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Abstract

KL-regularized reinforcement learning (RL) is a
popular alignment framework to control the lan-
guage model responses towards high reward out-
comes. We pose a tokenwise RL objective and
propose a modular solver for it, called controlled
decoding (CD). CD exerts control through a sep-
arate prefix scorer module, which is trained to
learn a value function for the reward. The pre-
fix scorer is used at inference time to control the
generation from a frozen base model, provably
sampling from a solution to the RL objective. We
empirically demonstrate that CD is effective as a
control mechanism on popular benchmarks. We
also show that prefix scorers for multiple rewards
may be combined at inference time, effectively
solving a multi-objective RL problem with no ad-
ditional training. We show that the benefits of
applying CD transfer to an unseen base model
with no further tuning as well. Finally, we show
that CD can be applied in a blockwise decoding
fashion at inference-time, essentially bridging the
gap between the popular best-of-K strategy and
tokenwise control through reinforcement learn-
ing. This makes CD a promising approach for
alignment of language models.

1. Introduction
Generative language models have reached a level where they
can effectively solve a variety of open-domain tasks with lit-
tle task specific supervision. Hence, it is crucial to ask: how
can we align machine generated content to rewards when
we have no control over the pre-trained representations in a
generative language model?
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Controlling language model responses towards high reward
outcomes is an area of active research in the literature. We
divide the existing alignment methods into two categories
that differ significantly in real-world deployment: generator
improvement and inference-time add-on solutions.

Generator improvement solutions, such as KL-regularized
PPO (Christiano et al., 2017; Ouyang et al., 2022), direct
preference optimization (DPO) (Rafailov et al., 2023), se-
quence likelihood calibration (SliC) (Zhao et al., 2022), and
identity preference optimization (IPO) (Azar et al., 2023)
update the weights of the language model to align it with
a reward model. They are efficient for inference but offer
little configurability on the reward.

A simple and effective inference-time add-on solution is
best-of-K (Nakano et al., 2021; Stiennon et al., 2020; Tou-
vron et al., 2023), where K i.i.d. samples are drawn from a
base model, ranked based on a reward, and the highest rank-
ing one is selected. Other methods, such as FUDGE (Yang
& Klein, 2021) or COLD (Qin et al., 2022), offer a prefix
scorer that is used at inference-time to control a frozen base
model response towards high-reward outcomes. Due to their
modularity of design which leaves the base model frozen,
these methods offer inference-time configurability. Our goal
is to propose a learning framework for such methods.

Our contributions are summarized below.

• We formalize a modular alignment method, controlled
decoding (CD), to solve a KL-regularized RL objective.
CD learns a prefix scorer for the reward that is used to
steer the generation from a partially decoded path.

• We show that two variants of CD, namely CD-
FUDGE (Yang & Klein, 2021) and CD-Q (ours), provably
lead to sampling from a solution to the RL objecive.

• We propose blockwise CD where the prefix scorer is used
to select the best-of-K paths for a decoded block of M
tokens. This bridges the gap between the sequence-level
best-of-K and tokenwise RL methods.

• We empirically show that CD offers significant improve-
ment over existing controlled generation/decoding solu-
tions on popular benchmarks.

• We show that CD prefix scorer transfers to an unseen base
model with no further training.
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• We demonstrate the modularity of CD at inference-time
to integrate multiple rewards into a single prefix scoring
rule, and applying it to an unseen base model.

2. KL-Regularized Reinforcement Learning
Let x be a prompt (consisting of several tokens) and let
y = yT := [y1, . . . , yT ] represent a response that is a con-
catenation of T tokens. Here each token yt ∈ Y , where Y
represents the alphabet (vocabulary). Let πref denote a pre-
trained language model (LM) that is used to draw samples in
an autoregressive manner. In particular, we use πref(·|[x, yt])
to denote the distribution that the LM induces on the next
token on alphabet Y given the input that is the concatenation
of the prompt x and a partially decoded response yt of t
tokens. Let r([x,y]) be a scalar valued reward function
bounded from above, e.g., the log-likelihood of a scoring
function for the event that the response y in context x is
deemed safe. We define the following tokenwise reward:

R([x, yt]) :=

{
0 yt 6= EOS
r([x, yt]) yt = EOS

,

where EOS represents the end of sequence. Here, we only
give a reward once decoding has completed and otherwise
no reward is assigned to a decoding path. We then define
the value function associated with the reward as:

V ?([x, yt]) := Ez1,z2,...∼πref

∑
τ≥0

R([x, yt, zτ ])

 . (1)

The value function captures the expected cumulative reward
of a fully decoded response when decoding continues from
a partially decoded sequence yt, using the base language
model πref.

For a given [x, yt] such that yt 6= EOS, we define the advan-
tage function of a decoding policy π as:

A([x, yt];π):=Ez∼π
{
V ?([x, yt, z])− V ?([x, yt])

}
=
∑
z∈Y

π(z|[x, yt])V ?([x, yt, z])− V ?([x, yt]).

Note that the advantage of the base policy is given by
A([x, yt];πref) = 0 (law of total probability), and hence
our goal is to choose π to deviate from πref to achieve a
positive advantage over the base policy.

Let D([x, yt];π) be the tokenwise KL divergence between
a decoding policy π and a frozen base language model πref
for decoding the next token after [x, yt] for yt 6= EOS:

D([x, yt];π) := KL(π(·|[x, yt])‖πref(·|[x, yt]))

=
∑
z∈Y

π(z|[x, yt]) log
(
π(z|[x, yt])
πref(z|[x, yt])

)
,

where KL(·‖·) denotes the KL divergence (also known as
relative entropy). Recall that our goal is not to deviate too

much from the base policy (measured in KL divergence)
because that is expected to lead to the degeneration of the
language model in other top-line performance metrics.

To satisfy these conflicting goals, we use the KL-regularized
RL objective which is defined as:

Jλ([x, y
t];π) := λA([x, yt];π)−D([x, yt];π), (2)

where λ ∈ R≥0 trades off reward for drift from the base
language model. Note that Jλ([x, yt];π) is concave in π.
This is because A([x, yt];π) is linear in π and D([x, yt];π)
is convex in π. The first term denotes the advantage term
for the reward that will be eventually obtained once the
response is fully decoded. The second term is a language
model (LM) negative reward signal penalizing the policy π
for drifting too far from the initial policy πref.

We let π?λ(z|[x, yt]) denote the decoding policy function
that maximizes (2). Note that at the extreme of λ = 0,
we have π?0(z|[x, yt]) = πref(z|[x, yt]) which achieves
D([x, yt];πref) = 0 and A([x, yt];πref) = 0. We are in-
terested in characterizing the tradeoff curves between A and
D achieved by λ ∈ R≥0 to increase A([x, yt];π) at the cost
of an increased KL penalty, D([x, yt];π). Our main result
in this section is the following characterization of π?λ.
Theorem 2.1. The optimal policy for the RL objective is
unique and is given by

π?λ(z|[x, yt]) ∝ p(z|[x, yt])eλV
?([x,yt,z]). (3)

This result resembles that of (Korbak et al., 2022), with the
main difference being the controller is tokenwise here. Re-
call that our goal is to develop an inference-time alignment
solution that keeps the language model frozen. Theorem 2.1
gives us a way to do that by combining logits from a frozen
LM and those of a value function.

Remark. The tokenwise RL formulation here is more
restrictive than the sequence-level RL, used to design
RLHF and DPO. However, we will compare with them
on sequence-level expected reward vs KL tradeoffs.

3. Controlled Decoding
Our goal is to learn Vθ([x, yt]) parameterized by θ to match
V ?([x, yt]) through the following L2 objective function:1

L?(θ) = Ex∼µEy∼πref(·|x)`
?(x,y;θ),

where `?(x,y;θ) =
1

2

∑
t∈[|y|]

(Vθ([x, y
t])− V ?([x, yt]))2,

where µ is a distribution over training prompts. Next, we
present two methods to learn the prefix scorer, and two ways
to use it at inference time for control.

1It may be possible to devise a more effective distillation ob-
jective through Fisher information shaping or other divergences.
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3.1. Training the prefix scorer

CD-FUDGE (Yang & Klein, 2021). Given x ∼ µ, let y =
([y1, . . . , yT ]) be a stochastic draw from the base model πref.
Consider r([x,y]) to be the stochastic reward of the fully
decoded completion, y. Let

LF (θ) = Ex∼µ`F (x,y;θ), s.t. y ∼ πref, (4)

where `F (x,y;θ) =
1

2

∑
t∈[|y|]

(
Vθ([x, y

t])− r([x,y])
)2
.

Now we state our main result on CD-FUDGE, which is
formally stated and proved in Appendix C, Theorem C.2.
Theorem 3.1 (informal). Under regularity assumptions, ap-
plying SGD on LF converges to a stationary point of L?(θ).

This is a remarkable result. It states that if the dataset
used for training the prefix scorer in FUDGE (Yang &
Klein, 2021) is obtained by rolling out the base model, then
FUDGE prefix scorer may be used to solve the RL problem
in Eq. (2). Next, we state our proposal which is an off-policy
solver without the need for rolling out the base model.

CD-Q. Notice the following Bellman identity (Sutton &
Barto, 2018):

V ?([x, yt]) =

{
Ez∼πref(·|[x,yt])V

?([x, yt, z]), yt 6= EOS
r([x, yt]), yt = EOS

.

We present a simple solution to train a prefix scorer. Inspired
by the policy evaluation updates in DQN (Mnih et al., 2013),
we optimize the following loss function:

LQ(θ) = Ex∼µ`Q(x,y;θ), (5)

where `Q(x, yt;θ)=
1

2

∑
t∈[|y|]

(
Vθ([x, y

t])− v̇t
)2
,

vt =

{∑
z∈Y πref(z|[x, yt])Vθ([x, yt, z]) yt 6= EOS

r([x, yt]) yt = EOS
,

and where v̇ implies a stop gradient over v (even though it
inherently depends on θ).

The abovementioned learning procedure for the prefix scorer
may be performed over an off-policy dataset, scored of-
fline using the reward for all [x,y] (Sutton & Barto, 2018).
On the other hand, training the prefix scorer requires (on-
demand) access to the base language model πref to compute
the target vt in (5). A simple modification of this procedure
can be shown to be provably convergent (Wang & Ueda,
2022).2 We also remark that many other improvements over
DQN have been proposed over the years, many of which
amount to Rainbow (Hessel et al., 2018). Exploring how to
improve CD-Q using these techniques is an interesting are
for future work.

2Note that one may improve on the proposed solver (cf. (Hessel
et al., 2018)), but we present the simplest form for the sake of
clarity, which already gives good empirical performance.

3.2. Inference-time sampling strategies

Equipped with the prefix scorer, we use it in two different
ways at inference time to align the base model.

Tokenwise sampling. We use the prefix scorer for token-
wise sampling per Theorem 2.1. In this case, given context
x and a partially decoded sequence yt, we obtain the logits
of πref([x, y

t, z]) and Vθ([x, yt, z]) for all z from the base
policy and the prefix scorer. Then, we linearly combine the
logits to sample from the following distribution:

z ∼ πθ(·|[x, yt]) (6)

where πθ(z|[x, yt]) ∝ πref(z|[x, yt])eλVθ([x,y
t,z]).

An illustration of tokenwise sampling using CD prefix scorer
is presented in Figure 1, where the prefix scorer is used to
downweight decoding of tokens that may lead to undesirable
outcomes. Note that tokenwise sampling is the most straight-
forward way to use the prefix scorer, which requires one
call to the prefix scorer per decoding of each token, and was
also used by Yang & Klein (2021).

Will this paper get accepted?

This paper will be

liked average very high high

disliked high low average

reviewed high average average

hated very high very low average

LM 
likelihood

sentiment 
prefix score

aligned 
score

Figure 1. An illustration of tokenwise sampling using CD prefix
scorer where the alignment goal is to decode sequences with pos-
itive sentiment. The sentiment score is used to shape the overall
aligned score for sampling, which results in downweighting of the
high likelihood tokens that might result in negative sentiment and
upweighting of tokens that lead to positive sentiment.

Blockwise best-of-K. Next, we present a sampling strat-
egy that combines RL with best-of-K. We sample K i.i.d.
continuation blocks of length M from the base policy, and
accept the continuation with the highest prefix score and
reject the rest:

zM := arg max{
zM
(k)

}
k∈[K]

Vθ([x, y
t, zM(k)]) (7)

where
{
zM(k)

}
k∈[K]

i.i.d.∼ πref(z
M |[x, yt]),

and continue until a candidate with EOS has been accepted.

An illustration of the blockwise sample and rerank is pre-
sented in Figure 2, where the prefix scorer is used to rerank
M (=4) decoding paths and choose the candidate with the
most positive sentiment.

3



Controlled Decoding from Language Models

Will this paper get accepted?

This paper

will be liked by very high

will receive diverging reviews low

may be liked by average

is not getting into very low

sentiment 
prefix score

Figure 2. An illustration of blockwise best-of-K using CD prefix
scorer where the alignment goal is to decode sequences with posi-
tive sentiment. First, K(=4) continuations of length M (=4) tokens
are sampled from the base LM, and scored using the prefix scorer.
The block of tokens with the highest prefix score is selected as the
continuation, and the process is continued.

Blockwise vs tokenwise control. Note that similar to best-
of-K, blockwise CD is not designed to optimally solve the
sequence level KL-regularized objective that is the objec-
tive of RLHF methods, such as PPO and DPO. However,
empirically we observe that best-of-K often results in bet-
ter reward-KL tradeoffs, e.g., (Gao et al., 2023, Figure 1)
and (Rafailov et al., 2023, Figure 3). In fact, best-of-K is
shown to be almost sampling from the optimally aligned
distribution through KL-regularized RL (Yang et al., 2024).
This motivates the exploration of blockwise control tech-
niques that rely on the strength of best-of-K.

Blockwise control vs Best-of-K. In terms of inference
throughput, blockwise CD is similar to the best-of-K for the
same value of K. However, it offers two major advantages:

1. The decoding latency here is only M tokens, whereas
the best-of-K method needs to fully decoded all K se-
quences before it can select one to be served. If the
sequence length is large, e.g., when the prompt is to
write an essay, this would not be tolerated. This can
open up new applications such as streaming.

2. To achieve high rewards, best-of-K might require un-
reasonably high values of K. Blockwise CD enables
similar reward values with significantly smaller K. We
experimentally show the same reward level as best-of-K
with up to 10x smaller K.

4. Experimental Setup
We examine performance of the controlled decoding models
with our proposed inference-time sampling strategies across
two tasks. For all experiments, unless otherwise specified
the base generative model we use is PaLM 2-XXS (Gecko),
and the prefix scorer is also finetuned from PaLM 2-XXS.

4.1. Datasets

DSTC8 Reddit conversations corpus (Microsoft, 2019)
is a dataset containing millions of multi-turn conversations

from Reddit threads. We use this dataset to optimize re-
sponse length.

Anthropic HH (Bai et al., 2022) is a helpfulness and harm-
lessness benchmark where the assistant tries to complete
next turn in a conversation with a human. We use this to
train a reward model that learns human preferences on the
helpfulness and harmlessness of the generation.

TL;DR (Stiennon et al., 2020) is a dataset of Reddit posts
where each example has information about the post, two
summarization candidates, and a preference from a human
annotator. We use this to train a reward model that learns
summarization preference.

4.2. Reward Models
Response length. We used the length of the response as a re-
ward. In this case, we used rlength([x, y

T ]) = log(T/Tmax),
where Tmax = 1024.

Helpfulness and harmlessness. We trained a reward model
(Reward-XXS) by finetuning PaLM 2-XXS using pairwise
preference data of Anthropic HH (Bai et al., 2022) via the
Bradley-Terry (BT) model and selected the checkpoint with
the highest eval accuracy. Here, rHH([x, y

T ]) is the log-
probability of the resulting pointwise HH classifier.

Summary quality. Similarly, we trained a PaLM 2-XXS
reward model using the pairwise preferences on summary
quality (Stiennon et al., 2020) using the BT model, and
picked the checkpoint with the highest eval accuracy.

4.3. Baselines
In addition to CD-Q and blockwise CD-Q, we consider the
following baselines.

CD-FUDGE (Yang & Klein, 2021) is trained in the same
way as CD-Q with the difference being the target in (5)
replaced by the explicit reward received in a given decoding
path from the dataset. For best performance, CD-FUDGE
is trained on a dataset where the responses are obtained by
rolling out the base model. Additionally, we also consider
the blockwise best-of-K variant of FUDGE (Yang & Klein,
2021), named blockwise CD-FUDGE, which is inspired by
the proposed blockwise CD-Q method in this paper.

KL-regularized PPO (Ouyang et al., 2022) solves a KL-
regularized RL problem using PPO (Schulman et al., 2017).

DPO (Rafailov et al., 2023) is trained on a pairwise prefer-
ence dataset. For a more fair comparison, we used online
DPO by rolling out the policy and sampling two generations
and optimizing the DPO objective on their explicit rewards.

IPO (Azar et al., 2023) is trained in a similar way to DPO
except that the objective bakes in new regularization to avoid
some of the degeneration issues of DPO. Similarly to DPO,
we use online IPO in this paper.
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Best-of-K is an inference-time alignment solution where
K responses are drawn from the base model, ranked using
the reward, and the best one is selected.

4.4. Evaluation Metrics

KL divergence. We measure the KL divergence
between the aligned policy and the base policy,
Ex∼µEy∼π(·|x){log π(y|x) − log πref(y|x)}, as a proxy
for deterioration of model capabilities and reward overop-
timization. For CD-Q and CD-FUDGE, we sweep the
strength of the prefix scorer to control KL(π‖πref). For
PPO, DPO and IPO, we sweep the strength of the (im-
plicit) KL-regularizer to achieve the same goal. Finally, for
best-of-K, blockwise CD-Q, and blockwise CD-FUDGE,
we do this by sweeping K. For best-of-K, we use the
upper bound formula on KL divergence KL(π‖πref) ≤
log(K)− (K − 1)/K (Stiennon et al., 2020; Beirami et al.,
2024). For blockwise sampling strategies, we use an up-
per bound on the KL divergence given by KL(π‖πref) ≤
Ex∼µ (log(K)− (K − 1)/K)

⌈
Lx

M

⌉
,whereLx is the num-

ber of decoded tokens in the full response given prompt x,
which is an extension of (Beirami et al., 2024, Theorem
1). To this end, we focus on KL values smaller than 10,
beyond which the policy shows significant signs of over-
fitting (Eisenstein et al., 2023). We also remark that the
sequence-level KL divergence used here for evaluation is
different from our token-level design, which makes the
evaluation more favorable to PPO, DPO, and IPO that di-
rectly optimize the tradeoff between expected reward and
sequence-level KL divergence.

Normalized expected reward. We report the expected re-
ward of the aligned policy, Ex∼µEy∼πθ(·|x)r(x,y), nor-
malized to that of the reference policy.

Win-rate against base policy. We report the win-
rate of the aligned policy against the base policy,
Ex∼µEy∼πθ(·|x)Ez∼πref(·|x)1[r(x,y) > r(x, z)].

Reward vs KL tradeoffs. Following (Gao et al., 2023), we
report tradeoff curves for reward vs. KL divergence between
the aligned policy and the base, KL(π‖πref). A method that
dominates (i.e., increases the reward with smallest KL bud-
get) is more desirable.

4.5. Training Details

Response length experiments. Using the Reddit conversa-
tions corpus, we used PaLM 2-XXS (Anil et al., 2023) to
train prefix scorers and also as the base model for DPO, IPO,
and PPO. For DPO, IPO and PPO, we performed several
training runs, varying regularizer hyperparameters and learn-
ing rates to reach comparable KL against other methods. All
methods were trained for half an epoch and evaluated on
the number of tokens in the generation using the eval set of
conversations corpus.

K = 6

K = 50

Figure 3. Normalized average length vs. KL divergence for differ-
ent length alignment methods. CD-Q (blockwise) outperforms all
training-time baselines and is on par with best-of-K while being
much more efficient as it requires far fewer samples (e.g. 6 vs 50).

Helpfulness and harmlessness (HH) experiments. We
used the reward model to train prefix scorers, DPO, IPO and
PPO using PaLM 2-XXS on Reddit conversations corpus
with HH prompt for one epoch. We performed several train-
ing runs for DPO, IPO and PPO to sweep KL divergence.
Finally, we used PaLM 2-L (Unicorn) (Anil et al., 2023)
on the eval set of the conversations corpusto evaluate the
helpfulness and harmlessness of the generation. The prompt
can be found in Appendix A.

Summarization experiments. We used the summarization
quality reward to train the prefix scorer and the aligned
policy on PaLM 2-XXS. For evaluation, we prompted PaLM
2-L (Unicorn) (Anil et al., 2023) on the test set of the TL;DR
corpus with to evaluate the summarization quality of the
generations compared to vanilla PaLM 2-XXS, and reported
the preference win rate. The zeroshot prompt we used to
evaluate can be found in Appendix A.

5. Experimental Results
Experiment 1: Increasing dialog response length. In
our first experiment, to have a clear test metric free of re-
ward overoptimization and noise, we consider the response
length as the reward. As can be seen in Figure 3, our pro-
posed method blockwise CD-Q achieves the best length vs
KL trade-off on par with best-of-K, while being signifi-
cantly more efficient than best-of-K as it achieves similar
tradeoffs with much smaller K, e.g., with K=6, blockwise
CD-Q obtains very similar length and KL divergence as
best-of-K with K=50. Furthermore, best-of-K achieves
a better reward-KL tradeoff compared to KL-regularized
PPO (Ouyang et al., 2022). This might be surprising at
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Figure 4. HH win rate vs. KL divergence for different helpfulness
and harmlessness alignment methods. CD-Q (blockwise) vastly
outperforms RL techniques such as IPO & PPO.

Method Accuracy (train) Accuracy (test)

Reward-XXS 0.804 0.709
CD-FUDGE 0.632 0.629
CD-Q 0.624 0.631

Table 1. HH preference accuracy on 1500 ground truth side-by-
side Anthropic HH training and test set.

first, but it is consistent with other findings reported by Gao
et al. (2023, Figure 1) and Rafailov et al. (2023, Figure 3),
where it is shown that best-of-K consistently achieves bet-
ter reward-KL tradeoffs compared to KL-regularized PPO.
Recently, Yang et al. (2024) provided theoretical reasoning
for this phenomenon by showing that best-of-K is an almost
optimal solution to the KL-regularized RL problem.

We also observe that the tokenwise control using both CD-
FUDGE (Yang & Klein, 2021) and CD-Q leads to a more
favorable reward-KL tradeoff compared to all baselines,
including DPO and IPO.

When we consider blockwise control, we see a stark differ-
ence between the behavior of blockwise CD-FUDGE and
blockwise CD-Q, where blockwise CD-Q is on par with
best-of-K, leading to best reward-KL tradeoffs. To investi-
gate this further, we used the CD-Q and CD-FUDGE prefix
scorers as reward (i.e., length) predictors for fully decoded
responses on the test set, where the result is reported in
Figure 13 (Appendix B). The main finding is that the pre-
dictions of CD-FUDGE are much noisier than that of CD-Q
and we suspect that is the reason CD-FUDGE does not per-
form well in the blockwise setup, where blockwise CD-Q
achieves the best performance on par with best-of-K.

Figure 5. Summarization Quality win rate vs. KL divergence for
different alignment methods. CD-Q (blockwise) vastly outper-
forms IPO.

Experiment 2: Improving dialog helpfulness and harm-
lessness (HH). We consider improving the helpfulness and
harmlessness (HH) of the responses in conversations. The
results are reported in Figure 4, where the y-axis is the win
rate against the base model as measured by running zeroshot
on PaLM 2-L (Unicorn). As can be seen, tokenwise con-
trollers don’t offer much HH improvement over baselines,
whereas blockwise CD-Q and CD-FUDGE offer a substan-
tial improvement as expected. However, neither method was
able to match best-of-K.

In Table 1, we compare the training and test accuracy of
Reward-XXS with that of CD-Q and CD-FUDGE used
as classifiers, where we apply CD-Q and CD-FUDGE on
[x,y] pairs in the training and test set of Anthropic HH
dataset (Bai et al., 2022). The goal of this experiment is
a sanity check on the prefix scorer as good performance
on this classification task is necessary but not sufficient
for ensuring that the prefix scorer can be reliably used in
practice. The results show that the classification accuracy
of CD-Q and CD-FUDGE are weaker than that of Reward-
XXS (≈ 0.6 vs≈ 0.7). This is likely due to the noisy nature
of the training data, and is an area for future investigation to
improve the training using value function learning methods
better suited to noisy reward environments.

Experiment 3: Improving summarization quality. We
look into improving the quality of summarization of Reddit
posts from TL;DR dataset (Stiennon et al., 2020), where
we compare best-of-K, CD-Q (blockwise) and IPO. The
results are reported in Figure 5, where we measure win-rate
measured by PaLM 2-L (Unicorn) against the base policy.
We observe that CD-Q (blockwise) outperforms IPO, but
neither of them matches best-of-K.
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Figure 6. Length/HH win rate vs. KL divergence for multi-
objective alignment. CD is able to dynamically adjust the trade-off
between various objectives live at inference time.

Experiment 4: Simultaneously improving dialog HH &
keeping response length intact. Next, we combine the HH
and length prefix scorers for multi-objective control. To this
end, we only consider blockwise CD-FUDGE, where the
decoding either performs reranking based on HH alone; or
a linear combination of the HH and length rewards. The
results of this experiment are presented in Figure 6. We
see that applying the HH decoding rule alone introduces a
positive length increase compared to the baseline, consistent
with previous findings (Eisenstein et al., 2023). To keep the
length intact while improving HH, we introduced a negative
length reward at decoding time. Not surprisingly, this comes
at the expense of a decline in dialog HH win rate. Note that
this experiment would be impossible with training-time KL-
regularized RL methods (PPO/DPO/IPO) as they need to
be retrained from scratch for different linear combinations
of rewards. This shows flexibility and modularity of CD
methods, which can be trained for multiple objectives at
once and different linear combinations of objectives can be
achieved without retraining.

Experiment 5: Updating the base generative model with-
out retraining the prefix scorer. We repeat Experiments 1
and 2 but we swap the base generative model with a com-
pletely different model, specifically PaLM 2-S (Bison) in
Experiment 1 and PaLM 2-XS (Otter) in Experiment 2, in-
stead of PaLM 2-XXS (Gecko) for which the prefix scorer
was trained using CD-Q. This helps understand how closely
the prefix scorer is coupled with the weights of the base
generative model and so how frequently the prefix scorer
needs to be retrained in a production setting where the base
generative model may change frequently. The results of this
experiment are reported in Figure 7 and Figure 8, respec-
tively. We see that in both cases CD-Q performs on par with

Figure 7. Average length normalized to the baseline when prefix
scorer is transferred to a different base model (PaLM 2-S) without
re-training the CD-Q prefix scorer. CD-Q generalizes well and
retains good performance without retraining.

Figure 8. HH win rate on a different base model (PaLM 2-XS)
without re-training the CD-Q prefix scorer. CD-Q generalizes well
and retains the good performance without retraining.

the strongest baseline, best-of-K, implying that the prefix
scorer trained using CD-Q is robust and generalizes well to
other base generative LLMs other than the one for which
it was trained. Note that PPO/DPO/IPO could not be used
without re-training in this experiment.

Experiment 6: Impact of adjusting block size in block-
wise CD. We repeat Experiment 2 while we change the
block size M to analyze its impact. From Figure 9 we ob-
serve that reducing the block size M generally results in
worse win-rate vs KL divergence trade-offs. We did not
analyze block sizes larger than 32 as the efficiency gains
against best-of-K would evaporate.

Experiment 7: Using CD-Q on a DPO base model. We
transfer CD-Q to a model finetuned using DPO without re-
training. This is denoted as “DPO + CD-Q (blockwise)” in
Figure 10. Note that CD-Q was not exposed to finetuned
DPO during training of its prefix scorer. We chose K in
CD-Q such that its KL-divergence would roughly match that
of the DPO baseline, e.g., for the green point annotated with
K = 8, the total KL divergence is about 5, of which 2.5
is the KL divergence of the DPO checkpoint and the base
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Figure 9. HH win rate vs. KL divergence for different block size
M , where it is shown that a larger block size gives better tradeoffs.

K = 32

K = 8

Figure 10. HH win rate combining DPO and CD-Q. The combina-
tion is on par with CD-Q alone while being more efficient in terms
of K, e.g., 8 vs 32 for KL value of 5.

model, and 2.5 is from blockwise CD-Q withK = 8. We ad-
justed K in blockwise CD-Q in order to achieve this. From
the plot we see that this variant combining both approaches
gives the overall best tradeoff curve and narrowly wins over
blockwise CD-Q in larger KL regimes. However, it is more
efficient since it is able to achieve the same / better win-rate
and KL as vanilla blockwise CD-Q but with a smaller K,
e.g., compare K=8 for “DPO + CD-Q (blockwise)” and
K=32 for “CD-Q (blockwise)” which produces a similar
trade-off, indicating that the combined variant requires a
smaller K.

Experiment 8: Using a fixed inference throughput bud-
get. Next, we revisit Experiment 1 to compare CD-Q (block-
wise) and DPO with best-of-K when given a fixed inference
throughput budget. In both experiments, DPO requires one
decoding path to generates a single response while CD-Q

Figure 11. Length vs. KL divergence comparing CD-Q (block-
wise) with “DPO + best-of-K” for a fixed budget of K.

Figure 12. HH win rate vs. KL divergence comparing “DPO +
CD-Q (blockwise)” and ”DPO + Best-of-K” with K = 4, where
it is shown that both methods are on par with each other.

(blockwise) produces a single unique response while inher-
ently decoding K parallel responses, as described in Equa-
tion 7. Here, in Figure 11, we fix the inference throughput
budget by setting K = [4, 8, 16] for blockwise CD-Q and
use best-of-K on top of DPO with the same values of K, so
that they both have the same inference throughput budget.
In this case, CD-Q tradeoffs are obtained by varyingM for a
fixed K. We see that for all values of K, CD-Q (blockwise)
outperforms DPO with best-of-K sampling, and the perfor-
mance gap between the two approaches increases for larger
values of K, suggesting that blockwise CD-Q is strictly
better than DPO, even with a fixed throughput budget. We
also revisit Experiment 7 where we compare “DPO + CD-Q
(blockwise)” and “DPO + Best-of-K” at a fixed K = 4. The
result of this experiment is presented in Figure 12, where
we observe that in this setup, “DPO + CD-Q (blockwise)“
is on par with “DPO + Best-of-K”.
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6. Related Work
Controlled decoding/generation. FUDGE (Yang & Klein,
2021) noticed that decoding subject to a constraint could
be achieved by a prefix scorer given by the Bayes rule, and
augmented the discriminative data to train the partial scorer.
DIRECTOR (Arora et al., 2022) further showed that the par-
tial scorer could be jointly learned with the language model
itself, which would lead to a reduced latency at inference
time. GeDi (Krause et al., 2021) proposed to train separate
positive and negative scorer networks that could be com-
bined to obtain a prefix score. Kim et al. (2023) showed that
the critic in an actor-critic RL framework may be used for
controlled decoding. NADO (Meng et al., 2022) considered
control subject to a different divergence constraint that lends
itself to a closed-form solution. AWR (Peng et al., 2019)
extended controlled decoding to an expectation maximiza-
tion setting where the policy could be subsequently updated
based on the value function. In contrast to this line of work,
we show that the prefix scorer could be trained as the value
function for the language model decoding policy, allow-
ing us to establish an exact connection between controlled
decoding and KL-regularized reinforcement learning.

Tree search. Our work is also conceptually related to tree
search algorithms, albeit in our case the depth of the search
is fixed to be one. Chaffin et al. (2022); Scialom et al. (2021)
demonstrate that Monte Carlo tree search (MCTS) methods
could be applied to language model decoding to guide the
generation. Lu et al. (2022) use tree-search with a heuristic
to determine the quality of a given decoding path to steer
decoding towards favorable outcomes. Qin et al. (2022)
explore gradient-based sampling using Langevin dynamics
which significantly outperforms gradient-free sampling. In
contrast to all these works, the depth of search in our work
is set to be one, due to the inference costs associated with
inference from large LMs, which prohibits a deeper search.

Reinforcement learning (RL). Another line of very rele-
vant work is reinforcement learning subject to a KL penalty
with the language model (Ouyang et al., 2022). Korbak
et al. (2022) observed that reinforcement learning with a KL
penalty could be viewed in a Bayesian manner with a cor-
responding reward function. However, their work fell short
of making the full connection in an autoregressive decoding
setting, which is our contribution in this work through CD.
Another closely related work to ours is that of Snell et al.
(2023) that designs a value-based offline algorithm, albeit
with a different learning objective than ours (and that of the
KL-regularized PPO). Li et al. (2017) also use a variant of Q-
learning to optimize BLEU or ROUGE scores. Other related
RL work includes generator improvement solutions through
on-policy RL. Sparrow (Glaese et al., 2022) showed that a
variant of proximal policy optimization (PPO) (Schulman
et al., 2017) with an additional LM regularizer is effective

at a variety of safety objectives and alignment with human
preference (Ouyang et al., 2022). Finally, the configurabil-
ity of reward is conceptually related to (Ramé et al., 2024),
where it is shown that reward soups may be used to a similar
effect.

Supervised learning from negative examples. Another
line of related work is supervised generator improve-
ment interventions. These include unlikelihood train-
ing (Welleck et al., 2020; Zhang & Song, 2022), contrastive
losses (Adolphs et al., 2022), direct preference optimiza-
tion (Rafailov et al., 2023), and identity preference opti-
mization (Azar et al., 2023). In contrast to our work, these
methods are all training-time interventions but they could
similarly be used to improve the likelihood of positive ex-
amples by suppressing the likelihood of negative ones.

7. Concluding Remarks
In this paper, we formulated a KL-regularized reinforcement
learning objective for aligning language models to achieve
higher reward outcomes. We showed that the problem could
be solved using an inference-time add-on solution by learn-
ing a prefix scorer akin to DQNs. We also showed that
the resulting framework, called controlled decoding (CD),
could be used to exert control in language models to steer
the generation in a tokenwise or blockwise manner. Our
experiments confirmed the effectiveness of our proposal in
improving different rewards, that included dialog length,
dialog helpfulness and harmlessness, and summarization
quality, with a small deviation from the base language model
policy. We also showed that the framework could be readily
extended to solve a multi-objective reinforcement learning
problem for free. Further, we also presented robustness of
our proposal by transferring CD to an unseen base model
without re-training.

Even though the tokenwise CD and KL-regularized RL are
optimizing for the Pareto front of the expected reward vs
KL divergence between the aligned policy and the base
policy, we observe that blockwise CD and best-of-K policy
consistently achieve a better tradeoff curve in practice. We
are not the first to have observed this, and the extensive
experiments of Gao et al. (2023); Eisenstein et al. (2023)
also confirm this fact, corroborated by recent theoretical
findings of Yang et al. (2024). Hence, blockwise CD holds
promise for alignment of language models.

Finally, our development of controlled decoding is moti-
vated by tradeoffs between throughput, latency, and perfor-
mance. While we explored these tradeoffs in a narrow set
of experiments, a more comprehensive and rigorous under-
standing of such tradeoffs is left for future work, which
might require exploring these methods in conjunction with
speculative decoding (Leviathan et al., 2023; Chen et al.,
2023; Sun et al., 2023).
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Impact Statement
We proposed new methods for language model alignment,
where control was exerted at inference time. As opposed to
the commonly used training time intervention to optimize
for KL-regularized RL, the inference-time solutions give
more fine-grained and flexible control, potentially paving
the way for achieving configurable and personalizable align-
ment. On the other hand, we also observed inconsistent
behavior of alignment techniques in improving safety and
other socially consequential issues. This demonstrates that
applying alignment techniques in nuanced problems, such
as safety, needs to be done with extreme caution.
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Ramé, A., Vieillard, N., Hussenot, L., Dadashi, R., Cideron,
G., Bachem, O., and Ferret, J. WARM: On the bene-
fits of weight averaged reward models. arXiv preprint
arXiv:2401.12187, 2024.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Scialom, T., Dray, P.-A., Staiano, J., Lamprier, S., and Pi-
wowarski, B. To beam or not to beam: That is a question
of cooperation for language gans. Advances in neural
information processing systems, 34:26585–26597, 2021.

Snell, C. V., Kostrikov, I., Su, Y., Yang, S., and Levine,
S. Offline rl for natural language generation with im-
plicit language q learning. In The Eleventh International
Conference on Learning Representations, 2023.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano,
P. F. Learning to summarize with human feedback. Ad-
vances in Neural Information Processing Systems, 33:
3008–3021, 2020.

Sun, Z., Suresh, A. T., Ro, J. H., Beirami, A., Jain, H., and
Yu, F. SpecTr: Fast speculative decoding via optimal
transport. In Neural Information Processing Systems,
2023.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,

11

https://aclanthology.org/2023.findings-acl.281
https://aclanthology.org/2023.findings-acl.281
https://aclanthology.org/2021.findings-emnlp.424
https://aclanthology.org/2021.findings-emnlp.424
https://aclanthology.org/2022.naacl-main.57
https://aclanthology.org/2022.naacl-main.57
https://github.com/microsoft/dstc8-reddit-corpus/
https://github.com/microsoft/dstc8-reddit-corpus/
https://openreview.net/forum?id=TiZYrQ-mPup
https://openreview.net/forum?id=TiZYrQ-mPup


Controlled Decoding from Language Models

Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, Z. T. and Ueda, M. Convergent and efficient deep Q
network algorithm. 2022.

Welleck, S., Kulikov, I., Roller, S., Dinan, E., Cho, K.,
and Weston, J. Neural text generation with unlikelihood
training. International Conference on Learning Repre-
sentations, 2020.

Yang, J. Q., Salamatian, S., Sun, Z., Suresh, A. T., and
Beirami, A. Asymptotics of language model alignment.
In IEEE International Symposium on Information Theory
(ISIT), 2024.

Yang, K. and Klein, D. FUDGE: Controlled text gen-
eration with future discriminators. In Proceedings of
the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pp. 3511–3535, Online, June
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.naacl-main.276. URL https://
aclanthology.org/2021.naacl-main.276.

Zhang, H. and Song, D. Discup: Discriminator cooperative
unlikelihood prompt-tuning for controllable text genera-
tion. EMNLP, 2022.

Zhao, Y., Khalman, M., Joshi, R., Narayan, S., Saleh, M.,
and Liu, P. J. Calibrating sequence likelihood improves
conditional language generation. In The Eleventh Inter-
national Conference on Learning Representations, 2022.

12

https://aclanthology.org/2021.naacl-main.276
https://aclanthology.org/2021.naacl-main.276


Controlled Decoding from Language Models

A. Additional details on experimental setup
In this section, we provide some additional experimental setup.

Here we present details on Reward Model training setup.

Helpfulness and Harmlessness. We combined the Anthropic helpfulness and harmlessness dataset to train a reward model
on PaLM XXS with one head to learn human preference on both helpfulness and harmlessness. Inspired by Bradley-Terry
model, we used pairwise loss to train the reward model. Specifically, we used the human preference from the dataset and
performed cross-entropy loss between the predictions and the preferences (https://arxiv.org/abs/1706.03741). Using the loss
function, we trained for 1 epoch using a learning rate of 1e-4. Then we picked the checkpoint with the highest accuracy on
the evaluation set.

Summarization Quality. We used the TL;DR preference dataset to train reward model on PaLM XXS to learn human
preference on summarizations. Equivalent to Helpfulness and Harmlessness reward model, we used pairwise loss to train
the reward model. We performed the training for 1 epoch with a learning rate of 1e-5. Then we picked the checkpoint with
the highest accuracy on the evaluation set.

Zeroshot prompts.
This is the zeroshot prompt we used on PaLM 2-L(Unicorn) to rank generations based on helpfulness and harmlessness.

You a r e a h e l p f u l a s s i s t a n t , t h a t r a n k s AI a s s i s t a n t s ’ r e s p o n s e s by t h e q u a l i t y o f t h e i r answer s .
The AI a s s i s t a n t s t r y t o be h e l p f u l , p o l i t e , hones t , s o p h i s t i c a t e d , e m o t i o n a l l y aware , and humble−but−knowledgeab l e .
Below a r e a s e r i e s o f d i a l o g u e s between v a r i o u s p e o p l e and an AI a s s i s t a n t , and t h e a s s i s t a n t t r i e s t o r e p l y t o t h e

d i a l o g u e .

I want you t o r ank t h e r e s p o n s e s o f a s s i s t a n t s .
To do so , I w i l l g i v e you t h e d i a l o g u e g i v e n t o t h e a s s i s t a n t s , and t h e r e s p o n s e o f two a s s i s t a n t s .
P l e a s e r ank t h e a s s i s t a n t s based on which r e s p o n s e would be more h e l p f u l , p o l i t e , hones t , s o p h i s t i c a t e d , e m o t i o n a l l y

aware , and humble−but−knowledgeab l e .
A l l i n p u t s a r e py thon d i c t i o n a r i e s .

Here i s t h e prompt :
{{

” d i a l o g u e ” : \”\”\”{ d i a l o g u e }\”\”\” ,
}}

Here a r e t h e o u t p u t s o f t h e a s s i s t a n t s :
[
{{

” a s s i s t a n t ” : ” a s s i s t a n t 1 ” ,
” answer ” : \”\”\”{ o u t p u t 1 }\”\”\”

}} ,
{{

” a s s i s t a n t ” : ” a s s i s t a n t 2 ” ,
” answer ” : \”\”\”{ o u t p u t 2 }\”\”\”

}}
]

Respond 1 or 2 t o i n d i c a t e t h e b e t t e r o u t p u t . P l e a s e p r o v i d e t h e r a n k i n g t h a t t h e m a j o r i t y o f humans would g i v e .

B e t t e r o u t p u t =
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This is the zeroshot prompt we used on PaLM 2-L(Unicorn) to rank generations based on summarization quality.

You a r e a h e l p f u l a s s i s t a n t , t h a t r a n k s AI a s s i s t a n t s ’ r e s p o n s e s by t h e q u a l i t y o f t h e i r answer s .
The AI a s s i s t a n t s t r y t o be h e l p f u l , p o l i t e , hones t , s o p h i s t i c a t e d , e m o t i o n a l l y aware , and humble−but−knowledgeab l e .
Below i s t h e AI a s s i s t a n t s a t t e m p t i n g t o summary a p o s t u p l o a d e d by a use r , and t h e AI a s s i s t a n t t r i e s t o summary

t h e p o s t .

I want you t o r ank t h e r e s p o n s e s o f a s s i s t a n t s .
To do so , I w i l l g i v e you t h e p o s t g i v e n t o t h e a s s i s t a n t , and t h e summary of two a s s i s t a n t s .
P l e a s e r ank t h e a s s i s t a t n s based on which r e s p o n s e would be more h e l p f u l , p o l i t e , hones t , s o p h i s t i c a t e d , e m o t i o n a l l y

aware , and humble−but−knowledgeab l e .
A l l i n p u t s a r e py thon d i c t i o n a r i e s .

Here i s t h e prompt :
{{

” p o s t ” : \”\”\”{ d i a l o g u e }\”\”\” ,
}}

Here a r e t h e o u t p u t s o f t h e a s s i s t a n t s :
[
{{

” a s s i s t a n t ” : ” a s s i s t a n t 1 ” ,
” summary ” : \”\”\”{ o u t p u t 1 }\”\”\”

}} ,
{{

” a s s i s t a n t ” : ” a s s i s t a n t 2 ” ,
” summary ” : \”\”\”{ o u t p u t 2 }\”\”\”

}}
]

Respond 1 or 2 t o i n d i c a t e t h e b e t t e r o u t p u t . P l e a s e p r o v i d e t h e r a n k i n g t h a t t h e m a j o r i t y o f humans would g i v e .

B e t t e r o u t p u t =

14
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B. Additional experimental results
In this section, we provide some additional experimental results to better understand the prefix scorer learnt via CD-Q and
CD-FUDGE.
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Figure 13. CD-Q and CD-FUDGE used to predict the length of a fully decoded response on Reddit corpus test set (Microsoft, 2019). On
the x-axis, the examples in the test set were ordered based on their actual response length an increasing fashion. CD-Q and CD-FUDGE
are applied to (x,y) pairs for all test set to predict the length. CD-Q predictions are much better aligned with actual length, especially for
pairwise comparison, whereas CD-FUDGE predictions are noisy.
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Figure 14. Win rate comparing blockwise CD-Q, DPO and blockwise CD-Q applied on DPO. From different DPO checkpoints, we picked
four DPO models covering different KL divergence values, then we applied blockwise CD-Q without retraining it. KL divergence values
for blockwise CD-Q on DPO was approximated by adding the blockwise CD upper bound(8) and the KL divergence of the DPO. Points at
win rate 0.7 shows that by combining DPO with blockwise CD-Q, we are able to achieve similar win rate with smaller sample size(down
to K = 4) compared to vanilla blockwise CD-Q with sample size = 32.
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C. Proofs
Proof of Theorem 2.1. First notice that

Jλ([x, y
t];π) =

∑
z∈Y

π(z|[x, yt])
(
λ(V ?([x, yt, z])− V ?([x, yt])) + log

(
p(z|[x, yt])
π(z|[x, yt])

))
(8)

=
∑
z∈Y

π(z|[x, yt]) log

(
p(z|[x, yt])eλ(V ?([x,yt,z])−V ?([x,yt]))

π(z|[x, yt])

)
. (9)

Now, let

qλ(z|[x, yt]) :=
p(z|[x, yt])eλ(V ?([x,yt,z])

Zλ([x, yt])
, (10)

where
Zλ(x, y

t;β) =
∑
z∈Y

p(z|x, yt)eλV
?(x,yt,z). (11)

Thus,
Jλ([x, y

t];π) = −D
(
π(·|[x, yt])‖qλ(·|[x, yt];β)

)
+ logZλ([x, y

t]), (12)

which is strongly convex in π, and the unique maximize is given by

π?λ(·|[x, yt]) = qλ(·|[x, yt]), (13)

completing the proof.

Next, we will discuss the general convergence results for CD-FUDGE and CD-Q.

Lemma C.1. We have ∇θLF (θ) is an unbiased estimator of the gradient of the optimal objective, i.e.,

Ey∼p[∇θLF (θ)] = ∇θL?(θ). (14)

Proof. Let Lx := Ey∼p|y|, be the expected length of the response in context x.

Ey∼p`F (x,y;θ) = Ey∼p

1

2

∑
t∈[|y|]

(
Vθ([x, y

t])− r([x,y])
)2 (15)

= Ey∼p

1

2

∑
t∈[|y|]

(
Vθ([x, y

t])2 − 2Vθ([x, y
t])2r([x,y]) + r([x,y])2

) (16)

= Ey∼p

1

2

∑
t∈[|y|]

(
Vθ([x, y

t])2 − 2Vθ([x, y
t])r([x,y]) + r([x,y])2

) (17)

= Ey∼p

1

2

∑
t∈[|y|]

Vθ([x, y
t])2

− Ey∼p

 ∑
t∈[|y|]

Vθ([x, y
t])r([x,y])

+ Cx (18)

= Ey∼p

1

2

∑
t∈[|y|]

Vθ([x, y
t])2

− Ey∼p

 ∑
t∈[|y|]

Vθ([x, y
t])Eyt+1,...{r([x,y])}

+ Cx (19)

= Ey∼p

1

2

∑
t∈[|y|]

Vθ([x, y
t])2

− Ey∼p

 ∑
t∈[|y|]

Vθ([x, y
t])V ?([x,y])

+ Cx (20)
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where the last step follows from the law of total expectation and

Cx := Ey∼p

1

2

∑
t∈[|y|]

r([x,y])2

 . (21)

Hence,

∇θEy∼p`F (x,y;θ) = ∇θEy∼p

1

2

∑
t∈[|y|]

Vθ([x, y
t])2

−∇θEy∼p

 ∑
t∈[|y|]

Vθ([x, y
t])V ?([x,y])

 = ∇θL?(θ),

(22)
which completes the proof.

Theorem C.2. Assume that `F (x,y, θ) is such that it is L-Lipschitz for all x and y. Further assume that `F (x,y, θ)
has a non-empty solution set and satisfies the PL inequality (Karimi et al., 2016, Eq. (3)). Further, assume that
E{‖∇θ`F (y,y,θi)‖2} ≤ C2 for all θi. Then, applying SGD on `F converges to θ?.

Proof. The proof follows directly from Lemma C.1 and applying (Karimi et al., 2016, Theorem 4), which also characterizes
the convergence rate.
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