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Abstract
In several real-world sequential decision prob-
lems, at every step, the learner is required to select
different actions. Every action affects a specific
part of the system and generates an observable in-
termediate effect. In this paper, we introduce the
Factored-Reward Bandits (FRBs), a novel setting
able to effectively capture and exploit the struc-
ture of this class of scenarios, where the reward
is computed as the product of the action interme-
diate observations. We characterize the statistical
complexity of the learning problem in the FRBs,
by deriving worst-case and asymptotic instance-
dependent regret lower bounds. Then, we devise
and analyze two regret minimization algorithms.
The former, F-UCB, is an anytime optimistic ap-
proach matching the worst-case lower bound (up
to logarithmic factors) but fails to perform opti-
mally from the instance-dependent perspective.
The latter, F-Track, is a bound-tracking ap-
proach, that enjoys optimal asymptotic instance-
dependent regret guarantees.

1. Introduction
In several real-world sequential decision-making problems,
the learner is required to select, at every interaction, different
actions, i.e., an action vector, acting on different portions of
the system, each producing an intermediate observation. In
such scenarios, the reward is often a combination of these
observations. Consider, for instance, the case in which we
want to sell a product on an e-commerce website. Our goal
is to maximize the overall revenue derived from the sales of
a given item. In this business process, we have to choose
(i) the price at which to sell the product and (ii) how much
budget to invest in advertising. On the one hand, the price
we set determines the propensity of the users to buy a given
item, i.e., the conversion rate, representing for each price,
the fraction of the customers that will buy the item (Broder
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& Rusmevichientong, 2012; Den Boer, 2015). On the other
hand, the advertising budget we invest influences the number
of potential customers that will be exposed to such an item,
i.e., the number of impressions we are able to generate with
the advertisement campaign (Feldman et al., 2007). Thus,
every time we select a price-budget pair (i.e., action vector),
we observe a noisy realization of the conversion rate, which
depends on the price, and a noisy realization of the expected
number of impressions, which depends on the budget we
invest in advertising (i.e., intermediate observations). Thus,
our objective is to maximize the revenue (i.e., reward) that is
computed as the product between the price, the conversion
rate, and the impressions (which will give us our income)
subtracting the invested advertising budget.1

This scenario can be, in principle, addressed as a standard
Multi-Armed Bandit (MAB, Lattimore & Szepesvári, 2020)
by looking at the reward (i.e., revenue) only and considering
price-budget couples as actions. However, with such an
approach, intermediate observations (i.e., the conversion
rate – consequence of the price we set – and the impressions
we generate – a consequence of the adv budget we invest)
that could provide useful information would be ignored
with a possible detrimental effect on the learning process.
Indeed, if we look just at the reward and disregard this
factored structure, the learning problem will: (i) present an
unnecessarily large action space, including all the possible
combinations of action components (e.g., price and budget
pairs), and (ii) suffer a possibly amplified effect of the noise
in the reward due to the product of the noisy intermediate
observations (e.g., impressions times conversion rate).

A notion of factored bandits has been studied in (Zimmert
& Seldin, 2018) in which the expected reward is a general
function of the action components. No intermediate obser-
vations are considered and the noise is applied to the final
reward only. Thus, this setting ultimately fails to model the
real-world scenarios we are interested in, where the inter-
mediate observations play a crucial role and are combined
with a specific function (i.e., the product). As we shall see
later in the paper, this specificity, motivated by the consid-
ered real-world scenarios, will allow us to obtain tighter and
more detailed performance guarantees.

1The formalization of this example and an additional motivating
example are reported in Appendix A.
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Contributions In this paper, we propose the novel setting
of the Factored-Reward Bandits (FRBs) to model sequential
decision-making problems in which the agent is required
to play an action vector a “ pa1, . . . , adqT consisting of
d action components. Each action component ai provides
a noisy intermediate observation xi whose product forms
the reward r “ x1x2 ¨ ¨ ¨xd. We study this setting from
computational and statistical perspectives and propose two
regret minimization algorithms endowed with theoretical
guarantees. The contributions are summarized as follows:

• In Section 2, we introduce the FRB setting, describe the
feedback and noise models, and the learning problem.

• In Section 3, we study the statistical complexity of the
learning problem in the FRB setting by deriving regret
lower bounds. First, in Theorem 3.1, we present the worst-
case regret lower bound of order Ωpσd?

kT q, being σ the
subgaussian proxy, d the number of action components,
k the number of possible choices for each action compo-
nent, and T is the learning horizon.2 This result highlights
how the complexity of the problem scales linearly with d
and its derivation makes use of technical tools from the
multitask bandits literature. In Theorem 3.2, we show that
dependence on σd (exponential in d) is unavoidable when
intermediate observations are not present, motivating their
crucial role. Second, we present the instance-dependent
asymptotic regret lower bound which is first formulated
as a linear program of Opkdq variables (Theorem 3.3) and,
subsequently, elaborated in a more explicit form (Theo-
rem 3.4), whose derivation makes use of the rearrange-
ment inequalities (Hardy et al., 1952) and that enjoys a
computational complexity of Opdk log kq. Qualitatively,
this result shows how the different action components
choices need to coordinate to match the lower bound.

• In Section 4, we provide a novel intuitive optimistic any-
time regret minimization algorithm, Factored Upper
Confidence Bound (F-UCB), in which optimism is
applied to every action component independently. Then,
we characterize its worst-case regret which has order
rOpσd?

kT q, matching the lower bound up to logarith-
mic factors (Theorem 4.1). Then, we empirically study
its instance-dependent regret, revealing that it does not
match the lower bound (Theorem 4.3). This confirms how
coordination between action components is necessary.

• In Section 5, we design and analyze a novel algorithm,
Factored Track (F-Track). F-Track is based
on tracking the bound (Lattimore & Szepesvari, 2017),
and succeeds in matching the instance-dependent lower
bound in the asymptotic regime (Theorem 5.1). Its anal-
ysis reveals, once more, the need for coordinating the
action components to achieve the optimal performance.

Appendix B discusses additional related works. Numerical

2In the following, we provide more general results in which
each action component i can have a different number ki of choices.

simulations are provided in Appendix E. The proofs of all
the statements are reported in Appendix C.

2. Factored Reward Bandits
In this section, we introduce the Factored-Reward Bandits
(FRBs), the learner-environment interaction, the assump-
tions, and we present the learning problem.3

Problem Formulation Let T P N be the learning horizon.
In a FRB, at every round t P JT K, the learner chooses an
action vector aptq “ pa1ptq, . . . , adptqqT in the action space
A :“ Jk1K ˆ ¨ ¨ ¨ ˆ JkdK, where for every i P JdK we have
that ki P Ně2 is the number of options of the ith action com-
ponent aiptq of the vector, and d P Ně1 is the action vector
dimension (i.e., the number of components that the learner
must select at every round t). As an effect of the action,
the learner observes a vector of d intermediate observations
xptq “ px1ptq, . . . , xdptqqT and receives as reward the prod-
uct of the intermediate observations rptq “ ś

iPJdK xiptq.
The ith component xiptq of the intermediate observation vec-
tor xptq is the effect of the ith action component aiptq in the
action vector aptq. Specifically, every component i P JdK of
the intermediate observation vector xptq is independent of
the others and sampled from a distribution xiptq „ νi,aiptq,
so that, xptq „ νaptq :“ biPJdKνi,aiptq. Thus, we will de-
note an FRB as ν :“ biPJdK baiPJkiK νi,ai

. Furthermore,
we can write xiptq “ µi,aiptq ` ϵiptq, where µi,aiptq is the
expected intermediate observation of the ith action com-
ponent aiptq, and ϵiptq is σ2-subgaussian random noise,
independent conditioned to the past and the other noise re-
alizations ϵjptq for j P JdKztiu. As customary, we assume
bounded expected values for the intermediate observations,
i.e., µi,ai P r0, 1s for every i P JdK and ai P JkiK, and all
intermediate observation components xiptq characterized
by the same known subgaussian proxy σ.4

Learning Problem An optimal action vector is a˚ “
pa˚

1 , . . . , a
˚
d qT P argmaxa“pa1,...,adqTPA

ś

iPJdK µi,ai
and,

since all expected intermediate observations are non-
negative, we can factorize the optimization problem ob-
serving that a˚

i P argmaxaiPJkiK µi,ai for every i P JdK.
We denote with µ˚

i “ µi,a˚
i

the expected intermediate ob-
servation of the optimal ith action component. We define
the suboptimality gap related to the ith action component
as ∆i,ai

:“ µ˚
i ´ µi,ai

for ai P JkiK, and the suboptimality
gap related to the action vector a “ pa1, . . . , adqT P A as
∆a :“ ś

iPJdK µ
˚
i ´ ś

iPJdK µi,ai .

3Let a, b P N with a ď b, we introduce the symbols: Ja, bK :“
ta, a ` 1, . . . , b ´ 1, bu and JbK :“ J1, bK. A zero-mean random

variable ξ is σ2-subgaussian if Ereλξs ď e
λ2σ2

2 , for every λ P R.
4The extension with different known subgaussian proxies σi

for every component i P JdK is straightforward.
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Let ν be an FRB, A be a learning algorithm, and T P N be
the learning horizon, we define its cumulative regret as:

RT pA,νq :“ T
ź

iPJdK

µ˚
i ´

ÿ

tPJT K

ź

iPJdK

µi,aiptq “
ÿ

tPJT K

∆aptq. (1)

The goal of the learner consists in minimizing the expected
cumulative regret ErRT pA,νqs, where the expectation is
taken w.r.t. the randomness of the observations and the pos-
sible randomness of the algorithm A.

3. Regret Lower Bounds
In this section, we provide lower bounds to the expected
regret that any learning algorithm suffers when addressing
the learning problem in a FRB, both in the minimax (Sec-
tion 3.1) and the instance-dependent (Section 3.2) cases.

3.1. Worst-Case Lower Bound

We present the worst-case lower bound that every algorithm
suffers and discuss the role of the structure of the FRB.

Theorem 3.1 (Worst-Case Lower Bound). For every algo-
rithm A, there exists an FRB ν such that for:

T ě 2
`

1 ´ 2´ 1
d´1

˘´2
σ2 max

iPJdK
ki “ O

`

σ2d2k
˘

, (2)

A suffers an expected cumulative regret of at least:

E rRT pA,νqs ě σ

4
?
2

ÿ

iPJdK

a

kiT .

In particular, if ki “: k for every i P JdK, we have
E rRT pA,νqs ě Ωpσd?

kT q.

Proof Sketch. The challenge is the structure of the regret
in a FRB. We lower-bound the regret RT pA,νq as a sum
of the regrets R

piq
T pA,νq that an algorithm A would have

suffered by playing d parallel MABs. Choosing µ˚
i “ 1:

RT pA,νq “
ÿ

tPJT K

´

1 ´
ź

iPJdK

`

1 ´ ∆i,aiptq

˘

¯

ě 1

2

ÿ

iPJdK

ÿ

tPJT K

∆i,aiptq “:
1

2

ÿ

iPJdK

R
piq
T pA,νq.

This derivation leverages an ad-hoc technical Lemma C.2,
which holds for sufficiently small suboptimality gaps, i.e.,
∆i,ai ď 1 ´ 2´ 1

d´1 . This condition gives rise to the con-
straint on the minimum time horizon (Equation 2), since
the suboptimality gaps will be chosen 9T´1{2. Indeed,
intuitively, if the suboptimality gaps ∆i,ai

are too large
(depending on d) we will have 1 ´ ś

iPJdKp1 ´ ∆i,aiptqq !
ř

iPJdK ∆i,ai
making the instances more distinguishable and,

consequently, reducing the regret. The result is obtained
by showing that regret component satisfies R

piq
T pA,νq ě

Ωpσ?
kiT q redesigning for the subgaussian case the so-

lution designed for Bernoulli rewards from the multitask
bandit literature (Wang et al., 2021, Theorem 10).

To understand the beneficial effect of: (i) the factored
structure and (ii) the intermediate observations, it is worth
comparing the result of Theorem 3.1 with the regret lower
bounds of common settings. If we remove (i), we are in
the presence of a MAB with A “ Jk1K ˆ ¨ ¨ ¨ ˆ JkdK as
action space.5 It is worth noting that, even in this case, the
reward rptq “ ś

iPJdK xiptq is the product of d subgaussian
random variables which is not, in general, subgaussian (see
Lemma D.1). Nevertheless, rptq is guaranteed to preserve a
finite variance of order at least σ2 “ σ2d (see Lemma D.3).
Thus, we can look at the setting as a heavy-tailed MAB
with finite variance (Bubeck et al., 2013) with

ś

iPJdK ki ac-

tions, leading to a regret of order Ωpσ
b

ś

iPJdK kiT q, which

becomes Ωpσd
?
kdT q when ki “ k for every i P JdK.

It is natural to wonder if (i) is enough to break the expo-
nential dependence in d (on both σ and k). This setting is
similar, but not exactly overlapping, to that of Zimmert &
Seldin (2018), in which a general “factored” structure is
considered without intermediate observations and assuming
that the subgaussian noise is applied to the reward directly.
Nevertheless, (Zimmert & Seldin, 2018) provide neither
worst-case lower bound nor worst-case regret analysis of
the proposed algorithm. The following result shows that (i)
only is enough to remove the exponential dependence in d
on k but not on σ, which remains unavoidable without (ii).
Theorem 3.2 (Worst-Case Lower Bound without Interme-
diate Observations). For every algorithm A: that ignores
the intermediate observations xptq and observes the reward
rptq only, there exists an FRB ν such that for:

T ě 4pmin
iPJdK

ki ´ 1q{d,

A: suffers an expected cumulative regret of at least:

E
“

RT pA:,νq‰ ě σd

8

c

pminiPJdK ki ´ 1qT
d

.

In particular, if ki “: k for every i P JdK, we have
E

“

RT pA:,νq‰ ě Ωpσd
a

kT {dq.

Thus, Theorem 3.2 shows that the exponential dependence
of d on σ is maintained even with the factored structure.
This is particularly significant when σ ą 1, a regime in
which the function σd{?

d is exponentially increasing in d.
This motivates the interest in studying this setting combining
factored structure (i) and intermediate observations (ii).
Remark 3.1 (About the independence of the intermediate
observations). The formulation of the FRB in Section 2
assumes that the components xiptq of the observation vector
xptq are independent. This is necessary to treat the problem
with appropriate advantages over standard MABs on the
combinatorial action space A. Indeed, if we rule out the
independence assumption, we can always define a FRB in
which xptq “ pyptq, 1, . . . , 1qT, where yptq „ ν1,aptq. This

5Note that makes no sense to consider (ii) without (iq.
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corresponds to a standard σ2-subgaussian MAB with A as
action space and arm distributions ν1,a. Nevertheless, it is
possible to relax the independence assumption, by requiring
non-correlation among the intermediate observations.

3.2. Instance-Dependent Lower Bound

We present the instance-dependent lower bound that every
algorithm suffers on a specific instance ν of the FRB setting.

Theorem 3.3 (Instance-Dependent Lower Bound). For ev-
ery consistent6 algorithm A and FRB ν with unique optimal
arm a˚ P A it holds that:

lim inf
TÑ`8

E rRT pA,νqs
log T

ě Cpνq, (3)

where Cpνq is defined as the solution to the following opti-
mization problem:

min
pLaq

aPAzta˚u

ÿ

aPAzta˚u

La∆a (4)

s.t. Li,j “
ÿ

aPAzta˚u
ai“j

La, @iPJdK, j PJkiKzta˚
i u (5)

Li,j ě
2σ2

∆2
i,j

, @iPJdK, j PJkiKzta˚
i u (6)

La ě0, @aPAzta˚
u. (7)

Proof Sketch. Here we provide an informal derivation that
captures the intuition, although the formal proof requires
some additional technical effort (see Appendix C.1). Thanks
to the factored structure, we can show, as for stochastic
bandits, that for every j P JkiKzta˚

i u and i P JdK the ex-
pected number of pulls ErNi,jpT qs is lower bounded by
(Constraint 6):

Li,j :“ ErNi,jpT qs
log T

ě 2σ2

∆2
i,j

for T Ñ `8
We now want to find the arrangements of the number of
pulls of action vectors NapT q, for every a P Azta˚u, to
minimize the cumulative regret. Recalling that Ni,jpT q “
ř

aPA : ai“j NapT q, we define Li,j “ ř

aPAzta˚u : ai“j La

(Constraint 5). Finally, by recalling the decomposition of
the regret ErRT pA,νqs

log T “ ř

aPA La∆a we get the objective
function in Equation (4) to be minimized. Notice that to
make the proof fully formal we need to properly manage
the asymptotic behavior of the sequences ErNi,jpT qs and
ErNapT qs when T Ñ `8.

The optimization problem in Theorem 3.3 is a Linear Pro-
gram (LP) with

ś

iPJdK ki ` ř

iPJdK ki ´d´1 variables and
ś

iPJdK ki ` 2
ř

iPJdK ki ´ 2d´ 1 constraints. Constraint (5)
establishes the relation between the number of pulls of the
action vectors La and the number of pulls of the action com-
ponents Li,j . This captures the “information sharing” of the

6An algorithm A is consistent if for every FRB ν and p ą 0, it
holds that lim supTÑ`8 ErRT pA,νqs{T p

“ 0.

setting in which we obtain a sample for the action compo-
nent pi, jq whenever we pull an action vector a such that
ai “ j. Being a minimization problem, Constraint (6) will
be satisfied with equality allowing the removal of variables
Li,j and the relative constraints. Thus, the LP can be solved
in polynomial time w.r.t.

ś

iPJdK ki (Vaidya, 1989).

Explicit Solution of the LP Program We now illustrate
how to solve the LP program with a smaller time complexity
of order Opř

iPJdK ki log kiq. We first provide the intuition
and, then, provide the formal argument.

The minimum proportion with which the action component
pi, jq is to be pulled (Constraint 6) can be accomplished
by pulling different sequences of action vectors a such that
ai “ j. How to “arrange” the pulls of the action vectors
to satisfy Constraint (6) and minimize the regret? To start
capturing the intuition, consider the simplest setting with
d “ 2, k1 “ k2 “ 2, a˚

1 “ a˚
2 “ 1, µ1,1 “ µ2,1 “ 1 and

µ1,2 “ µ2,2 “ y P p0, 1q. To satisfy Constraint (6), we have
to guarantee L1,2 “ L2,2 “ 2σ2p1 ´ yq´2 (in the solution
the constraint is satisfied with equality) and we have at our
disposal 4 action vectors A “ tp1, 1q, p1, 2q, p2, 1q, p2, 2qu.
We can satisfy the constraint in two ways:7

(i) playing action p2, 2q (i.e., with both suboptimal com-
ponents) for a proportion of 2σ2p1 ´ yq´2 times,
suffering 1 ´ y2 instantaneous regret;

(ii) playing actions p1, 2q and p2, 1q (i.e., with one subop-
timal component) for a proportion of 2σ2p1 ´ yq´2

each, suffering 1 ´ y instantaneous regret;

It is simple to convince that (i) is the choice that minimizes
the cumulative regret. Indeed, for y P p0, 1q, we have:

2σ2p1 ´ yq´2p1 ´ y2q
loooooooooooomoooooooooooon

case (i)

ď 4σ2p1 ´ yq´2p1 ´ yq
loooooooooooomoooooooooooon

case (ii)

. (8)

This intuitive reasoning can be extended to the general case.
To this end, let us define the sorting functions πi : JkiK Ñ
JkiK for every i P JdK as any bijective function such that:

µi,πip1q ď ¨ ¨ ¨ ď µi,πipki´1q ď µi,πipkiq “ µ˚
i .

We claim that in the optimal arrangement the action com-
ponents need to coordinate as illustrated in Figure 1. For
every dimension i P JdK (row), we sort the action com-
ponents in non-decreasing order of µi,j according to the
sorting function πi. To every j P Jki ´ 1K, an interval
of length Li,j is associated corresponding to the propor-
tion of pull. Now, we combine the different rows to obtain
the “active action vector” (represented by different colors)
made by the corresponding action components. Each active
action vector will be pulled for a proportion (the colored
vertical slices) depending on the Li,j values of the corre-
sponding components. Notice that we can have at most
ř

iPJdK ki ´ 1 active action vectors and the total propor-

7Any mix between (i) and (ii) is clearly suboptimal.
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d

L1,π1p1q

Ld,πdp1q

L1,π1p2q

L2,π2p1q L2,π2p2q

Ld,πdp2q

L2,π2pk2´1q

µ1,π1p1q µ1,π1p2q µ˚
1

µ2,π2pk2´1q

µ˚
d

µ2,π2p2qµ2,π2p1q

µd,πdp1q µd,πdp2q

Figure 1. Efficient solution to the LP presented in Theorem 3.3.

tion of the pulls (the width of the full table in Figure 1)
is given by M :“ maxiPJdK

ř

jPJki´1K Li,j . To formally
characterize the solution, we introduce, for every i P JdK
and l P Jki ´ 1K, the variables Mi,l :“ ř

l1PJlK Li,πipl1q and
Mi,ki “ `8 as the cumulative proportion of pulls of the ac-
tion components more suboptimal than pi, πiplqq, i.e., fixing
a row i, the position of the black vertical lines in Figure 1
sorted from left to right. Let us define the sorting function
π : JKK Ñ Ť

iPJdKptiu ˆ JkiKq, where K “ ř

iPJdK ki, as
any bijection such that:

Mπp1q ď ¨ ¨ ¨ ď MπpK´dq,

with the convention Mπp0q “ 0, i.e., the position in which
we move from one vertical slice to the next one in Figure 1
sorted from left to right. For every ℓ P JKK, we define the
active action vector as αℓ “ pj1,ℓ, . . . , jd,ℓqT P A where:

ji,ℓ :“ π´1
i

´

argmaxlPJkiKtMi,l ě Mπpℓqu
¯

.

This allows us to prove the following result.

Theorem 3.4 (Instance-Dependent Lower Bound (Explicit)).
Let Cpνq be the solution of the optimization problem of
Theorem 3.3. It holds that:

Cpνq “
K´d
ÿ

ℓ“1

`

Mπpℓq ´ Mπpℓ´1q

˘

∆αℓ
,

that can be computed in Opř

iPJdK ki log kiq.

Proof Sketch. We generalize Equation (8) with the rear-
rangement inequality for integrals (Luttinger & Friedberg,
1976), the continuous version of the more known rearrange-
ment inequality for sequences (Hardy et al., 1952).

4. A Worst-Case Optimal Algorithm
In this section, we present an optimistic any-time regret
minimization algorithm for the FRB setting. Factored
Upper Confidence Bound (F-UCB), whose pseudo-
code is reported in Algorithm 1, is based on the idea of
running a UCB-like exploration (Auer et al., 2002) indepen-
dently for every dimension i P JdK and estimate the expected
observation µi,ai

for every action component ai P JkiK.

The algorithm requires as input the number of action compo-

Algorithm 1: F-UCB.
Input :Exploration Parameter α, Subgaussian proxy σ,

Action component size ki, @i P JdK
1 Initialize Ni,aip0qÐ0, pµi,aip0qÐ 0 @ai PJkiK, iPJdK
2 for t P JT K do
3 Select aptq P argmax

a“pa1, ... adqTPA

ź

iPJdK

UCBi,aiptq

where UCBi,aiptq“ pµi,aipt ´ 1q ` σ
b

α log t
Ni,ai

pt´1q

4 Play aptq and observe xptq “ px1ptq, . . . , xdptqq
T

5 Update pµi,aiptqptq and Ni,aiptqptq for every i P JdK
6 end

nents ki for every i P JdK, the exploration parameter α ą 2,
and the subgaussian proxy σ. After initializing the variables
to keep track of the number of pulls Ni,aiptq and the sample
mean pµi,aiptq for all action components (line 1), the algo-
rithm starts the learner-environment interaction. At every
round t P JT K, F-UCB computes the optimistic action, i.e.,
the action aptq maximizing the optimistic index:

aptq P argmax
a“pa1, ..., adqTPA

ź

iPJdK

UCBi,ai
ptq,

where pµi,aiptq is the empirical mean of the observations
for the ith component of the observation vector determined
by the action component ai, and Ni,ai

ptq is the number
of times the corresponding component of the action vec-
tor has been played (line 3). Then, the algorithm plays it
and observes the d-dimensional observation vector xptq “
px1ptq, . . . , xdptqqT (line 4). The observation vector is used
to incrementally update the sample means of all action com-
ponents involved and the related counters (lines 5). Finally,
the algorithm reduces to UCB1 when d “ 1.

F-UCB enjoys a time complexity of OpT ř

iPJdK kiq and a
space complexity of Opř

iPJdK kiq. Indeed, at every round
t P JT K, we need to recompute the index UCBi,ai

ptq for all
ř

iPJdK ki action components (at least the bonus changes at
every round). Note that the computation of the optimistic
action is not combinatorial since the optimization can be
performed independently for every dimension i P JdK.

4.1. Worst-Case Regret Analysis

In this section, we provide the worst-case regret analysis of
F-UCB as summarized in the following result.

Theorem 4.1 (Worst-Case Upper Bound for F-UCB). For
any FRB ν, F-UCB with α ą 2 suffers an expected regret
bounded as:

E rRT pF-UCB,νqs ď 4σ
ÿ

iPJdK

a

αkiT log T ` gpαq
ÿ

iPJdK

ki,

where gpαq “ rO
`pα ´ 2q´2

˘

.8 In particular, if ki “: k, for
every i P JdK, we have E rRT pF-UCB,νqs ď rOpσd?

kT q.

8The complete expression is reported in the proof.

5



Factored-Reward Bandits with Intermediate Observations

Proof Sketch. Under a suitable “good event”, we have that
µi,ai ď UCBi,aiptq for every i P JdK, ai P JkiK, and t P
JT K. Thus, the instantaneous regret is bounded as:

ź

iPJdK

µ˚
i ´

ź

iPJdK

µi,aiptq

“
ÿ

lPJdK

ź

iPJl´1K

µ˚
i

loomoon

Pr0,1s

`

µ˚
l ´µl,alptq

˘

looooooomooooooon

ďUCBi,aiptqptq´µl,alptq

ź

iPJl`1,dK

µi,aiptq
loomoon

Pr0,1s

ď
ÿ

lPJdK

`

UCBl,alptqptq´µl,al

˘

,

where the first line is obtained by summing and subtracting
all mixed terms

ś

iPJlK µ
˚
i

ś

iPJl`1,dK µi,aiptq and the sec-
ond by optimism µ˚

l ď UCBl,a˚
l

ptq ď UCBl,alptqptq.

Comparing the upper bound of Theorem 4.1 with the lower
bound in Theorem 3.1, we realize that the dependence on
the learning horizon T is tight up to logarithmic factors
(just like UCB1) and the dependence on the number of ac-
tion components ki, the number of dimensions d, and the
subgaussian proxy σ are tight up to constant factors.

It is worth comparing our results with the ones that could
be obtained by applying literature algorithms to our FRB
setting. As already mentioned in Section 3, although each
intermediate observation xiptq is σ2-subgaussian, their prod-
uct rptq, i.e., the reward, is not in general. This prevents, for
instance, the application of UCB1 which assumes subgaus-
sian (or bounded) reward. Precisely, for d “ 2, the reward
rptq “ x1ptqx2ptq is a subexponential random variable, a
scenario that can be still approached with the standard sam-
ple mean estimator but leveraging the Bernstein’s concen-
tration bound (Boucheron et al., 2013). However, for d ě 3,
as shown in Lemma D.1, the reward rptq does not admit a
moment-generating function and, consequently, displays a
heavy-tailed behavior (Bubeck et al., 2013). Nevertheless,
the reward rptq random variable maintains a finite variance
bounded by σ2 “ `

1 ` σ2
˘d ´ 1 (see Lemma D.2). This

enables the application of algorithms designed for heavy-
tailed bandits, such as Robust-UCB (Bubeck et al., 2013),
able to handle generic distributions with finite variance, by
resorting to estimators other than the sample mean. It is easy
to verify that by considering the Median of Means estima-
tor (Bubeck et al., 2013), we obtain a regret upper bound in
the order of rO

´

σ
b

ś

iPJdK kiT
¯

. This result is in line with
the discussion in Section 3 and, clearly, not optimal. Indeed,
the dependence on the product

ś

iPJdK ki " ř

iPJdK ki is
because Robust-UCB does not exploit the factored prop-
erty of the FRB setting. Furthermore, the dependence on
σ “ ap1 ` σ2qd ´ 1 ě σ is justified by the fact that the
intermediate observations are ignored. Finally, the analysis
of Factored Bandit TEA (Zimmert & Seldin, 2018)
cannot be adapted to our setting since, as already mentioned,
the subgaussian noise is applied to the final reward only.

4.2. Instance-Dependent Upper Bound

In this section, we provide the analysis of the instance-
dependent regret upper bound for the F-UCB algorithm.
The following theorem summarizes the result.

Theorem 4.2 (Instance-Dependent Upper Bound for
F-UCB). For a given FRB ν, F-UCB with α ą 2 suffers
an expected regret bounded as:

E rRT pF-UCB,νqs ď CpF-UCB,νq,
where CpF-UCB,νq is defined as the solution to the follow-
ing optimization problem (where gpαq “ rOppα ´ 2q´2q):

max
pNaqaPA

ÿ

aPAzta˚u

Na∆a (9)

s.t. Ni,j “
ÿ

aPAzta˚u
ai“j

Na, @iPJdK, jPJkiKzta˚
i u (10)

Ni,j ď
4ασ2 logT

∆2
i,j

`gpαq, @iPJdK, jPJkiKzta˚
i u (11)

ÿ

aPA
Na“T (12)

Naě0, @aPA (13)

The derivation of the LP in Theorem 4.2 follows a similar
rationale as that of the instance-dependent lower bound of
Theorem 3.3. Since F-UCB runs an optimistic UCB strategy
independent for every action component, we can derive an
upper bound on the expected number of pulls for every
i P JdK and j P JkiKzta˚

i u (denoted with Ni,j in the LP):

ErNi,jpT qs ď 4ασ2 log T

∆2
i,j

` gpαq,
generating Constraint (11), that, since the problem involves
a maximization, will be satisfied with equality. To re-
late the expected number of pulls ErNapT qs of the ac-
tion vectors a P Azta˚u (denoted with Na in the LP)
with the ones of the action components ErNi,jpT qs, we
use the same argument of Theorem 3.3, producing Con-
straint (10). Similarly to the LP in Theorem 3.3, the prob-
lem is made of

ś

iPJdK ki ` ř

iPJdK ki ´ d variables and
1`ś

iPJdK ki`2
ř

iPJdK ki´2d constraints. We now provide
an explicit solution to a relaxation of the LP of Theorem 4.2.

Corollary 4.3 (Explicit Instance-Dependent Upper Bound
for F-UCB). For a given FRB ν, F-UCB with α ą 2 suffers
an expected regret bounded by:

E rRT pF-UCB,νqs ď CpF-UCB,νq
ď 4ασ2 log T

ÿ

iPJdK

µ˚
´i

ÿ

jPJkiKzta˚
i u

∆´1
i,j ` gpαq

ÿ

iPJdK

ki,

where µ˚
´i “ ś

lPJdKztiu µ
˚
l ď 1 for every i P JdK.

Proof Sketch. The result is based on providing a relaxation
of the objective function of the optimization problem in
Theorem 4.2, which is based on the following bound on the
suboptimality gaps of the action vector a “ pa1, . . . , adqT
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in terms of the suboptimality gaps of the action components:

∆a ď
ÿ

iPJdK

∆i,ai
µ˚

´i.

This allows to upper bound the objective function as:
ÿ

aPAzta˚u

Na∆a ď
ÿ

iPJdK

µ˚
´i

ÿ

jPJkiKzta˚
i u

Ni,j∆i,j .

By Constraint (11) to upper bound Ni,ai , we get the result.
Alternatively, we can drop the constraint

ř

aPAzta˚u Na “
T and use a rearrangement inequality (Hardy et al., 1952)
to upper bound the objective function.

It is worth comparing this instance-dependent regret upper
bound of F-UCB with the one achievable with an algorithm
for heavy-tailed bandits, such as Robust-UCB (Bubeck
et al., 2013). Our result of Corollary 4.3 is of order (neglect-
ing the dependence on α and on constants):

O
ˆ

σ2
ÿ

iPJdK

µ˚
´i

ÿ

jPJkiKzta˚
i u

log T

∆i,j

˙

. (14)

Instead, Robust-UCB, for instance with the Median of
Means estimator, is characterized by the following instance-
dependent regret of order (neglecting constants):

O
ˆ

σ2
ÿ

aPAzta˚u

log T

∆a

˙

. (15)

where σ2 “ p1`σ2qd ´1 ě σ2. It is simple to observe that
Equation (15) is larger than Equation (14). Indeed, consider
the subset of action vectors in which exactly one component
is not optimal, i.e., A˝ “ Ť

iPJdK A˝
i where A˝

i :“ ta P A :

ai ‰ a˚
i , aj “ a˚

j , j P JdKztiuu. We observe that for every
a P A˝

i , the action vector suboptimality gap is related with
equality to that of the suboptimal component:

∆a “
ź

lPJdK

µ˚
l ´ µi,ai

ź

lPJdKztiu

µ˚
l “ µ˚

´i∆i,ai .

This allows the conclusion of the following as desired:
ÿ

aPAzta˚u

logT

∆a
ě

ÿ

aPA˝

logT

∆a
ě

ÿ

iPJdK

µ˚
´i

ÿ

jPJkiKzta˚
i u

logT

∆i,j
.

Finally, let us compare Corollary 4.3 with the instance-
dependent regret upper bound of the Factored Bandit
TEA algorithm (Zimmert & Seldin, 2018), although the
noise model is different. Theorem 2 of (Zimmert & Seldin,
2018) provides a bound of order (neglecting constants):

O

˜

κ
ÿ

iPJdK

ÿ

jPJkiKzta˚
i u

logpT logT q`log logpT logT q

∆2
i,j

∆i,j

¸

,

where κ is such that ∆a ď κ
ř

iPJdK ∆i,ai
. Thus, we can set

κ “ maxiPJdK µ
˚
´i. This result is slightly worse than ours

because of the presence of the larger κ and the additional
log log T and logp1{∆2

i,jq terms.

Remark 4.1 (About Instance-Dependent Optimality of
F-UCB). We argue about the instance-dependent optimality
of F-UCB. To this end, we focus on a specific FRB instance
with generic d ą 1 and k1 “ ¨ ¨ ¨ “ kd “ 2. We consider
Gaussian intermediate observations with expected values
µi,1 “ 1 and µi,2 “ 1 ´ ∆ where ∆ P p0, 1q for every
i P JdK. By applying Theorems 3.3 and 4.2, we deduce
that for T Ñ `8, we have the lower bound (left) and the
F-UCB upper bound (right) on the number of pulls of each
suboptimal action component i P JdK bounded as:

ErNi,2pT qs
log T

ě 2σ2

∆2
and

ErNi,2pT qs
log T

ď 4ασ2

∆2
.

Thanks to Theorem 3.4 and Corollary 4.3, we can compute
Cpνq and upper bound CpF-UCB,νq:

Cpνq“ 2σ2p1´p1´∆qdq
∆2

and
CpF-UCB,νq

logT
ď 4dασ2

∆
.

It is immediate to realize the following extreme behaviors:

CpF-UCB,νq
CpνqlogT ď 2dα∆

1´p1´∆qd Ñ
#

2α ∆Ñ0

2αd ∆Ñ1
. (16)

This suggests that for sufficiently large ∆ « 1, F-UCB can
perform significantly worse than the lower bound, introduc-
ing an additional dependence on d. Instead, for sufficiently
small ∆ « 0, F-UCB can match the lower bound up to
constant factors.9 Clearly, we conducted this analysis em-
ploying an upper bound to the expected regret of F-UCB,
which might, in principle, be affected by some analysis ar-
tifacts, making it not tight. In Figure 2, we compare the
ratio between the actual regret obtained by running F-UCB
(5 runs) on the proposed FRB example and the instance-
dependent lower bound (left) with the ratio between the
upper bound and the instance-dependent lower bound com-
puted in Equation (16) (right). We clearly observe that,
although the y-scales are different, the behavior confirms
a linear dependence of the actual regret of F-UCB on the
number of dimensions of the action vector d.

5. Optimal Asymptotic Instance-Dependent
Algorithm

In this section, we provide an algorithm that matches the
derived instance-dependent lower bound (Theorem 3.3) in
the asymptotic regime. The algorithm, named Factored
Track (F-Track), whose pseudocode is reported in Al-
gorithm 2, is based on the idea of tracking the lower
bound (Lattimore & Szepesvari, 2017). The rationale be-
hind the algorithm is that if we want to match the instance-
dependent lower bound, we need to properly coordinate the
choice of the action vectors a P A, given that we have a

9Indeed, when the suboptimality gaps are close to 0, the instan-
taneous regret

ś

iPJdK µ
˚
i ´

ś

iPJdK µi,aiptq approaches the sum
of the regrets on each action component

ř

iPJdKpµ˚
i ´ µi,aiptqq.
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Figure 2. Ratio between the actual regret of F-UCB and the
instance-dependent lower bound (left) and ratio between the re-
gret upper bound and the instance-dependent lower bound (Equa-
tion 16) (right), for different values of d (5 runs, mean ˘ 2std).

lower bound on the minimum number of pulls for the ac-
tion components pi, jq (Theorem 3.3). To impose such a
structure we must plan in advance our sequence of action
vector choices. We devise an algorithm composed of three
phases: warm-up, success, and recovery. In the warm-up
phase, the algorithm pulls some action vectors in such a
way that each action component is pulled at least N0 times,
i.e., Ni,j ě N0 (line 3). This can be achieved by round-
robing the action components values j of each component
i, leading to a number of pulls in the warm-up phase equal
to Twarm-up “ N0 maxiPJdK ki. We use these samples to
estimate the expected values pµi,jpTwarm-upq and define the
confidence interval threshold ϵT . Then, we use these values
as if they were the true ones µi,j to compute the suboptimal-
ity gaps p∆i,j :“ maxj1PJkiK pµi,j1 pTwarm-upq ´ pµi,jpTwarm-upq
(line 6) and, using them, the number of pulls (line 7):

pNi,j “ 2σ2fT p1{T q
p∆2
i,j

, @j P JkiK, i P JdK

where for every δ P p0, 1q:

fT pδq :“
ˆ

1 ` 1

log T

˙ ˆ

c log log T ` log

ˆ

1

δ

˙˙

,

where c is a universal constant and, with them, we compute
the number of pulls for every action vector pNa by solving
the optimization problem in Theorem 3.3 (line 8). It is worth
noting that fT p1{T q « log T and this form is needed for
technical reasons to guarantee that the confidence bounds
hold. In the success phase, until we run out of the rounds
t ď T , we track the lower bound by pulling in a round-
robin fashion all arms whose number of pulls Naptq ă pNa

(line 10). If we realize that the estimated expected reward
pµi,jpt ´ 1q are too far from the ones estimated at the end of
the warm-up phase pµi,aipTwarm-upq based on the threshold
ϵT , we move to the recovery phase (line 9). In this phase,
we play F-UCB until the end of the rounds discarding all
the data collected so far (line 12).

The following result shows that F-Track asymptotically
matches the lower bound for a proper choice of N0 and ϵT .

Algorithm 2: F-Track.
Input :Warm-up sample size N0, Threshold ϵT , Action

component size ki, @i P JdK,
1 t Ð 1
2 while miniPJdK minjPJkiK Ni,jptq ă N0 do
3 Pull action vector aptq with aiptq “ pt ´ 1q

mod ki ` 1 for all i P JdK, t Ð t ` 1
4 end
5 Twarm-up Ð t ´ 1
6 Estimate the suboptimality gaps @i P JdK, j P JkiK :

p∆i,j :“ maxj1PJkiK pµi,j1 pTwarm-upq ´ pµi,jpTwarm-upq

7 Compute the number of pulls pNi,j “ 2σ2fT p1{T q p∆´2
i,j

for every action component i P JdK and j P JkiK
8 Compute the number of pulls pNa for every action vector

a P A by solving the LP in Theorem 3.3
9 while t ď T and

maxiPJdK,jPJkiK |pµi,jpTwarm-upq ´ pµi,jpt ´ 1q| ď 2ϵT
do

10 Pull action vector aptq P argmintNaptq : a P A
and Naptq ď pNau, t Ð t ` 1

11 end
12 Discard all data and play F-UCB until t “ T

Theorem 5.1 (Instance-Dependent Upper Bound for
F-Track). For any FRB ν, F-Track run with:

N0 “
Q

a

log T
U

and ϵT “
d

2σ2fT p1{ log T q
N0

,

suffers an expected regret of:

lim sup
TÑ`8

E rRT pF-Track,νqs
log T

“ Cpνq.

6. Discussion and Conclusions
In this paper, we introduced the Factored-Reward Bandits,
a novel setting to represent decision-making problems in
which the learner is required to perform a set of actions,
whose effects can be observed, and the reward is the product
of those effects. We characterized the inherent complexity
through worst-case and instance-dependent lower bounds,
and we discussed the performances of current solutions. To
address the regret minimization problem, we proposed two
algorithms using the intermediate observations to reduce the
complexity of learning in this setting. The first F-UCB is
an optimistic solution that we proved minimax optimal (up
to logarithmic factors). Such a solution deals with action
components independently of the others and we have illus-
trated how, without coordination, we cannot reach instance-
dependent optimality. To overcome this issue, we propose
F-Track, an algorithm able to perform planning on the ac-
tion components, and we proved its asymptotically instance-
dependent optimality. As future lines of research, we plan to
investigate the possibility of developing an algorithm able to
guarantee both non-asymptotic instance-dependent optimal-
ity and to consider functions for aggregating intermediate
observations different from the product.

8



Factored-Reward Bandits with Intermediate Observations

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
Funded by the European Union – Next Generation EU
within the project NRPP M4C2, Investment 1.3 DD. 341
- 15 March 2022 – FAIR – Future Artificial Intelligence
Research – Spoke 4 - PE00000013 - D53C22002380006.

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved
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A. Examples
In this appendix, we first formalize the example described in Section 1 using the formalism of the FRB setting (Appendix A.1).
Then, we present an additional example of a higher dimensional problem that can be generalized by the FRB setting
(Appendix A.2).

A.1. Formalization of the Example of Section 1

Consider the case of joint pricing and advertising described in Section 1. In this scenario, at every round t P JT K, we must
select a vector of dimension d “ 2. Suppose that the first action component is the advertising budget, and the second action
component is the selling price. We have k1 advertising budgets over which we want to choose and k2 prices at which we
can sell our item.

At every round t, we select the budget a1ptq and the price a2ptq. Then, we observe a realization of the impressions we
generate due to the budget a1ptq we invested: x1ptq “ µ1,a1ptq ` ϵ1ptq, and a realization of the conversion rate due to the
price a2ptq we set: x2ptq “ µ2,a2ptq ` ϵ2ptq.

The reward is equal to rptq “ a2ptqx1ptqx2ptq ´ a1ptq, corresponding to the return for each sales (the price, considering the
turnover as target), multiplied by the fraction of users willing to buy and by the number of customers exposed to the price
(i.e., the impressions), minus the budget invested in advertising. Note that the operations of multiplying by the selling price
and subtracting the advertising budget do not increase the statistical complexity of the learning problem, as after we select
an action, such quantities are deterministic. However, to deal with this more elaborated formulation, we have to take care of
it in the choice of the optimal action a˚:

a˚ P argmax
a“pa1, a2qTPA

a2
ź

iPJ2K

µi,ai
´ a1. (17)

Run this problem on F-UCB Moving to the F-UCB, we can easily adapt the formulation of Equation (17) to the one
required by the algorithm:

aptq P argmax
a“pa1, a2qTPA

a2
ź

iPJ2K

UCBi,ai
ptq ´ a1.

In practice, as we have done in Section 4, we can replace the real value with our optimistic estimator. Clearly, the analysis of
the regret continues to hold with a multiplicative factor maxa2PJk2K |a2|.

A.2. Additional Example

We present an additional example of problems that can be generalized through the FRB setting related to manufacturing
processes.

Consider the problem in which we run a manufacturing firm that has to set up the production line for a product. The goal in
this scenario is to optimize the following trade-off: maximize the production yield (i.e., the number of items that come out
of the production line undamaged) while minimizing the production cost.

Considering the item we want to manufacture, let us define a batch size B and a production line consisting of d stages.
Assume that each stage has a 1 : 1 production rate (i.e., 1 input corresponds to 1 output). For each stage i P JdK, we have to
select a method to fulfill the stage among a set of ki available alternatives. Each alternative will have an aleatoric impact on
the percentage of faulty outputs, and a deterministic cost of production.

As such, at every round t, we select an action vector aptq “ pa1ptq, a2ptq, . . . , adptqq, with aiptq P JkiK,@i P JdK. At every
stage i, we then observe a percentage of undamaged outputs defined as:

xiptq “ µi,aiptq ` ϵiptq,

where:

• µi,aiptq P r0, 1s is the expected percentage of faultless products due to selecting action aiptq,

11
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• ϵiptq is a σ2-subgaussian random noise, independent conditioned to the past and the other noise realizations ϵjptq for
j P JdKztiu.

We can model the reward function as:

rptq “ B
d

ź

i“1

xiptq ´
d

ÿ

i“1

cipaiptqq,

where cipaiptqq is the (deterministic and known) cost associated with the selection of action aiptq. Observe that B is a
known and fixed quantity, and cipaiptqq are deterministic and known to the learner. As such, they do not increase the
complexity of the learning problem. For this reason, this scenario can be generalized through the F-UCB setting.

B. Additional Related Works
In this section, we discuss the related works from the action structure perspective and the works that present a notion of
factored structure.Then, we compare the most significant related algorithms with our work from the theoretical perspective.

Action Structure Originally, multi-armed bandit frameworks focused on independent arms with no inherent structure (Lai
& Robbins, 1985). However, in recent decades, various bandit models with several kinds of structure have emerged, such as
linear (Dani et al., 2008; Abbasi-Yadkori et al., 2011), Lipschitz (Agrawal, 1995; Magureanu et al., 2014) and unimodal (Yu
& Mannor, 2011) bandits. These contributions aim to incorporate diverse forms of structure into the arms being considered.
Combes et al. (2017) introduced a generalization of structured bandits, accommodating a wide range of structural concepts
among arms. Their work offers a statistically efficient (at least in the general case) algorithm for handling generic structures,
at the expense of solving a semi-infinite linear program at each time step. The necessity of choosing several actions at a time
in a structured manner has been widely studied in the field of combinatorial bandits (Cesa-Bianchi & Lugosi, 2012; Kveton
et al., 2015; Combes et al., 2015).

Notions of Factored Bandits Among the several kinds of structure, Zimmert & Seldin (2018) is the most similar to the
work we propose from the point of view of the action structure, although the two works differ from the feedback perspective.
Both works employ an action structure in which an action component ai is selected for each problem dimension i P JdK.
The action components are combined with a general function that obeys a uniform identifiability assumption under which
the performance of each action vector can only improve when any action component is switched with the optimal one.
However, in the work of Zimmert & Seldin (2018) the feedback comprises a single observation of the subgaussian reward
rpatq applied to the aggregated expected reward, whereas, in our work, the feedback comprises one noisy observation for
every action component. This peculiarity of our work implies that the reward obtained as the product over all the dimensions
is not subgaussian anymore (Lemma D.1). (Zimmert & Seldin, 2018) generalizes (Katariya et al., 2017) to the case of more
than two dimensions.

B.1. Comparison of the Theoretical Results

In Table 1, we summarize our setting with the one of Heavy-Tails Bandits (Bubeck et al., 2013) and the Factored Ban-
dits (Zimmert & Seldin, 2018). We also analyze and compare both our solutions with Robust-UCB (Bubeck et al., 2013)
and TEA (Zimmert & Seldin, 2018) from the instance-dependent point of view. Then, in Table 2 we compare worst-case
lower and upper bounds from the worst-case perspective.
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C. Proofs and Derivations
In this section, we provide proofs of the statements discussed in the main paper (Section C.1) and some technical lemmas
needed in order to prove them (Section C.2).

C.1. Proofs of the Theorems

Theorem 3.1 (Worst-Case Lower Bound). For every algorithm A, there exists an FRB ν such that for:

T ě 2
`

1 ´ 2´ 1
d´1

˘´2
σ2 max

iPJdK
ki “ O

`

σ2d2k
˘

, (2)

A suffers an expected cumulative regret of at least:

E rRT pA,νqs ě σ

4
?
2

ÿ

iPJdK

a

kiT .

In particular, if ki “: k for every i P JdK, we have E rRT pA,νqs ě Ωpσd?
kT q.

Proof. Consider an scenario in which µa˚ “ 1 and ∆i,j ď ∆ “ 1 ´ 2´1{pd´1q,@i P JdK, j P JkiK, then Lemma C.3 allow
us to rewrite the expected regret as:

E rRT pA,νqs “ E

»

–

ÿ

tPJT K

¨

˝1 ´
ź

iPJdK

`

1 ´ ∆i,aiptq

˘

˛

‚

fi

fl

ě 1

2
E

»

–

ÿ

tPJT K

ÿ

iPJdK

∆i,aiptq

fi

fl

“ 1

2

ÿ

iPJdK

E

»

–

ÿ

tPJT K

∆i,aiptq

fi

fl

“ 1

2

ÿ

iPJdK

E
”

R
piq
T pA,νq

ı

, (18)

where R
piq
T pA,νq is the expected regret generated by pulling suboptimal arms on the component i P JdK. This fact implies

that if we take sufficiently small ∆i,j ă ∆,@i P JdK, j P JkiK, we can analyze the expected regret Rpiq
T pA,νq we pay for

each action component i P JdK independently and then summing up the regret we pay as shown above. We will see how the
condition of the sufficiently small ∆i,j implies that we have to add a condition on the minimum time budget T for which
this lower bound holds.

We can define a set of
ś

iPJdK ki FRB base instances as follows. Given a vector ph1, . . . , hdqT P Jk1Kˆ¨ ¨ ¨ˆJkdK identifying
an instance, we define the expected rewards of such an instance as follows, for ∆ P p0, 1{2q:

µi,j “
#

1 if j “ hi

1 ´ ∆ if j P JkiKzthiu , @i P JdK. (19)

We refer as νph1,...,hdq to the instance in which expected values are characterized by the vector ph1, . . . , hdqT P Jk1K ˆ
¨ ¨ ¨ ˆ JkdK as in Equation (19).

We now focus on bounding the regret of a single component i P JdK. In particular, we focus on component i “ 1 for the
sake of simplicity in the presentation. Then, we can extend the same reasoning to all the others. Let us define a set of helper
instances which are needed for the analysis. For all the components different from the first, we consider as before a vector
ph2, . . . , hdqT P Jk2K ˆ ¨ ¨ ¨ ˆ JkdK which characterize the instance νp0,h2,...,hdq defined as follows:

µ1,j “ 1 ´ ∆, @j P Jk1K µi,j “
#

1 if j “ hi

1 ´ ∆ if j P JkiKzthiu , @i P J2, dK. (20)

We now need to introduce some additional objects. Given a vector ph1, h2, . . . , hdqT P pt0u Y Jk1Kq ˆ Jk2K ˆ ¨ ¨ ¨ ˆ JkdK,
we call Pph1,h2,...,hdq the distribution induced by the history of the pulls and the related rewards for the d components over
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time horizon T in instance νph1,h2,...,hdq. We denote with Ph for h P t0u Y Jk1K the distribution induced by the history
averaged over the other dimensions, formally: Ph “ 1

ś

iPJ2,dK ki

ř

ph2,h3,...,hdqPJk2Kˆ¨¨¨ˆJkdK Pph,h2,...,hdq, and with Eh the
expectation over Ph.

Coming back to the proof, given the definition of the base instances (Equation 19), the expected regret
E

”

R
p1q

T pA,νph1,...,hdqq
ı

related to the first component is given by:

E
”

R
p1q

T pA,νph1,...,hdqq
ı

“ ∆
ÿ

jPJk1Kzth1u

E rN1,jpT qs

“ ∆ pT ´ E rN1,h1pT qsq .
We now want to use Lemma C.4 in order to obtain the following condition:

1

k1

ÿ

hPJk1K

EhrT ´ N1,hpT qs ě T

4
. (21)

To apply Lemma C.4, we need an upper bound on the total variation dTV that we can compute @h P Jk1K as follows:

dTV “ 1

2
}P0 ´ Ph}1

“ 1

2

›

›

›

›

›

›

1
ś

iPJ2,dK ki

ÿ

ph2,h3,...,hdqPJk2Kˆ¨¨¨ˆJkdK

`

Pp0,h2,...,hdq ´ Pph,h2,...,hdq

˘

›

›

›

›

›

›

1

ď 1
ś

iPJ2,dK ki

ÿ

ph2,h3,...,hdqPJk2Kˆ¨¨¨ˆJkdK

1

2

›

›Pp0,h2,...,hdq ´ Pph,h2,...,hdq

›

›

1
(22)

ď 1
ś

iPJ2,dK ki

ÿ

ph2,h3,...,hdqPJk2Kˆ¨¨¨ˆJkdK

c

1

2
DKL

`

Pp0,h2,...,hdq

ˇ

ˇ

ˇ

ˇPph,h2,...,hdq

˘

(23)

“ 1
ś

iPJ2,dK ki

ÿ

ph2,h3,...,hdqPJk2Kˆ¨¨¨ˆJkdK

c

1

2
Ep0,h2,...,hdqrN1,hpT qsDKL

`

p0
›

›ph
˘

(24)

“ 1
ś

iPJ2,dK ki

ÿ

ph2,h3,...,hdqPJk2Kˆ¨¨¨ˆJkdK

c

1

2
Ep0,h2,...,hdqrN1,hpT qs ∆

2

2σ2
(25)

ď
g

f

f

e

1
ś

iPJ2,dK ki

ÿ

ph2,h3,...,hdqPJk2Kˆ¨¨¨ˆJkdK

1

2
Ep0,h2,...,hdqrN1,hpT qs ∆

2

2σ2
(26)

ď 1

4

c

∆2

2σ2
E0rN1,hpT qs, (27)

where line (22) is the triangle inequality for norms, line (23) is due the Pinsker’s inequality, line (24) is due to the divergence
decomposition lemma (Lattimore & Szepesvári, 2020, Lemma 15.1) considering that all the component different from the
first are equal, line (25) is derived by the expression of DKL between Gaussian distributions, line (26) is due to the Jensen’s
inequality, and line (27) is obtained by marginalizing w.r.t. the first component.

Given this upper bound to the total variation, we can finally apply Lemma C.4 considering m “ k1 and B “ 2σ2k1

∆2 . What
we get is:

1

k1

ÿ

iPJk1K

Eh

„

2σ2k1
∆2

´ N1,hpT q
ȷ

ě σ2k1
2∆2

. (28)

We can now select the value of ∆ in order to have in Equation (28) a bound on T :

T “ 2σ2k1
∆2

.
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This implies a choice of ∆ in the form of:

∆ “
c

2σ2k1
T

.

Given such a choice of ∆ and the bound given by Equation (21), we get that the regret of the first action component can be
bounded as:

E
”

R
p1q

T pA,νq
ı

ě ∆ pT ´ E rN1,h1
pT qsq

ě
c

2σ2k1
T

T

4

“
c

σ2k1T

8

“ 1

2
?
2
σ

a

k1T .

The same reasoning can be done for all the others d ´ 1 action components and the bound of Equation (18):

E rRT pA,νqs ě 1

2

ÿ

iPJdK

E
”

R
piq
T pA,νq

ı

ě 1

4
?
2
σ

ÿ

iPJdK

a

kiT .

The last point needed is to check that the condition of the choices we made on the ∆ is compliant for all the dimensions
i P JdK with the one of Lemma C.3, i.e., all the ∆s are less than ∆ defined as:

∆ “
c

2σ2 maxiPJdK ki

T
.

This implies a lower bound on the T for which this bound holds:
c

2σ2 maxiPJdK ki

T
ď 1 ´ 2´1{pd´1q.

Isolating T we get:

T ě 2σ2 maxiPJdK ki
`

1 ´ 2´1{pd´1q
˘2 .

We highlight that the lower bound on the horizon T is quadratic in d. Indeed, for d ě 2 we have:
´

1 ´ 2´ 1
d´1

¯´2 “
´

1 ´ e´
log 2
d´1

¯´2 ď
ˆ

1

2pd ´ 1q
˙´2

“ 4pd ´ 1q2 “ Opd2q,

having exploited the fact that 1 ´ e´x log 2 ě x{2 as x P r0, 1s, having set x “ 1
d´1 P r0, 1s for d ě 2. Thus, we require a

mild (quadratic) condition on T ě Opd2 maxiPJdK kiq. We remark that even for standard bandits, the minimax lower bound
requires the constraint T ě Opkq, being k the number of arms (Theorem 15.3, Lattimore & Szepesvári, 2020).

This concludes the proof.

Theorem 3.2 (Worst-Case Lower Bound without Intermediate Observations). For every algorithm A: that ignores the
intermediate observations xptq and observes the reward rptq only, there exists an FRB ν such that for:

T ě 4pmin
iPJdK

ki ´ 1q{d,

A: suffers an expected cumulative regret of at least:

E
“

RT pA:,νq‰ ě σd

8

c

pminiPJdK ki ´ 1qT
d

.

In particular, if ki “: k for every i P JdK, we have E
“

RT pA:,νq‰ ě Ωpσd
a

kT {dq.

Proof. For simplicity, we consider d even. We consider the following base instance ν, parametrized by σ ą 1 and
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∆ P r0, 1{4s with ∆ ď σd, defined for all i P JdK and j P JkiKzt1u:

νi,1 “
#

σ w.p. 1
2 ` ∆1{d

2σ

´σ w.p. 1
2 ´ ∆1{d

2σ

, νi,j “
#

σ w.p. 1
2

´σ w.p. 1
2

. (29)

It is clear that µi,1 “ ∆1{d and µi,j “ 0. Consequently, the optimal arm is p1, . . . , 1qJ with performance µ˚ “ ∆ and all
the other arms have performance 0. Furthermore, the variance of the suboptimal arm components is given by σ2 which is
also the subgaussian proxy, while for the optimal arm components, the variance is smaller. Consider now for every i P JdK:

j˚
i P argmin

jPJkiKzt1u

E
ν

rNi,jpT qs ùñ E
ν

rNi,j˚
i

pT qs ď T

ki ´ 1
. (30)

We construct the alternative instance ν which is equal to ν 1 except for the the components pi, j˚
i q for i P JdK:

νi,j˚
i

“
#

σ w.p. 1
2 ` p2∆q

1{d

2σ

´σ w.p. 1
2 ´ p2∆q

1{d

2σ

, (31)

enforcing ∆ ď σd{2. In this alternative instance, the optimal arm is pj˚
1 , . . . j

˚
d qJ, with performance pµ˚q1 “ 2∆.

We are considering algorithms that do not observe individual components. Therefore, the distribution of the product of
the individual components has to be computed. Since they will be used in the computation of the KL-divergence, we just
consider the two most dissimilar ones:

νb
: “

#

σd w.p. 1
2 ` ∆

σd

´σd w.p. 1
2 ´ ∆

σd

, νb
; “

#

σd w.p. 1
2

´σd w.p. 1
2

, (32)

where the probability of the first case in which we play, for instance, p1, . . . , 1qJ in the base instance is obtained by the
following reasoning: we get σd if the number of σ realizations is even (being d even). Thus, we have:

Pptσduq “
d

ÿ

l“0

1tl is evenu
ˆ

d

j

˙ ˆ

1

2
` p2∆q1{d

2σd

˙j ˆ

1

2
´ p2∆q1{d

2σd

˙d´j

“ 1

2
` ∆

σd
. (33)

The KL divergence becomes, using reverse Pinsker inequality:

DKLpνb
: , νb

; q ď 1
1
2 ´ ∆

σd

DTVpνb
: , νb

; q “ 4

ˆ

∆

σd

˙2

“ 4∆2

σ2d
. (34)

requiring ∆ ď σd{4.

Let us now lower bound the regret with Bretagnolle-Huber’s inequality:

maxtErRT pA,νqs,ErRT pA,ν 1qsu ě ∆T

4
exp

˜

´E
ν

«

T
ÿ

t“1

1tDi P JdK : aiptq “ j˚
i uDKLpνb

aptq}pν1qb

aptqq
ff¸

(35)

ě ∆T

4
exp

¨

˝´
ÿ

iPJdK

E
ν

rNi,j˚
i

pT qs4∆
2

σ2d

˛

‚ (36)

ě ∆T

4
exp

ˆ

´ 4dT∆2

σ2dpk˚ ´ 1q
˙

, (37)

being k˚ “ miniPJdK ki. We set ∆ “
b

σ2dpk˚´1q

4dT with T ě 4pk˚ ´ 1q{d.

Theorem 3.3 (Instance-Dependent Lower Bound). For every consistent10 algorithm A and FRB ν with unique optimal arm
a˚ P A it holds that:

lim inf
TÑ`8

E rRT pA,νqs
log T

ě Cpνq, (3)

where Cpνq is defined as the solution to the following optimization problem:

min
pLaq

aPAzta˚u

ÿ

aPAzta˚u

La∆a (4)

10An algorithm A is consistent if for every FRB ν and p ą 0, it holds that lim supTÑ`8 ErRT pA,νqs{T p
“ 0.
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s.t. Li,j “
ÿ

aPAzta˚u
ai“j

La, @iPJdK, j PJkiKzta˚
i u (5)

Li,j ě
2σ2

∆2
i,j

, @iPJdK, j PJkiKzta˚
i u (6)

La ě0, @aPAzta˚
u. (7)

Proof. The proof of this statement is divided into two parts. Part one is dedicated to finding a lower bound on the expected
number of pulls of every action component Ni,jpT q for each action component i P JdK, j P JkiKzta˚

i u. Part two is dedicated
to understanding how these pulls of the action components can be combined in action vectors in the best way possible.

Part 1: Lower bounding the expected number of pulls for each action component

The proof of the expected number of pulls of a sub-optimal action j P JkiKzta˚
i u of action component i P JdK is inspired by

the proof of the asymptotic number of pulls of sub-optimal arms presented in Theorem 16.2 of (Lattimore & Szepesvári,
2020).

We call Mmn the set of distributions referring to the mth component (m P JdK) and the nth arm (n P JkmK). Then, consider
Pmn as a specific distribution taken from Mmn to model the reward observations of arm n of component m in a given
instance of the setting.

Let ν be an instance of the FRB setting with d components and ki actions for every i P JdK. We start by selecting a
component i and a sub-optimal arm j. Let ε ą 0 P R be arbitrary constant. We define a new instance of the FRB
setting ν 1 such that P 1

ij “ Pij ,@i P JdKztiu,@j P JkiK, and P 1
ij “ Pij ,@j P JkiKztju, and P 1

i,j P Mi,j be such that
DKLpPi,j , P

1
i,jq ď di,j ` ε and µ1

i,j ą µ˚
i . dmn represents the KL divergence between Pmn and P˚

m. The newly defined

instance ν 1 is then identical to ν for every arm of every component different from i, and in the ith component every arm is
identical except for arm j, which is sub-optimal in ν and is optimal in ν 1. Following the original proof, we can define, for
any event E :

PνpEi,jq ` Pν1 pEA
i,jq ě 1

2
exp

´

´Eν

”

Ni,jpT q
ı ´

di,j ` ε
¯¯

.

Now, let Ei,j “ tNi,jpT q ą T {2u, and let RT “ RT pA,νq and R1
T “ RT pA,ν 1q. Then:

RT ` R1
T ě T

2

´

PνpEi,jqfipµq∆i,j ` Pν1 pEA
i,jqfipµqpµ1

i,j ´ µ˚
i q

¯

,

where fipµq is obtained by the following observation. Since at every round t P JT K, in which we pull pi, jq we suffer the
instantaneous regret in the base instance:

ź

iPJdK

µ˚
i ´ µi,j

ź

iPJdKztiu

µi,jptq ě pµ˚
i ´ µi,jq

ź

iPJdKztiu

µ˚
i “ ∆i,j

ź

iPJdKztiu

µ˚
i (38)

and in the alternative instance:

µ1
i,j

ź

iPJdKztiu

µ˚
i ´

ź

iPJdK

µi,jptq ě pµ1
i,j ´ µ˚

i q
ź

iPJdKztiu

µ˚
i , (39)

we define:

fipµq :“
ź

iPJdK‰tiu

µ˚
i . (40)

Since the term fipµq multiplies both ∆i,j and pµ1
i,j ´ µ˚

i q, it is straightforward to continue the original proof and write:

RT ` R1
T ě T

4
fipµqmint∆i,j , pµ1

i,j ´ µ˚
i qu exp

´

´Eν

”

Ni,jpT q
ı ´

di,j ` ε
¯¯

.

Rearranging and dividing by log T , we obtain:

EνrNi,jpT qs
logpT q ě

logpT q ` log
´

fipµq

4 mint∆i,j , pµ1
i,j ´ µ˚

i qu
¯

´ logpRT ` R1
T q

pdi,j ` εq logpT q (41)
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“ 1

di,j ` ε
`

log
´

fipµq

4 mint∆i,j , pµ1
i,j ´ µ˚

i qu
¯

´ logpRT ` R1
T q

pdi,j ` εq logpT q (42)

ě 2σ2

∆2
i,j

´ hi,jpT q, (43)

by letting ε Ñ 0, having exploited the expression of KL-divergence between Gaussians and having set:

hi,jpT q :“ max

$

&

%

0,
log

´

fipµq

4 mint∆i,j , pµ1
i,j ´ µ˚

i qu
¯

´ logpRT ` R1
T q

di,j log T

,

.

-

. (44)

Notice that lim supTÑ`8 hi,jpT q “ 0 under consistency.

Now, iterating this reasoning over i P JdK and over j P JkiK, we get the lower bound on the expected number of pulls for all
the arms of all the action components.

Part 2: Understanding how the pulls we have to perform on the action components can be combined

From Part 1 of this proof, we have a result on the expectation of the minimum number of pulls. We can now define the
quantity:

Li,jpT q :“ ErNi,jpT qs
log T

, @i P JdK, j P JkiK.

This quantity can be lower bounded as:

Li,jpT q ě 2σ2

∆2
ij

´ hi,jpT q, @i P JdK, j P JkiKzta˚
i u.

Now, we want to understand how these pulls of the action’s suboptimal components influence the regret. We chose to look
at the asymptotic expected regret, defined as follows:

E rRT pA,νqs
log T

“
ÿ

aPA

E rNapT qs
log T

∆a,

and we denote:

LapT q :“ ErNapT qs
log T

, @a P A.

The regret becomes defined as:
E rRT pA,νqs

log T
“

ÿ

aPA
LapT q∆a,

Now, we want to look at how the pulls of the action vectors La and the ones of the action components are related. We can
easily observe that the following relation occurs:

Li,jpT q “
ÿ

aPA:ai“j

LapT q, @i P JdK, j P JkiK.

Given that, we can write an optimization problem in which we search for the best combination of pulls of the action vector
satisfying the constraints on the minimum number of pulls of the action components.

min
LapT q,Li,jpT q

ÿ

aPAzta˚u

LapT q∆a (45)

s.t. Li,jpT q “
ÿ

aPA:ai“j

LapT q, @i P JdK, j P JkiKzta˚
i u (46)

Li,jpT q ě 2σ2

∆2
i,j

´ hi,jpT q, @i P JdK, j P JkiKzta˚
i u (47)

LapT q ě 0, @a P Azta˚u. (48)

Now, to simplify notation, we define xpaq “ LapT q, remove the variables Li,j since constraint (47) will be satisfied with
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equality, and reformulate in the unconstrained form using the indicator function IX pxq “
#

0 if x P X
`8 otherwise

:

inf
xpaq

fT pxq :“
ÿ

aPAzta˚u

xpaq∆a `
ÿ

iPJdK

ÿ

jPJkiKzta˚
i u

IRě0

˜

ÿ

aPA : ai“j

xpaq ´ 2σ2

∆2
i,j

` hi,jpT q
¸

`
ÿ

aPA
IRě0

pxpaqq. (49)

With this notation, we want to characterize the value of the optimization problem as the horizon T grows to infinity, i.e.,
lim infTÑ`8 infxpaq fT pxq. Notice that this is exactly what we need to obtain a lower bound to lim infTÑ`8

ErRT pA,νqs

log T .

In the following, we show that:

lim inf
TÑ`8

inf
xpaq

fT pxq “ inf
xpaq

f8pxq, (50)

where f8 is defined as follows:

f8pxq :“
ÿ

aPA
xpaq∆a `

ÿ

iPJdK

ÿ

jPJkiKzta˚
i u

IRě0

˜

ÿ

aPA : ai“j

xpaq ´ 2σ2

∆2
i,j

¸

`
ÿ

aPA
IRě0

pxpaqq, (51)

corresponding to the optimization problem in which we remove the hi,jpT q function from the right-hand side of
the constraint. First of all, we observe that for every x and T , we have that fT pxq ď f8pxq. It follows that
infxpaq fT pxq ď infxpaq f8pxq and, consequently, lim infTÑ`8 infxpaq fT pxq ď infxpaq f8pxq. Thus, it remains to
prove that lim infTÑ`8 infxpaq fT pxq ě infxpaq f8pxq. Since the optimization problem is linear and feasible (for suf-
ficiently large T ), there must exist x˚

T such that infxpaq fT pxq “ fT px˚
T q for every finite T , but also for T “ 8. Now,

consider for a fixed x:

lim inf
TÑ`8

fT pxq “
ÿ

aPA
xpaq∆a `

ÿ

aPA
IRě0

pxpaqq ` lim inf
TÑ`8

ÿ

iPJdK

ÿ

jPJkiKzta˚
i u

IRě0

˜

ÿ

aPA : ai“j

xpaq ´ 2σ2

∆2
i,j

` hi,jpT q
¸

(52)

ě
ÿ

aPA
xpaq∆a `

ÿ

aPA
IRě0pxpaqq `

ÿ

iPJdK

ÿ

jPJkiKzta˚
i u

lim inf
TÑ`8

IRě0

˜

ÿ

aPA : ai“j

xpaq ´ 2σ2

∆2
i,j

` hi,jpT q
¸

(53)

“ f8pxq, (54)

uniformly since lim supTÑ`8 hi,jpT q “ 0 and IRě0
is a decreasing function in its argument, having also exploited that

lim infnpan ` bnq ě lim infn an ` lim infn bn. Indeed, let c “ ř

aPA : ai“j xpaq ´ 2σ2

∆2
i,j

and yT “ hi,jpT q, we have to

compute lim infTÑ`8 IRě0
pc ` yT q. Since 0 ď yT and lim supTÑ`8 yT “ 0, we have limTÑ`8 yT “ 0. If c ‰ 0,

there exists T pcq such that for T ě T pcq, we have that yT ď |c|{2. Consequently, lim infTÑ`8 IRě0pc ` yT q “ IRě0pcq.
If, instead, c “ 0, we have to compute limTÑ`8 IRě0pyT q; being IRě0 right continuous and yT ě 0 we have that
limTÑ`8 IRě0

pyT q “ 0.

This, combined with the fact fT pxq ď f8pxq leads to lim infTÑ`8 fT pxq “ f8pxq, uniformly. Thus, we have that for
every ε ą 0 there exists T pεq ą 0 such that for every T ě T0pεq we have uniformly:

ˇ

ˇ

ˇ

ˇ

inf
T 1ěT

fT 1 pxq ´ f8pxq
ˇ

ˇ

ˇ

ˇ

ď ε. (55)

Consequently, we have:

inf
T 1ěT

inf
xpaq

fT 1 pxq “ inf
T 1ěT

fT 1 px˚
T 1 q ě f8px˚

T 1 q ´ ε ě f8px˚
8q ´ ε “ inf

xpaq
f8pxpaqq ´ ε. (56)

This concludes the proof.

Theorem 3.4 (Instance-Dependent Lower Bound (Explicit)). Let Cpνq be the solution of the optimization problem of
Theorem 3.3. It holds that:

Cpνq “
K´d
ÿ

ℓ“1

`

Mπpℓq ´ Mπpℓ´1q

˘

∆αℓ
,

that can be computed in Opř

iPJdK ki log kiq.
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Proof. Let M “ maxiPJdK Mi,ki´1. For every i P JdK, let us define a non-negative function function fi : R Ñ tµi,jujPJkiKY
t0u such that:

ż

R
1tfipxq “ µi,judx “ Li,j @j P JkiKzta˚

i u, (57)
ż

R
1tfipxq “ µi,a˚

i
udx “ M ´ Mi,ki´1. (58)

Clearly, fi is not uniquely defined. Any function fi satisfying these conditions is measurable (by definition, since the
pre-image of any Y Ď tµi,jujPJkiK Y t0u is measurable) and correspond to a possible arrangement of a proportion of pulls
of the arm components of dimension i. Specifically, all functions satisfying these conditions are called “equimesurable”
meaning that for every fi, gi fulfilling the conditions, we have that tx : fipxq ě yu “ tx : gipxq ě yu for every y P R.
We call this set of functions Fi.

A possible arrangement of the proportion of the pulls for component i P JdK, corresponds to a function fi P Fi such that
fipxq “ 0 for x ă 0 or x ą M . Thus, to minimize the regret as in the optimization problem of Theorem 3.3, we maximize
the reward as follows:

sup
fiPFi, fipxq “ 0 for x ă 0 or x ą M, iPJdK

ż

Rd

ź

iPJdK

fipxiqdxi ď sup
fiPFi, iPJdK

ż

Rd

ź

iPJdK

fipxiqdxi. (59)

Let f˚
i be the symmetric decreasing rearrangement of fi for every i P JdK, which, in our specific case, is a piecewise

constant symmetric function. Define x0 “ 0, xi,1 “ pM ´ Mi,ki´1q{2, xi,l`1 “ xi,l ` Li,πipki´lq{2 for l P JkiK, we have:

f˚
i pxq “

ÿ

lPJkiK

µi,πipki´l`1q1t|x| P rxi,l´1, xi,lqu. (60)

From the rearrangement inequality for multiple integrals (Luttinger & Friedberg, 1976), we have:

sup
fiPFi, iPJdK

ż

Rd

ź

iPJdK

fipxiqdxi “
ż

Rd

ź

iPJdK

f˚
i pxiqdxi. (61)

Let us observe that the product of
ş

Rd

ś

iPJdK f
˚
i pxiqdxi actually leads to the solution depicted in the statement of the

theorem.

Concerning the computational complexity, we observe that it is dominated by the sorting in each dimension i P JdK.

Theorem 4.1 (Worst-Case Upper Bound for F-UCB). For any FRB ν, F-UCB with α ą 2 suffers an expected regret
bounded as:

E rRT pF-UCB,νqs ď 4σ
ÿ

iPJdK

a

αkiT log T ` gpαq
ÿ

iPJdK

ki,

where gpαq “ rO
`pα ´ 2q´2

˘

.11 In particular, if ki “: k, for every i P JdK, we have E rRT pF-UCB,νqs ď rOpσd?
kT q.

Proof. The proof is composed of two parts. In the first part, we define the probability, given the chosen confidence bounds,
that the good event holds, i.e., the probability that all the confidence bounds are valid. The goal is to find an upper bound on
the probability that the good event does not hold along the whole time horizon T . In the second part, we aim to characterize
the regret under the good event for a specific round t P JT K. Finally, we join the two parts to find an upper bound on the
expected cumulative regret.

Part 1: Upper bounding the bad event over time horizon T

We start by defining our good event Et at round t P JT K, which implies that all the confidence bounds of interest hold, i.e., we
are not making a severe underestimate of the expected value of the optimal action components, and severely overestimating
the expected values of the suboptimal ones. Formally:

Et :“
#

@i P JdK,@ai P JkiKzta˚
i u : pµi,ai

ptq ´ µi,ai
ď σ

d

α log t

Ni,ai
ptq

+

11The complete expression is reported in the proof.
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X
#

@i P JdK : µi,a˚
i

´ pµi,a˚
i

ptq ď σ

d

α log t

Ni,a˚
i

ptq

+

.

We now want to find an upper bound of the probability of the bad event EA
t :

P
`

EA
t

˘ ď P

˜

Di P JdK, Dai P JkiKzta˚
i u : pµi,aiptq ´ µi,ai ą σ

d

α log t

Ni,aiptq

¸

`

` P

˜

Di P JdK : µi,a˚
i

´ pµi,a˚
i

ptq ą σ

d

α log t

Ni,a˚
i

ptq

¸

ď P

¨

˚

˚

˝

Di P JdK, Dai P JkiKzta˚
i u, Ds P JtK : pµi,airss ´ µi,aiptq ą σ

c

α log t

s
looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

(A)

˛

‹

‹

‚

` P

¨

˚

˚

˝

Di P JdK, Ds P JtK : µi,a˚
i

´ pµi,a˚
i

rss ą σ

c

α log t

s
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

(B)

˛

‹

‹

‚

, (62)

having highlighted with the symbols pµi,airss and pµi,a˚
i

rss the dependence of the estimators on the number of pulls s.
We now bound (A) and (B) separately. Similar to the proof of Theorem 2.2 proposed by Bubeck (2010), we use a
peeling argument together with Hoeffding’s maximal inequality. We apply the peeling argument with a geometric grid
over the time interval r1, ts to bound the probability of term (A). Given β P p0, 1q, we note that if s P t1, . . . , tu, then
Dj P

!

0, . . . , log t
log 1{β

)

: βj`1t ă s ď βjt. As such, we obtain:

P p(A)q “ P

˜

Di P JdK, Dai P JkiKzta˚
i u, Ds P JtK : pµi,airss ´ µi,ai ą σ

c

α log t

s

¸

“ P

˜

Di P JdK, Dai P JkiKzta˚
i u, Ds P JtK :

s
ÿ

l“1

`

xi,ai
rls ´ µi,aiptq

˘ ą σ
a

αs log t

¸

ď
log t

log 1{β
ÿ

j“0

P

˜

Di P JdK, Dai P JkiKzta˚
i u, Ds : βj`1t ă s ď βjt,

s
ÿ

l“1

`

xi,ai
rls ´ µi,aiptq

˘ ą σ
a

αs log t

¸

ď
log t

log 1{β
ÿ

j“0

P

˜

Di P JdK, Dai P JkiKzta˚
i u, Ds : βj`1t ă s ď βjt,

s
ÿ

l“1

`

xi,ai
rls ´ µi,aiptq

˘ ą σ
a

αβj`1t log t

¸

,

having denoted with xi,ai
rls the l-sample used to compute the sample mean pµi,ai

rss. Applying a union bound on the
summations on i and ai, and Hoeffding’s maximal inequality, we obtain:

P p(A)q ď
ÿ

iPJdK

ÿ

aiPJkiKzta˚
i u

log t
log 1{β
ÿ

j“0

exp

¨

˚

˝

´
´

a

σ2αβj`1t log t
¯2

2σ2βjt

˛

‹

‚

“
ÿ

iPJdK

ÿ

aiPJkiKzta˚
i u

log t
log 1{β
ÿ

j“0

exp

ˆ

´αβ log t

2

˙

“
ÿ

iPJdK

ÿ

aiPJkiKzta˚
i u

log t
log 1{β
ÿ

j“0

t´
αβ
2

ď
ÿ

iPJdK

ÿ

aiPJkiKzta˚
i u

˜

log t

log 1
β

` 1

¸

t´
αβ
2 .
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Applying the same procedure, we can bound the probability of term (B) in Equation (62) to obtain:

P p(B)q ď
ÿ

iPJdK

˜

log t

log 1
β

` 1

¸

t´
αβ
2 .

As such, we can write the upper bound of the probability of the bad event as:

P
`

EA
t

˘ “ P p(A)q ` P p(B)q ď
ÿ

iPJdK

ki

˜

log t

log 1
β

` 1

¸

t´
αβ
2 .

Let us now bound the sum of the probabilities of the bad event over the horizon T :

ÿ

tPJT K

P
`

EA
t

˘ ď
ÿ

iPJdK

ki
ÿ

tPJT K

˜

log t

log 1
β

` 1

¸

t´
αβ
2

ď
ÿ

iPJdK

ki

ż T

1

˜

log t

log 1
β

` 1

¸

t´
αβ
2 dt (63)

“
ÿ

iPJdK

ki

˜

„ˆ

log t

log 1{β ` 1

˙ ˆ

2

2 ´ αβ
t1´

αβ
2

˙ȷ`8

1

´ 4

p2 ´ αβq log 1{β
ż `8

1

t´
αβ
2 dt

¸

(64)

“
ÿ

iPJdK

ki

ˆ

´ 2

2 ´ αβ
´ 4

p2 ´ αβq2 logp1{βq
”

t1´
αβ
2

ı`8

1

˙

(65)

“
ÿ

iPJdK

ki

ˆ

´ 2

2 ´ αβ
` 4

p2 ´ αβq2 logp1{βq
˙

, (66)

where line (63) is obtained by bounding the summation with the integral, line (64) is obtained via integration by parts, and
the first term of line (65) is obtained by imposing αβ ą 2. Substituting now β “ 4

α`2 , which verifies β P p0, 1q if α ą 2,
we obtain:

ÿ

tPJT K

P
`

EA
t

˘ ď
˜

α ` 2

α ´ 2
` pα ` 2q2

pα ´ 2q2
1

log
`

α`2
4

˘

¸

ÿ

iPJdK

ki “ rO
`pα ´ 2q2˘

ÿ

iPJdK

ki.

Part 2: Upper bounding the instantaneous regret at time t under the good event

We can now bound the instantaneous regret at time t supposing the good event holds. We define the regret Rt at time t as
the difference in expectation between the optimal action and the one performed by F-UCB, formally:

Rt “
ź

iPJdK

µ˚
i ´

ź

iPJdK

µi,aiptq (67)

“
ÿ

lPJdK

ź

iPJl´1K

µ˚
l

loooomoooon

Pr0,1s

`

µ˚
l ´ µl,alptq

˘

ź

iPJl`1,dK

µi,aiptq

loooooooomoooooooon

Pr0,1s

(68)

ď
ÿ

lPJdK

`

µ˚
l ´ µl,alptq

˘

(69)

“
ÿ

lPJdK

`

µ˚
l ´ µl,alptq ˘ UCBl,alptqptq˘

(70)

ď
ÿ

lPJdK

`

UCBl,alptqptq ´ µl,alptq

˘

(71)

“
ÿ

lPJdK

`

pµl,alptqptq ` βl,alptqptq ´ µl,alptq

˘

(72)

ď 2
ÿ

lPJdK

βl,alptqptq, (73)

where line (68) is obtained by summing and subtracting all mixed terms, line (69) follows from bounding the left and right
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products with 1 being all factors (including the middle one) made of non-negative terms, line (71) comes from the optimism
under the good event, having denoted with βl,al

ptq the exploration bonus.

Upper bound of the expected cumulative regret RpF-UCB, T q
Recalling that we call Rt the instantaneous regret under the good event, can now compute an upper bound on the expected
cumulative regret as:

E rRT pF-UCB,νqs ď
ÿ

tPJT K

´

1 ¨ P `

EA
t

˘ ` Rt ¨ P
´

Ẽt
¯¯

ď
ÿ

tPJT K

P
`

EA
t

˘ `
ÿ

tPJT K

Rt ¨ P
´

ẼT
¯

ď
ÿ

tPJT K

P
`

EA
t

˘ `
ÿ

tPJT K

Rt

ď
ÿ

tPJT K

P
`

EA
t

˘ `
ÿ

tPJT K

2
ÿ

iPJdK

βi,aiptqptq

“
ÿ

tPJT K

P
`

EA
t

˘ ` 2
ÿ

tPJT K

ÿ

iPJdK

σ

d

α log t

Ni,aiptq

ď
ÿ

tPJT K

P
`

EA
t

˘ ` 2σ
a

α log T
ÿ

tPJT K

ÿ

iPJdK

d

1

Ni,aiptq

“
ÿ

tPJT K

P
`

EA
t

˘ ` 2σ
a

α log T
ÿ

iPJdK

ÿ

aiPJkiK

ÿ

jPJNi,ai
pT qK

c

1

j
(74)

ď
ÿ

tPJT K

P
`

EA
t

˘ ` 2σ
a

α log T
ÿ

iPJdK

ÿ

aiPJkiK

ÿ

jPJT {kiK

c

1

j
(75)

ď
ÿ

tPJT K

P
`

EA
t

˘ ` 2σ
a

α log T
ÿ

iPJdK

ÿ

aiPJkiK

ż T {ki

1

c

1

j
dj (76)

ď
ÿ

tPJT K

P
`

EA
t

˘ ` 2σ
a

α log T
ÿ

iPJdK

ÿ

aiPJkiK

ˆ

1 ` 2

c

T

ki
´ 2

˙

ď
ÿ

tPJT K

P
`

EA
t

˘ ` 2σ
a

α log T
ÿ

iPJdK

ÿ

aiPJkiK

2

c

T

ki

“
ÿ

tPJT K

P
`

EA
t

˘ ` 4σ
a

α log T
ÿ

iPJdK

a

kiT

ď
˜

α ` 2

α ´ 2
` pα ` 2q2

pα ´ 2q2
1

log
`

α`2
4

˘

¸

ÿ

iPJdK

ki ` 4σ
a

αT log T
ÿ

iPJdK

a

ki.

where line (74) is obtained by rewriting the series over the arms and the number of pulls for each arm, line (75) is derived by
considering the worst case, i.e., when all the arms are pulled equally (this is the worst case because we are looking at a
concave function), and line (76) is obtained by bounding the summation with the corresponding integral. This concludes the
proof.

Theorem 4.2 (Instance-Dependent Upper Bound for F-UCB). For a given FRB ν, F-UCB with α ą 2 suffers an expected
regret bounded as:

E rRT pF-UCB,νqs ď CpF-UCB,νq,
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where CpF-UCB,νq is defined as the solution to the following optimization problem (where gpαq “ rOppα ´ 2q´2q):

max
pNaqaPA

ÿ

aPAzta˚u

Na∆a (9)

s.t. Ni,j “
ÿ

aPAzta˚u
ai“j

Na, @iPJdK, jPJkiKzta˚
i u (10)

Ni,j ď
4ασ2 logT

∆2
i,j

`gpαq, @iPJdK, jPJkiKzta˚
i u (11)

ÿ

aPA
Na“T (12)

Naě0, @aPA (13)

Proof. The proof of this statement is divided into two parts. The first part is dedicated to finding an upper bound on the
expected number of pulls for each action component Nij . The second part is dedicated to understanding how these pulls can
be combined to find an upper bound on the regret.

Part 1: Upper bounding the expected number of pulls for each action component

The proof of the expected number of pulls for σ2-subgaussian variables comprises three parts, extending and following the
proof of Theorem 2.2 proposed by Bubeck (2010).

Given an instance ν of FRB, consider a component i P JdK, and a suboptimal action ai P JkiKzta˚
i u, which suffers a

suboptimality gap of ∆i,ai . In this part, we show that if Ii,t “ ai (i.e., the action selected for component i at time t is ai),
then one of the three following equations is true:

UCBi,a˚
i

ptq ď µ˚
i , (77)

or

µ̂i,aipt ´ 1q ą µi,ai ` σ

d

α log t

Ni,aipt ´ 1q , (78)

or

Ni,aipt ´ 1q ă 4σ2α log T

∆2
i,ai

, (79)

where: UCBi,a˚
i

ptq is the confidence bound of the optimal arm for component i at time t, having pulled such an arm for
Ni,a˚

i
pt ´ 1q times in the previous rounds, and µ̂i,ai,Ni,ai

pt´1q is the estimated value of the mean of arm ai of component i
after Ni,aipt ´ 1q pulls. For absurd, if we assume that the three equations are false, then we have:

UCBi,a˚
i

ptq ą µ˚
i

“ µi,ai ` ∆i,ai

ě µi,ai
` 2

d

σ2α log t

Ni,ai
pt ´ 1q

ě µ̂i,ai,Ni,ai
pt´1q `

d

σ2α log t

Ni,ai
pt ´ 1q

“ UCBi,ai
pt ´ 1q,

which implies that aiptq ‰ ai. Now, we bound the probability that Equation (77) or Equation (78) hold true. Similar to
the original proof, we use a peeling argument together with Hoeffding’s maximal inequality, which is a consequence of
Azuma-Hoeffding inequality. Note that:

PpEq. (77) is trueq ď P

˜

Ds P t1, . . . , tu : µ̂i,a˚
i

rss `
c

σ2α log t

s
ď µ˚

i

¸
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“ P

˜

Ds P t1, . . . , tu :
s

ÿ

l“1

pxi,a˚
i

rls ´ µ˚
i q ď ´

a

σ2αs log t

¸

We now apply the peeling argument with a geometric grid over the time interval r1, ts. More precisely, given β P p0, 1q, we
note that if s P t1, . . . , tu, then Dj P

!

0, . . . , log t
log 1{β

)

: βj`1t ă s ď βjt.

As such, we get:

PpEq. (77) is trueq ď
log t

log 1{β
ÿ

j“0

P

˜

Ds : βj`1t ă s ď βjt,
s

ÿ

l“1

pxi,a˚
i

rls ´ µ˚
i q ď ´

a

σ2αs log t

¸

ď
log t

log 1{β
ÿ

j“0

P

˜

Ds : βj`1t ă s ď βjt,
s

ÿ

l“1

pxi,a˚
i

rls ´ µ˚
i q ď ´

a

σ2αβj`1t log t

¸

We now bound this last term using Hoeffding’s maximal inequality, which gives:

PpEq. (77) is trueq ď
log t

log 1{β
ÿ

j“0

exp

¨

˚

˝

´
´

a

σ2αβj`1t log t
¯2

2σ2βjt

˛

‹

‚

ď
log t

log 1{β
ÿ

j“0

exp

ˆ

´αβ log t

2

˙

ď
ˆ

log t

log 1{β ` 1

˙

1

t
βα
2

.

Using the same arguments, it can be proven that:

PpEq. (78) is trueq ď
ˆ

log t

log 1{β ` 1

˙

1

t
βα
2

.

We can now write:

E rNi,ai
pT qs “ E

«

T
ÿ

t“1

1tIi,t“aiu

ff

ď u ` E

«

T
ÿ

t“u`1

1tIi,t“ai and Eq. (79) is falseu

ff

“ u ` E

«

T
ÿ

t“u`1

1tEq. (77) or Eq. (78) is trueu

ff

ď u `
T

ÿ

t“u`1

pPpEq. (77) is trueq ` PpEq. (78) is trueqq ,

where u “ r
4σ2α log T

∆2
i,ai

s.

We can now upper bound the probability of Equations (77) and (78) holds:
T

ÿ

t“u`1

pPpEq. (77) is trueq`PpEq. (78) is trueqq

ď 2
T

ÿ

t“u`1

ˆ

log t

log 1{β ` 1

˙

1

t
βα
2
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ď 2

ż `8

1

ˆ

log t

log 1{β ` 1

˙

1

t
βα
2

dt

“ 2

„ˆ

log t

log 1{β ` 1

˙ ˆ

2

2 ´ αβ
t1´

αβ
2

˙ȷ`8

1

´ 4

p2 ´ αβq log 1{β
ż `8

1

t´
αβ
2 dt (80)

“ ´ 4

2 ´ αβ
´ 8

p2 ´ αβq2 log 1{β
”

t1´
αβ
2

ı`8

1
(81)

“ ´ 4

2 ´ αβ
` 8

p2 ´ αβq2 log 1{β ,

where line (80) is obtained via integration by parts and the first term of line (81) is obtained imposing αβ ą 2. Substituting
now β “ 4

α`2 , which verifies β P p0, 1q if α ą 2, we obtain:

T
ÿ

t“u`1

pPpEq. (77) is trueq ` PpEq. (78) is trueqq ď ´ 4

2 ´ 4α
α`2

` 8
´

2 ´ 4α
α`2

¯2

1

log
`

α`2
4

˘

“ ´2pα ` 2q
2 ´ α

` 2pα ` 2q2
p2 ´ αq2

1

log
`

α`2
4

˘

“ 2pα ` 2q
α ´ 2

` 2

log
`

α`2
4

˘

ˆ

α ` 2

α ´ 2

˙2

.

Rearranging the upper bound on the expected number of pulls given the three cases presented above, we get:

ErNi,jpT qs ď 4ασ2 log T

∆2
i,j

` 2pα ` 2q
α ´ 2

` 2

log
`

α`2
4

˘

ˆ

α ` 2

α ´ 2

˙2

.

We set gpαq “ 2pα`2q

α´2 ` 2

logpα`2
4 q

´

α`2
α´2

¯2 “ rO
`pα ´ 2q´2

˘

.

Part 2: Upper bounding the expected cumulative regret

We now have to understand how the pulls defined in part 1 can be combined. We want to look at the worst combination in
which we can pull the suboptimal action components.

We recall that regret can be defined by highlighting the dependence on the pulls of the action vectors:

ErRT pF-UCB,νqs “
ÿ

aPA
Na∆a.

As before, we can bind the pulls of the action components Nij and the action vectors Na as follows:

ErNi,jpT qs “
ÿ

aPA:ai“j

Na, @i P JdK, j P JkiK.

We know that the pulls cannot be negative, and that the total number of pulls of the action vectors sums to T , so we impose
these additional constraints. Now, acting on the number of pulls Na, @a P A we want to find the worst-case in which we
can combine action components in action vectors. So, we solve a maximization problem on the regret defined as a function
of the number of pulls, given the constraints defined above, and the upper bound on the expected number of pulls of the
action components Nij , @i P JdK, j P JkiKzta˚

i u defined in Part 1 of this proof.

Corollary 4.3 (Explicit Instance-Dependent Upper Bound for F-UCB). For a given FRB ν, F-UCB with α ą 2 suffers an
expected regret bounded by:

E rRT pF-UCB,νqs ď CpF-UCB,νq
ď 4ασ2 log T

ÿ

iPJdK

µ˚
´i

ÿ

jPJkiKzta˚
i u

∆´1
i,j ` gpαq

ÿ

iPJdK

ki,

where µ˚
´i “ ś

lPJdKztiu µ
˚
l ď 1 for every i P JdK.
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Proof. In order to obtain a relaxed solution of the optimization problem in Theorem 4.2, we first derive the following upper
bound to the suboptimality gaps of the action vector a “ pa1, . . . , adqT:

∆a “
ź

iPJdK

µ˚
i ´

ź

iPJdK

µi,ai “
ź

iPJdK

µ˚
i

¨

˝1 ´
ź

iPJdK

µi,ai

µ˚
i

˛

‚ (82)

ď
ź

iPJdK

µ˚
i

ˆ

1 ´ min
iPJdK

µi,ai

µ˚
i

˙

(83)

“
ź

iPJdK

µ˚
i max

iPJdK

ˆ

1 ´ µi,ai

µ˚
i

˙

(84)

ď
ź

iPJdK

µ˚
i

ÿ

iPJdK

ˆ

1 ´ µi,ai

µ˚
i

˙

(85)

“
ÿ

iPJdK

pµ˚
i ´ µi,ai

q
ź

jPJdKztju

µ˚
j (86)

“
ÿ

iPJdK

∆i,aiµ
˚
´i, (87)

where line (83) follows from observing that
ś

iPJdK
µi,ai

µ˚
i

ď miniPJdK
µi,ai

µ˚
i

since µi,ai

µ˚
i

P r0, 1q, line (86) comes from defining

µ˚
´i :“

ś

jPJdKztju µ
˚
j ď 1. Thus, by considering the objective function in the optimization problem of Theorem 4.2, we

have:
ÿ

aPAzta˚u

Na∆a ď
ÿ

aPAzta˚u

Na

ÿ

iPJdK

∆i,ai
µ˚

´i (88)

“
ÿ

iPJdK

µ˚
´i

ÿ

jPJkiK

ÿ

aPA : ai“j

Na∆i,ai
(89)

“
ÿ

iPJdK

µ˚
´i

ÿ

aiPJkiKzta˚
i u

Ni,ai
∆i,ai

. (90)

By using the Constraint (11) to upper bound Ni,ai
and recalling that ∆i,j ď 1, we get the result.

Theorem 5.1 (Instance-Dependent Upper Bound for F-Track). For any FRB ν, F-Track run with:

N0 “
Q

a

log T
U

and ϵT “
d

2σ2fT p1{ log T q
N0

,

suffers an expected regret of:

lim sup
TÑ`8

E rRT pF-Track,νqs
log T

“ Cpνq.

Proof. Preliminary Results Let us introduce the symbol:

ϵi,jpt, δq :“
d

2σ2fT pδq
Ni,jptq . (91)

Consider the event Epδq :“ tDi P JdK, Dj P JkiK, Dt P JTwarm-up, T K ě 1 : |pµi,jptq ´ µi,j | ą ϵi,jpt, δqu and let us bound its
probability:

PpEpδqq ď
ÿ

iPJdK

ÿ

jPJkiK

P pDt P JTwarm-up, T K : |pµi,jptq ´ µi,j | ą ϵi,jpt, δqq (92)

“
ÿ

iPJdK

ÿ

jPJkiK

P

˜

Ds P JT K : |pµi,jrss ´ µi,j | ą
c

2σ2fT pδq
s

¸

(93)
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ď
ÿ

iPJdK

ÿ

jPJkiK

δ “ kδ, (94)

where line (92) follows from a union bound over the values of i and j, line (93) follows by rewriting the probability by
highlighting the dependence of the estimator on the number of samples s, and line (94) follows from Lemma C.1, recalling
that sppµi,jrss ´ µi,jq is a martingale difference sequence and it is σ2-subgaussian.

We will make use of the following two instantiations of event Epδq:

E1 :“ Ep1{ log T q and E2 :“ Ep1{T q. (95)

Clearly, from the previous result, we have that PpE1q ď k{ log T and PpE2q ď k{T .

We start decomposing the regret over the phases of the algorithm:

E
ν

rRpF-Track, T qs “ E
ν

«

ÿ

tPwarm-up

∆aptq

ff

loooooooooomoooooooooon

“:Eν rRwarm-uppT qs

`E
ν

«

ÿ

tPsuccess

∆aptq

ff

looooooooomooooooooon

“:Eν rRsuccesspT qs

`E
ν

«

ÿ

tPrecovery

∆aptq

ff

loooooooooomoooooooooon

“:Eν rRrecoverypT qs

, (96)

where, with little abuse of notation, we denoted with t P phase denotes the rounds in which phase phase is active. We
proceed to analyze the three components separately.

Part 1: Regret in Warm-Up Phase EνrRwarm-uppT qs We start by analyzing the regret in the warm-up phase, whose
duration is given by Twarm-up “ N0 maxiPJdK ki “ r

?
log T smaxiPJdK ki. Thus, the corresponding expected cumulative

regret can be bounded as follows:

E
ν

rRwarm-uppT qs ď ∆max

Q

a

log T
U

max
iPJdK

ki “ O
´

a

log T
¯

, (97)

where ∆max “ maxaPA ∆a and the Big-O notation retains the dependence on T only. Thus, its contribution to the regret is
asymptotically negligible:

lim sup
TÑ`8

EνrRwarm-uppT qs
log T

“ 0. (98)

Part 2: Regret in the Recovery Phase EνrRrecoverypT qs We move to the analysis of the regret in the recovery phase. We
start by showing that if event E1 does not hold, then, the recovery phase never activates. Indeed, under EA

1 simultaneously for
all i P JdK, j P JkiK, and t P JTwarm-up, T K we have that:

|pµi,jptq ´ µi,j | ď ϵi,jpt, 1{ log T q, (99)

which implies simultaneously for all i P JdK, j P JkiK, and t P JTwarm-up, T K that:

|pµi,jpTwarm-upq ´ pµi,jpt ´ 1q| ď |pµi,jpTwarm-upq ´ µi,j | ` |pµi,jpt ´ 1q ´ µi,j | (100)
ď ϵi,jpTwarm-up, 1{ log T q ` ϵi,jpt ´ 1, 1{ log T q (101)
ď 2ϵi,jpTwarm-up, 1{ log T q, (102)

being ϵi,jpt, 1{ log T q a decreasing in t. Recalling that Ni,jpTwarm-upq ě N0, we have:

2ϵi,jpTwarm-up, 1{ log T q “ 2

d

2σ2fT p1{ log T q
Ni,jpTwarm-upq ď 2

d

2σ2fT p1{ log T q
N0

“ 2ϵT . (103)

Thus, we conclude that the termination condition of the while loop never activates and, consequently, the recovery phase
activates only when E1 holds, i.e., with probability at most 1{ log T .

In the recovery phase, our F-Track algorithm plays F-UCB that, from Corollary 4.3, is proved to suffer logarithmic regret
of the form:

ρpT q :“ 4ασ2 log T
ÿ

iPJdK

µ˚
´i

ÿ

jPJkiKzta˚
i u

∆´1
i,j ` gpαq

ÿ

iPJdK

ki “ Oplog T q. (104)

Thus, we have that the cumulative regret of the recovery phase is bounded by:

E
ν

rRrecoverypT qs “ E
ν

rRrecoverypT q|EA
1sPpEA

1q ` E
ν

rRrecoverypT q|E1sPpE1q ď 0 ` ρpT q
log T

“ Op1q. (105)
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Consequently, its contribution to the expected cumulative regret is asymptotically negligible. Indeed:

lim sup
TÑ`8

EνrRrecoverypT qs
log T

“ 0. (106)

Part 3: Regret in the Success Phase EνrRsuccesspT qs We conclude with the most challenging part consisting of bounding
the regret in the success phase. The cumulative regret in the success phase needs to be further decomposed as follows:

E
ν

rRsuccesspT qs “ E
ν

«

1tEA
1u

ÿ

tPsuccess

∆aptq

ff

` E
ν

«

1tE1 ^ EA
2u

ÿ

tPsuccess

∆aptq

ff

` E
ν

«

1tE2u
ÿ

tPsuccess

∆aptq

ff

(107)

We analyze each term separately.

Part 3.1: Regret under EA
1 In what follows, all estimated quantities are estimated with the samples available at the end of the

warm-up phase and, thus, we will omit the dependence on Twarm-up. We show that asymptotically, during the success phase
and under event EA

1, the algorithm suffers the optimal regret. To this end, we need to introduce some auxiliary tools. For
every i P JdK, let us define a sorting function as any bijective function πi : JkiK Ñ JkiK such that:

µi,πip1q ď ¨ ¨ ¨ ď µi,πipkiq. (108)

If all µi,j are different, the sorting function is unique. Furthermore, for every i P JdK and j P JkiKztπipkiqu (i.e., excluding
the action component with maximum expected reward), let us denote:

Ni,j “ 2σ2fT p1{T q
∆2

i,j

, (109)

where ∆i,j “ µi,πipkiq ´ µi,j . Let us notice that Ni,j corresponds approximately to the minimum number of pulls of

component pi, jq prescribed by the lower bound in Theorem 3.3 and denoted with Li,j “ 2σ2 log T
∆2

i,j
. Given the definition of

fT p1{T q, we have that Li,j{Ni,j Ñ 1 as T Ñ `8. Given the sorting function, it is clear that also:

Ni,πip1q ď ¨ ¨ ¨ ď Ni,πipkiq. (110)

Let us define:

βi :“ fT p1{T q´1 min
l,l1PJkiK :Ni,πiplq‰Ni,πipl1q

ˇ

ˇNi,πiplq ´ Ni,πipl1q

ˇ

ˇ . (111)

It is clear that if for every i P JbK and j P JkiK we have we have | pNi,j ´Ni,j | ď βifT p1{T q{4, then, for any sorting function
pπi of the estimated quantities N i,j , there exist a sorting function πi of the true quantities Ni,j such that pπi “ πi.

Let us define for every i P JdK and j P JkiK:

Mi,j :“
j

ÿ

l“1

Ni,πiplq. (112)

We define now a sorting function π : JkK Ñ Ť

iPJdKptiu ˆ JkiKq as any bijection such that:

Mπp1q ď ¨ ¨ ¨ ď Mπpkq, (113)

and convene (with a little abuse of notation) that Mπp0q “ 0. It is clear that Mπpkq “ Mπpk´1q “ ¨ ¨ ¨ “ Mπpk´d`1q “ T .
Let l P JkK, we define the active action as:

αplq :“ pj1, . . . , jdq where ji s.t. πpl1q “ pi, jiq and l1 “ mintl2 ě l and πpl2q “ pi, ¨qu with i P JdK. (114)

We can now rewrite the regret with this notation:

ÿ

a‰a˚

Na∆a “
k´d
ÿ

l“1

`

Mπplq ´ Mπpl´1q

˘

∆αplq, (115)

having observed that for the k ´ d ` 1 terms we play the optimal action and the successive ones are zero. Furthermore,
given the relation between Li,j and Ni,j , we have that:

ř

a‰a˚ Na

fT p1{T q “ C and lim sup
TÑ`8

ř

a‰a˚ Na

log T
“ C. (116)
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Let us now define:

β :“ fT p1{T q´1 min
l,l1PJkK :Mπplq‰Mπpl1q

ˇ

ˇMπplq ´ Mπpl1q

ˇ

ˇ . (117)

It is clear that if for every i P JbK and j P JkiK we have |xMi,j ´ Mi,j | ď βfT p1{T q{4, for every sorting function pπ of the
estimated quantities xMi,j , there exist a sorting function π of the true quantities Mi,j such that pπ “ π. If this is the case, then,
the active action pαplq induced by pπ must be the same as αplq since the active action depends on the sorting function only.

We now show that we can always guarantee | pNi,j ´ Ni,j | ď pβifT p1{T qq{4 and |xMi,j ´ Mi,j | ď pβfT p1{T qq{4 for
sufficiently large T . First of all, let us ensure that we identify the optimal component for every i P JdK. This is guaranteed
whenever for every j P JkiK we have:

|pµi,j ´ µi,j | ď ϵi,jpTwarm-up, 1{ log T q ď ϵT ď ∆min{4, (118)

where ∆min “ miniPJdK minjPJkiKztπipkiqu µi,πipkiq ´ µi,j . The inequality is satisfied for sufficiently large T since:

ϵT “
d

2σ2fT p1{ log T q
P?

log T
T “ O

˜

d

σ2 log log T?
log T

¸

Ñ 0 as T Ñ `8. (119)

Under this condition, we have that πipkiq “ pπipkiq and, consequently:
p∆i,j “ pµi,πpkiq ´ pµi,j and ∆i,j “ µi,πpkiq ´ µi,j . (120)

Thus, under event EA
1, we have | p∆i,j ´ ∆i,j | ď 2ϵT . Let us now consider i P JkK and j P JkiKztπipkiqu, we have:

ˇ

ˇ

ˇ

pNi,j ´ Ni,j

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

2σ2fT p1{T q
p∆2
i,j

´ 2σ2fT p1{T q
∆2

i,j

ˇ

ˇ

ˇ

ˇ

ˇ

(121)

“ 2σ2fT p1{T q p∆i,j ` p∆i,jq|∆i,j ´ p∆i,j |
∆2

i,j
p∆2
i,j

(122)

ď 8σ2fT p1{T q p2∆max ` ∆min{2q
∆4

min

ϵT , (123)

where ∆max “ maxiPJdK maxj,j1PJkiK |µi,j ´ µi,j1 | and having observed that p∆i,j ě ∆i,j ´ 2ϵT ě ∆min ´ ∆min{2 “
∆min{2 and p∆i,j ď ∆i,j `2ϵT ď ∆max`∆min{2 “ ∆min{2. Thus, the difference can go below βifT p1{T q for sufficiently
large T . Let us now move to the Mi,j variables. For sufficiently large T such that the sorting function πi coincide with their
estimated counterparts pπi, we have that for i P JdK and j P JkiK:

ˇ

ˇ

ˇ
Mi,j ´ xMi,j

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

j
ÿ

l“1

Ni,πiplq ´
j

ÿ

l“1

pNi,pπiplq

ˇ

ˇ

ˇ

ˇ

ˇ

(124)

ď
j

ÿ

l“1

ˇ

ˇ

ˇ
N i,πiplq ´ pNi,πiplq

ˇ

ˇ

ˇ
(125)

ď 8σ2jfT p1{T q p2∆max ` ∆min{2q
∆4

min

ϵT . (126)

Similarly, as before, we can conclude that this difference can be made smaller than β for sufficiently large T , and,
consequently, make the estimated sorting function pπ equal the true counterpart π.

Under these conditions, we can bound the cumulative regret under EA
1:

ÿ

tPsuccess

∆aptq “
ÿ

a‰a˚

pNa∆a (127)

“
k´d
ÿ

l“1

´

xM
pπplq ´ xM

pπpl´1q

¯

∆
pαplq (128)

“
k´d
ÿ

l“1

´

xMπplq ´ xMπpl´1q

¯

∆αplq (129)
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“
k´d
ÿ

l“1

´

xMπplq ´ Mπplq ` Mπpl´1q ´ xMπpl´1q

¯

∆αplq `
k´d
ÿ

l“1

`

Mπplq ´ Mπpl´1q

˘

∆αplq (130)

ď 2∆max

k´d
ÿ

l“1

ˇ

ˇ

ˇ

xMπplq ´ Mπplq

ˇ

ˇ

ˇ
` CfT p1{T q (131)

ď 8σ2pk ´ dqmax
iPJdK

kifT p1{T q p2∆max ` ∆min{2q
∆4

min

ϵT ` CfT p1{T q (132)

“ OpϵT fT p1{T qq ` CfT p1{T q, (133)

where we used Equation 126. Thus, recalling that ϵT Ñ 0 for T Ñ `8, we have:

lim sup
TÑ`8

E
“

1tEA
1u ř

tPsuccess ∆aptq

‰

log T
“ C. (134)

Consequently, its contribution to the asymptotic regret is exactly C.

Part 3.2: Regret under E1 ^ EA
2 In this case, we have to prove that the regret remains logarithmic. We consider two cases:

Case 1 We perform the analysis in the first case under the following conditions:

@i P JdK : πipkiq “ pπipkiq and @j P JkiKztπipkiqu : p∆i,j ě ∆min{4. (135)

In such a case, it is simple to show that the regret is at most logarithmic. Indeed, being the optimal arm correctly identified
(πipkiq “ pπipkiq) we have:

ÿ

a‰a˚

pNa∆a ď 2∆max

k´d
ÿ

l“1

xM
pπplq (136)

ď 2∆max

ÿ

iPJdK

ÿ

jPJkiKztπipkiqu

pNi,πipjq (137)

ď 4σ2fT p1{T q∆max

ÿ

iPJdK

ÿ

jPJkiKztπipkiqu

p∆´2
i,πipjq

(138)

ď 64kσ2fT p1{T q∆max∆
´2
min “ Oplog T q, (139)

where we observed that since the optimal arm is correctly identified, the following inequality holds:
řk´d

l“1
xM

pπplq ď
ř

iPJdK
ř

jPJkiKztπipkiqu
pNi,πipjq.

Case 2 If the condition in Equation (135) is violated, we show that the success phase stops after a logarithmic number of
rounds. Consider the smallest round ti,j in which for a given i P JkK and j P JkiKztpπipkiqu, it holds that:

Ni,jpti,jq ě min

#

2σ2fT p1{T q
p∆2
i,j

,
128σ2fT p1{T q

∆2
min

+

. (140)

Since the F-Track algorithm in the success phase proceeds with the round robin of at most k arms, we have that:

ti,j ď kmin

#

2σ2fT p1{T q
p∆2
i,j

,
128σ2fT p1{T q

∆2
min

+

ď 128kσ2fT p1{T q
∆2

min

“: t˚ “ Oplog T q. (141)

Now, we consider two sub-cases.

Case 2.1 In the first sub-case, we deal with the case in which some optimal components are not correctly identified:

Di P JdK : πipkiq ‰ pπipkiq (142)

In such a case, at most at round t˚, we have that:

pµi,πipkiqptq ě µi,πipkiqptq ´
d

2σ2fT p1{T q
Ni,πipkiqptq (143)

ě µi,πipkiqptq ´ max
!

p∆i,πipkiq,∆min{8
)

(144)

ě µi,πipkiqptq ´ p∆i,πipkiq ´ ∆min{8 (145)
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ě µi,pπipkiqptq ` ∆i,pπipkiq ´ ∆min{8 ´ p∆i,πipkiq (146)

ě pµi,pπipkiqptq ´
d

2σ2fT p1{T q
Ni,pπipkiqptq ` ∆i,pπipkiq ´ ∆min{8 ´ p∆i,πipkiq (147)

ě pµi,pπipkiqptq ´ maxt0,∆min{8u ` ∆i,pπipkiq ´ ∆min{8 ´ p∆i,πipkiq (148)

ě pµi,pπipkiqptq ´ 3{4∆min ` pµi,πipkiqpTwarm-upq ´ pµi,pπipkiqpTwarm-upq. (149)

where line (143) follows from the fact that event E2 does not hold, line (144) follows from Equation (140) with j “ πipkiq,
line (145) is obtained with max a, b ď a ` b for a, b ě 0, line (146) is obtained from the definition of ∆i,pπipkiq, line (147)
follows from the fact that event E2 does not hold, line (148) follows from Equation (140) with j “ pπipkiq (whose estimated
p∆i,pπipkiq “ 0, and line (149) is obtained from the definition of p∆i,πipkiq and from ∆i,pπipkiq ě ∆min.

This implies that at this round:

pµi,πipkiqptq ´ pµi,πipkiqpTwarm-upq ` pµi,pπipkiqpTwarm-upq ´ pµi,pπipkiqptq ě 3{4∆min ě 4ϵT , (150)

where the latter holds for sufficiently large T . Thus, we have that the success phase stops after at most t˚ rounds, leading to
a regret of:

ÿ

tPsuccess

∆aptq ď ∆max
32kσ2fT p1{T q

∆2
min

“ Oplog T q. (151)

Case 2.2 In the first sub-case, we deal with the case holding under the condition:

@i P JdK : πipkiq “ pπipkiq and Di P JdK : Dj P JkiKztπipkiqu : p∆i,j ă ∆min{4 (152)

At round t˚, for the pi, jq fulfilling the second part of the condition:

pµi,πipkiqptq´pµi,πipkiqpTwarm-upq ` pµi,jpTwarm-upq ´ pµi,jptq (153)

ě pµi,πipkiqptq ´ pµi,jptq ´ p∆i,j (154)

ě µi,πipkiqptq ´
d

2σ2fT p1{T q
Ni,πipkiqptq ´ µi,jptq ´

d

2σ2fT p1{T q
Ni,jptq ´ p∆i,j (155)

ě ´maxt0,∆min{8u ´ maxt p∆i,j ,∆min{8u ` ∆i,j ´ p∆i,j (156)
ě ∆min{4, (157)

having exploited p∆i,j ď ∆min{4 and ∆i,j ě ∆min. Thus, for sufficiently large T , we have that 4ϵT ď ∆min{4 and,
consequently, the success phase ends.

Part 3.3: Regret under E2 We conclude by bounding the regret under event E2, In this case, we proceed with the following
trivial bound, recalling that PrpE2q ď 1{T .

E

«

1tE2u
ÿ

tPsuccess

∆aptq

ff

ď ∆maxT PpE2q ď ∆max “ Op1q. (158)

Consequently, its contribution to the asymptotic regret is negligible.

C.2. Technical Lemmas

Lemma C.1. Let T P N, ϵ ą 0. Let X1, . . . , XT be a martingale difference sequence adapted to the filtration F0,F1, . . . ,
such that for every t P JT K, it holds that EreλXts ď epσ2λ2

q{2 a.s. for every λ P R. Then, for every δ P p0, 1q it holds that:

P

˜

Dt P JT K :
t

ÿ

s“1

Xs ě
d

2 p1 ` plog T q´1qmax tϵ, tσ2u
ˆ

log

ˆ

1 `
R

logpTσ2{ϵq
logp1 ` plog T q´1q

V˙

` log

ˆ

1

δ

˙˙

¸

ď δ.

(159)

Furthermore, for sufficiently large T , it holds that:

P

˜

Dt P JT K :
t

ÿ

s“1

Xs ě a

2σ2tfT pδq
¸

ď δ, (160)
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where:

fT pδq :“
ˆ

1 ` 1

log T

˙ ˆ

c log log T ` log

ˆ

1

δ

˙˙

, (161)

and c ą 0 is a universal constant.

Proof. The first statement is obtained from Lemma 14 of (Lattimore & Szepesvari, 2017) considering that the inequality
employed in Equation (19) of that proof applies for σ2-subgaussian random variables and not for Gaussian variables only. The
second statement is obtained by setting ϵ “ σ2 and bounding 1

logp1`plog T q´1q
ď log T and logp1` rplog T q2sq ď c log log T

for some universal constant c (« 2).

Lemma C.2. Let x P r0, 1q, d P N, then if xi P r0, xq ,@i P JdK, it holds:

1 ´
ź

iPJdK

p1 ´ xiq ě p1 ´ xqd´1
ÿ

iPJdK

xi.

Proof. We prove this statement by induction.

First, we can observe how for d “ 1 this result trivially holds:

1 ´ p1 ´ x1q “ x1.

We can now make the inductive step on d:

1 ´
ź

iPJdK

p1 ´ xiq “ 1 ´ p1 ´ xdq
ź

iPJd´1K

p1 ´ xiq

“ 1 ´ p1 ´ xdq
ź

iPJd´1K

p1 ´ xiq ˘ xd

“ p1 ´ xdq
¨

˝1 ´
ź

iPJd´1K

p1 ´ xiq
˛

‚` xd (162)

ě p1 ´ xdq
¨

˝p1 ´ xqd´2
ÿ

iPJd´1K

xi

˛

‚` xd

ě p1 ´ xqd´1
ÿ

iPJdK

xi,

where line (162) is the inductive step on d.

Lemma C.3. In a FRB, considering µa˚ “ 1, if ∆i,j ď ∆ “ 1 ´ 1
21{pd´1q ,@i P JdK, j P JkiK, the regret can be bounded as:

RT pA,νq “
ÿ

tPJT K

¨

˝1 ´
ź

iPJdK

`

1 ´ ∆i,aiptq

˘

˛

‚ě 1

2

ÿ

tPJT K

ÿ

iPJdK

∆i,aiptq.

Proof. We prove this statement by looking at a single time t. We can rewrite Lemma C.2 as:

1 ´
ź

iPJdK

p1 ´ ∆i,aiptqq ě p1 ´ ∆qd´1
ÿ

iPJdK

∆i,aiptq,

if ∆i,j ď ∆ P r0, 1q, @i P JdK, j P JkiK.
We make a choice we want to transform this result in order to have:

1 ´
ź

iPJdK

p1 ´ ∆i,aiptqq ě 1

2

ÿ

iPJdK

∆i,aiptq.

This can be done by imposing:
1

2
ď p1 ´ ∆qd´1

1

21{pd´1q
ď p1 ´ ∆q
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∆ ď 1 ´ 1

21{pd´1q
.

Lemma C.4 (Wang et al. 2021). Suppose m, B are positive integers and m ě 2; there are m ` 1 probability distributions
P0,P1, . . .Pm, and m random variables N1, . . . , Nm, such that: (i) Under any of the Pi’s, N1, . . . , Nm are non-negative
and

ř

iPJmK Ni ď B with probability 1; (ii) @i P JmK, dTV ď 1
4

a

m
BE0rNis. Then:

1

m

ÿ

iPJmK

EirB ´ Nis ě B

4
.

Proof. For the proof of this Lemma, we refer the reader to Lemma 24 of (Wang et al., 2021).

D. Additional Theorems and Lemmas
In this section, we provide additional Theorems and Lemmas useful in the discussion of the work.

Lemma D.1. The product X1X2 ¨ ¨ ¨Xn of n ě 3 independent σ2-subgaussian random variables is not subgaussian.

Proof. The proof follows the one proposed by (Pinelis, 2021).

The proof of this statement can be done by verifying that the moment-generating function of the product of n independent
Gaussian distributions with unit variance (Xi „ N p0, 1q, @i P JnK) is unbounded:

E

»

–exp

¨

˝c
ź

iPJnK

Xi

˛

‚

fi

fl “ 8, @c ą 0.

Let us call X the vector composed of our random variables X :“ pX1, X2, . . . , Xnq and let pU1, U2, . . . Unq be a uniformly
distributed unit random vector. For some real Cn ą 0:

E

»

–exp

¨

˝c
ź

iPJnK

Xi

˛

‚

fi

fl ě E

»

–exp

¨

˝c
ź

iPJnK

Xi

˛

‚1

"

Xi ą ||X||2
2

?
n
,@i P JnK

*

fi

fl (163)

“ Cn

ż 8

0

exp

¨

˚

˚

˚

˝

c
1

p2?
nqn r

n

looooomooooon

(A)

˛

‹

‹

‹

‚

rn´1 exp

ˆ

´r2

2

˙

looooooooomooooooooon

(B)

dr ¨ P
ˆ

Ui ą 1

2
?
n
,@i P JnK

˙

looooooooooooooomooooooooooooooon

(C)

(164)

“ Cn
p2?

nqn
cn

ż 8

0

exp

ˆ

c
1

p2?
nqn r

n

˙

cn

p2?
nqn r

n´1

loooooooooooooooooooomoooooooooooooooooooon

g1prq

exp

ˆ

´r2

2

˙

loooooomoooooon

fprq

dr ¨ P
ˆ

Ui ą 1

2
?
n
,@i P JnK

˙

“ Cn
p2?

nqn
cn

¨

˚

˚

˚

˝

„

exp

ˆ

c
1

p2?
nqn r

n

˙

exp

ˆ

´r2

2

˙ȷ8

0

`
ż 8

0

exp

¨

˚

˚

˚

˝

c
1

p2?
nqn r

n

looooomooooon

pDq

´r2

2

˛

‹

‹

‹

‚

r dr

˛

‹

‹

‹

‚

¨ P
ˆ

Ui ą 1

2
?
n
,@i P JnK

˙

(165)

ě Cn
p2?

nqn
cn

ˆ

r8 ´ 0s `
ż 8

0

exp

ˆ

´r2

2

˙

r dr

˙

¨ P
ˆ

Ui ą 1

2
?
n
,@i P JnK

˙

(166)

“ Cn
p2?

nqn
cn

˜

r8 ´ 0s ´
„

exp

ˆ

´r2

2

˙ȷ8

0

¸

¨ P
ˆ

Ui ą 1

2
?
n
,@i P JnK

˙

Cną0
ně3
cą0“ 8.
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The inequality in Equation (163) follows from the fact that the event inside the indicator function happens with a probability
ď 1. Equation (164) is a rewriting of the previous line under the assumption that the indicator function evaluates to 1. We
can rewrite the expected value as an integral over the positive real numbers since, according to the indicator function, every
random variable Xi must be greater than ||X||2

2
?
n

, which is a positive quantity.

Term (A) is a substitution of
ś

iPJnK Xi with r
2

?
n

repeated n times, which comes from the indicator function. r is the
integration variable and represents the Euclidean norm of vector X .

Term (B) represents the probability density of the Euclidean norm of a Gaussian vector X „ N p0, Inq.

Finally, term (C) represents the probability of the indicator function evaluating to 1. Considering the vector Y whose
elements are Yi “ Xi{||X||2, then ||Y ||2 “ 1. The probability that Yi ą 1

2
?
n
,@i P JnK can be thought of as the probability

that the point defined by Y in the n-dimensional space is located on the surface of the n-dimensional hyper-sphere of radius
1 in the region induced by the condition Yi ą 1

2
?
n

.

Equation (165) is an integration by parts of the two functions fprq and g1prq identified in the line above.

Equation (166) holds under the assumption that n ě 3 and c ą 0. First, the term:
„

exp

ˆ

c
1

p2?
nqn r

n

˙

exp

ˆ

´r2

2

˙ȷ8

0

ně3
cą0“ 8 ´ 0

under such an assumption. Second, we can write:

exp

ˆ

c
1

p2?
nqn r

n ´ r2

2

˙

ě exp

ˆ

´r2

2

˙

ñ
ż 8

0

exp

ˆ

c
1

p2?
nqn r

n ´ r2

2

˙

dr ě
ż 8

0

exp

ˆ

´r2

2

˙

dr

The final result then holds under the further assumption that Cn ą 0.

Lemma D.2 (Variance of the product of independent random variables). Let X1, X2, . . . Xn independent random variables.
The variance of their product is:

VarrX1X2 ¨ ¨ ¨Xns “
ź

iPJnK

`

VarrXis ` pErXisq2
˘ ´

ź

iPJnK

pErXisq2

Proof.

VarrX1X2 ¨ ¨ ¨Xns “ ErpX1X2 ¨ ¨ ¨Xnq2s ´ pErX1X2 ¨ ¨ ¨Xnsq2
“ ErX2

1X
2
2 ¨ ¨ ¨X2

ns ´ pErX1sq2pErX2sq2 ¨ ¨ ¨ pErXnsq2
“ ErX2

1 sErX2
2 s ¨ ¨ ¨ErX2

ns ´ pErX1sq2pErX2sq2 ¨ ¨ ¨ pErXnsq2
“

ź

iPJnK

`

VarrXis ` pErXisq2
˘ ´

ź

iPJnK

pErXisq2

Lemma D.3. Let X1, X2, . . . , Xn independent subgaussian random variables with expected value µi P r0, 1s and
subgaussianity parameter σi P r0,`8q. The variance of the product X1X2 ¨ ¨ ¨Xn is bounded by:

ź

iPJdK

σ2
i ď VarrX1X2 ¨ ¨ ¨Xns ď

ź

iPJnK

`

1 ` σ2
i

˘ ´ 1

Proof. Now, we want to find the worst combination of µi, i P JnK, i.e., the combination of expected values which maximizes
the variance of the product of such random variables. To do so, we can consider a single i P JnK, and look at the behavior of
the first derivative when we change µi P r0, 1s. We recall from Lemma D.2 that:

VarrX1X2 ¨ ¨ ¨Xns “
ź

iPJnK

`

VarrXis ` pErXisq2
˘ ´

ź

iPJnK

pErXisq2

“
ź

iPJnK

`

σ2
i ` µ2

i

˘ ´
ź

iPJnK

µ2
i
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“ `

σ2
i

` µ2
i

˘

ź

iPJnKztiu

`

σ2
i ` µ2

i

˘ ´ µ2
i

ź

iPJnKztiu

µ2
i , (167)

“ µ2
i

ź

iPJnKztiu

`

σ2
i ` µ2

i

˘ ´ µ2
i

ź

iPJnKztiu

µ2
i ` σ2

i

ź

iPJnKztiu

`

σ2
i ` µ2

i

˘

(168)

“ µ2
i

¨

˚

˚

˚

˚

˝

ź

iPJnKztiu

`

σ2
i ` µ2

i

˘

loooooooooomoooooooooon

A

´
ź

iPJnKztiu

µ2
i

loooomoooon

B

˛

‹

‹

‹

‹

‚

` σ2
i

ź

iPJnKztiu

`

σ2
i ` µ2

i

˘

loooooooooooomoooooooooooon

C

(169)

where lines (167), (168) and (169) are no other than an algebraic step to make explicit in the product the dependence on µi.
Now we want to look at the worst case scenario for the variance, i.e., the value of µi that maximize it.

Recalling the constraints on µi which is assumed to be bounded in r0, 1s and σ2
i that is defined over r0,`8s, it trivial to see

that term A is predominant over term B and so the worst case for element i is to consider µi “ 1, no matter the other values
of µi, i P JnKztiu. The term C is not relevant as µi does not appear. This reasoning applies for all the possible values of
i P JnK, and so the worst case variance is when all the µi are equal to 1, for all the components i P JnK.

Given that, the variance of the product of independent random variables with expected values in µi P r0, 1s and variance σ2
i

can be bounded as:

VarrX1X2 ¨ ¨ ¨Xns ď
ź

iPJnK

`

1 ` σ2
i

˘ ´ 1.

A symmetric reasoning leads to the lower bound.

This concludes the proof.

E. Numerical Validation
In this appendix, we provide numerical simulations to validate the proposed solutions. First, in Appendix E.1, we validate
F-UCB against bandit baselines in several scenarios. Then, in Appendix E.2, we compare the two algorithms we propose
(i.e., F-UCB and F-Track) in different scenarios to highlight their peculiarities. Finally, in Appendix E.3, we evaluate the
proposed algorithms’ behavior in the case in which the noise affecting intermediate observations is partially correlated. The
code of the experiments can be found at https://github.com/marcomussi/FRB.

E.1. Comparison of F-UCB against Bandit Baselines

In this part, we show the effectiveness of F-UCB against bandit baselines.

Baselines The first baseline we consider is UCB1 (Auer et al., 2002), which is designed for stochastic bandits. We consider
the anytime version of the algorithm, proposed by Bubeck (2010). Due to its characteristics, we expect it to perform in a
comparable manner to F-UCB for d “ 1, with its performance degrading as the dimensionality grows. As an additional
baseline, we consider a robust version of UCB algorithm designed for heavy-tail (HT) distributions (Bubeck et al., 2013)
considering the Median of Means estimator (RUCB-MoM). Due to the capability of this algorithm to handle non-subgaussian
noise, we expect it to converge for any problem dimensionality, although at a slower rate. Finally, we consider the TEA
algorithm, proposed by Zimmert & Seldin (2018). Since this algorithm provides theoretical guarantees for handling only
subgaussian noise applied to the reward, we expect it to have a performance that degrades when d ą 1. For all the baselines,
we consider the values of the hyperparameters as prescribed in the respective original papers.

Setting For the sake of simplicity in the presentation of the results, we consider the scenario in which all the problem
dimensions present the same number of actions (i.e., k1 “ ¨ ¨ ¨ “ kd “: k). Moreover, we consider the setting in which the
intermediate observations are drawn from Gaussian distributions with mean µi,aiptq for every action component aiptq in
position i of the action vector a, formally xiptq „ N pµi,aiptq, σ

2q, @i P JdK. We consider values of k P J3, 5K, and values
of d P J4K. We draw the expected values µi,j for i P JdK and j P JkK from a uniform distribution in the range r0.7, 1s. We
fix a value of σ “ 0.1. It is worth noting that the results in the following paragraph are not comparable among the different
k and d, mostly for what concerns the comparison between different values of d. We evaluate the performances in terms of
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cumulative regret with T “ 104, averaged over 50 trials.

Results In Figure 3, we present the cumulative regret for the F-UCB algorithm and the other bandit baselines. The value of
k increases with the columns, and the value of d increases with the rows of the figure. The following comments are valid for
all the considered values of k, as no unexpected or relevant behaviors are present when we increase the number of actions for
each action component. We observe that for d “ 1, F-UCB achieves a cumulative regret that matches that of UCB1. This is
expected, as F-UCB collapses to UCB1 for d “ 1. RUCB-MoM achieves a sublinear regret, although higher than the previous
algorithms, whereas TEA suffers a cumulative regret that is linear in the considered time horizon. The behavior changes for
d “ 2. F-UCB achieves a low cumulative regret. The cumulative regret of UCB1, instead, constantly increases over the time
horizon. RUCB-MoM continues to achieve a sublinear regret, however it is higher, due to the increased cardinality of the
equivalent action space and the incremented effect of the noise. The behavior of TEA remains the same as for d “ 1. For
d ě 3, we observe a stabilization of the behavior. F-UCB manages to achieve a cumulative regret that scales well as d and k
increase. UCB1 now suffers a linear regret, RUCB-MoM a sublinear regret worse with the increase of d, and TEA behaves as
in the previous cases.

E.2. Comparison of F-UCB and F-Track

In this part, we provide numerical simulations intended to compare F-UCB and F-Track in different scenarios. As
discussed in Remark 4.1 and shown Figure 2, the performances of F-UCB decrease when the number d of dimensions
increases and when the suboptimality gaps are large. The goal of this part is to (i) verify once again this fact and (ii) observe
if F-Track is able to mitigate such a phenomenon.

Setting We consider the scenario in which the number of arms is constant across all dimensions, i.e., ki “ k,@i P JdK.
Given our goal to verify the algorithms’ behavior over the action vector dimensionality d and the suboptimality gaps
dimension, we fixed the other parameters. We consider a scenario in which we have k “ 2 and observations affected
Gaussian i.i.d. noise with σ “ 0.5. We evaluate the two algorithms for d P t2, 5, 10, 20, 30u. For what concerns the expected
values, for all the dimensions, we enforce the first arm to be the best one, with expected value µi,1 “ µ˚

i “ 1,@i P JdK.
The suboptimal arms have all the same expected values µi,2 “ 1 ´ ∆i,2,@i P JdK. Such a value ∆i,2 has been tested in
the set ∆i,2 P t0.5, 0.7, 0.9u. We evaluate the performances in terms of regret, averaged over 10 runs with target time
horizons T P r104, 105s. We remark that F-UCB is an anytime algorithm and can be run once to obtain the entire curve of
the cumulative regret. Instead, F-Track requires the knowledge of the horizon to compute the correct values of N0 and ϵT .
As such, we repeated the experiment for F-Track several times, each with a different time horizon up to the maximum T .

Results In Figure 4, we present the cumulative regret for F-UCB and F-Track in the above-mentioned setting. First, we
observe that for small values of d (i.e., d P t2, 5u), F-UCB outperforms F-Track for all the values of ∆i,2. This behavior
is less evident when we move to d “ 10, where the performances become comparable, with an advantage for F-UCB for
smaller values of ∆i,2, while for larger value of the suboptimality gap, F-Track is better. The results turn in favor of
F-Track when d becomes larger (i.e., d P t20, 30u), and such an advantage further increases when ∆i,2 is large.

E.3. Robustness to Correlated Noise

In this part, we provide numerical simulations intended to compare F-UCB and F-Track when there is a correlation
between the noises affecting the different dimensions. As discussed in Remark 3.1, in our setting, we require that the
observations must be non-correlated. Otherwise, the problem cannot be factored properly given that, in general, if there is a
correlation between the noises, we have that:

E

»

–

ź

iPJdK

xiptq
fi

fl ‰
ź

iPJdK

E rxiptqs . (170)

Setting We consider the scenario in which the number of arms is constant across all dimensions, i.e., ki “ k,@i P JdK.
We consider k “ 2 and d “ 10. For what concerns the expected values, for all the dimensions, we enforce the first arm
to be the best one, with expected value µi,1 “ µ˚

i “ 1,@i P JdK. The suboptimal arms have all the same expected values
µi,2 “ 0.5,@i P JdK. In order to evaluate the behavior of the algorithms in the presence of correlation in the noise of
intermediate observations, we introduce a term α P r0, 1s to control the interdependence of the intermediate observations.
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(l) d “ 4, k “ 5.

Figure 3. Performance of F-UCB, UCB1, RUCB-MoM and TEA considering k P J3, 5K and d P J4K (50 runs, mean ˘ std).
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(c) d “ 2, ∆i,2 “ 0.9.
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Figure 4. Cumulative regret of F-UCB and F-Track considering k “ 2, σ “ 0.5, d P t2, 5, 10, 20, 30u, and ∆i,2 P t0.5, 0.7, 0.9u,
@i P JdK (10 runs, mean ˘ 2std).
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Figure 5. Monte Carlo estimates of the expected values for the tested values of the correlation parameter α P t0, 0.2, 0.4, 0.6, 0.8, 1u

(106 Monte Carlo simulations).

The additive noise applied to the observations xiptq is defined as αηptq ` p1 ´ αqϵiptq, where ηptq, ϵiptq „ N p0, σ2q. The
noise term ηptq is applied to all the dimensions, whereas the ϵiptq terms are individual and applied to the single dimensions
i P JdK. Given this formulation, if α “ 0 the intermediate observations are independent, while if α “ 1, the intermediate
observations are fully correlated. For values of α P p0, 1q, the noise term in the intermediate observations will comprise
a correlated term and an independent term. We consider the case in which the Gaussian noise with σ “ 0.5 (for both the
independent and correlated components) affects only action components ai “ 2 (i.e., those with expected value µi,2 “ 0.5)
for i P JdK. We consider values of α P t0, 0.2, 0.4, 0.6, 0.8, 1u. We evaluate the performances in terms of cumulative regret
averaged over 10 runs with target time horizons T P r104, 105s.

Results Before commenting on the results, we observe that the presence of correlated noise over action components
ai “ 2 has the effect of changing the optimal vector action depending on the value of α. In Figure 5, we plot the value
of the expected reward of the action vectors p1, . . . , 1q and p2, . . . , 2q estimated using 106 Monte Carlo simulations for
the values of α under analysis. We consider just the two action vectors p1, . . . , 1q and p2, . . . , 2q, given that all the other
combinations of action components will give intermediate results (and are suboptimal). We first observe that, given that all
the observations of the action vector p1, . . . , 1q are not influenced by any noise, its expected reward is stable over α. On the
other hand, for action vector p2, . . . , 2q, affected by noise, we see how as the correlation increases, the expected reward
increases itself and overtakes the one of action vector p1, . . . , 1q.

Moving to the simulations, Figure 6 shows a comparison of the performances of F-UCB and F-Track when we vary
correlation parameter α. First, we observe how the two algorithms present a consistent behavior over the different values of
α. They are able to achieve satisfactory performances (i.e., sublinear regret) up to α “ 0.6. Then, the regret degenerates to
linear. This is consistent with what we observed in Figure 5, as these algorithms look at the expected values of the single
action components, but in this case, the noise correlation altered the optimal arm, which is no longer the one with the highest
product of the expected observations.
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Figure 6. Cumulative regret of F-UCB and F-Track considering k “ 2, σ “ 0.5, d “ 5, ∆i,2 “ 0.5,@i P JdK, and correlation
parameter α P t0, 0.2, 0.4, 0.6, 0.8, 1u (10 runs, mean ˘ 2std).
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