to Simulation 1.

7.3. Recovery of Gene Regulatory Network

We also evaluated G-CaRL on a more realistic causal data
for showing the robustness against misspecification of the
causal model. We used synthetic single-cell gene expres-
sion data generated by SERGIO (Dibaeinia & Sinha, 2020),

where each gene expression is governed by a stochastic dif-
ferential equation (SDE) derived from a chemical Langevin
equation. Due to such generative process, the true causal
relations cannot really be represented by our causal model
(Eq. 3). The causal graph was designed to be a DAG (as
required of SERGIO) similarly to Simulation 1, but with
latent confounders similarly to Simulation 2 (Supplemen-
tary Fig. 7c shows examples). We used the same setting for
the observational mixings as those in the simulations above.
G-CaRL showed the best performances among the base-
lines (Fig. 2c), which suggests the robustness of G-CaRL
against misspecification of the causal model, and the good
applicability of G-CaRL to real datasets.

7.4. High-Dimensional Image Observations

We also evaluated G-CaRL on a more realistic observational
model, by using a high-dimensional image dataset (3DI-
dent; Zimmermann et al. (2021)). Images of a tea cup were
generated based on ten latent factors for each group, which
were causally interacting within/across groups with directed
cycles under influence of latent confounders as in Simula-
tion 2 (see Supplementary Fig. 8 for the difficulty of this
setting). We compared the performance with two baselines
MVCRL and CCL, which do not require learning a decoder,
since learning both encoder and decoder should be unstable
in this high-dimensional setting.

The estimation performances were reasonably good even in
such high-dimensional observations with a complex causal
model (Fig. 2d). This suggests the good applicability of
G-CaRL to high-dimensional real data.

8. Discussion
Our proposal extends the existing CRL models in many
aspects; 1) the framework is unsupervised (only requires
grouping of variables independent of the samples) rather
than supervised (Brehmer et al., 2022; Shen et al., 2022;
Yang et al., 2021), 2) we consider instantaneous causality
rather than temporal (Lachapelle et al., 2022; Lippe et al.,
2022; Yao et al., 2022a;b), while the temporal causality is
also contained as a special case, 3) the observational mix-
ing can be group-(or time-)dependent rather than invariant
(Lachapelle et al., 2022; Lippe et al., 2022; Morioka & Hy-
varinen, 2023; Yao et al., 2022a;b), 4) the latent variables
can be nonlinearly causally related rather than linearly (Shen
et al., 2022; Yang et al., 2021), nor is sparseness (Lachapelle
et al., 2022) necessary, and 5) the causal graph can be cyclic,
which is even more general than commonly used models for
simple causal discovery.

Meanwhile, our framework also has some connections to
existing CRL; it can be understood that our theorems are
virtually using the variables on the other groups as auxil-
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Figure 2. Comparison of CRL performance by the proposed G-CaRL and the baselines. The performances are measured by correlation for
the latent variables, and by F1-score for the causal graphs, excluding the intra-group sub-graphs. The parentheses after the names of some
(C)RL frameworks indicate the causal discovery frameworks additionally applied as post-processing.

iary variables in the context of (weakly-)supervised CRL.
Importantly, instead of requiring additional auxiliary vari-
ables (supervision) for each sample as in those existing CRL,
this study nicely utilized the grouping structure to obtain
them automatically. Our estimation framework based on
the group-wise shuffling somewhat resembles some multi-
modal CRL based on contrastive learning (e.g., Daunhawer
et al. (2023)). This study nicely extends them to more than
two-group settings, and gave theoretically guarantee of the
identifiability of the (group-specific) latent variables up to
variable-wise transformations, which is quite new.

This study greatly generalizes the recently proposed CRL
framework CCL (Morioka & Hyvarinen, 2023) in many
aspects; CCL assumes that 1) the mixing functions fm are
the same for all groups (called nodes in CCL) m rather than
group-specific as in ours (Eq. 2), 2) the causal relations are
component-wise, similarly to NICA (in other words, the
adjacency coefficients λmm

′

ab in Eq. 3 can have non-zero
values only when a = b, rather than all pairs of (a, b) as in
ours), and 3) the causal graph is a forest, while ours can be
more general and even cyclic. These indicate much higher
generality and applicability of our model. Such generality
requires our new estimation framework G-CaRL, which
is very different from CCL, though both of them can be
categorized as self-supervised (contrastive) learning; CCL
used group-paired data for taking contrast, while our G-

CaRL used group-wise-shuffled data (Eq. 5).

Our model can be seen as a generalization of NICA, in the
sense that 1) it does not require mutual independence of
variables, and further, 2) the mixing function is time/group-
dependent, which is completely new in NICA. Indepen-
dently Modulated Component Analysis (Khemakhem et al.,
2020b) was recently proposed as an extension of NICA to al-
low dependency across variables, but it requires an auxiliary
variable unlike our framework.

There exist many possible applications where our grouping
assumptions are applicable: for example, 1) multimodal
measurements, for example consisting of brain activities
(group 1), external stimuli (group 2), and behaviors (group 3)
of animals or humans (Hebart et al., 2023). Each group has
multidimensional observations (multiple brain regions, stim-
uli, and behaviors) as time series (samples). Our framework
would give new insight into how the brain is organizing be-
haviors based on external factors at an abstract level. 2) Sen-
sor network for example in climate monitoring (Longman
et al., 2018), where each group is a single sensor location,
and each sensor is measuring such as temperature, humid-
ity, rainfall, pollutants, etc. (variables) in the location. Our
method would extract some hidden causal relations between
sensor locations on high-level feature space. 3) Medical
multimodal data (Acosta et al., 2022), where groups are dif-
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ferent types of medical record obtained from subjects (sam-
ples); e.g., genetic factors (group 1), self-report lifestyle
(group 2), and clinical diagnosis by doctors (group 3). Our
framework would presumably find high-level connections
between those groups; e.g., what kinds of (combinations
of) genetic factors and/or (combinations of) lifestyles are
causing some type of diseases, and so on. 4) Our model can
also consider very general types of temporal causality (see
Illustrative Example 2).

Although we considered the case dmX = dmS for theoretical
convenience, we can extend our framework to dmX ≥ dmS ,
as empirically validated in Section 7.4. One approach is
to assume that fm is injective and a C2 diffeomorphism
between Sm and Xm ∈ RdmX which is a C2 differentiable
manifold, as in Hälvä et al. (2021). Our proof can be adapted
for that case, following that study. Another approach is to
assume that dmX − dmS variables are not causally related to
any other groups (but possibly within each group, implicitly
included in φ̄m in Eq. 3), in which case our estimation
framework would automatically ignore them, which does
not affect the identifiability of the dmS variables. We can also
consider noisy mixing models via a standard deconvolution
argument as in Khemakhem et al. (2020a).

Our Theorems assume grouping of the observational mixing
without any observational contamination across groups (i.e.,
there are only group-specific variables), in contrast to some
other group-based CRL frameworks focusing rather on inter-
sections of groups (Daunhawer et al., 2023; Lyu et al., 2022;
Yao et al., 2023). Our assumption should be satisfied in
many practical applications, as described in Illustrative Ex-
amples above. In addition, it makes our causal assumptions
of the (group-specific) latent variables much weaker than
those studies; our group-specific variables can be causally
related across groups in our model (Eq. 3) rather than mu-
tually independent (e.g., Corollary 3.10 and 3.11 of Yao
et al. (2023)). Furthermore, our assumption makes the latent
variables identifiable up to variable-wise transformations
(Theorem 1) rather than block-wise transformations.

The identifiability of the causal graphs only applies for
connections across groups, and those within each group
are left unknown. Nevertheless, since the latent variables
are guaranteed to be identifiable, we can apply existing
causal discovery framework for estimating them as a post-
processing. Although the φ is assumed to be the same across
all group-pairs for simplicity, it could be different across
them, but that might require some additional assumptions.

Future research might consider relaxing some of the as-
sumptions in our work. Although the grouping of variables
without overlaps between groups can be satisfied in plenty
of situations in practice (see above), allowing such over-
laps should make our framework even more applicable to a
wider variety of situations. Multivariate (vector) causal vari-

ables might be more favorable for representing complex and
high-level phenomena behind data, compared to univariate
causal variables as considered in this study. In such case,
vector-wise identifiability as in (Daunhawer et al., 2023;
Yao et al., 2023) rather than component-wise one (Theo-
rem 1) might be enough, which is weaker and thus might
relax some of the assumptions in this study. Applying our
framework to more realistic datasets, such as iTHOR (Kolve
et al., 2022), would be an important future direction for
assessing its applicability and robustness.

9. Conclusion
This study proposed a new identifiable model for CRL,
together with its self-supervised estimation framework G-
CaRL. The new approach is the assumption of the grouping
of the observational variables, which appears naturally in
many practical applications such as multi-sensor measure-
ments or time series. Such an assumption allowed us to
significantly weaken any other assumptions required on the
latent causal mechanisms in existing frameworks. In con-
trast to existing CRL models, our model does not require
temporal structure (although it can use it as a special case),
nor does it assume any supervision or interventions. Al-
though our model restricts the inter-group causal relations
of variables to some extent, it allows nonlinearity and even
cycles, which is more general than most of the causal dis-
covery models. Numerical experiments showed better per-
formances compared to the state-of-the-art baselines, thus
making G-CaRL a promising candidate for real-world CRL
in a wide variety of fields.
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Hälvä, H. and Hyvärinen, A. Hidden Markov nonlinear ICA:
Unsupervised learning from nonstationary time series. In
Proceedings of the 36th Conference on Uncertainty in
Artificial Intelligence (UAI), volume 124, pp. 939–948,
2020.
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A. Supplementary Materials for Causal Representation Learning Made Identifiable by Grouping of
Observational Variables

B. Exponential Family Bayesian Network Representation of the Causal Model
We consider a special case where the potential function φ is factorized as

φ(x, y) = η(x)TT(y), (8)

where the factors η(x) = [η1(x), . . . , ηN (x)]T and T(y) = [T1(y), . . . , TN (y)]T are some N -dimensional vector functions
of a scalar input, which are differentiable. We assume that the factors η and T are minimal without loss of generality, whose
definition is given below (Definition 1). In this parameterization, if the whole causal graph is acyclic and the intra-group
causal relations are given in the pairwise form as in those of inter-groups, the conditional distribution of a variable sma is
given, from Eqs. 3, by the following (conditional) exponential family of order N ,

p(sma |pa(sma )) =
1

Zma (pa(sma ))
hma (sma ) exp

 ∑
sm
′

b ∈pa(sma )

λm
′m

ba η(sm
′

b )TT(sma )

 ,

=
1

Zma (pa(sma ))
hma (sma ) exp

(
η̃ma (pa(sma ))TT(sma )

)
(9)

where pa(sma ) is the set of parents of the variable sma , T(sma ) represents the sufficient statistic of the conditional distribution
of sma . The overall natural parameter η̃ma (pa(sma )) =

∑
sm
′

b ∈pa(sma ) λ
m′m
ba η(sm

′

b ) is simply given as a summation of the

causal effects from the all parents, depending on the causal strengths λm
′m

ba and the function η. The base measure hma and
the partition function Zma depend on the type of the factors and the graph structure. The crucial point is the additivity of the
(nonlinear) causal effects from the parents, which determines the natural parameters of the target variable distribution. Apart
from that, this parameterization is not very restrictive, since exponential families have universal approximation capabilities
(Sriperumbudur et al., 2017).

This parameterization also simplifies some of the assumptions of Theorems. The non-factorizability of φ (Assumption A2
of Theorem 1) can be satisfied if the model order N is more than one, as shown in Lemma 1 given below. Although
this exponential family parameterization with order N = 1 cannot satisfy the non-factorizability, they can be supported
by the other variant of the identifiability condition (Proposition 1), which does not require such non-factorizability. The
asymmetricity assumption of φ (A2 and C2) indicates that the sets of the elements (functions) need to be sufficiently different
between η and T.

Some SEMs can be represented by Eq. 9 We can also show that some state-equation models (SEMs) can be represented
by this parameterization as a special case. One such example is causal additive models (CAMs; Bühlmann et al. (2014)),
given by

s = Lβ(s) + ε, (10)

where L ∈ RDS×DS is an adjacency matrix, β(s) = [β(s1), . . . , β(sDS )]T is an element-wise (nonlinear) function of s,
and ε ∼ N(0, σI) is DS -dimensional additive Gaussian noise with diagonal covariance matrix. In this SEM, the conditional
distribution of a variable sma is given by

p(sma |pa(sma )) =
1

Z
exp

− 1

2σ2

sma − ∑
sm
′

b ∈pa(sma )

λm
′m

ba β(sm
′

b )

2
 (11)

=

 1

Z
exp

−
(∑

sm
′

b ∈pa(sma ) λ
m′m
ba β(sm

′

b )
)2

2σ2


[exp

(
− (sma )2

2σ2

)]

×

exp

 ∑
sm
′

b ∈pa(sma )

λm
′m

ba

σ2
sma β(sm

′

b )

 , (12)
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where Z denotes a normalizing constant. We can clearly see that the first, the second, and the third factors correspond to
those of Eq. 9, respectively, and the causal function φ of this model is given by φ(x, y) = yβ(x). Therefore, the CAMs
given by Eq. 10 can be represented by our causal model (Eqs. 3), especially by the exponential family parameterization
(Eqs. 8 and 9) of order N = 1, linear sufficient statistics T(y) = y, and (nonlinear) natural parameter η(x) = β(x). As
mentioned above, such model with order N = 1 cannot satisfy the non-factorizability (A2), and thus needs to consider
Proposition 1 instead of Theorem 1.

This model includes linear Gaussian SEMs as a special case, where β is a linear function. However, they do not satisfy the
conditions of both Theorem 1 (uniform-dependency, non-factorizability, and asymmetricity) and Proposition 1 (uniform-
dependency and asymmetricity), where the definition of uniform-dependency is given below (Definition 2). Thus linear
Gaussian SEMs cannot have identifiability in our model in any case, which is consistent with the well-known result of causal
discovery (Hoyer et al., 2008a; Peters et al., 2014).

Note that the exponential family BNs (Eq. 9) can represent many other causal models in addition to CAMs; crucially, the
distributional type of Eq. 9 is not restricted to Gaussian (more specifically, the sufficient statistic T can be nonlinear and
multidimensional), unlike many conventional causal models based on additive Gaussian error terms (e.g., Eq. 10).

Definition 1. (Minimality) We say that a function α : R→ RN is minimal if for any open subset X of R the following is
true: (

∃θ ∈ RN | ∀x ∈ X ,θTα(x) = const.
)

=⇒ θ = 0. (13)

The minimality is similar to the linear independence of the elements, but stronger; minimality also forbids the existence
of elements which only have differences of scaling and biases. Note that a non-minimal model can always be reduced to
minimal one via a suitable transformation and reparameterization.

Definition 2. (Uniform-dependency) We call a function q(x, y) : S̄ × S̄ → R is uniform-dependent if the set of zeros of
q(x, y) is a meagre subset of S̄ × S̄, i.e., it contains no open subset.

Lemma 1. In the exponential family characterization of the causal model (Eq. 8), the non-factorizability conditions in
Assumption A2 can be satisfied if the model order N ≥ 2.

Proof. (Non-factorizability) We firstly show the non-factorizability condition of the first equation φ12(s, z1) = c1φ
12(s, z2)

in Assumption A2; the second equation can be proven in the same manner. We give a proof by contradiction. We suppose
the negation; there exist some open subset B ⊂ S̄ such that the equation φ12(s, z1) = c1φ

12(s, z2) hold for all s ∈ B for
any z1 6= z2. We consider one of such open subset B here. By substituting Eq. 8 into the equation, we have

η′(s)T (T′(z1)− c1T′(z2)) = 0. (14)

From Lemma 3 of Khemakhem et al. (2020a), there exist N distinctive values s1 to sN such that (η′(s1), . . . ,η′(sN )) are
linearly independent. By substituting those values into Eq. 14 with concatenating vertically, we obtainη

′(s1)T

...
η′(sN )T

 (T′(z1)− c1T′(z2)) = 0. (15)

Since the first factor (N ×N matrix) has full-rank, we have

T′(z1)− c1T′(z2) = 0. (16)

However, this contradicts the fact that there should exist at leatst two distinctive values z1 and z2 such that (T′(z1),T′(z2))
are linearly independent, again from Lemma 3 of Khemakhem et al. (2020a). From this contradiction, we conclude that we
can make the equation not hold by properly choosing some z1 and z2, which indicates the non-factorizability.
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C. Proof of Theorem 1
Proof. We denote by S = S1 × . . . × SM the support of the distribution of s, where Sm = Sm1 × . . . × SmdmS is that of
the distribution of each group sm, and Sma ⊂ R is that of the a-th element. We consider the situation where each Sma is
connected (i.e. an interval), and additionally, without loss of generality, Sma are the same across all variables, denoted as S̄ .

Writing the joint log-density of the random vector x = (x1, . . . ,xM ) for the two parameterizations, yields

log p
(
g1(x1), . . . ,gM (xM )

)
+
∑
m∈M

log |det Jgm(xm)|

= log p̃
(
g̃1(x1), . . . , g̃M (xM )

)
+
∑
m∈M

log |det Jg̃m(xm)|, (17)

where we denote the (true) demixing models as gm = (fm)−1, and their other parameterizations as g̃m, and J is the
Jacobian for the change of variables. Let a compound demixing-mixing function vm(sm) = g̃m ◦ fm(sm), we then have

log p
(
s1, . . . , sM

)
+
∑
m∈M

log |det Jgm(fm(sm))|

= log p̃
(
v1(s1), . . . ,vM (sM )

)
+
∑
m∈M

log |det Jg̃m(fm(sm))|. (18)

We substitute the factorization model Eq. 3 into this, and differentiate the both sides with respect to sma and sm
′

b , where
a ∈ VmS , b ∈ Vm′S , and obtain

∂2

∂sma ∂s
m′
b

(
λmm

′

ab φ(sma , s
m′

b ) + λm
′m

ba φ(sm
′

b , sma )
)

=
∂2

∂sma ∂s
m′
b

∑
(i,j)

(
λ̃mm

′

ij φ̃
(
vmi (sm), vm

′

j (sm
′
)
)

+ λ̃m
′m

ji φ̃
(
vm
′

j (sm
′
), vmi (sm)

))
. (19)

The Jacobians disappeared here due to the grouped-observational assumption and the cross-derivatives.

By collecting the cross-derivatives for all a ∈ VmS and b ∈ Vm′S , with a giving row index and b the column index, we have a
matrix equation of the size dmS × dm

′

S ,(
∂2

∂sma ∂s
m′
b

(
λmm

′

ab φ(sma , s
m′

b ) + λm
′m

ba φ(sm
′

b , sma )
))

a∈Vm
S ,b∈Vm′

S

= Jvm(sm)T

·
(

∂2

∂vma ∂v
m′
b

(
λ̃mm

′

ab φ̃
(
vma (sm), vm

′

b (sm
′
)
)

+ λ̃m
′m

ba φ̃
(
vm
′

b (sm
′
), vma (sm)

)))
a∈Vm

S ,b∈Vm′
S

· Jvm′ (sm
′
). (20)

We then focus on the a-th row of Eq. 20, and differentiate each element of the both sides with respect to sma′ , a
′ 6= a.

Concatenating it horizontally with substituting some Km vectors {zmk

k }K
m

k=1 into sm
′
, each of which is on some group

mk 6= m with allowing repetitions, we have a vector equation of the size 1×
∑Km

k=1 d
mk

S

0T =
[
(vm)a×a

′
(sm)T, (vm)aa

′
(sm)T

]
·
[
Φ̃mm1(vm(sm),vm1(zm1

1 )), . . . , Φ̃mmKm (vm(sm),vmKm (zmKm

Km )
]

·

Jvm1 (zm1
1 ) 0 0

0
. . . 0

0 0 JvmKm (zmKm

Km )

 , (21)
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where (vm)a×a
′
(sm) =

[
∂
∂sma

vm1 (sm) ∂
∂sm

a′
vm1 (sm), . . . , ∂

∂sma
vmdmS

(sm) ∂
∂sm

a′
vmdmS

(sm)
]T

and (vm)aa
′
(sm) =[

∂2

∂sma ∂s
m
a′
vm1 (sm), . . . , ∂2

∂sma ∂s
m
a′
vmdmS

(sm)
]T

are dmS dimensional vectors, and Φ̃mmk(ym,ymk) is a 2dmS × d
mk

S matrix

given as a collection of cross-derivatives of φ̃,

Φ̃mmk(ym,ymk) =


(

∂3

∂ym2
a ∂y

mk
b

(
λ̃mmk

ab φ̃(yma , y
mk

b ) + λ̃mkm
ba φ̃(ymk

b , yma )
))

a∈Vm
S ,b∈V

mk
S(

∂2

∂yma ∂y
mk
b

(
λ̃mmk

ab φ̃(yma , y
mk

b ) + λ̃mkm
ba φ̃(ymk

b , yma )
))

a∈Vm
S ,b∈V

mk
S

 . (22)

The left-hand-side is now a zero-vector due to the pair-wise factorization assumption of the joint distribution (Eq. 3).

We show here the second factor on the right-hand side of Eq. 21 has full row-rank for all sm ∈ A in any open subset A of
Sm, by properly choosing the Km vectors {zmk

k }K
m

k=1, due to the assumptions. We differentiate each of a-th row of the both
sides of Eq. 20 with respect to sma again, and get(

∂3

∂sm2
a ∂sm

′
b

(
λmm

′

ab φ(sma , s
m′

b ) + λm
′m

ba φ(sm
′

b , sma )
))

a∈Vm
S ,b∈Vm′

S

=
[
Jvm(sm)T ◦ Jvm(sm)T, J∗vm(sm)T

]
Φ̃mm′

(
vm(sm),vm

′
(sm

′
)
)

Jvm′ (sm
′
), (23)

where ◦ is Hadamard product, J∗vm(sm) = ( ∂
2

∂s2j
vmi (sm))i,j is the row-wise derivatives of the Jacobian Jvm(sm) =

( ∂
∂sj

vmi (sm))i,j , and Φ̃mm′ is given by Eq. 22. Since Eqs. 20 and 23 have some common factors, we can concatenate

Eqs. 20 and 23 vertically, and represent them as a single matrix equation of the size 2dmS × dm
′

S ,

Φmm′
(
sm, sm

′
)

=

[
Jvm(sm)T ◦ Jvm(sm)T J∗vm(sm)T

0 Jvm(sm)T

]
Φ̃mm′

(
vm(sm),vm

′
(sm

′
)
)

Jvm′ (sm
′
), (24)

where Φmm′
(
sm, sm

′
)

is a 2dmS × dm
′

S matrix, which has the same form as Eq. 22 and is given by

Φmm′(ym,ym
′
) =


(

∂3

∂ym2
a ∂ym

′
b

(
λmm

′

ab φ(yma , y
m′

b ) + λm
′m

ba φ(ym
′

b , yma )
))

a∈Vm
S ,b∈Vm′

S(
∂2

∂yma ∂y
m′
b

(
λmm

′

ab φ(yma , y
m′

b ) + λm
′m

ba φ(ym
′

b , yma )
))

a∈Vm
S ,b∈Vm′

S

 . (25)

We concatenate Eq. 24 horizontally with substituting the same vectors {zmk

k }K
m

k=1 used above into sm
′
, then get a matrix

equation of the size 2dmS ×
∑Km

k=1 d
mk

S[
Φmm1(sm, zm1

1 ), . . . ,ΦmmKm (sm, zmKm

Km )
]

=

[
Jvm(sm)T ◦ Jvm(sm)T J∗vm(sm)T

0 Jvm(sm)T

]
·
[
Φ̃mm1(vm(sm),vm1(zm1

1 )), . . . , Φ̃mmKm (vm(sm),vmKm (zmKm

Km )
]

·

Jvm1 (zm1
1 ) 0 0

0
. . . 0

0 0 JvmKm (zmKm

Km )

 . (26)

From Lemma 2 given below, we can choose the vectors {zmk

k }K
m

k=1 so as to make the left-hand side has full row-rank 2dmS
for all sm in any open subset of Sm based on the assumptions, which implies that the second factor (the concatenation of
Φ̃mmk ) in the right-hand side has full row-rank 2dmS as well. Therefore, the second factor on the right-hand side of Eq. 21
has full row-rank.
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Since the last term of Eq. 21 (collection of Jacobians) has full rank because all vm are invertible, we can multiply the both
sides by its inverse. In addition, since the second factor of Eq. 21 has full row-rank due to the discussion above, we can
multiply the both sides of Eq. 21 with its pseudo-inverse from the right side, and finally get[

(vm)a×a
′
(sm)T, (vm)aa

′
(sm)T

]
= 0T, (27)

which is true for the all combinations of a 6= a′ ∈ VmS . This particularly indicates that, ∂
∂sma

vmj (sm) · ∂
∂sm

a′
vmj (sm) = 0

for all 1 ≤ j ≤ dmS , a 6= a′. This means that the Jacobian of vm has at most one non-zero entry in each row. Now, by
invertibility and continuity of Jvm , we deduce that the location of the non-zero entries are fixed and do not change as
a function of sm. This proves that vma (sm) is represented by only one variable smσm(a) up to a scalar (variable-specific)
invertible transformation for each a ∈ VmS , where σm(a) : VmS → VmS represents a permutation of variables, which is
indeterminate, and the Theorem is proven.

Lemma 2. With assumptions of Theorem 1, we have the following for all group m satisfying A1: For any open subset A of
(S̄)d

m
S , there exists a set of Km ≥ 1 vectors {zk ∈ (S̄)d

mk
S }Km

k=1, each of which belongs to some other group mk 6= m with
allowing repetitions, such that the concatenated matrix[

Φmm1(sm, z1), . . . , ΦmmKm (sm, zKm)
]

(28)

with the size 2dmS ×
∑Km

k=1 d
mk

S has full row-rank 2dmS for all sm in A.

Proof. To show that there indeed exists such a set of vectors, we especially select here the groups {mk} as
M \ m repeating twice, with some specific values of zk for each; more specifically,

[
m1, . . . , mKm

]
=[

1, . . . , m− 1, m+ 1, . . . , M, 1, . . . , m− 1, m+ 1, . . . , M
]
, Km = 2(M − 1), and zk = z1 =

[z1, . . . , z1]T for the first half k = 1, . . . ,M − 1, and zk = z2 = [z2, . . . , z2]T for the second half k = M, . . . , 2(M − 1)
with some z1 and z2 ∈ S̄ (note that the size of those vectors can be different across k). We denote a collection of the all
inter-group adjacency coefficients related to the group m as

L̄m =

[
Lm:

L:m

]
=

[
Lm1, . . . , LmM

(L1m)T, . . . , (LMm)T

]
, (29)

which is a 2dmS ×
∑
m′∈M\m d

m′

S matrix given in Assumption A1, where Lm: and L:m denote upper and lower-half matrices
of L̄m, corresponding to the adjacency coefficients from group m to the other groups, and those from the other groups to the
group m, respectively. Substituting those values into Eq. 28, we obtain a 2dmS × 2

∑
m′∈M\m d

m′

S matrix with a factorized
form [

Φm1(sm, z1), . . . , ΦmM (sm, z1), Φm1(sm, z2), . . . , ΦmM (sm, z2)
]

=

[
B112(sm, z1), B122(z1, s

m), B112(sm, z2), B122(z2, s
m)

B12(sm, z1), B12(z1, s
m), B12(sm, z2), B12(z2, s

m)

]
Lm:, 0
L:m, 0
0, Lm:

0, L:m

 , (30)

where B112(sm, z) = diag
(
φ112(sma , z)

)
a∈Vm

S
, B122(z, sm) = diag

(
φ122(z, sma )

)
a∈Vm

S
, B12(sm, z) =

diag
(
φ12(sma , z)

)
a∈Vm

S
, and B12(z, sm) = diag

(
φ12(z, sma )

)
a∈Vm

S
. Note that those cross-derivatives of the function

φ have uniform-dependency from Assumption A2 (Definition 2).

Considering that the adjacency matrix L̄m possibly has some rows with all-zeros, depending on the graph structure, we
explicitly divide the set of latent variable indices VmS into three groups [Vb,Vp,Vc] (we omit the group index m for simplicity
here); the variables with indices Vb are both parents and children of some variables in some other group, the variables
with Vp are parents (but not children) of some variable in some other group, and the variables with Vc are children (but not
parents) of some variable in some other group. We assume without loss of generality that the variable indices VmS are sorted
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in the order [Vb,Vp,Vc]. Eq. 30 can then be re-written as[
Φm1(sm, z1), . . . , ΦmM (sm, z1), Φm1(sm, z2), . . . , ΦmM (sm, z2)

]

=



B112(smVb
, z1), 0, B122(z1, s

m
Vb

), 0,
0, B112(smVp

, z1), 0, 0,

0, 0, 0, B122(z1, s
m
Vc

),
B12(smVb

, z1), 0, B12(z1, s
m
Vb

), 0,
0, B12(smVp

, z1), 0, 0,

0, 0, 0, B12(z1, s
m
Vc

),

B112(smVb
, z2), 0, B122(z2, s

m
Vb

), 0
0, B112(smVp

, z2), 0, 0

0, 0, 0, B122(z2, s
m
Vc

)
B12(smVb

, z2), 0, B12(z2, s
m
Vb

), 0
0, B12(smVp

, z2), 0, 0

0, 0, 0, B12(z2, s
m
Vc

)





Lm:
Vb
, 0

Lm:
Vp
, 0

L:m
Vb
, 0

L:m
Vc
, 0

0, Lm:
Vb

0, Lm:
Vp

0, L:m
Vb

0, L:m
Vc


, (31)

where Lm:
Vb

denotes a submatrix of Lm: corresponding to the indices (rows) Vb, and similarly for Lm:
Vp

, L:m
Vb

, and L:m
Vc

. Now

the second factor of the right-hand side has the size 2(2|Vb|+ |Vp|+ |Vc|)×2
∑
m′∈M\m d

m′

S , and has full row-rank from the
assumption (note that the number of rows of this factor is lower than that in Eq. 30 since we removed all-zero rows). Since the
number of rows of the first factor (2dmS ) is always smaller or equal to that of the second factor, 2(2|Vb|+ |Vp|+ |Vc|) ≥ 2dmS ,
what we need to show for this Lemma is the full row-rankness of the first factor. From its structure, we can show this
separately for each subset of its rows corresponding to Vb, Vp, and Vc.

The Rows Corresponding to Vb We start from the submatrix (rows) corresponding to Vb. We especially consider the
2|Vb| × 2|Vb| submatrix given by [

B112(smVb
, z1), B122(z1, s

m
Vb

)
B12(smVb

, z1), B12(z1, s
m
Vb

)

]
. (32)

If this submatrix has full-rank, the submatrix (rows) of the first factor of Eq. 31 corresponding to Vb also has full row-rank.
Considering that the matrices B112, B122, and B12 are all diagonal, we focus on a 2 × 2 submatrix corresponding to a
variable index a ∈ Vb, given by [

φ112(sma , z1) φ122(z1, s
m
a )

φ12(sma , z1) φ12(z1, s
m
a )

]
. (33)

Calculating the determinant, with the uniform dependency assumption of the all elements (Assumption A2), this submatrix
has full-rank (non-zero determinant) if the following condition does not hold:

φ112(sma , z1)

φ12(sma , z1)
=
φ122(z1, s

m
a )

φ12(z1, sma )

=⇒ ∂

∂sma
log|φ12(sma , z1)| = ∂

∂sma
log|φ12(z1, s

m
a )|

=⇒ φ12(sma , z1) = c(z1)φ12(z1, s
m
a ), (34)

for all sma with some constant c(z1) not dependent on sma . This is exactly the condition assumed in Assumption A2. Since
this is true for each 2× 2 submatrices corresponding to all a ∈ Vb, we conclude that the matrix Eq. 32 has full-rank, and
thus the submatrix (rows) corresponding to Vb has full row-rank 2|Vb|.

The Rows Corresponding to Vp We next show the full row-rankness of the submatrix (rows) corresponding to Vp. We
especially consider the 2|Vp| × 2|Vp| submatrix given by[

B112(smVp
, z1), B112(smVp

, z2)

B12(smVp
, z1), B12(smVp

, z2)

]
. (35)
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If this submatrix has full-rank, the submatrix (rows) of the first factor of Eq. 31 corresponding to Vp also has full row-rank.
We focus on a 2× 2 submatrix corresponding to a variable index a ∈ Vp, given by[

φ112(sma , z1) φ112(sma , z2)
φ12(sma , z1) φ12(sma , z2)

]
. (36)

Calculating the determinant, with the uniform dependency assumption of the all elements (Assumption A2), this submatrix
has full-rank (non-zero determinant) if the following condition does not hold:

φ112(sma , z1)

φ12(sma , z1)
=
φ112(sma , z2)

φ12(sma , z2)

=⇒ ∂

∂sma
log|φ12(sma , z1)| = ∂

∂sma
log|φ12(sma , z2)|

=⇒ φ12(sma , z1) = c(z1, z2)φ12(sma , z2), (37)

for all sma with some constant c(z1, z2) not dependent on sma . This is exactly the condition assumed in Assumption A2.
Since this is true for each 2×2 submatrices corresponding to the all a ∈ Vp, we conclude that the matrix Eq. 35 has full-rank,
and thus the submatrix (rows) corresponding to Vp has full row-rank 2|Vp|.

The Rows Corresponding to Vc We lastly show the full row-rankness of the submatrix (rows) corresponding to Vc. With
the similar discussion to that for the rows Vp given above, this submatrix has full row-rank 2|Vc| if the following condition
does not hold:

φ12(z1, s
m
a ) = c(z1, z2)φ12(z2, s

m
a ), (38)

for all sma with some constant c(z1, z2) not dependent on sma . This is exactly the condition assumed in Assumption A2.

Combining the all results above, we finally conclude that the first factor in Eq. 31 has full row-rank 2dmS (= 2|Vb|+ 2|Vp|+
2|Vc|). This indicates that the right-hand of Eq. 31 has full row-rank, and so does the left-hand side. Then the Lemma is
proven.

D. Alternative Identifiability Condition of Theorem 1
In Theorem 1, we can weaken the constraints on the causal function φ (Assumption A2) by strengthening that on the causal
graph (A1), especially by assuming that all variables have both parent and child in some other group. The alternative
conditions of Theorem 1 is given in the following Proposition:

Proposition 1. Assume the generative model given by Eqs. 2 and 3, and also the following:

A’1 (Nondegeneracy of the graph) For any group m inM (or in a subset ofM, that we call “the groups of interest”), each
variable has both a (at least one) parent and child in some other group, and the collection of inter-group adjacency
matrices L̄m given below has full row-rank:

L̄m =

[
Lm1, . . . , LmM

(L1m)T, . . . , (LMm)T

]
, (39)

A’2 (Causal function) φ12 has uniform dependency, and either of the following conditions is satisfied:

(a) Both φ112 and φ122 have uniform dependency, and for any open subset B of S̄, there exist some z ∈ S̄ such that
the following condition does not hold for φ12: φ12(s, z) = cφ12(z, s) with some constants c ∈ R for all s ∈ B.

(b) Either one of φ112 and φ122 has uniform dependency, and the other one is constantly zero.

Then, for all groups m inM (or in the groups of interests), sm can be recovered up to permutation and variable-wise
invertible transformations from the distribution of the observations x.

21



Causal Representation Learning Made Identifiable by Grouping of Observational Variables

Assumption A’1 is similar to A1, while it requires all variables to have both parent and child. Note that in this case the
matrix L̄m has at least one non-zero element for each row, and thus does not have all-zero rows. Although A’1 imply that
the whole causal graph cannot be acyclic, this does not mean we cannot identify any of the latent variables in acyclic graphs;
since A’1 is group-wise, we can still identify the variables on the groups (groups of interest) satisfying them. For example,
in the illustrative example of the causal dynamics (Illustrative Example 2), we cannot identify the latent variables on the
first (no-parents) and the last (no-children) time points (groups), while we would be able to identify the other time-points
(groups) t since they usually obtain significant causal effects from nearby preceding time-points (groups) < t, then cause the
other nearby subsequent time-points (groups) > t.

The assumptions on the function φ (A’2) is weaker than that of Theorem 1 (A2) since they do not require the factorizability
of φ and also uniform-dependency of either φ112 or φ122 in A’2b. For example, Gaussian CAMs (Eq. 10; N = 1 and linear
T in Eq. 9) are allowed in A’2b, while they are not accepted in Theorem 1.

Proof. Proof is basically the same as that of Theorem 1 (Supplementary Material C), while we only need to consider the
rows Vb in Lemma 2 since all of the variables have both parent and child in some other group here. We thus only need
to show the full row-rankness of Eq. 33 in Lemma 2, corresponding to the rows Vb, under the condition A’2a or A’2b.
Condition A’2a represents the asymmetricity, which is actually the same as that assumed in Theorem 1, and thus can be
proven by the same discussion given in the proof of Lemma 2. We can also easily see the full row-rankness of Eq. 33 under
Condition A’2b since the determinant of the matrix (Eq. 33) is non-zero from the uniform dependency assumptions.

Then the Proposition is proven.

E. Proof of Theorem 2
By well-known theory (Gutmann & Hyvärinen, 2012; Hastie et al., 2001), after convergence of logistic regression, with
infinite data and a function approximator with universal approximation capability, the regression function (Eq. 6) will equal
the difference of the log-pdfs in the two classes x(n) and x(n∗) in Eq. 5:

∑
m∈M

ψ̄m(hm(xm)) +
∑
m6=m′

∑
(a,b)∈Vm

S ×Vm′
S

wmm
′

ab ψ(hma (xm), hm
′

b (xm
′
)) + c

= log px(x1, . . . ,xM )− log px∗(x
1, . . . ,xM )

= log p(g1(x1), . . . ,gM (xM ))− log ps∗(g
1(x1), . . . ,gM (xM ))

= log p(g1(x1), . . . ,gM (xM ))−
∑
m∈M

log pm(gm(xm)), (40)

where px, px∗ , and ps∗ are the joint densities of the observational vector x(n) (the first dataset in Eq. 5), observational vector
with randomized samples for each group x(n∗) (the second dataset in Eq. 5), and that on the latent space s(n∗), respectively,
and pm is the marginal distribution of the m-th latent variable group, gm = (fm)−1 are the (true) demixing models. The
second equation comes from the well-known theory that the changes of variables do not change the density-ratio (subtraction
of log-densities; the Jacobians for the changes of variables cancel out), and the third equation comes from the fact that there
is no causal relations across groups on the shuffled dataset because the samples are obtained randomly and independently
for each group (while causal relations can still exist within each group, implicitly involved in pm).

Let a compound demixing-mixing function vm(sm) = hm ◦ fm(sm), we then have

log p(s1, . . . , sM )−
∑
m∈M

log pm(sm)

=
∑
m∈M

ψ̄m(vm(sm)) +
∑
m 6=m′

∑
(a,b)∈Vm

S ×Vm′
S

wmm
′

ab ψ(vma (sm), vm
′

b (sm
′
)) + c. (41)

We substitute the factorization model Eq. 3 into this, and differentiate the both sides with respect to sma and sm
′

b , where
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a ∈ VmS , b ∈ Vm′S , m 6= m′, and then obtain,

∂2

∂sma ∂s
m′
b

(
λmm

′

ab φ(sma , s
m′

b ) + λm
′m

ba φ(sm
′

b , sma )
)

=
∂2

∂sma ∂s
m′
b

∑
(i,j)

(
wmm

′

ij ψ
(
vmi (sm), vm

′

j (sm
′
)
)

+ wm
′m

ji ψ
(
vm
′

j (sm
′
), vmi (sm)

))
. (42)

Now compare this equation to Eq. 19 of the proof of Theorem 1 in Supplementary Material C. The functions ψ and φ̃,
and the coefficients λ̃mm

′

ij and wmm
′

ij denote the same things in the two proofs. Now, we can proceed with the proof of
Theorem 1, and the consistency of the estimation framework is thus proven.

F. Proof of Theorem 3
Proof. From the result of Theorem 1 with the required assumptions, for each m ∈M, we so far have the identifiability of
the latent variables (sm) up to variable-wise nonlinear scalings and a permutation; i.e., the compound function vm in the
proof of Theorem 1 (Supplementary Material C) is given by, for each element,

vma (sm) = kmσm(a)(s
m
σm(a)), (43)

where kmσm(a) : R → R is a scalar invertible functions, and σm(a) : VmS → VmS represents the permutation of variables,
which are indeterminate according to Theorem 1. Without loss of generality, we assume that the variables were sorted
properly (σm(a) = a), and the nonlinear functions were scaled properly so that the image is embedded on the same space
(interval) to that of the input (i.e. sma ∈ Sma → kma (sma ) ∈ Sma ).

We now discuss identifiability of the model (Eq. 3) by considering two sets of parameters θ = {L, φ} (true) and θ̃ = {L̃, φ̃}
(another parameterization or estimate) satisfying the assumptions of the Theorem, such that they both give the same data
distributions p(x; θ) = p(x; θ̃).

Resolving the Element-wise Nonlinear Scaling: We first show that the element-wise (nonlinear) scaling kma can be
resolved to some extent by some additional assumptions given in Theorem 3; more specifically, the scaling kma can be given
by the same function km for each group m, rather than the variable-wise manner (Eq. 43). We focus on co-parents sma and
sma′ ∈ VmS and their child sm∗b ∈ Vm∗S , assumed in Assumption C1. We then have the (a, b)-th element of Eq. 20 (causal
relation between sma and sm∗b ) with substituting Eq. 43,

∂2

∂sma ∂s
m∗
b

(λmm∗ab φ(sma , s
m∗
b ) + λm∗mba φ(sm∗b , sma ))

=
∂2

∂sma ∂s
m∗
b

(
λ̃mm∗ab φ̃(kma (sma ), km∗b (sm∗b )) + λ̃m∗mba φ̃(km∗b (sm∗b ), kma (sma ))

)
, (44)

and likewise the (a′, b)-th element (causal relation between variables sma′ and sm∗b ).

From Assumption C1, λmm∗ab 6= 0 and λmm∗a′b 6= 0 on the left-hand side (true parameter θ; the opposite directions are zeros
λm∗mba = λm∗mba′ = 0 since the graph is directed; Assumption C1). By taking a division of Eq. 44 corresponding to those two
variable-pairs, which is possible thanks to the uniform-dependency of the cross-derivatives of the functions (Assumption A2),
we obtain four possible equations, depending on which combination between (λ̃mm∗ab , λ̃m∗mba ) and (λ̃mm∗a′b , λ̃m∗mba′ ) has
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non-zero values on the right-hand side;

λmm∗ab
∂2

∂sma ∂s
m∗
b
φ(sma , s

m∗
b )

λmm∗a′b
∂2

∂sm
a′∂s

m∗
b
φ(sma′ , s

m∗
b )

=



λ̃mm∗
ab

∂2

∂sma ∂s
m∗
b

φ̃(kma (sma ),km∗b (sm∗b ))

λ̃mm∗
a′b

∂2

∂sm
a′

∂s
m∗
b

φ̃(km
a′ (s

m
a′ ),k

m∗
b (sm∗b ))

(λ̃mm∗ab λ̃mm∗a′b 6= 0),

λ̃m∗m
ba

∂2

∂sma ∂s
m∗
b

φ̃(km∗b (sm∗b ),kma (sma ))

λ̃m∗m
ba′

∂2

∂sm
a′

∂s
m∗
b

φ̃(km∗b (sm∗b ),km
a′ (s

m
a′ ))

(λ̃m∗mba λ̃m∗mba′ 6= 0),

λ̃mm∗
ab

∂2

∂sma ∂s
m∗
b

φ̃(kma (sma ),km∗b (sm∗b ))

λ̃m∗m
ba′

∂2

∂sm
a′

∂s
m∗
b

φ̃(km∗b (sm∗b ),km
a′ (s

m
a′ ))

(λ̃mm∗ab λ̃m∗mba′ 6= 0),

λ̃m∗m
ba

∂2

∂sma ∂s
m∗
b

φ̃(km∗b (sm∗b ),kma (sma ))

λ̃mm∗
a′b

∂2

∂sm
a′

∂s
m∗
b

φ̃(km
a′ (s

m
a′ ),k

m∗
b (sm∗b ))

(λ̃m∗mba λ̃mm∗a′b 6= 0).

(45)

On the right-hand side (estimate θ̃), only one of them is possible due to the directed causal graph assumption (Assumption C1).
The first two cases are when the causal directions are the same between the two variable-pairs on the parameterization θ̃,
similarly to θ (but possibly both flipped from θ), while they are opposite each other in the latter two cases.

We first show that the latter two cases of Eq. 45 (opposite causal directions between the two pairs (a, b) and (a′, b)) contradict
the assumptions, as we expected. We replace sma and sma′ by a common variable y1 ∈ S̄ (this is possible because we consider
the case where the supports of the all latent variables are the same, denoted as S̄), and sm∗b by y2 ∈ S̄, then obtain

λmm∗ab

λmm∗a′b

=


λ̃mm∗
ab

∂2

∂y1∂y2
φ̃(kma (y1),k

m∗
b (y2))

λ̃m∗m
ba′

∂2

∂y1∂y2
φ̃(km∗b (y2),kma′ (y1))

(λ̃mm∗ab λ̃m∗mba′ 6= 0),

λ̃m∗m
ba

∂2

∂y1∂y2
φ̃(km∗b (y2),k

m
a (y1))

λ̃mm∗
a′b

∂2

∂y1∂y2
φ̃(km

a′ (y1),k
m∗
b (y2))

(λ̃m∗mba λ̃mm∗a′b 6= 0),
(46)

where the left-hand-side is constant. However, Lemma 3 given below indicates that these contradict the assumptions, and
thus the latter two cases of Eq 45 are indeed excluded.

On the other hand, in the first two cases of Eq 45, we again replace the variables by y1 and y2, then obtain

λmm∗ab

λmm∗a′b

=


λ̃mm∗
ab

∂2

∂y1∂y2
φ̃(kma (y1),k

m∗
b (y2))

λ̃mm∗
a′b

∂2

∂y1∂y2
φ̃(km

a′ (y1),k
m∗
b (y2))

(λ̃mm∗ab λ̃mm∗a′b 6= 0),

λ̃m∗m
ba

∂2

∂y1∂y2
φ̃(km∗b (y2),k

m
a (y1))

λ̃m∗m
ba′

∂2

∂y1∂y2
φ̃(km∗b (y2),kma′ (y1))

(λ̃m∗mba λ̃m∗mba′ 6= 0).
(47)

We now show that those equations are possible only when kma = kma′ due to the assumptions. From Assumption C1, there
exists a path from a variable to any other variable by following the co-parents on group m, and for each co-parents we have
either one of the cases in Eq. 47. However, once whether the former or the latter case of Eq. 47 is determined for some
co-parent, all other co-parents also need to have the same side of the equation, since the existence of inconsistent causal
directions is not allowed due to Lemma 3. This indicates that we have a relation of either

∂2

∂y1∂y2
φ̃ (kma (y1), km∗b (y2)) = α1aa′

∂2

∂y1∂y2
φ̃ (kma′ (y1), km∗b (y2)) ,

∂2

∂y1∂y2
φ̃ (km∗b (y2), kma (y1)) = β1aa′

∂2

∂y1∂y2
φ̃ (km∗b (y2), kma′ (y1)) , (48)

consistently for all co-parents (a, a′) ∈ VmS × VmS assumed in C1, where α1aa′ and β1aa′ are some scalar constants
depending on the co-parents.

We next consider the co-children sma and sma′′ and their parent sm†b′ , assumed in Assumption C1 (m† does not need to be
same as m∗). Based on the same discussions for the co-parents given above, we have a relation of either

∂2

∂y1∂y2
φ̃
(
k
m†
b′ (y2), kma (y1)

)
= α2aa′′

∂2

∂y1∂y2
φ̃ (km∗b′ (y2), kma′′(y1)) ,

∂2

∂y1∂y2
φ̃
(
kma (y1), k

m†
b′ (y2)

)
= β2aa′′

∂2

∂y1∂y2
φ̃
(
kma′′(y1), k

m†
b′ (y2)

)
, (49)
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consistently for all co-children (a, a′′) ∈ VmS × VmS assumed in C1, where α2aa′ and β2aa′ are some scalar constants
depending on the co-children. The former and the latter cases in Eqs. 48 and 49 correspond to each other; if we have the
first case of Eq. 48, we also have the first case of Eq. 49, excluding the second cases, and vice versa. We show this by
contradiction; we suppose there exist three variables with causal relation sm†b′ → sma → sm∗b as assumed in C1 on the true
model θ, but they are wrongly learned as sm†b′ ← sma → sm∗b on the estimate θ̃ (the following discussions are the same when
they are learned as sm†b′ → sma ← sm∗b as well). This gives us two equations from Eq. 44,

λ
m†m
b′a

∂2

∂sma ∂s
m†
b′
φ(s

m†
b′ , s

m
a ) = λ̃

mm†
ab′

∂2

∂sma ∂s
m†
b′
φ̃(kma (sma ), k

m†
b′ (s

m†
b′ )),

λmm∗ab

∂2

∂sma ∂s
m∗
b

φ(sma , s
m∗
b ) = λ̃mm∗ab

∂2

∂sma ∂s
m∗
b

φ̃(kma (sma ), km∗b (sm∗b )). (50)

We substitute sm†b′ with (k
m†
b′ )−1 ◦ km∗b (sm∗b ), which makes the right-hand side the same up to scaling, after applying the

change of variables and canceling out the derivatives of the functions k on the both sides. However, this contradicts Lemma 3
given below. This indicates that the relations of parents and children from a variable are preserved between θ and θ̃, though
could be flipped, and thus the cases of Eqs. 48 and 49 are consistent.

Now we focus on the first cases of Eqs. 48 and 49. Since those equations are true for any variable-pairs, we especially
consider a pair (a, a′) for both of them, and divide the both-sides (after replacing y2 by y3 for the second equation), which is
possible thanks to the uniform dependency (Assumption A2), and then obtain

∂2

∂y1∂y2
φ̃ (kma (y1), km∗b (y2))

∂2

∂y1∂y3
φ̃
(
k
m†
b′ (y3), kma (y1)

) =
α1aa′

∂2

∂y1∂y2
φ̃ (kma′ (y1), km∗b (y2))

α2aa′
∂2

∂y1∂y3
φ̃
(
k
m†
b′ (y3), kma′ (y1)

) ,
=⇒

φ̃12 (kma (y1), km∗b (y2))

φ̃12
(
k
m†
b′ (y3), kma (y1)

) =
α1aa′

α2aa′
·
φ̃12 (kma′ (y1), km∗b (y2))

φ̃12
(
k
m†
b′ (y3), kma′ (y1)

) , (51)

where φ12(x, y) = ∂2

∂x∂y φ̃(x, y), and the derivatives of the scalar functions kma , kma′ , k
m∗
b , and km†b′ canceled out between

the left- and the right-hand sides or between the numerator and the denominator of the equation (note that they are
non-zeros almost everywhere due to the invertibility). Since this equation is true for any choices of y2 and y3, we set
y2 = (km∗b )−1 ◦ kma′ (y1) and y3 = (k

m†
b′ )−1 ◦ kma (y1), and we get

φ̃12 (kma (y1), kma′ (y1))

φ̃12 (kma (y1), kma (y1))
=
α1aa′

α2aa′
· φ̃

12 (kma′ (y1), kma′ (y1))

φ̃12 (kma (y1), kma′ (y1))
,

=⇒ φ̃12 (kma (y1), kma′ (y1))
2

=
α1aa′

α2aa′
· φ̃12 (kma (y1), kma (y1)) φ̃12 (kma′ (y1), kma′ (y1)) . (52)

Since this equation indicates symmetricity of φ̃12 (flipping kma (y1) and kma′ (y1) on the left-hand side gives the same value
on the right-hand side), which is prohibited by Assumption C2, we need to have kma = kma′ . Therefore we conclude that
kma = kma′ . Since this is true for each index-pair (a, a′) in the group m considered in Assumption C1, kma can be given as a
single function km for all variable index a ∈ VmS . This is also true when we focus on the latter cases Eqs. 48 and 49.

Identifiability of the Causal Graph: With the same discussions above, the functions {km′b }b on a group m′ can be also
simply denoted as km

′
for all b, based on the relations of the variables {sm′b }b on the group m′ to the variables on the

other groups. Using this to Eq. 44 with a group-pair (m,m′), and by gathering this equation for all variable-index-pairs
(a, b) ∈ VmS × Vm

′

S on the group-pair (m,m′) in a matrix form (a giving rows, and b columns), and also by replacing all
{sma }a by a common variable y1 ∈ S̄ and similarly all {sm′b }b by y2 ∈ S̄, we get a matrix equation of the size dmS × dm

′

S ,

Lmm
′ ∂2

∂y1∂y2
(φ(y1, y2)) + (Lm

′m)T
∂2

∂y1∂y2
(φ(y2, y1))

= L̃mm
′ ∂2

∂y1∂y2

(
φ̃(km(y1), km

′
(y2))

)
+ (L̃m

′m)T
∂2

∂y1∂y2

(
φ̃(km

′
(y2), km(y1))

)
. (53)
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The factors other than the adjacency matrices Lmm
′
, Lm

′m, L̃mm
′
, and L̃m

′m are now scalar values and do not change
across rows and columns.

Firstly, for the elements of Eq. 53 where λmm
′

ab = λm
′m

ba = 0 on the left-hand side, the corresponding coefficients λ̃mm
′

ab

and λ̃m
′m

ba on the right-hand side should be also zeros, due to the directed causal graph assumption (Assumption C1) and
uniform dependency of the cross-derivative of φ̃ (A2).

We next focus on the elements of Eq. 53 where Lmm
′

are non-zeros (the corresponding elements of (Lm
′m)T are constantly

zeros due to the directed causal graph assumption C1). In this case, we can say that only either of L̃mm
′

or (L̃m
′m)T are

non-zeros consistently for all of the corresponding elements. This is because, if both of L̃mm
′

and (L̃m
′m)T have non-zero

values on some different elements, it is easy to show that it contradicts the asymmetricity of the function φ̃ (Assumption C2).
This is the same for the case when we focus on the elements where (Lm

′m)T are non-zeros.

Similarly, this is also true when we focus on the right-hand side; if some elements of L̃mm
′

are non-zeros, only the corre-
sponding elements of either Lmm

′
or (Lm

′m)T are consistently non-zeros, due to the asymmetricity of φ (Assumption C2).

These indicate that we can identify the causal graph Lmm
′

and Lm
′m up to scaling and matrix-transpose (flipping of L̃mm

′

and (L̃m
′m)T). Additionally considering the permutation of variables for each group, which are indeterminate according

to Theorem 1, we eventually have: if we have two sets of causal graphs L and L̃ giving the same data distributions, we
have (L̃mm

′
, L̃m

′m) = cmm
′
(Lmm

′

σmσm′ ,L
m′m
σm′σm) or cmm

′
((Lm

′m
σm′σm)T, (Lmm

′

σmσm′ )
T) with a scalar constant cmm

′
, and

permutations of variables (rows and columns) represented by σm and σm
′

on groups m and m′, respectively. Theorem is
then proven.

Lemma 3. Assume k{1,2,3} : R → R are C1 scalar invertible functions, and φ(·, ·) : R2 → R is a function whose
cross-derivative satisfies the asymmetricity (Assumption C2). Then for any open subset B of S̄ , the following relation cannot
hold;

∂2

∂x∂y
φ(k1(x), k2(y)) = γ

∂2

∂x∂y
φ(k2(y), k3(x)) (54)

with some scalar constant γ 6= 0 ∈ R, for all x and y ∈ B.

Proof. We give a proof by contradiction. We suppose the negation; there exist an open subset B ⊂ S̄ such that the equation
hold for all x and y ∈ B. By the chain rule of the derivatives,

φ12(k1(x), k2(y))
∂

∂x
k1(x) = γφ12(k2(y), k3(x))

∂

∂x
k3(x), (55)

where φ12(x, y) = ∂2

∂x∂yφ(x, y), and the derivatives of k{1,2,3} are non-zeros almost everywhere from their invertibility.
The derivatives of k2(y) on both sides canceled out.

By a simple calculation from Eq. 55 and the uniform dependency (Assumption C2 with c = 0), we can say that a function
Q(x, y) = φ12(k1(x),k2(y))

φ12(k2(y),k3(x))
does not depend on y. Due to this, we can consider Q(x, y) with two different values of y,

especially y = (k2)−1 ◦ k1(x) and (k2)−1 ◦ k3(x), and obtain an equation

φ12(k1(x), k1(x))

φ12(k1(x), k3(x))
=
φ12(k1(x), k3(x))

φ12(k3(x), k3(x))
,

=⇒
(
φ12(k1(x), k3(x))

)2
= φ12(k1(x), k1(x))φ12(k3(x), k3(x)). (56)

Since this equation indicates symmetricity of φ12 (flipping k1(x) and k3(x) on the left-hand side gives the same value on
the right-hand side), which is prohibited by Assumption C2, we need to have k1 = k3. However, substituting this result
to Eq. 55 indicates that this is contradictory to the asymmetricity of φ12 (Assumption C2). From this contradiction, we
conclude that Eq. 54 cannot hold with those assumptions, and thus the Lemma is proven.
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G. Alternative Identifiability Condition of Theorem 3
By adding an additional constraint on the causal function φ, we can weaken the assumption on the causal graph L in
Theorem 3. The alternative condition of Theorem 3 is given below:

Proposition 2. Assume the same as those in Theorem 1, and also:

C’1 (Causal graph) The inter-group causal relations of variables are all directed, and for every group-pair (m,m′) in the
groups of interest, all variables in a group m (and m′) have either co-parent or co-child in the same group. In addition,
any variables in the group m (and m′) can be reached from any other variables in the same group by moving from a
variable to one of its co-parents or co-children, possibly by multiple hops.

C’2 (Asymmetricity) There is no open subset B of S̄ such that for all x 6= y ∈ B, it holds

φ12(x, y) = cφ12(y, x) (57)

with some constant c ∈ R.

C’3 (Non-factorizability) There is no open subset B of S̄ such that for all x 6= y ∈ B, it holds

φ12(x, y) = α(x)β(y) exp (γ(x, y)− γ(y, x)) (58)

with some scalar functions α, β, and γ.

Then, for all group-pairs (m,m′) satisfying A1 and C’1, (Lmm
′
,Lm

′m) are identifiable up to permutation of variables,
linear scaling, and matrix transpose.

This Proposition requires additional constraint on the function φ (C’3) compared to Theorem 3. It restricts some factorization
form of the cross-derivative of φ. This is similar to the non-factorizability in A2 of Theorem 1, but a bit stronger. Such
restriction on the factorization of the (cross-derivative of) φ is reasonable because the factorization of φ12 into some
input-variable-wise factors α and β would not be informative enough to fully determine the causal direction, which is also
the case for the factorization into an anti-symmetric function with some factor γ.

Thanks to such stronger constraint on φ, the assumption on the causal graph (C’1) is weaker than C1 (Theorem 3); it requires
only either co-parent or co-children for each variable, rather than both of them as in C1. In addition, we can consider both
co-parents and co-children pairs to reach from one variable to another (see Supplementary Material H for some illustrative
examples).

Proof. Proof is basically the same as that of Theorem 3 (Supplementary Material F). For showing kma = kma′ from Eq. 47,
we use Lemma 4 given below, which only requires either co-parent or co-child for each variable in contrast to both of them
as in Theorem 3 (from Eq. 48 to Eq. 52), thanks to the additional assumption of the non-factorizability of the function φ
(C’3). The remaining proof is the same as that of Theorem 3 (Supplementary Material F), and thus omitted.

Lemma 4. Assume we have

∂2

∂x∂y
φ(k1(x), k2(y)) = γ

∂2

∂x∂y
φ(k3(x), k2(y)) (59)

for all x and y in an open subsetB of S̄ , where k{1,2,3} : R→ R are C1 scalar invertible functions, γ 6= 0 ∈ R is a constant
scalar value, and φ(·, ·) : R2 → R is a function whose cross-derivative satisfies the uniform-dependency (Definition 2) and
the condition C’3. Then we have k1(x) = k3(x), and γ = 1. In addition, this is also the case even if the two arguments of φ
are switched on the both-sides.

Proof. By the chain rule of the derivatives,

φ12(k1(x), k2(y))
∂

∂x
k1(x) = γφ12(k3(x), k2(y))

∂

∂x
k3(x), (60)
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where φ12(x, y) = ∂2

∂x∂yφ(x, y), and the derivatives of k{1,2,3} are non-zeros almost everywhere from their invertibility.
The derivatives of k2(y) on both sides canceled out.

By a simple calculation from Eq. 60 and the uniform dependency, we can see that a function Q(x, y) = φ12(k1(x),k2(y))
φ12(k3(x),k2(y))

does not depend on y. Due to this, we can consider Q(x, y) with two different values of y, especially y = (k2)−1 ◦ k1(x)
and (k2)−1 ◦ k3(x), and obtain an equation

φ12(k1(x), k1(x))

φ12(k3(x), k1(x))
=
φ12(k1(x), k3(x))

φ12(k3(x), k3(x))
,

=⇒ φ12(k1(x), k3(x))φ12(k3(x), k1(x)) = φ12(k1(x), k1(x))φ12(k3(x), k3(x)). (61)

However, this equation indicates that the function φ12 can be factorized as Eq. 58 from Lemma 5 given below, which is
prohibited by Assumption C’3 unless k1 = k3. Therefore we have k1 = k3 by contradiction. Putting this into Eq. 59 also
indicates that γ = 1. The same result can be obtained in the same manner even if the two arguments of φ are switched on
the both-sides of Eq. 59. Then Lemma is proven.

Lemma 5. The equation of a two variable function q with uniform-dependency given as

q(x, y)q(y, x) = q(x, x)q(y, y) (62)

holds if and only if the function q can be factorized as

q(x, y) = α(x)β(y) exp (γ(x, y)− γ(y, x)) (63)

for some scalar functions α, β, and γ.

Proof. We take absolute values and logarithms on both sides of Eq. 62, and then take derivatives with respect to x and y,
and obtain

∂2

∂x∂y
(log|q(x, y)|) +

∂2

∂x∂y
(log|q(y, x)|) = 0. (64)

This skew-symmetric equation holds if and only if the function can be represented by

∂2

∂x∂y
(log|q(x, y)|) = γ̄(x, y)− γ̄(y, x), (65)

with some scalar function γ̄. Taking integrals and exponential both sides (also considering the possible flipping of signs), we
obtain Eq. 63, where γ corresponds to the integral function of γ̄. Note that this factorization form of q indeed gives the
Eq. 62. Then the Lemma is proven.

H. Illustrative Discussion about Assumptions C1 and C’1
We give here additional discussion about Assumption C1 (Theorem 3) and C’1 (Proposition 2). Firstly, Fig. 3a illustrates the
definitions of the co-parent and co-child. From the perspective of variable a in group m (sma ), variable b (smb ) is a co-child
since it has the same parent in some other group m∗ (sm

∗

a∗ ). Similarly, from the perspective of variable c in group m (smc ),
variable d (smd ) is a co-parent since it has the same child in some other group m∗∗ (sm

∗∗

d∗∗ ). The parent sm
∗

a∗ and the child
sm
∗∗

d∗∗ to be considered can be arbitrary selected from any other group and variable-index, and m∗ can be even the same to
m∗∗ (but not m). In this example, group m does not satisfy both C1 and C’1 since variables do not have either co-parent or
co-child (C1), and thus some variables cannot be reached from some other variables through co-parent-and-child-paths (C1
and C’1).

For illustrative purpose, we start from a rather sparse causal graph as shown in Fig. 3b, where group m can satisfy
Assumption C1 (and also C’1; note that we here focus only on a single group m for simplicity, while C1 and C’1 actually
require both of the two target groups (m,m′) to satisfy the same condition to identify the causal graph between them).
In this example, every variable in the group m has both (at least one) co-parent and co-child in the same group, and
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Figure 3. (a) Illustrative description of the co-parents and co-children. (b–d) Illustrative examples of some causal graphs, which (do not)
satisfy Assumption C1 (Theorem 3) and/or C’1 (Proposition 2).

can reach any other variables in the same group by moving to one of its co-children (red paths; similarly for co-parents,
blue paths), possibly by multiple hops. For example, we can reach from sma to smd on the co-children side via the path
sma → smb → smc → smd in three hops (red paths), and via the path sma → smd in a single hop on the co-parents side (blue
paths).

On the other hand, if we remove some edges from Fig. 3b, C1 cannot be satisfied anymore; in the all three examples shown
in Fig. 3c, some variables do not have either co-parent or co-child, and thus cannot reach some other variables on either
or both of the co-parent-side and co-child-side. On the other hand, all of them can satisfy C’1 (Proposition 2) since every
variable has either co-parent or co-child in the same group, and can reach any other variables in the same group by moving
through either co-parent-path or co-child-path for each hop. Those examples indicate that C’1 allows much sparser graphs
than C1, though it requires an additional assumption on the function φ (C’3).

Assumption C1 would be fulfilled as long as the connections between groups are not too sparse. Fig. 3d show some
such examples, where both of the two target groups (m,m′) satisfy C1, and thus the causal graph between them can be
identified. Especially the right side of Fig. 3d corresponds to the example given in Section 6; fully-connected autoregressive
temporal causality to the subsequent time-point (group), where the groups m and m′ correspond to time-points t− 1 and t,
respectively. As we can see, for every variable in a group (time-point in time-series cases), all other variables in the same
group are both co-parents and co-children in this case. Note that due to Assumption A1 of Theorem 1, causal strengths need
to be sufficiently different across edges in this case.

I. Related Works
Disentangled Representation Learning and Nonlinear ICA Revealing fundamental representation (latent variables s)
generating the observational data x in a data-driven manner is called representation learning (Bengio et al., 2013). This is
supposed to be achieved by assuming some underlying observational process (e.g., mixing function f in Eq. 1; x = f(s)),
and then by disentangling it (estimating the inverse model g = f−1) in a data-driven manner from the observations. However,
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such inverse problem is in general ill-posed, and there could exist many different combinations of components s and mixing
function f which can explain the same observational data. The main focus of representation learning is thus to find the
conditions where the components can be determined uniquely, for its interpretability, applicability, and reproducibility. Such
model is called identifiable, and satisfies the condition ∀(θ, θ′), p(x; θ) = p(x; θ′)⇒ θ = θ′, which indicates that we can
uniquely identify the parameters θ of the model (the observation model f or equivalently the demixing model g = f−1)
from the data distribution alone.

Independent component analysis (ICA) is one of such representation learning frameworks made to identifiable based on
some assumptions on the latent variables. As the name suggests, ICA assumes that the latent components are mutually
independent, p(s) =

∏
i pi(si), as in many other representation learning frameworks including variants of variational

autoencoders (VAEs) (Chen et al., 2018; Higgins et al., 2017; Kim & Mnih, 2018; Kingma & Welling, 2014), and so on.
However, it is well-known that such independence assumption alone is not sufficient for the identifiability (Comon, 1994).
The key idea of ICA is thus to give some additional assumptions on the components so as to give the identifiability. For
example, it is well-known that when the mixing f is linear and samples are independent and identically distributed (i.i.d.), an
additional assumption of non-Gaussianity (up to one Gaussian component) can make the model identifiable (Comon, 1994).

When the observational mixing f is nonlinear, the identifiability condition becomes much severer; it is known that the
i.i.d. with non-Gaussianity assumption successfully used in the linear case above is not acceptable anymore in the nonlinear
models (Hyvärinen & Pajunen, 1999; Locatello et al., 2019). Nonlinear ICA (NICA) was firstly shown to be identifiable by
assuming that the components are not i.i.d., but rather modulated depending on some additional (possibly latent) information
associated with each sample (Khemakhem et al., 2020a; Hyvärinen & Morioka, 2016; Hyvarinen & Morioka, 2017;
Hyvarinen et al., 2019; Klindt et al., 2021; Sorrenson et al., 2020; Sprekeler et al., 2014). More specifically, by assuming
that the components are conditionally mutually independent given an (possibly unobservable) additional auxiliary variable
u, i.e., p(s|u) =

∏
i pi(si|u), and the pi is sufficiently modulated by u, the model was shown to be identifiable (Hyvarinen

et al., 2019). There exist many ways to consider u; temporal- or spatial-segment-index (Hyvärinen & Morioka, 2016;
Morioka et al., 2020), components on the other samples (Hyvarinen & Morioka, 2017; Hyvarinen et al., 2019; Hälvä et al.,
2021; Klindt et al., 2021), state-index of hidden Markov process (Hälvä & Hyvärinen, 2020), positive-negative-samples
(Zimmermann et al., 2021), observation-target-samples (Roeder et al., 2021), and so on. Efficient estimation framework
is also a crucial problem of NICA. Maximum-likelihood estimation (MLE) (Hälvä & Hyvärinen, 2020) or variational
estimation (Hälvä et al., 2021; Khemakhem et al., 2020a) were shown to give reasonable inference. On the other hand, if u
is directly observable, a self-supervised (or weakly-supervised) learning framework might be also proposed by using it as a
target label or weak supervision (Hyvärinen & Morioka, 2016; Hyvarinen & Morioka, 2017; Hyvarinen et al., 2019; Morioka
et al., 2020; 2021; Zimmermann et al., 2021), which are empirically known to achieve better performances (Morioka et al.,
2021).

The other direction for the identifiable NICA is to give some constraints on the mixing models f , with weaker assumptions
on the latent components; such as local isometry (Horan et al., 2021), volume preservation (Yang et al., 2022), independent
mechanism (Gresele et al., 2021), sparseness (Moran et al., 2021), Brenier map (Wang et al., 2021), and a piecewise affine
function (Kivva et al., 2022). It was found recently that local isometry gives identifiability up to linear transformation (Horan
et al., 2021). Yang et al. (2022) showed identifiability by assuming that f is volume-preserving, the latent components
are factorial multivariate Gaussian, and there exist two distinctive observations of auxiliary variable. Structural sparsity
of the observational model is shown to give the identifiability (Zheng et al., 2022; Zheng & Zhang, 2023). Assuming
multiple views from latent variables was also studied (Gresele et al., 2020; Locatello et al., 2020). Independent mechanism
analysis (IMA) was shown to solve some well-known type of indeterminacy of NICA (Gresele et al., 2021), though its
full-identifiability has not been resolved. Moran et al. (2021) proposed sparse VAE and showed the identifiability with
additional anchor feature assumption. Wang et al. (2021) showed VAE with Brenier map enables identifiability without
auxiliary information. Willetts & Paige (2022) empirically showed the possibility of identifiable NICA with clustering
structure of the latent variables based on a Gaussian mixture model (VaDE; Jiang et al. (2017)), and Kivva et al. (2022)
actually showed the identifiability of such model by additionally assuming that f is a piecewise affine function. They also
showed that those assumptions make the latent components identifiable up to an affine transform even with (conditional)
dependency between them, though (conditional) mutual independence is required if we need stronger identifiability.

Causal Discovery Causal discovery aims to estimate causal relations among variables from their observations in a data-
driven manner. One of the major approaches is called a model-based approach, which models causal relations of variables
based on some parametric models, such as Bayesian networks (BNs) or state-equation models (SEMs), and then estimate
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the causal graph (or adjacency matrix) from the observations in a data-driven manner. One of the most general models is
BNs (Pearl, 2000), which represent a causal graph among variables by a factorization of their joint distribution into some
conditional distributions representing the conditional independence of the variables; i.e., p(x) =

∏
a∈V pa(xa| pa(xa)).

Although BNs are flexible, recovering the graph from the joint distribution alone is not generally possible because many
different graphs can have exactly the same joint distribution (Andersson et al., 1997; Spirtes et al., 2001). Some studies
showed that suitable assumptions on the type of the conditional distributions enable identifiability of the causal structure,
such as Poisson distribution (Park & Raskutti, 2015; Park & Park, 2019b), generalized hypergeometric distribution (Park
& Park, 2019a), and zero-inflated Poisson model (Choi et al., 2020). A very closely related framework is given by SEMs
(Bollen, 1989). Since SEMs are not generally identifiable (Bollen, 1989; Geiger & Heckerman, 1994; Pearl, 2000), similarly
to BNs, some further assumptions were proposed to guarantee the identifiability: linear acyclic models with non-Gaussian
noise (Shimizu et al., 2006; 2011), additive noise models excluding linear functions (Hoyer et al., 2008a; Hyvärinen &
Smith, 2013; Peters et al., 2014), post-nonlinear models (Zhang & Hyvärinen, 2009), and so on. The SEMs can be also
extended to time series (Gong et al., 2015; Hyvärinen et al., 2010), and models with latent confounding factors (Hoyer
et al., 2008b; Maeda & Shimizu, 2020; Shimizu & Bollen, 2014), and so on. More recently, general nonlinear SEMs with
non-additive noise have been proven to be identifiable by assuming nonstationarity of the noise (Monti et al., 2020; Wu &
Fukumizu, 2020), though limited to bivariate settings.

Causal Representation Learning Causal representation learning (CRL) (Schölkopf et al., 2021) assumes the same
observational models as NICA (Eq. 1), while the latent variables are not mutually independent but causally dependent
each other; the causal mechanism p(s) is given, for example, by a BN or SEM as in causal discovery studies (see above).
The focus of CRL is to estimate both of the (high-level) latent causal variables and the causal graph from the (low-level)
observations simultaneously, which would be achievable by jointly performing representation learning and causal discovery.
However, CRL is supposed to be highly ill-posed without any assumptions, as a combination of two notoriously ill-posed
problems of NICA and causal discovery (see above), and the degree of the indeterminacy should be even worse compared
to those two individual problems; causal discovery can be seen as a special case of CRL, where the latent variables are
directly observable (f is the identity mapping), and NICA can be seen as a special case of CRL as well, where all variables
are mutually independent and thus p(s) is simply given by a product of variable-wise distributions. Unfortunately, simply
assuming causal structure on the latent space (Leeb et al., 2022) would not be enough for giving identifiability. Some studies
recently succeeded to guarantee the identifiability by assuming some constraints on the latent variables, such as linear SEM
with supervision or intervention (Buchholz et al., 2023; Liu et al., 2023; Shen et al., 2022; Squires et al., 2023; Varici et al.,
2023; Yang et al., 2021), or more general causal relations but with do-interventions (Ahuja et al., 2022b), perfect intervention
with unknown targets (von Kügelgen et al., 2023), or linear mixing (Varici et al., 2023), discrete latent variables with mixture
oracles (Kivva et al., 2021), purity of the children of (subsets of) variables (Cai et al., 2019; Xie et al., 2020; 2022), or
access to paired counterfactual data (Ahuja et al., 2022a; Brehmer et al., 2022). Independently Modulated Component
Analysis (IMCA) (Khemakhem et al., 2020b) was proposed as an extension of NICA to allow some dependency across
variables, though it requires weak-supervision (observable auxiliary variables), and only considers one-to-one relations
between the latent variables and the auxiliary variables. Crucially, all of those frameworks require some level of supervision
or intervention for each sample for the identifiability. Kivva et al. (2021) requires information of the number of components
k(S) of the mixture model (so-called mixture oracle) for every subsets S of observational variables. Estimating the number
of componetns k itself is a long-standing challenge of finite mixture models, and infeasible or unstable in high-dimensional
cases in practice, though they proposed a heuristic method for low dimensional case. Other studies (Lachapelle et al., 2022;
Lippe et al., 2022; Yao et al., 2022a;b) have used temporal causal relations and are thus only applicable to time-series
data (many of them also require weak-supervisions or interventions). Although Lippe et al. (2023) extended the temporal
causality to also include instantaneous one, the identifiability condition is still highly dependent on the temporal structure.

Recently the concept of grouping of variables for CRL, similarly to our work, was proposed by Daunhawer et al. (2023);
Lyu et al. (2022); Morioka & Hyvarinen (2023); Sturma et al. (2023); Yao et al. (2023). Most of them, except for Morioka &
Hyvarinen (2023), especially focused on the intersections between groups. Sturma et al. (2023) showed that by considering
multiple domains (corresponding to groups in this study) sharing some latent variables, the latent variables shared across
all domains can be identified. Their causal and observational models are limited to linear models since their identifiability
theorem and estimation algorithm are in principle based on linear ICA. Daunhawer et al. (2023); Lyu et al. (2022);
Yao et al. (2023) considered more general causal and observational models; a nonlinear observational mixing for each
view/modality (corresponding to group in this study) without assuming latent causal models explicitly. Those studies showed
the identifiability of the latent variables corresponding to the intersection of the (subset of) groups. However, due to their
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less-restrictive models compared to Sturma et al. (2023), the identifiability is limited to only up to block(intersection)-wise
transformations. Lyu et al. (2022); Yao et al. (2023) also showed the identifiability of the group-specific (private) variables by
assuming that they are independent on the intersections. Daunhawer et al. (2023); Lyu et al. (2022) are limited to two group
settings, while Yao et al. (2023) extended them to more than two groups. Morioka & Hyvarinen (2023) proposed a CRL
framework called connectivity-contrastive learning (CCL) designed for (homogeneous-)sensor-network-type architectures.
In contrast to the group-based CRL frameworks mentioned above, the goal of this framework is to estimate the (causally-
related) group-specific (private) variables. Their model can be seen as a very special case of ours; 1) CCL assumes the
mixing functions fm are the same for all groups m rather than group-specific as in ours (Eq. 2; the dimensions dmS can be
also different across groups m in ours), 2) only considers component-wise relations between groups similarly to NICA (in
other words, the adjacency coefficients λmm

′

ab in Eq. 3 can have non-zero values only when a = b, rather than all pairs of
(a, b) as in ours)1, and 3) the graph is a forest, while ours can be more general and even cyclic. These indicate much higher
generality and applicability of our model (see Illustrative Examples) compared to CCL (homogeneous-sensor-network-type
architectures). We also emphasize that the estimation frameworks are very different too, though both of them can be
categorized as self-supervised (contrastive) learning; CCL uses group(node)-paired data for taking contrast, while our
G-CaRL uses group-wise-shuffled data (Eq. 5).

J. Implementation Detail for Experiments
We give here more detail on the data generation, training, and evaluation in Experiments (Section 7). The codes are available
at https://github.com/hmorioka/GCaRL.

J.1. Simulation 1: DAG

Data Generation We generated artificial data based on the generative model described in Section 3. Basically, the latent
variables s(n) were generated probabilistically for each sample n based on the pairwise BN causal model parameterized by
an adjacency matrix L (Eq. 3), and then observed through nonlinear observational mixings fm for each group m, after being
divided into M groups (Eq. 2).

The whole causal graph L was designed to be a DAG (see Supplementary Fig. 7a for some examples). More specifically;
the variables are causally ordered from 1 to DS , such that no later variable b causes any earlier variable a < b, and divided
into non-overlapping M groups in order (i.e., the first d1S variables are group-1, and the next d2S variables are group-2,
and so on). The whole causal graph L was generated separately for each sub-graphs; intra-group sub-graphs denoted as
{Lmm}m∈M, and inter-group sub-graphs {Lmm′}(m,m′). The intra-group sub-graph Lmm ∈ RdmS ×dmS was generated as a
DAG for each group m, where each variable sma was give one other randomly selected variable sma′ , a

′ < a, in the same
group m as a parent (except for the first variable in the group). We used a special structure for the first group L11, where the
number of parents (if they have) were fixed to 2 to avoid strong correlations between variables within the group, which can
happen when the variables have only one parent. The inter-group sub-graphs Lmm

′ ∈ RdmS ×dm
′
S were generated randomly

for each group-pair (m,m′), m < m′, so that each variable sma on a group m has (almost) two children on other groups m′,
and conversely, each variable sm

′

b on a group m′ has (almost) two parents on the group m. The inter-group sub-graph on
the opposite direction Lm

′m is empty (zero-matrix) due to the causal ordering. In total, each variable on the m-th group
(m ≥ 2) has almost 2m− 1 causal parents on average. The non-zero values of L were randomly drawn from [0.9, 1], and
then divided by the number of parents for each variable (column) so that the standard deviations of the variables were
approximately the same regardless of the number of parents (also see below).

The latent variables were then sampled based on the following conditional distribution for each variable sma at n-th sample:

sm(n)
a ∼ exp

∑
m′ 6=m

∑
b∈Vm′

S

−λm
′m

ba

∣∣∣sm(n)
a − α tanh(βs

m′(n)
b )

∣∣∣ , (66)

where α = 3 and β = 0.8 are scalar coefficients. This indicates that the sample sm(n)
a is randomly generated through a

(piecewise) Laplace distribution with a standard deviation modulated by the inverse of the (summation of) λm
′m

ba , and its

1Note the difference of the notation of (a, b) in our model Eq. 3 and that in Eq. 2 of Morioka & Hyvarinen (2023). The indices (a, b)
in our model indicate the variables, while those in CCL indicate the groups (called nodes in CCL). The causal graphs are considered
separately for each component in CCL (j in Eq. 2 of Morioka & Hyvarinen (2023)), while our model can even consider causal relations
between every components (variables) without assuming independence.
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average is biased by the activities of its parents, after nonlinearly transformed by tanh(·). The non-parental variables do
not directly influence sma because the corresponding coefficients λm

′m
ba are set to zeros as mentioned above. This sampling

distribution indicates that the function φ in Eq. 3 is given by,

φ(x, y) = |y − α tanh(βx)| . (67)

This function φ slightly violates the Assumption A2 of Theorem 1, so we can investigate the robustness of our theory at the
same time. A typical smooth approximation of the Laplace density, such as φ(x, y) = −

√
(y − α tanh(βx))2 + ε with

some small ε, would satisfy the assumption.

For the observation model fm : RdmS → RdmX , we used a multilayer perceptron (MLP) with L layers (excluding the input
layer) with random parameters, which takes a dmS -dimensional latent variable sm(n) and then outputs a dmX -dimensional
observation xm(n) for each group m ∈M and sample n. To guarantee the invertibility, we fixed dmS = dmX = dm and the
number of units of each layer to dm, and used leaky ReLU units for the nonlinearity except for the last layer which has
no-nonlinearity.

The number of groups (M ) was 3, the number of variables on each group (dmS = dmX = dm) was 10 for all groups (i.e., the
number of variables DS was 30 in total), the number of data points n was 216 = 65, 536, and the complexity (the number of
layers) of the observational mixing model L was 3. We also evaluated the performances with changing those parameters to
see how they affect the estimation performances (Supplementary Fig. 5a).

Training (G-CaRL) We trained the nonlinear regression function in Eq. 6 with the observed data by G-CaRL. We adopted
MLP for each hm : RdmX → RdmS (hMLP), whose outputs are supposed to represent the latent variables after the training
(Theorem 2). The number of layers was selected to be the same as that of the observation model (L), and the number of units
in each layer was 2dm except for the output (dm), so as to make it have enough number of parameters as the demixing model.
A maxout unit was used as the activation function in the hidden layers, which was constructed by taking the maximum
across two affine fully connected weight groups, while no-nonlinearity was applied at the output (last layer).

The function ψ : R2 → R in the regression function (Eq. 6) was parameterized by

wmm
′

ab ψ(x, y) = wmm
′

1ab

∣∣∣wmm′2ab y + |wmm
′

2ab |MLP(x)
∣∣∣ , (68)

where wmm
′

1ab and wmm
′

2ab are weight parameters, which are supposed to give the estimation of the causal structure (λ̃mm
′

ab ) by
(wmm

′

1ab |wmm
′

2ab |) after training (see Supplementary Fig. 7a for some examples). The nonlinear function MLP(·) : R → R
was parameterized by a learnable two-layer MLP with hyperbolic tangent (tanh) activation units. This function has enough
degree of freedom to represent the true φ (Eq. 67). The intra-group functions ψ̄m in Eq. 6 were also parameterized by MLP.

Those nonlinear functions were then trained by back-propagation with a momentum term (SGD) so as to optimize the
cross-entropy loss of LR with a regression function Eq. 6 (Supplementary Algorithm 1). The initial parameters were
randomly drawn from a uniform distribution or some non-informative constant values. The number of iterations for the
optimization depends on the complexity of the model; e.g., convergence of a three-layer model by G-CaRL took about 3
hours (Intel Xeon 3.6 GHz 16 core CPUs, 384 GB Memory, NVIDIA Tesla A100 GPU), though we continued the training
longer for safety.

Evaluation We evaluated the estimation performances of the latent variables and the causal structures by comparing the
estimations with the true values. The learning was performed for 10 runs with changing the parameters of the observation
model and the causal structures.

The estimated latent variables hm(·) were evaluated by their Pearson correlation to the true values sm across samples. Since
the order of the variable index is undetermined for each group (Theorems 1 and 2), we performed an optimal assignment of
the variable indices (σm(·) : VmS → VmS ) between the estimations and the true ones by the Munkres assignment algorithm
(Munkres, 1957), maximizing the mean absolute-correlation coefficients, for each group m. The variable-wise accuracies
(correlations) were then averaged over all variables.

For evaluations of the estimated causal structures L̃mm
′

= (λ̃mm
′

ab ) = (wmm
′

1ab |wmm
′

2ab |) (see Supplementary Fig. 7a for some
examples), we at first converted them into binary directed (not necessarily DAG) adjacency matrices by the following
procedure: we determined the causal direction on every pairs (a, b) ∈ VmS × Vm

′

S by comparing the absolute values of
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λ̃mm
′

ab and λ̃m
′m

ba ; direction is sma → sm
′

b if |λ̃mm′ab | > |λ̃m
′m

ba |, and vice versa. We then removed edges whose absolute
weights were less than a specific ratio (35% for Simulation 1) of the maximum absolute values of both L̃mm

′
and L̃m

′m for
each group-pair (m,m′). If both |λ̃mm′ab | and |λ̃m′mba | are under the threshold, sma and sm

′

b are considered to have no direct
causal relation. The obtained adjacency matrices were then compared with the (binarized) true causal structure (λmm

′

ab ),
and evaluated by F1-score (= 2 · precision · recall / (precision + recall)). This kind of hard thresholding is known to be
effective to reduce the number of false discoveries (Zheng et al., 2018), and seems to be especially important for methods
like G-CaRL which do not explicitly impose sparseness or DAG structure constraints for the estimation. The threshold-ratio
was determined separately for each experiment (simulation 1 and 2, and gene regulatory network recovery), but it was not
changed across the parameter settings or runs within each experiment. Our preliminary analyses showed that the G-CaRL
framework was not so sensitive to the selection of the threshold values, which can be seen from the ROC curves with
varying threshold (Supplementary Fig. 6). Although G-CaRL is supposed to have indeterminacy of the causal graphs with
its group-pair-wise matrix-transposes (Theorem 3), we solved that indeterminacy by giving some level of constraints to the
function ψ (Eq. 68), where the function cannot be fitted into the opposite direction by its design. Therefore we directly used
L̃mm

′
as the final guess of Lmm

′
for each group-pair (m,m′) without considering the possible matrix transpose. For solving

the possible permutation of variables, we used the same permutations σm and σm
′

estimated based on the latent variables
above. We only evaluated the inter-group causal connections, since only those are identifiable in our model (Theorem 3).

Baselines The baselines only include unsupervised frameworks with instantaneous (causal) dependency, since our
experimental setting does not include supervision, intervention, nor temporal causality. Specifically, we showed the
comparisons to three CRL frameworks MVCRL (Yao et al., 2023), CausalVAE (Yang et al. (2021) in unsupervised setting),
and CCL (Morioka & Hyvarinen, 2023), and three representation learning frameworks MFCVAE (Falck et al. (2021);
Kivva et al. (2022)), VaDE (Jiang et al., 2017; Kivva et al., 2022; Willetts & Paige, 2022) and β-VAE (Higgins et al., 2017)
(see Supplementary Material K for details). We used publicly available implementations of them. We also applied a CRL
framework Kivva et al. (2021) as well, though it failed due to the difficulty of the estimation of the mixture model in our
data. Note that we cannot apply many of the existing CRL frameworks designed for instantaneous causal models (e.g., Shen
et al. (2022)) since they usually require supervision or interventions, which are not available in this experiment. We cannot
apply the multi-domain unsupervised CRL framework proposed by Sturma et al. (2023) since the groups have no overlap
in our setting. Daunhawer et al. (2023); Lyu et al. (2022) are not applicable since they are limited to two group settings.
We do not consider frameworks based on temporal causality, such as Lachapelle et al. (2022); Lippe et al. (2022); Yao
et al. (2022a;b), since the samples are generated independently, with only instantaneous causality in this experiment. For a
fair comparison, we used the same architecture (group-wise disentanglement) for the encoders of those baselines as in the
feature extractors hm of G-CaRL.

For baselines which do not estimate the (whole or part of) causal graph by themselves (MVCRL, CCL, MFCVAE, VaDE,
and β-VAE), we additionally applied a causal discovery framework to the estimated latent variables as a post-processing,
from a wide variety of selections so as to maximize the performances (Supplementary Fig. 4); DirectLiNGAM (Shimizu
et al., 2011), NOTEARS (Zheng et al., 2018), NOTEARS-MLP (Zheng et al., 2020), GOLEM (Ng et al., 2020), PC (Spirtes
& Glymour, 1991), CAM (Bühlmann et al., 2014), and CCD (Lacerda et al., 2008). Briefly, DirectLiNGAM, NOTEARS,
and GOLEM are specialized at linear DAGs, CAM and NOTEARS-MLP are for nonlinear DAGs, and CCD assumes
existence of directed cycles (See Supplementary Material K).

We used the same evaluation criteria for those baselines to that of G-CaRL (causal direction determination, thresholding,
and variable assignments). The threshold was determined separately for each method, so as to maximize the F1-score (see
Supplementary Fig. 6 for the effect of the varying threshold). Although some causal discovery frameworks listed above
have a function to adjust the threshold so as to make the estimated graphs DAG, we instead applied the same thresholding
method to ours, without constraining the acyclicity on the final graph. For some causal discovery frameworks which
output a binarized adjacency matrix, we directly compared them with the binarized true adjacency matrices, after variable
assignments. Since some of them output graphs possibly with some bi-directional (or undetermined) edges, we gave the true
directions to them favorably.

To see the difficulty of our latent causal model for the conventional causal discovery frameworks, we also applied the causal
discovery frameworks listed above directly to the latent variables (Supplementary Fig. 4). In this case, we applied them after
standardizing the latent variables (zero-mean and unit-variance for each variable), as suggested by (Reisach et al., 2021).
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J.2. Simulation 2: Cyclic Graphs with Latent Confounders

We give here more detail on the data generation and training in Simulation 2 (Section 7.2). Evaluation methods are the same
to those in Simulation 1 (see Supplementary Material J.1),

Data Generation We generated artificial data in a similar manner to Simulation 1, though the causal graphs were designed
to be much more complex, due to the presence of directed cycles and latent confounders. Basically, we firstly generated
latent variables with twice of the target size of variables with possible cycles, and then simply masked half of them as
unobservable variables (latent confounders) alternately for each group; there are 10 observable (non-confounder) variables
and 10 latent confounders for each group m (dmS = 10, D = 30 for observable variables).

The whole causal graph (including latent confounders) was generated separately for each group-pair as in Simulation 1, but
here without considering the causal order. The intra-group sub-graphs Lmm was generated randomly so that each variable
sma has one other randomly selected variable sma′ , a

′ 6= a, in the same group as a parent. The inter-group sub-graphs Lmm
′

were generated randomly for each group-pair (m,m′) so that each variable sma on a group m has two children on other
groups m′, and conversely, each variable sm

′

b on a group m′ has (almost) two parents on the group m. And similarly for
the opposite direction Lm

′m. At this point, each variable is supposed to have 2M − 1 causal parents (including the latent
confounders). The non-zero values of L were randomly drawn from [0.9, 1].

The latent variables were then sampled based on the following conditional distribution for each variable sma at n-th sample:

sm(n)
a ∼ exp

 ∑
m′ 6=m

∑
b∈Vm′

S

− λm
′m

ba

|pa(sma )|

(
s
m′(n)
b + |pa(sma )|Relu(sm(n)

a )
)2 , (69)

where pa(sma ) is the set of parents (including latent confounders) of variable sma , deduced from the adjacency matrix,
|pa(sma )| is the number of parents, and Relu(x) = max(0, x) is a rectified linear unit. This indicates that the activity
s
m(n)
a is randomly generated through a Gaussian distribution with a standard deviation modulated by the inverse of root

of summation of λm
′m

ba , and its average is negatively biased by the positive-, but not by negative-, activities of its parents
(nonlinear inhibitory connection). The non-parental variables do not directly influence sma because the corresponding
coefficients λm

′m
ba are zeros as mentioned above. The inverse-scaling of λm

′m
ba by |pa(sma )| was used so that the (conditional)

standard deviations of variables were approximately the same regardless of the number of parents. This sampling distribution
indicates that the function φ in Eq. 8 is given by, with a simple calculation,

φ(x, y) = yRelu(x). (70)

Since this causal graph can have a directed cycle, we generated the data realizations based on Gibbs sampling.

After generating the latent variables, we masked half of the variables as latent confounders alternately. Since each variable
needs to be causally related to at least one of the variables on some other group (Assumption A1), we generated the causal
graph under a constraint that each variable sma has one observable child and one observable parent on all of the other groups
m′ 6= m after the masking, in the graph generation above.

We used MLPs for the observation models fm : RdmS → RdmX , as in Simulation 1.

The number of groups (M ) was 3, the number of the observable variables was 10 for all groups (i.e., dmS = dmX = dm = 10;
the number of variables DS was 30 in total, and the number of latent confounds was also 30), The number of data points
n was 220, and the complexity (the number of layers) of the observational mixing model L was 3. We also evaluated the
performances with changing those parameters to see how they affect the estimation performances (Supplementary Fig. 5b).

Training (G-CaRL) We train the nonlinear regression function in Eq. 6 with the observed data by G-CaRL. The model
is basically the same as that used in Simulation 1, except for the regression function. The function ψ : R2 → R in the
regression function (Eq. 6) was parameterized by

ψ(x, y) = ymax(amm
′

1 (x− bmm
′

1 ), amm
′

2 (x− bmm
′

2 )) (71)

with some scalar parameters amm
′

1 , bmm
′

1 , amm
′

2 and bmm
′

2 . This is based on the idea of maxout unit, and has enough degree
of freedom to represent the causal effect function φ (Eq. 70). The intra-group functions ψ̄m were parameterized by MLP.
The weight parameters wmm

′

ab in the regression function (Eq. 6) are supposed to give the estimation of the causal structure
(λ̃mm

′

ab ) after training (Theorem 3; see Supplementary Fig. 7b for some examples).

35



Causal Representation Learning Made Identifiable by Grouping of Observational Variables

J.3. Recovery of Gene Regulatory Network

We used synthetic single-cell gene expression data generated by SERGIO (Dibaeinia & Sinha, 2020), where each gene
expression is governed by a stochastic differential equation (SDE) derived from a chemical Langevin equation, with
activating or repressing causal interactions with the other genes. The gene expression data generated by SERGIO were
shown to be statistically comparable to real experimental data (Dibaeinia & Sinha, 2020). We used the same parameters for
the differential equations as in (Dibaeinia & Sinha, 2020), but changed the hill coefficient from 2 to 6 to make the causal
relations more nonlinear.

The causal graph was designed to be a DAG (as required of SERGIO) similarly to Simulation 1, but with latent confounders
similarly to Simulation 2 (Supplementary Fig. 7c shows examples). More specifically, the intra-group sub-graphs Lmm was
generated randomly in same way used in Simulation 1, while the inter-group sub-graphs Lmm

′
were generated randomly for

each group-pair (m,m′) in the same way used in Simulation 2, but only for the group pairs m < m′. To make almost all
genes have children on some other group, we designated the last gene of each group m < M as the leaves (have no children),
and connected genes on the last group (group-M ) to those genes as parents. The number of variables (genes) including
the latent confounders was fixed to 60, we then masked half of them as the latent confounders, and divided them into 3
groups (i.e., M = 3, and dmS = 10, D = 30 for non-latent-confounder variables). The maximum contributions (weights of
edges) from parental genes to target genes were set to 0.25 for all edges. We set half of the parents as activating, and the
others as repressing for each gene. See Supplementary Fig. 7c for some example. The genes (variables) which do not have
any parents were assigned as master regulators (MRs), and controlled by basal production rates, randomly selected from
[0.25, 0.75]. We fixed the number of samples to 218.

For the observation model f : RdmS → RdmX , we used a multilayer perceptron (MLP) with L layers (excluding the input
layer) similarly to Simulations 1 and 2 because there is no known realistic settings of the observational mixings in this kind
of gene expression data, to the best of our knowledge. The complexity (the number of layers) of the observational mixing
model L was fixed 3, similarly to Simulations 1 and 2.

The function ψ : R2 → R in the regression function (Eq. 6) was parameterized as

ψ(x, y) = y

K∑
k=1

ak tanh(bkx+ ck), (72)

where K = 5 is a model order, ak, bk, and ck are trainable scalar parameters. The weight parameters wmm
′

ab in the
regression function (Eq. 6) are supposed to give the estimation of the causal structure (λ̃mm

′

ab ) after training (Theorem 3; see
Supplementary Fig. 7c for some examples).

J.4. High-Dimensional Image Observation

Data Generation We additionally evaluated our framework by using high-dimensional image-generation process as the
observational model. We especially used 3DIdent image dataset (Zimmermann et al., 2021). The dataset is compose of
images of an object (tea pot) rendered with image-size 224× 224, conditioned on ten continuous factors (called hereafter
image-factors; see Supplementary Fig. 8); three dimensional positions of the object (PosXobj, PosYobj, and PosZobj), three
dimensional rotation of the object in Euler angles (RotXobj, RotYobj, and RotZobj), the color of the object and the ground of
the scene (Colorobj and Colorbg), and the position and color of the spotlight (Poslight and Colorlight).

We firstly generated candidates of the latent causal variables based on the same way used in Simulation 2 (cyclic graphs
with latent confounders), especially with fixing the number of latent variables to 10 (there also exist 10 additional latent
confounders) for all group (see Supplementary Fig. 8 for example). We then picked a set of ten image-factors closest to
the generated ten dimensional variables (after scaling-normalization) from the dataset, and then adopted it as the actual
latent causal variables (sm) and the corresponding image as the observational image (xm), for each group m. Note that we
cannot find the image-factors which exactly matches the generated ten dimensional variables since the number of images are
limited (250,000) in this dataset. This indicates possible misspecification of the causal model, which enables the evaluation
of the robustness of G-CaRL. We fixed the number of groups M to 3, and the number of data points n to 220.

Training (G-CaRL) Since the observations are high-dimensional images, we used here convolutional neural networks as
the feature extractors {hm}. More specifically, we used ResNet-18 (He et al., 2016) additionally with hyperbolic tangent
units and a fully-connected layer on top of it, which encodes an input image into 10-dimensional features. Those 10 features
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are supposed to represent the original image-factors after the training. We trained a single feature extractor shared across
all groups since the observational models are supposed to be the same across groups in this experiment. The learning was
performed for 10 runs with changing the parameters of the causal structures.

Evaluation Due to the much higher nonlinearity of the observational model compared to the former simulations, we
slightly changed the evaluation criteria, which is the same for the baselines too: 1) for evaluating the estimation of the latent
variables, we used Spearman’s rank correlation instead of Pearson correlation, and 2) for evaluating the causal graph, we
optimally chose either the original estimate or its matrix-transpose so as to maximize the F1-score, since the estimated
causal graph could be flipped (matrix-transposed) from the true one sometimes as suggested by Theorem 3, which did not
happen in the previous simulations. We found that only considering a matrix-transpose of the whole causal graph was
enough, rather than group-pair-specific matrix transposes as suggested in Theorem 3. The other evaluation methods are the
same to those in Simulation 1 and 2.

K. Details of Baselines
CCL Connectivity-contrastive learning (CCL; Morioka & Hyvarinen (2023)) is a CRL framework based on self-supervised
learning, whose generative model can be seen as a special case of ours. CCL assumes a sensor-network-type generative
model with homogeneous observations, where multidimensional observations are obtained for each group (called node
in Morioka & Hyvarinen (2023)) from latent components (corresponding to latent variables in this study), which are
causally-related across groups while mutually-independent across components. More specifically, the observational model
is given by

x =
[
x1, . . . , xM

]
=
[
f(s1), . . . , f(sM )

]
, (73)

with a group-common (node-homogeneous) observational mixing f : Rd → Rd, and the joint distribution of the latent
causal variables s are assumed to be factorized as

p(s) ∝
∏
a∈VS

 ∏
m∈M

exp
(
φ̄ma (sma )

) ∏
m6=m′

exp
(
λmm

′

a φa(sma , s
m′

a )
) , (74)

with some (component-specific) potential functions φ̄ma : R→ R and φa(sma , s
m′

a ) : R× R→ R, and (component-wise)
adjacency coefficients between groups {λmm′a }(m,m′). They then showed the identifiability of this model as a causal
model with some causal structural assumptions, such as asymmetricity of the causal graph {λmm′a }(m,m′) and the potential
functions φa. Although their models somewhat resembles to ours, they can be seen as a very special case of ours (see
Section 8). They also proposed a self-supervised learning framework called CCL, which estimates the latent components
and the causal graph simultaneously, based on a multinomial logistic regression (MLR), whose pretext task is to well predict
the group-pair label of group-paired observations, for every group-pairs and samples. Note that the estimation framework is
much different from ours, though both of them are categorized as self-supervised learning.

In our experiment, since CCL can consider only the diagonal part of the adjacency matrix Lmm
′

for each group-pair (m,m′)
(compare Eq. 74 to our model Eq. 3; also see Supplementary Material I), we applied a causal discovery algorithm to the
estimated latent components as a post-processing for reconstructing the whole causal graph.

MVCRL Multi-view CRL (MVCRL; Yao et al. (2023)) is a CRL framework targeting multi-view data, based on alignments
of the (embeddings of) intersections of the latent variables (called content) between views (for the sake of consistency, we
hereafter call views as groups). Some multimodal representation learning frameworks can be seen as a special case of their
work (Ahuja et al., 2022a; Daunhawer et al., 2023; Gresele et al., 2020; von Kügelgen et al., 2021; Locatello et al., 2020). It
assumes group-wise observational model

xm = fm(sm), (75)

for each of the groups m ∈M, similarly to ours (Eq. 2), while it considers overlaps of the latent variables (and possibly
those of the observations) for (some) subsets of groupsM. The authors then showed that sets of latent variables, each of
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which is the intersection of some subset of groups (called content), can be block-identified. By additionally assuming that the
non-shared (view-specific, called style) variables are independent on the shared variables (content), the non-shared variables
are also block-identifiable. MVCRL seeks to learn the embeddings of the latent variables by optimizing the alignments of
the contents shared between views.

In our experiments, although our data do not have contents variables shared across groups, we considered that all group-
specific variables sm are the contents to be aligned for all subsets of groups in the estimation by MVCRL. This should be
practically better than explicitly considering them as group-specific (independent) variables, since they should have some
similarity (though not equivalence like content variables) between groups due to their inter-group causal relations in our
settings.

CausalVAE CausalVAE (Yang et al., 2021) is a CRL framework based on VAE with some causal structural assumptions
on the latent embedding. The authors showed that some causal assumptions, such as linear directed acyclic causal graphs,
and (weak) supervision on the latent variables give the identifiability of the model up to some indeterminacy. We especially
used its unsupervised setting (CausalVAE-unsup, (Yang et al., 2021)) as a baseline, which is composed of an encoder and a
decoder, as in vanilla-VAE, and also a Causal Layer to represent the causal relations of the latent variables. More specifically,
the input signals (observations x) passes through an encoder to obtain independent exogenous factors ε ∼ N (ε; 0, I), which
are passed through a Causal Layer to generate causal variables s via a linear SEM as

s = ATs + ε = (I−AT)−1ε, (76)

where A is a matrix parameter representing an adjacency matrix, which are then taken by the decoder to reconstruct the
original observation x. CausalVAE estimates the model by optimizing the evidence lower bound (ELBO), similarly to
vanilla-VAE, but additionally with regularization on DAG-ness of A.

β-VAE β-VAE (Higgins et al., 2017) is a representation learning framework based on the vanilla-VAE (Kingma & Welling,
2014), but with an adjustable regularization parameter β on the distribution of the embeddings. The generative model is the
same as the vanilla-VAE; the observations x are obtained from the latent variables s through an unknown observational
mixing f as

x = f(s) + ε (77)

with observational noise ε, and the joint distribution of the latent variables s are assumed to be the standard multivariate
Gaussian distribution

p(s) = N (s; 0, I), (78)

whereN (·; 0, I) is the Gaussian density with zero-mean and unit diagonal covariance, which implies that the latent variables
are assumed to be mutually orthogonal. β-VAE additionally has a regularization parameter β for adjusting the strength of
the KL-divergence regularization controlling the discrepancy between the encoded latent variable distributions and their
priors. When β = 1, β-VAE simply leads to the vanilla-VAE.

In our experiments, we used the setting of β = 1, which actually corresponds to the original-VAE (Kingma & Welling,
2014), since it gives the best estimation performance of the latent variables.

VaDE VaDE (Jiang et al., 2017) is a representation learning framework based on VAE with Gaussian mixture priors. The
observational model is the same as the vanilla-VAE (Eq. 77), while the joint distribution of the latent variables is assumed to
be given by a Gaussian mixture model as

p(s) =

K∑
k=1

πkN (s;µk,Σk),

K∑
k=1

πk = 1, πk > 0, (79)

where N(·;µk,Σk) is the Gaussian distribution with mean vector µk and covariance matrix Σk of the k-th mixture
component. Willetts & Paige (2022) later empirically showed that the estimation of this model gives rather consistent
results across estimations, Kivva et al. (2022) then showed that the identifiability of such model can be given by additionally
assuming that f is a piecewise affine function. VaDE model can be seen as an unsupervised version of identifiable-VAE
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(iVAE; Khemakhem et al. (2020a)), where the indices of the mixture components are unknown rather than being given as an
observable auxiliary variable for all samples as in Khemakhem et al. (2020a).

In our experiments, we used the implementation by Kivva et al. (2022), and fixed the number of mixture components to be 5.

MFCVAE Multi-facet clustering variational autoencoder (MFCVAE; Falck et al. (2021)) extends the idea of VaDE (Jiang
et al., 2017) so as to jointly consider multiple aspects (facets) of clustering features hidden in the data, such as color and
shape in images. MFCVAE assumes that the observations are obtained from J multidimensional latent facets {z1, . . . , zJ}
as

x = f(z1, . . . , zJ) + ε (80)

with observational noise ε, and each facet j has its own unique clustering structure represented by a multivariate Gaussian
mixture model with Kj mixture components

p(zj) =

Kj∑
kj=1

p(kj)N (zj ;µkj ,Σkj ), p(kj) = Cat(πj), (81)

where Cat(·) denotes a categorical distribution, πj is the Kj-dimensional vector of mixing weights, and µkj and Σkj are
the mean vector and (diagonal or full) covariance matrix of the kj-th mixture component in facet j. MFCVAE then learns
clustering on multiple facets jointly, from shared (or progressively-trained ladder-architectured) latent variables in a fully
unsupervised and end-to-end manner. Kivva et al. (2022) later showed that the model is identifiable by additionally assuming
that f is a piecewise affine function.

In our experiments, we fixed the number of facets to 3. The dimension of the latent space was set to be 5 for each facet and
number of mixture components to be 25, as recommended in Falck et al. (2021).

DirectLiNGAM DirectLiNGAM (Shimizu et al., 2011) assumes SEMs with linear DAG and non-Gaussian errors. In the
first step, DirectLiNGAM finds the causal order of variables by iteratively finding a root variable by performing regression
and independence testing for each pair of variables, extracting one which is exogenous to the others, and then removing the
effect of the root variable from the other ones. DirectLiNGAM then eliminates unnecessary edges using AdaptiveLasso
(Zou, 2006), and outputs a weighted adjacency matrix.

NOTEARS NOTEARS (Zheng et al., 2018) assumes linear SEMs of DAG. It estimates a weighted adjacency matrix
by minimizing a least-squares loss in scoring DAGs with regularization terms imposing sparseness and DAG-ness of the
adjacency matrix. Since NOTEARS formulates the structure learning problem as a continuous optimization problem over
real matrices, it can effectively avoid the traditional combinatorial optimization problem (NP-hard) of learning DAGs. We
used the default parameters.

NOTEARS-MLP NOTEARS-MLP (Zheng et al., 2020) is an extension of NOTEARS (Zheng et al., 2018) to general
nonparametric DAG models. NOTEARS-MLP models variable-wise nonlinear causal functions by MLPs, which are learned
based on continuous optimization problem with regularizations for the sparseness of the MLP parameters and for DAG-ness
of the causal functions. We used the default parameters.

GOLEM GOLEM (Ng et al., 2020) is an efficient version of NOTEARS (Zheng et al., 2018), which can reduce number of
optimization iterations. GOLEM assumes linear DAGs, and performs multivariate Gaussian maximum likelihood estimation
(MLE) with a soft version of the differentiable acyclicity constraint proposed in (Zheng et al., 2018). There are two proposed
models; equal(EV) or unequal (NV) noise variances. We used EV here since the estimation performances were better than
NV. We used the hyper-parameters used in (Ng et al., 2020).

PC PC algorithm (Spirtes & Glymour, 1991) is a constraint-based method. PC algorithm firstly constructs an undirected
graph by removing edges from a fully connected graph based on independence and conditional independence tests. It then
constructs a DAG by directing the edges based on the information of separation sets and with some additional assumptions
(no new v-structures and directed cycles).
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Algorithm 1 Pseudo-code of Grouped Causal Representation Learning (G-CaRL) based on stochastic gradient descent
(SGD) optimization

Input: A set of observational data {x(n)}n, observational grouping indices {VmX }m, and hyper-parameters for SGD
optimization.

1: Initialization: Initialize the parameters of the regression function (Eq. 6) with random values.
2: repeat
3: Randomly pick some samples n (mini-batch) from the observations {x(n)} (label 1) and {x(n∗)} (label 0) (Eq. 5),

where x(n∗) are generated artificially from the original {x(n)}n by shuffling the index n over all samples separately
for each group m, indicated by VmX .

4: Update the parameters of the regression function (Eq. 6) so as to minimize the objective function (cross-entropy) of
the logistic regression, discriminating the labels 1 and 0.

5: until the objective function converges.
6: return the trained (group-wise) nonlinear feature extractors {hm(·)} representing the latent causal variables (Theorem 2),

and the weight parameters {wmm′ab } representing the causal structures (Theorem 3).

GES Greedy equivalent search (GES) (Chickering, 2003) algorithm is a score-based method. GES starts with an empty
graph and iteratively adds directed edges such that the improvement of Bayesian score (BIC score) is maximized, until no
single edge addition increases the score (forward phase). GES then iteratively removes edges until no more improvements in
the score can be made by single-edge deletions (backward phase).

CAM Causal additive model (CAM) (Bühlmann et al., 2014) assumes SEMs specified by DAG and additive Gaussian
errors, which is an extension of linear SEMs by allowing for variable-wise scalar nonlinear functions (Collorary 31 in
(Peters et al., 2014)). CAM at first estimates the causal order of variables based a greedy search algorithm so as to maximize
the likelihood, then non-relevant edges were removed (pruning) by a sparse regression technique implemented based on
significance testing of covariates.

CCD Cyclic causal discovery algorithm (CCD) (Lacerda et al., 2008) assumes that the data are causally sufficient (no
latent variables), while possibly includes directed cycles. CCD extracts cyclic models using conditional independence tests,
as with PC (Spirtes & Glymour, 1991). The output of CCD algorithm is a cyclic partial ancestral graph (PAG), which is a
graphical object that represents a set of causal Bayesian networks that cannot be distinguished by the algorithm.
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Figure 4. Comparison of a set of causal discovery frameworks (rows in each panel; measured by F1-score) applied to the baseline
representation learning frameworks (rows), or directly to the latent variables (the last row: Latent; omitted in d since it is the same as b).
We discarded some causal discovery frameworks (shaded by grey) on some panels since they did not converge within practical calculation
time. (a) Simulation 1, (b) Simulation 2, (c) gene regulatory network recovery, and (d) high-dimensional image observations. Only the
best performance for each panel was reported in Fig. 2.
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a Simulation 1: DAG
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b Simulation 2: Cycles and latent confounders

Figure 5. Estimation performances of the latent variables (Pearson correlation) and the causal structures (F1-score) by the proposed
framework G-CaRL, but different settings of (Left) the complexity of the observation models (the number of MLP-layers L of the
observation function f ), (Middle) the number of groups (M ), and (Right) the number of variables (DS ), with changing the number of
samples n. Simulation 1 (basic DAG). (b) Simulation 2 (cycles and latent confounders). The values are the averages of 10 runs for each
setting, and the shaded regions show the standard deviations. Fig. 2a corresponds to the case L = 3, M = 3, DS = 30, and n = 216 in
a, and Fig. 2b corresponds to the case L = 3, M = 3, DS = 30, and n = 220 in b.
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Figure 6. Illustration of the effect of the threshold for each method on (a) Simulation 1, (b) Simulation 2, (c) the gene regulatory network
recovery task, and (d) the high-dimensional image observations. The upper panels show the results with unknown observational mixings
(CRL), and lower panels show the results when we applied the causal discovery frameworks directly to the latent variables (causal
discovery; omitted in d since it is the same as b). For each panel, ROC curve shows false positive rate (FPR) and true positive rate (TPR)
with varying level of threshold, from 0% to 100% with interval of 5%, for each method. The values are the averages of 10 runs for each
threshold. In upper panels, we only showed the curves for the (combinations of) frameworks in Fig. 2 which give wighted adjacency
matrices and thus require thresholding. This result shows that G-CaRL was not so sensitive to the selection of the threshold values.
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Figure 7. Example of the true causal structures (weighted adjacency matrices) and the estimations by G-CaRL (before causal direction
determination and thresholding) in Simulation 1 (a), Simulation 2 (b), and the gene regulatory network recovery task (c). G-CaRL only
identifies the inter-group-parts of the adjacency matrix, and thus the block-diagonal-parts are left unknown.
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Figure 8. Evaluation of G-CaRL on high-dimensional image observations. We fixed the number of groups to M = 2 in this figure for
brevity. (a) Example of the true causal structures (weighted adjacency matrices) with high-dimensional image observations, and (b)
the estimation by G-CaRL (the directed graph visualization is after applying thresholding). Each group has ten image-factors (latent
causal variables; white circles) conditioning the observation images, and additional ten latent confounders (gray circles) affecting the
other variables. The ten image-factors are composed of XYZ positions of the object (PosXobj, PosYobj, and PosZobj), three dimensions
describe the rotation of the object in Euler angles (RotXobj, RotYobj, and RotZobj), the color of the object and the ground of the scene
(Colorobj and Colorbg), and the position and color of the spotlight (Poslight and Colorlight). The latent confounders do not have such
physical interpretation, but still affect the observation images indirectly. What we aim to estimate are the causal edges colored by red
in a, connecting the image-factors between groups, which are observable as high-dimensional images. G-CaRL only identifies the
inter-group-parts of the adjacency matrix, and thus the intra-group graphs are left unknown. The causal graphs related to the latent
confounders are also left unknown since the latent confounders are not observable.
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