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Abstract
Following natural language instructions by exe-
cuting actions in digital environments (e.g. web-
browsers and REST APIs) is a challenging task
for language model (LM) agents. Unfortunately,
LM agents often fail to generalize to new environ-
ments without human demonstrations. This work
presents BAGEL, a method for bootstrapping
LM agents without human supervision. BAGEL
converts a seed set of randomly explored trajecto-
ries or synthetic instructions, into demonstrations,
via round-trips between two noisy LM compo-
nents: an LM labeler which converts a trajectory
into a synthetic instruction, and a zero-shot LM
agent which maps the synthetic instruction into
a refined trajectory. By performing these round-
trips iteratively, BAGEL quickly converts the ini-
tial distribution of trajectories towards those that
are well-described by natural language. We use
BAGEL demonstrations to adapt a zero shot LM
agent at test time via in-context learning over re-
trieved demonstrations, and find improvements of
over 2-13% absolute on ToolQA and MiniWob++,
with up to 13× reduction in execution failures.

1. Introduction
In recent years, large language models (LLMs) have shown
strong performance on a broad range of language under-
standing tasks, making them powerful tools for controlling
policies in digital environments such as web browsers (Yao
et al., 2022; Kim et al., 2023). Such grounded language
understanding tasks are fundamentally challenging for LMs
in environments with ambiguous dynamics. For instance,
even inputting a date into a text box could require either sim-
ply typing or a complex interaction using a drop-down date
picker. An LM cannot know this a-priori without in-depth
knowledge about the website.
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Figure 1. (Top) Given a seed set of explored trajectories, BAGEL
constructs synthetic demonstrations via an iterative round-trip
procedure between two LM components: a zero-shot LM agent that
generates trajectories and an LM labeler that generates instructions
for these trajectories. (Bottom) Given an instruction at test time,
we retrieve synthetic demonstrations with similar instructions, to
use as in-context exemplars to adapt the base agent.

One common way to provide such knowledge to LM agents
is via expert demonstrations that provide information about
mapping instructions to action sequences, recovering from
errors, and reasoning traces (Yao et al., 2022; Sun et al.,
2023; Kim et al., 2023; Sodhi et al., 2023). Of course, col-
lecting human demonstrations for every new environment is
laborious and requires knowing possible user instructions
a priori. Moreover, as agents scale to complex tasks with
hundreds of actions, human supervision will become in-
creasingly infeasible to obtain. Instead of relying on human
demonstrations for training LM agents, could we instead
use exploration and environment feedback to automatically
collect a large number of synthetic demonstrations?

Prior work has shown the effectiveness of collecting syn-
thetic demonstrations by retroactively labeling trajectories
from embodied agents (Sumers et al., 2023). In this scenario,
the environments dynamics are assumed to be well under-
stood by the agent; the synthetic demonstrations only serve
to connect agent behavior with human language. However,
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we observe the opposite challenge with digital agents in our
setting—grounding instructions is relatively easy due to the
highly textual environment, but zero-shot digital agents typ-
ically are not exposed to any environment dynamics before
they are directly used to follow instructions.

Our method, termed BAGEL (Bootstrapping Agents by
Guiding Exploration with Language), uses an iterative pro-
cedure to relabel a seed set of trajectories obtained from
unconditioned exploration (Figure 1). Intuitively, BAGEL
operates by progressively shifting the distribution of trajec-
tories towards those that can be well-described via natural
language, using two noisy LM components: an LM labeler
takes a trajectory and relabels it with a synthetic instruc-
tion, and a zero-shot LM policy maps the instruction back
into a refined trajectory (Figure 2). By performing these
round trips iteratively, BAGEL converts trajectories from
random exploration into meaningful trajectories that are exe-
cutable, without requiring a trained base agent or significant
information about possible instructions. While both the re-
labeling and instruction-following processes are imperfect,
round-trips between these components work in harmony
to reduce any noise. Once an instruction, trajectory pair
reaches a threshold score under a demonstration filter (an-
other prompted LM), the generated synthetic demonstration
is added into a buffer. BAGEL demonstrations can be used
for both in-context learning or finetuning, and serve as a
drop-in replacement for expert demonstrations. Here, we
follow the former strategy along with a simple retrieval aug-
mented generation procedure—given a user instruction at
test time, we retrieve the most relevant demonstrations based
on instruction embeddings, and feed that into the agent’s
prompt to serve as in-context exemplars.

While BAGEL shares some similarities with Hindsight Ex-
perience Replay (HER, Andrychowicz et al., 2017), a pop-
ular method for retroactive relabeling of unsuccessful tra-
jectories, there are important technical differences: Instead
of relabeling trajectories based on only the final observa-
tion, our relabeling function operates on the entire transition
history from the trajectory and uses language models to
iteratively enforce a language prior over the distribution of
trajectories ( Section 3.3). Moreover, while HER is used in
offline Q-learning settings, we use BAGEL primarily as a
data generation method.

We experiment with BAGEL on two domains, by using a
prompted LM (similar to ReAct, Yao et al., 2022) as our
base policy and find significant improvements with no hu-
man supervision. In MiniWoB++ (Shi et al., 2017; Liu
et al., 2018), an agent follows instructions on diverse web-
interfaces ranging from booking flights to replying to emails,
given an HTML state, by issuing a sequence of mouse and
keyboard operations to interact with DOM objects. Using
BAGEL for test-time adaptation, we find an improvement

of over 13% compared to the base LM policy. Next, we
evaluate on ToolQA (Zhuang et al., 2023), a collection of
question answering tasks over 8 domains, where answer-
ing each question requires chaining together multiple tools
such as SQL, text retrievers, graph tools, python interpreters
and calculators. Here, we find an improvement of 2% over
the base LM policy. Further analysis reveals the various
positive effects of conditioning on our synthetic demon-
stration beyond improved accuracy, including up to 13×
reduction in execution failures due to better understanding
of environment dynamics. By carefully using LM priors to
shape random exploration, our method serves as a tool for
automated discovery of use cases in complex environments.

2. Background
Given a natural language instruction g, our agent inter-
acts with the environment by taking a sequence of ac-
tions {a1, a2, . . . , aT }, where each at is issued in re-
sponse to an environment observation ot. The entire in-
teraction with the environment is captured as a trajectory
τ = {o1, a1, o2, . . . , oT , aT , oT+1}.

We define an agent as a language conditioned policy π(at |
τ<t, g) where τ<t = {o1, a1, o2, . . . , ot} refers to the tra-
jectory until time-step t. Such policies are typically trained
via imitation learning and optional RL finetuning, where a
large set of expert curated instruction-trajectory pairs are
required for imitation learning, and a suitably shaped reward
signal is needed for RL finetuning (Branavan et al., 2009;
Chaplot et al., 2018; Misra et al., 2017). For our setup,
both observations and actions can be expressed as natural
language strings. The agent policy π can then be cast into
an autoregressive LM that assigns probabilities to action
strings given string descriptions of the previous actions and
observations. Thus, recent work focuses on directly using
LLMs as policies, by using prompts along with in-context
human demonstrations (Yao et al., 2022; Shinn et al., 2023;
Sun et al., 2023; Kim et al., 2023, among others).

Executing Action Strings. Similar to prior work that uses
LMs to generate action strings (Huang et al., 2022; Lo-
geswaran et al., 2022), we assume access to an environment
specific low-level controller that maps action strings to a
low-level command (e.g. a web-driver action or an API call),
which can be directly executed to change the environment.

3. BAGEL
BAGEL generates synthetic demonstrations via exploration,
as illustrated in Figure 2. First, we describe the various
model components in §3.1, and then describe the overall
procedure in §3.2.
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Explore: τ0 ∼ Pexplore(·)

Click on datepicker Click on Next Click on Prev Click on Next Click on Prev Click on Prev Finish

Label: g0 ∼ Plabel(· | τ0) Change month from December to October

Follow: τ1 ∼ Pagent(· | g1)

Click on datepicker Click on Next Click on Prev Click on Prev Click on 7th Finish

Label: g1 ∼ Plabel(· | τ1) Change month to October 7th and submit

Follow: τ2 ∼ Pagent(· | g2)

Click on datepicker Click on Prev Click on Prev Click on 7th Click Submit

Label: g2 ∼ Plabel(· | τ2) Change month to October 7th and submit

Score: s(g0, τ0) ✗

Score: s(g1, τ1) ✗

Score: s(g2, τ2) ✓

Figure 2. BAGEL generates synthetic demonstrations by exploring the environment. Shown here is an example from the MiniWob++
choose-date task. First, we generate an initial trajectory by sampling actions without conditioning on any natural language instruction.
Then, we alternate between generating an instruction given a trajectory, and generating a trajectory given an instruction. The process aims
to converge towards a trajectory that accurately satisfies a natural language instruction, and aims to recover from errors in labeling or
instruction following from earlier rounds (see example). Once an instruction and trajectory pair satisfies a filtering criteria, it is added to
the set of synthetic demonstrations. Alternatively, BAGEL can be initialized by first sampling an instruction, as described in §3.2.

3.1. Model Components

In order to generate synthetic demonstrations, we model
different aspects of the joint distribution over instructions
and trajectories. Every component is implemented by the
same underlying LM, but with different prompts. Every
component is also implicitly dependent on a given environ-
ment, although this is omitted in the notation for simplicity.
All prompts used can be found in Appendix B.

Exploration Policy. The exploration policy, πexplore(at |
τ<t), selects an action without conditioning on any instruc-
tion. The prompt used is similar to that of ReAct (Yao et al.,
2022). We can sample from the resulting distribution over
trajectories, pexplore(τ), by sampling actions from πexplore
until the episode completes or a “finish” action is generated.
We can increase the entropy of πexplore with a configurable
temperature parameter.

Trajectory Labeler. The trajectory labeler, plabel(g | τ),
is prompted to generate an instruction, g, that corresponds
to a given trajectory, τ .

Instruction Following Policy. Unlike the exploration pol-
icy, the instruction following policy, πagent(at | τ<t, g), se-

lects actions conditioned on an instruction, g. We sample
from the resulting distribution over trajectories, pagent(τ | g),
by choosing actions according to πagent until the episode
completes or a “finish” action is generated. This component
is also implemented using a ReAct based prompt.

Demonstration Filter. Given a synthetic demonstration
(g, τ), the demonstration filter makes a binary judgement
s(g, τ) ∈ {0, 1}, based on how well τ corresponds to the
instruction g.

Instruction Generator Finally, as an alternative to the
exploration policy (see §3.2) we can instead use an instruc-
tor generator to initialize exploration. This model defines a
distribution over instructions, pinstruct(g), based on a prompt
that elicits plausible instructions based on the initial obser-
vation from the environment, and the action space.

3.2. Generating Demonstrations

Initial Exploration We consider and compare two differ-
ent variations of BAGEL: trajectory-first and instruction-
first exploration. For trajectory-first exploration, we first
sample a trajectory τ0 ∼ pexplore(·) with the exploration
policy. For instruction-first exploration, we first sample an
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instruction g0 ∼ pinstruct(·) with the instruction generator.

Iterative Refinement Trajectories sampled from pexplore
may not correspond to any reasonable instruction, and, sim-
ilarly, there may be no feasible trajectory that satisfies in-
structions sampled from pinstruct. Our iterative re-labeling
procedure aims to find an instruction and trajectory pair
where the trajectory satisfies the instruction, without sacri-
ficing the diversity of the initial exploration. The process
alternates between sampling instructions and trajectories:

gt ∼ plabel(· | τ t). (1)

τ t+1 ∼ pagent(· | gt). (2)

We perform these iterative updates until we find a pair where
s(gt, τ t) = 1 or a maximum number of steps is reached. If
we are successful, the demonstration (gt, τ t) is added to the
set of synthetic demonstrations, M. The overall procedure
is repeated to collect multiple demonstrations.

3.3. Discussion

Guiding Trajectory Distribution with LM Components.
To better understand how the LM labeler and policy shape
the distribution of trajectories, we consider how this distri-
bution evolves over the course of multiple iterations. Let
pk(τ) be the distribution over trajectories and pk(g) be the
distribution over instructions, after k iterations. For k > 0:

pk(τ) =
∑
g′

pagent(τ | g′) · pk−1(g
′) (3)

pk−1(g
′) =

∑
τ ′

plabel(τ
′|g′) · pk−1(τ

′). (4)

Combining these, we obtain:

pk(τ) =
∑
τ ′,g′

pk−1(τ
′) · plabel(g

′ | τ ′) · pagent(τ | g′)︸ ︷︷ ︸
environment and LM constraints

. (5)

Thus, we shape the distribution of trajectories from the pre-
vious marginal pk−1 based on the criteria that they can be
assigned a concrete string g′, and are executable in the en-
vironment. These soft constraints work together to ensure
that (1) trajectories can be described in terms of some feasi-
ble instruction in the environment, and (2) the trajectories
themselves correspond to valid environment dynamics.

Connection to Hindsight Experience Replay. Hindsight
Experience Replay (HER, Andrychowicz et al., 2017) is a
popular approach for training language conditioned policies.
Given some goal g, HER converts an unsuccessful trajectory
τ into positive examples by replacing g with some hindsight
goal g′. That is, HER uses a relabeling function to map τ to
a new goal g′, resulting in a positive demonstration (g′, τ),
that is used to update the policy.

Since the original implementation of HER considers set-
tings where the goal space is the raw environment observa-
tion space, applying HER to natural language instruction-
following requires access to a learnt relabeling function to
map observations to language instructions. Such relabeling
functions typically map only the final observation oT to the
instruction via pre-trained captioning models (Xiao et al.,
2022; Cideron et al., 2020; Sumers et al., 2023) that operate
on trajectories from trained agents. In BAGEL, we use the
full trajectory for relabeling and use an iterative relabeling
procedure to reduce noise from zero-shot components.

4. Inference
We use synthetic demonstrations from BAGEL to adapt
LM agents via retrieval augmented generation, and leave
finetuning for future work. Concretely, given a test instruc-
tion gtest, we retrieve top-k most relevant demonstrations in
the demonstration set M, pre-pending these to the context
window of our agent as in-context examples. More con-
cretely, we use dual encoder retrieval, similar to Lee et al.
(2019), using a T5-XXL (Raffel et al., 2020) embedding
model. We first compute a vector embedding fθ(g) for each
instruction g ∈ M, and then find the top-k demonstrations
based on scores fθ(g)⊤fθ(gtest). More details can be found
in Appendix A.

5. Datasets
Our experiments are based on two environments, Mini-
WoB++ (Shi et al., 2017; Liu et al., 2018) and ToolQA
(Zhuang et al., 2023).

5.1. MiniWoB++

MiniWoB++ is a collection of tasks consisting of web inter-
faces with a shared action space of mouse and keyboard ac-
tions. In our setup, actions are specified in natural language
(Type Bob in the name text box, Click on the datepicker,
Clear text on Destination). The low-level controller that
maps action strings into a Selenium API call is implemented
via a separate zero-shot prompted LM (see Appendix C for
details). Each task consists of a script to generate varia-
tions of the task with a templated instruction, where each
variation is controlled via a random seed.

Evaluation. We follow Shaw et al. (2023) for evaluating
agents on MiniWoB++, by mapping the raw MiniWoB++
reward from [-1, 1] to [0, 1]. For each web interface, we
report the mean score over 50 random seeds. Starting with
the set of 55 MiniWoB++ tasks used in prior work on apply-
ing LM agents to this domain (Gur et al., 2023; Kim et al.,
2023; Sun et al., 2023), we evaluate on the hardest 10 tasks
where the zero-shot agent has an average reward of less than
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Figure 3. Results across MiniWoB++ and ToolQA, broken down by domain. We compare using demonstrations obtained via BAGEL
(blue) with a zero-shot ReAct baseline (green) with no synthetic demonstrations. For MiniWob++, we use the Trajectory-First variant for
exploration, and for ToolQA, we use Instruction-First. We report mean reward for MiniWob++ and F1 score for ToolQA. Overall, using
BAGEL demonstrations leads to improvements on both datasets.

0.95, to perform a more targeted evaluation of BAGEL to
domains that are hard for zero-shot agents.

5.2. ToolQA

ToolQA is a tool augmented question-answering environ-
ment over 8 domains, where questions can be answered
by chaining calls to multiple tools including text retrievers,
databases, SQL interpreter, calculator etc. Each tool can
be called according to a set of pre-defined methods (see
Appendix B.2 for the full action space for the policy and
corresponding tool methods). The observation space is the
string output from the most recent tool call (the first obser-
vation is hard-coded as a “System prompt”). Each action
corresponds to a specific tool call expressed in language
(Load the Airbnb Database, Calculate 3+7), and the low-
level controller is implemented by post-processing strings
into tool methods. The episode terminates when the pol-
icy chooses the Finish with Answer action e.g. Finish with
Answer: 300, where 300 is taken as the predicted answer.

Evaluation. Following prior work on question-
answering (Rajpurkar et al., 2016; 2018; Joshi et al.,
2017), we compute the F1 score of the final (free-form)
model output from the Finish with Answer tool call against
ground-truth answers.

6. Experimental Setup
6.1. Baselines and Ablations

Zero-shot. As our first baseline, we use the zero-shot
policy πbase directly at test time.

Non-iterative Ablations. Similar in spirit to Sumers et al.
(2023), in BAGEL (trajectory-first, no itrs), explored tra-
jectories τ0 are labeled using plabel and resulting demon-
strations (g, τ0) are included in M if the score s(g, τ) = 1.

Similarly, in BAGEL (instruction first, no itrs), synthetic in-
structions sampled from the instruction generator (see §3.1)
are converted into trajectories using pagent, and the result-
ing demonstration (g0, τ ) is added to M, if s(g0, τ) = 1.
This baseline captures a simple way to use LMs to construct
synthetic demonstrations via a sample-then-filter approach:
prompt an LM to generate possible instructions given the
first observation from the environment, create trajectories
based on these, and filter based on another criterion. In
general, we expect exploration using the instruction genera-
tor to work poorly in settings where the LM cannot predict
potential instructions from just the first observation (e.g. it
might hard to generate candidate instructions solely from
the landing page of the website without further interaction).

6.2. Implementation Details

We evaluate all baselines and variants of BAGEL on Mini-
WoB++ and ToolQA. For MiniWoB++, we start with sam-
pling 60 trajectories in the exploration phase for trajectory-
first variants of BAGEL, and sample 60 synthetic goals
for instruction-first variants. For ToolQA, we sample 200
trajectories for BAGEL (trajectory-first), and 200 synthetic
goals for BAGEL (instruction-first).

We use an instruction tuned PaLM-2 (Anil et al., 2023) as
the base LM for all our experiments, and sample with a
fixed temperature of 1.0. We set the max episode length
T to 15 for all datasets and models. We also set Titer to 5,
when performing multiple iterations in BAGEL 1.

In addition to using ReAct prompting, we use a simple “re-
sampling” procedure to recover from issuing syntactically
incorrect actions—if an action causes the environment to
return an Exception (such as incorrectly invoking a tool,
or typing on an element that cannot be typed on), we sam-

1While tuning Titer on a dev set may lead to better results, we
choose use a fixed value to remain truly zero-shot.
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Dataset Zero-Shot
instruction-first trajectory-first

No-itrs Full No-itrs Full

MiniWoB++ 46.8 52.0 56.0 53.0 61.0
ToolQA 40.9 38.8 43.3 40.9 42.2

Table 1. Ablations showing the effect of multiple rounds of re-
labeling in BAGEL. Multiple iterations improve performance for
both instruction-first and trajectory-first variants.

ple another action from the agent with the Exception mes-
sage appended to its context. We keep re-sampling until
it chooses a syntactically correct action, or terminate the
episode if the agent is unable to fix an erroneous action in
m = 5 steps.

7. Main Results
Figure 3 compares the zero-shot baseline with agents aug-
mented with BAGEL demonstrations. We find that using
synthetic demonstrations as in-context exemplars, retrieved
based on instruction relevance, lead to significant boosts
in performance compared to the zero-shot agent. For the
best variant of BAGEL, we find improvements of over 13%
points on MiniWoB++, and over 2% on ToolQA. For Mini-
WoB++, our improvements are particularly strong (20%
absolute) on choose-date, tic-tac-toe, and use-autocomplete.
Solving these tasks successfully requires learning environ-
ment dynamics (e.g. Figure 1) which is enabled by BAGEL
demonstrations. We isolate the source of these improve-
ments from synthetic in-context exemplars in §8.1. Further-
more, trajectory-first exploration significantly outperforms
instruction-first on MiniWoB++, which we hypothesize is
due to the LM prior being misaligned with the distribution
over possible instructions on MiniWoB++.

Finally, Table 1 shows that iterative re-labeling always im-
proves performance over non-iterative baselines. Multiple
iterations of round trips improves average reward by 4-8%
on MiniWoB++ and 1.3-4.5% on ToolQA.

8. Analysis
To understand how BAGEL demonstrations improve agent
performance, we first look at confounders from in-context
learning (§8.1), and then study the impact of synthetic
demonstrations on execution failures (§8.2). Next, we ana-
lyze the correctness (§8.3) and diversity (§8.4) of BAGEL’s
demonstrations to identify areas for further improvements.

8.1. In-context Learning with Synthetic Demonstrations

In-context exemplars can provide a range of useful learning
signal to LM agents, ranging from simply providing exam-

Method Accuracy

Zero-shot 40.9
Random 38.0
Shuffled 41.4
Ours 42.2

Table 2. Ablations showing the effect of various sources of infor-
mation in synthetic demonstrations to agent performance.

Task Zero-Shot (↓) +BAGEL (↓)

choose-date 1.3 0.1
book-flight 3.0 0.6
ToolQA (average) 3.0 1.9

Table 3. Average number of execution failures for tasks in Mini-
WoB++ and ToolQA. We find that using synthetic demonstrations
reduces execution failures.

ples of valid action trajectories or relevant natural language
instructions in isolation, to providing rich information about
the conditional p(τ | g) (how to map relevant instructions
into action sequences). Indeed, for some text classification
tasks, Min et al. (2022) find that improvements from in-
context learning may be explained in terms of the former
i.e. examples of the label space and input text. To better
understand how synthetic demonstrations help in our set-
ting, we report results from two ablations. First, we provide
the model with randomly chosen demonstrations instead of
using the retriever (Random). Next, we shuffle demonstra-
tions so that trajectories are paired with randomly chosen
instruction within the set of retrieved examples (Shuffled).

Results. Table 2 reports results of these ablations. First,
Shuffled improves performance over the zero-shot baseline,
suggesting that some of the improvements come from pro-
viding examples of valid action trajectories in the domain
in line with findings in Min et al. (2022). Ours records a
further improvement of 0.8% over Shuffled, which suggests
that the agent is able to use signal about the conditional to
improve decision making.

8.2. Synthetic demonstrations reduce execution failures

As mentioned in §6.2, in our implementation, LM agents
recover from execution failures using a re-sampling
procedure—when the agent generates an invalid action (such
as attempting to Type on a checkbox element or calling a
tool with incorrect syntax), we re-prompt it with the error
message produced by the environment, until it produces a
valid action. Of course, such re-sampling can be costly at in-
ference time due to multiple calls to the LM. Table 3 reports
the average execution failures for tasks with re-sampling on
MiniWoB++ and ToolQA. We note a considerable reduc-
tion in average re-sampling with BAGEL, due to a better
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Figure 4. Distribution of demonstrations over semantic categories for MiniWob++ environments, social-media and email-inbox, and
ToolQA. While BAGEL prefers certain modes, overall we find that these demonstrations cover a diverse range of actions.

understanding of environment dynamics, in turn leading to
faster inference.

8.3. Correctness of Synthetic Demonstrations

One way to identify the scope for improvements in our
method is to manually verify the correctness of demonstra-
tions. We filter demonstrations which, upon execution, do
not achieve the corresponding instruction. Using these fil-
tered demonstrations improves performance further by 7%
absolute on all 10 tasks from MiniWoB++.

8.4. Diversity of Synthetic Demonstrations

To better understand the distribution of synthetic demonstra-
tions, we manually bucket demonstrations for social-media
and email-inbox into semantic clusters— for social-media
these clusters include {Retweet, Like, Share, ...} and for
email-inbox we have clusters such as {Forward, Delete, Star,
Reply, ...}. For ToolQA, we cluster demonstrations based
on the set of tools invoked in the demonstration. We plot the
number of demonstrations in each cluster in Figure 4. We
note that while this distribution tends to be skewed towards
specific modes (e.g. {graph} for ToolQA, {Star} for email-
inbox), there exists a long tail that covers a broad range of
possible use cases in the environment. Nevertheless, im-
proving diversity during exploration remains a failure mode
for BAGEL which we expand on next. Finally, we pro-
vide some examples of BAGEL demonstrations in Table 4,
along with their corresponding semantic category.

8.5. Error Analysis

We conclude with a discussion of failure modes of our
aproach using the domains book-flight, search-engine, and
SciRex as case studies.

Handling Long-Horizon Planning. We note that book-
flight is the most complex environment in MiniWoB++, with
longer trajectories of lengths 8-20, and the zero-shot policy
performs poorly on this environment (average reward of

5%). While using BAGEL demonstrations improves this
to 15%, we hypothesize that further improvements would
require better handling of long range plans, such as with
hierarchical planning (Sodhi et al., 2023; Jiang et al., 2019).

Improving Diversity. We hypothesize that improving di-
versity among seed trajectories would lead to further im-
provements across the board. For instance, for book-flight,
all BAGEL demonstrations correspond to booking flights
in December, while the test distribution is more uniform.

Reducing Mismatch with Test Instructions. On SciRex,
all models fail to produce even a single correct answer. Here,
we find that in the absence of any knowledge about user
instructions at test-time, BAGEL demonstrations tend to
create questions with more descriptive answers and trajec-
tories with generic queries (See Table 4 for an example)
while test instructions requires retrieving specific numbers
from scientific documents by querying for specific topics.
Similarly, on search-engine, we note a modest improvement
of only 5%. Here, we find that while BAGEL demonstra-
tions cover a variety of instructions like Search for cat and
navigate to the third page of search results, Search for cars,
then visit the second search result, the model fails on test
instructions like Enter [term] then find and click the 9th
search result that requires keeping track of the number of
search results per page, and navigating to the correct page.
While our goal is to build fully unsupervised agents, meth-
ods that use sparse information about test-time instructions
could help drive performance further.

9. Related Work
Instruction-Following Digital Agents. Building agents
that navigate the digital world is a long standing goal of AI
and language understanding (Allen et al., 2007; Branavan
et al., 2009). However, most prior work relies on expert
demonstrations (Liu et al., 2018; Humphreys et al., 2022;
Furuta et al., 2023) with an appropriately shaped reward
(Branavan et al., 2009; Liu et al., 2018). Here, we assume no
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Instruction Trajectory

MiniWoB++
Find the email by Trixi and reply to them with the text ”Maecenas
eu massa” {Reply}

Move Mouse to Trixi → Click on an email-thread → Click on the
reply button → Type ’Maecenas eu massa’ on the textarea with id
’reply-text’ → Click on the span with id ’send-reply’

Find the email by Darcy and forward it to Dionis {Forward} Click on Darcy, the sender of an email thread. → Click on ’for-
ward’ button → Type Dionis on the to field → Click on the ’send’
button

Retweet Gallegos’s post {Retweet} Move Mouse to Pretium,. Ullamcorper. → Click on retweet
element with id 101

Like tweet by @leonie and share tweet by @livia {Like, Share} Click on the like element with ID 41. → Click on share-113

ToolQA
What are David’s plans this weekend? {RetrieveAgenda} Retrieve passages related to David’s plans this weekend → Finish

with answer: On the evening of September 16th, 2022, David will
be attending a Blind Date Night event at The Press Lounge.

Who is affiliated with both nicolas christin and giulia fanti?
{Python, Graph}

Load DBLP → Check neighbours of node Giulia Fanti in graph
AuthorNet → Check neighbours of node Nicolas Christin in
graph AuthorNet → Evaluate python code: list1=[’Wanzheng
Zhu’, ’Rohan Bansal’, ’Zachary Weinberg’, ’Nicolas Christin’,

’Suma Bhat’, ’Hongyu Gong’]; list2=[’Wanzheng Zhu’, ’Rohan
Bansal’, ’Zachary Weinberg’, ’Suma Bhat’, ’Hongyu Gong’, ’Giu-
lia Fanti’]; ans=set(list1) & set(list2) → Finish with answer:
{’Hongyu Gong’, ’Rohan Bansal’, ’Wanzheng Zhu’, ’Zachary
Weinberg’, ’Suma Bhat’}

What are the top 5 airbnb options with price < 900, availability
> 260 and at least 40 reviews {Database, SQL}

Load database airbnb → Filter database according to price <
900, availability 365 > 260, number of reviews > 40 → Interpret
SQLite query: SELECT FROM airbnb data ORDER BY num-
ber of reviews DESC LIMIT 5 → Finish with answer: [’High-end
doorman bldg in the LES’, ’THE BEST DEAL ON THE HUD-
SON RIVER!!’, ’Heart of Williamsburg, Brooklyn!’, ’Beautiful
& Tranquil Oasis in a Great Location’, ’Sunny/Cozy 1BD’]

What are the different approaches for computing graph similarity?
{RetrieveSciRex}

Retrieve passages from ML papers related to graph similarity →
Finish with answer: The different approaches to computing graph
similarity are graph kernels, graph features and graph convolu-
tional neural networks (CNNs).

Table 4. Example demonstrations obtained via BAGEL for MiniWoB++ (top) and ToolQA (bottom). We also provide the semantic
category for these demonstrations, and report the distribution of these categories in Figure 4.

access to demonstrations or a reward function, and use pre-
trained components to bootstrap synthetic demonstrations.

LMs for Decision Making. Pre-trained LMs are increas-
ingly being used for sequential tasks such as robotic manip-
ulation (Ahn et al., 2022; Liang et al., 2023), instruction-
following (Yao et al., 2022; Kim et al., 2023; Sun et al.,
2023; Lù et al., 2024), and tool-use (Parisi et al., 2022).
While some of these approaches finetune LMs based on
human demonstrations (Nakano et al., 2021), others use hu-
man demonstrations in their prompt for in-context learning
and adaptation (Yao et al., 2022; Kim et al., 2023; Sun et al.,
2023). We use no human supervision or reward and adapt
LM agents purely using synthetic demonstrations. Another
line of work uses LM priors in reinforcement learning to
improve exploration (Mu et al., 2022; Du et al., 2023), deal
with large action spaces (Yao et al., 2020), or as proxy re-

ward functions (Kwon et al., 2023). In the same tradition,
BAGEL bootstraps a learning signal in the form of synthetic
demonstrations by combining several LM components but
without using RL.

Self-training for Language Models. A recent line of
work uses LM-generated data for finetuning the same LM,
in settings where external verifiers may be used to filter
generated data (Singh et al., 2023; Gulcehre et al., 2023).
While we also use data generated from an LM for adaptation,
unlike these approaches, environment interactions form a
critical part of the learning signal and we also do not use
external verifiers for filtering data.

8
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10. Conclusion
There is a growing interesting in grounding LMs to the
real world, by building helpful assistants that execute open-
ended instructions in digital environments. The complexity
of such sequential tasks makes collecting expert demon-
strations tedious, and so, further progress towards build-
ing such agents requires new methods for bootstrapping
a learning signal with minimal human supervision. To
this end, we introduce BAGEL, a method for constructing
synthetic demonstrations for instruction following agents.
These demonstrations are constructed by iteratively relabel-
ing an initial seed set of trajectories or instructions, where
both relabeling and exploration is driven by a language
model. Experiments on two different domains show that us-
ing BAGEL demonstrations as in-context exemplars leads
to considerable improvements ranging from 2-13%, as well
as significant reductions in execution failures.

Impact Statement
In this paper, we evaluated models only in offline envi-
ronments. Responsibly deploying models online carries
potential risks, and it would be important to verify and con-
strain model behaviour to not cause harm (e.g. violating
terms of service). Further research related to secure model
deployment should take into account problems such as spam
detection, privacy preservation, etc.
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A. Other Implementation Details
A.1. Retriever

We use a T5-XXL model to embed each word in the instruction, and mean pool across word embeddings to obtain an
instruction vector. Given a test-time instruction, to retrieve relevant demonstrations, we compute cosine similarities between
the test instruction embedding and instruction embeddings for each demonstration in our buffer, and return the top 3
demonstrations with the highest cosine similarities.

A.2. Re-sampling action strings

When executing an action string in the environment results in an exception from the low-level controller, we pass the
exception message to the LM policy, and re-sample till the model outputs a valid action, or the LM exceeds the max number
of tries m = 5. Here is an example prompt we use for this re-sampling procedure (the prompt is appended to the LM policy):

Listing 1. Re-sampling during Execution Failure
Executing Action: {error_action}...
resulted in error: {error_message}. Think about what could have caused the error, and then choose a new action.

Thought: [[thought_pred]]

Now, output a different action based on your thought. End your output with a newline.

Action: [[action]]

B. Prompts
B.1. MiniWoB++

We start by presenting all prompts for MiniWoB++. The action space for MiniWob++ is:

Listing 2. Action Space
- Click on *description*: This action will click on element that matches *description* e.g. Click on the red
button, Click on the first result in the autocomplete
- Move Mouse to *description*: This action will hover mouse over web element that matches *description* e.g. Move
mouse to the menu bar.
- Type char *char* on *description*: This action will type a single character *char* into the web element
matching *description* e.g. Type char B on the first name field. Use this if you want to type in a word character
by character, to view or narrow search results.
- Type *text* on *description*: This action will type *text* into the web element matching *description*. Use
this to type in all the words in *text*’ all at once.
- Clear text on *description*: This action will clear all previously typed text in web element matching *
description*

This is then directly used for various prompts as {inventory str}.

Listing 3. Exploration Policy
You are a web-agent that can interact with the given webpage by taking actions. You can take the following kinds
of actions:
{inventory_str}

Your objective is to discover diverse and interesting tasks (that a human might give to an agent) by interacting
with the webpage through these actions. You’ve executed the following actions, and observed the following webpage
states (described briefly in language).

**Previous observations and actions**
{prev_observations_and_actions}

After taking these actions, you observe the current web-page HTML:
{webpage_html}

Start by thinking about what action you should take next.
Thought: [[pred]]

Now, act by taking an action based in the inventory (or output Finish if you are done).
Action: [[pred]]
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Listing 4. Instruction Generator
**Objective**
You are a web-agent that can accomplish useful tasks on a website. You are given the landing page of the website
as follows:
{init_html}

To accomplish tasks, you can break it down into a sequence of sub-tasks from a task inventory:
{inventory_str}

Propose a new task that can be performed on this website. Ensure that your tasks are concrete and use features /
contents of the given website.

Start by thinking about what new task you will generate.
Thought: [[pred]]
Answer: [[pred]]

Listing 5. Trajectory Relabeler
A web-agent is given a precise instruction from a human, which it carries out through a sequence of sub-tasks,
where each sub-task (such as clicking on elements / typing on elements / scrolling etc.) changes the HTML state
of the webpage.
You are given the initial webpage (as HTML), the final webpage after all sub-tasks are carried out, as well as a
summary of changes that each sub-task made to the starting HTML state.

Initial Webpage:
{init_webpage}

Final Webpage:
{final_webpage}

Sub-tasks attempted by the web agent:
{subgoal_str}

Summary of changes made to HTML:
{observation_changes}

Your objective to guess the instruction that was given to the agent. Ensure that your instructions are concrete
and such that every sub-task meaningfully contributes to fulfiling the instruction. Start by providing your
reasoning. Use the following format for your answer:
Reasoning: your reasoning
Answer: your answer

**Output**
Reasoning: [[pred]]
Answer: [[pred]]

Listing 6. Instruction Following Policy
You are a web-agent on an HTML page capable of executing the following kinds of sub-tasks:
{inventory_str}

You are also given some examples of how to perform instructions on the website by converting them into sub-tasks
(along with the change each sub-task caused on the website).
{exemplars}

You are given the following instruction: {instruction}.
To perform this instruction, you’ve executed the following sub-tasks, and observed the following webpage states (
described briefly in language).

**Previous observations and actions**
{prev_observations_and_actions}

After taking these actions, you observe the current web-page HTML:
{webpage_html}

Webpage Description: [[pred]]

First, think about which inventory item you should pick as your next action.
Thought: [[pred]]

Now, output next action (output *finished* if the instruction has been accomplished) by choosing an item from
your inventory
Action: [[pred]]

Listing 7. Demonstration Filter
You are given an initial web-page from a website (as HTML). To accomplish some task, a web-agent then interacts
with the website, leading to a final webpage.
Given the task, the initial webpage and the final webpage, your objective is to judge how well the web-agent
carried out this task by giving it a score from 1 to 5.
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Only give a score of 5 if the task is perfectly accomplished and the final webpage has no errors.

Task:
{goal_str}

Initial Webpage:
{init_webpage}

Final Webpage:
{final_webpage}

Start by thinking about what the web-agent was trying to accomplish, and describe how well it was done.
Thought: [[pred]]
Answer: [[pred]]

B.2. ToolQA

Next, we present all prompts for ToolQA below. The list of methods for various tools in ToolQA is:

Listing 8. ToolQA methods
(1) Calculate[formula], which calculates the formula and returns the result.
(2) RetrieveAgenda[keyword], which retrieves the agenda related to keyword.
(3) RetrieveScirex[keyword], which retrieves machine learning papers’ paragraphs related to keyword.
(4) LoadDB[DBName], which loads the database DBName and returns the database. The DBName can be one of the
following: flights/coffee/airbnb/yelp.
(5) FilterDB[condition], which filters the database DBName by the column column_name the relation (e.g., =, >,
etc.) and the value value, and returns the filtered database.
(6) GetValue[column_name], which returns the value of the column column_name in the database DBName.
(7) LoadGraph[GraphName], which loads the graph GraphName and returns the graph. The GraphName can be one of the
following: PaperNet/AuthorNet.
(8) NeighbourCheck[GraphName, Node], which lists the neighbours of the node Node in the graph GraphName and
returns the neighbours.
(9) NodeCheck[GraphName, Node], which returns the detailed attribute information of Node.
(10) EdgeCheck[GraphName, Node1, Node2], which returns the detailed attribute information of the edge between
Node1 and Node2.
(11) SQLInterpreter[SQL], which interprets the SQL query SQL and returns the result.
(12) PythonInterpreter[Python], which interprets the Python code Python.

and the action space for the LM policy is:

Listing 9. Action Space
(1) Calculate *formula*, which calculates an arithmetic formula (such as 2+3, 2 * 4 etc) and returns the result.
(2) Retrieve passages related to *phrase*, which retrieves information relevant to the supplied phrase. This
retriever operates on documents containing information about people’s schedules.
(3) Retrieve passages from ML papers related to *keyword*, which retrieves machine learning papers’ paragraphs
related to keyword.
(4) Load database *DBName*, which loads the database DBName and returns the database. The DBName can be one of
the following: flights/coffee/airbnb/yelp.
(5) Filter database according to *condition*. which filters the loaded database (flights/coffee/airbnb/yelp) by a
condition and returns the filtered database. A condition is specified as *column_name relation value* where
relation can be (=, <, >, <=, >=), and column_name is a column from the loaded DB. To filter according to
multiple conditions, the format requires comma separated conditions e.g. "Filter database according to
column_name_1=value_1, column_name_2>=value_2, column_name_3<value_3".
(6) Get database value for *column_name*, which returns the value of the column column_name in the database
DBName.
(7) Load DBLP, which loads the graphs in dblp. Inside DBLP, there are two graphs: PaperNet/AuthorNet.
(8) List nodes in graph *GraphName*, which lists 10 randomly chosen nodes to help explore the graph.
(9) Check neighbours of node *Node* in graph *GraphName*, which lists the neighbours of the node Node in the
graph GraphName and returns the neighbours. GraphName can be PaperNet or AuthorNet.
(10) Get information for node *Node* in graph *GraphName*, which returns the detailed attribute information of
Node.
(11) Check edge information between nodes *Node1* and *Node2* in graph *GraphName*, which returns the detailed
attribute information of the edge between Node1 and Node2.
(12) Interpret SQLite query: *Query*, which interprets the SQLite query Query and returns the result. There are 4
tables for querying: flights_data/coffee_data/airbnb_data/yelp_data corresponding to the DBs flights/coffee/
airbnb/yelp.
(13) Evaluate python code: *code*, which uses the python exec function to execute the python codeblock *code* as
is. The result of the code must be stored in a variable called ans, and the code cannot reference any variables
not defined inside the codeblock.
(14) Finish with answer: *answer*, which returns the answer and finishes the task.

This is then directly used for various prompts as {inventory str}. Note that the action strings (from this inventory) are
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converted into actual methods via string post-processing.

Listing 10. Exploration Policy
You are an agent with access to tools, that you may use to respond to various questions. You have the following
tools:
{inventory_str}

Your objective is to discover diverse and interesting questions (that a human might give to an agent with these
tools) by chaining together calls to different tools. You’ve executed the following tool calls, and observed the
following outputs from these tools (described briefly in language).

**Previous observations and actions**
{prev_observations_and_actions}

**Current Observation**
{curr_observation}

Start by thinking about what action you should take next.
Thought: [[pred]]

Now, act by taking an action based in the inventory (or output Finish if you are done).
Action: [[pred]]

Listing 11. Instruction Generator
**Objective**
You are an agent with access to tools, that you may use to respond to various queries. You have the following
tools:
{inventory_str}

To respond to queries, you need to call tools in a specific sequence to obtain the answer.

Your objective is to propose a query that can be performed by chaining together these tools. Ensure that your
queries are concrete.

Start by thinking about what new query you will generate.
Thought: [[pred]]
Answer: [[pred]]

Listing 12. Trajectory Relabeler
A user asks an AI agent a question, which it answers by accessing tools like databases, calculators, retrievers
and python interpreters. The AI agent answers this question by carrying out a sequence of sub-tasks, where each
sub-task (such as loading or querying a dblp graph / calling a python interpreter etc.) leads to an output from
the tool.

You are given the entire sequence of tool outputs, where the final tool output is the answer that the agent gives
. You are also given the sequence of sub-tasks attempted by the agent.

Sub-tasks attempted by the agent:
{subgoal_str}

Sequence of tool outputs:
{observation_changes}

Your objective to guess the query that was given to the agent. Ensure that your answer is concrete and such that
every sub-task meaningfully contributes to answering the query. Start by providing your reasoning. Use the
following format for your answer:
Reasoning: your reasoning
Answer: your answer

**Output**
Reasoning: [[pred]]
Answer: [[pred]]

Listing 13. Instruction Following Policy
You are an agent with access to tools, that you may use to respond to various queries. You have the following
tools:
{inventory_str}

To respond to queries, you need to call tools in a specific sequence to obtain the answer. Here are some
demonstrations of how to respond to queries by invoking tools:
{exemplars}

You are given the following query: {super_goal}

To perform this instruction, you’ve executed the following actions, and observed the following outputs from your
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tools:

**Previous observations and actions**
{prev_observations_and_actions}

**Current Observation**
{curr_observation}

First, think about which tool you should pick as your next action
Thought: [[pred]]

Now, output next action (output *finished* if the instruction has been accomplished) by calling the chosen tool
with appropriate arguments. End your output with a newline
Action: [[pred]]

Listing 14. Demonstration Filter
A user asks an AI agent a question, which it answers by accessing tools like databases, calculators, retrievers
and python interpreters. The AI agent answers this question by carrying out through a sequence of sub-tasks,
where each sub-task (such as loading or querying a dblp graph / calling a python interpreter etc.) leads to an
output from the tool. You are given the entire sequence of tool outputs, where the final tool output is the
answer that the agent gives. You are also given the sequence of sub-tasks attempted by the agent.

Your objective is to judge how well the AI agent carried out this task by giving it a score from 1 to 5.
Only give a score of 5 if the task is perfectly accomplished and the final answer has no errors.

User question:
{goal_str}

Sequence of Tool outputs:
{state_changelog}

Start by thinking about what the AI agent was trying to accomplish, and describe how well it was done.
Thought: [[pred]]
Answer: [[pred]]

C. Converting LM Action space into API calls
MiniWoB++. We use the following prompt to convert the action string into an API call:

Listing 15. LM to convert action strings into an API call
Webpage HTML: {html}
Use references into the webpage to specify actions to perform a given task.

You can take 4 kinds of actions on a chosen element specified via its ref id.

Action: type(text) types ’text’ into chosen ref, useful for typing into various textboxes.
Action: click() clicks on chosen element, useful when clicking buttons,checkboxes or textboxes. Sections can be
clicked for expansion.
Action: move-mouse() moves mouse to a chosen element, useful when the element text has ’>’ symbol for expansion.
Action: clear() clears all text on chosen ref-id, useful when you want to delete text on textboxes.

To choose actions, strictly use the format below:
Chosen action: chosen from click/move-mouse/type/clear
Chosen element: Specify chosen ref id as an integer
Chosen text: text to type (n/a if chosen action is not type)

Task: {action_string}
Chosen action: [[pred]]
Chosen element: [[pred]]
Chosen text: [[pred]]

The LM predictions are combined into an API call e.g. ref[[element]].type([[text]]]). We use a simple
python function to convert the API call into a Selenium web-driver method (type text, clear and move mouse are Selenium
web-driver methods):

D. Comparing BAGEL Agents with other Few-shot agents
In Table 5, we compare BAGEL agents with recently proposed zero-shot and few-shot agents for MiniWoB++. Specifically,
we compare with the “Flat Zero-Shot” and “SteP Zero-Shot” agents from Sodhi et al. (2023) and RCI (Kim et al., 2023). We
provide these just as reference, noting that results are not entirely comparable due to different underlying language models.
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Task BAGEL (PaLM-2) Flat Zero-Shot (GPT 3.5) SteP Zero-Shot (GPT 3.5) RCI ( GPT-4)

book-flight 0.15 0.0 0.0 -
choose-date 0.4 0.2 0.2 -
social-media 0.7 - - 1.0
email-inbox 1.0 0.4 0.0 0.98
click-checkboxes-soft 0.9 0.0 0.04 0.72
click-tab-2-hard 1.0 0.68 0.76 0.76
social-media-some 0.8 - - 0.9
tic-tac-toe 0.4 - - 0.56
use-autocomplete 0.45 - - 0.58
search-engine 0.25 0.38 0.26 1.00

Table 5. Comparising BAGEL Agents with other agents for MiniWoB++. We provide these results as reference and note that the underlying
language models are different.
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