
Learning in Deep Factor Graphs with Gaussian Belief Propagation

Seth Nabarro 1 Mark van der Wilk 2 Andrew J. Davison 1

Abstract
We propose an approach to do learning in Gaus-
sian factor graphs. We treat all relevant quanti-
ties (inputs, outputs, parameters, activations) as
random variables in a graphical model, and view
training and prediction as inference problems with
different observed nodes. Our experiments show
that these problems can be efficiently solved with
belief propagation (BP), whose updates are in-
herently local, presenting exciting opportunities
for distributed and asynchronous training. Our
approach can be scaled to deep networks and pro-
vides a natural means to do continual learning:
use the BP-estimated posterior of the current task
as a prior for the next. On a video denoising task
we demonstrate the benefit of learnable param-
eters over a classical factor graph approach and
we show encouraging performance of deep factor
graphs for continual image classification.

1. Introduction
Deep learning (DL) has been transformative across many
domains. However, its applicability is limited in cases where
i) we require efficient, robust representations which can be
trained incrementally; ii) supervision is sparse or irregular;
and iii) learning must augment, or run alongside, hand-
designed solvers. Pretrained models, when available, might
mitigate these limitations, but struggle as train and test distri-
butions diverge. How they should be updated online remains
an open research question.

Concurrently, we reflect on how neural networks (NNs) are
trained. Despite backpropagation (Rumelhart et al., 1985)
being largely successful for DL, training NNs spread over
multiple processors is made difficult by backward locking:
processors for earlier layers sit idle after their part in the
forward pass, awaiting the backward error signal. This

1Dyson Robotics Lab, Imperial College London, UK
2Department of Computer Science, University of Oxford, UK.
Correspondence to: <sdn09@ic.ac.uk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

challenge will become more pertinent with the growth of i)
larger models which must be distributed over many devices,
ii) new hardware architectures whose cores have signifi-
cant local memory (Graphcore; Cerebras), and iii) parallel,
distributed and heterogeneous embedded devices (Sutter,
2011). We thus expect a growing need for more flexible
training algorithms which admit efficient model-parallelism.

We argue the above challenges essentially relate to the fusion
of multiple signals: old and new (for incremental learning);
hand-crafted vs learnt; and representations between different
layers of a model (distributed training). Bayesian princi-
ples offer a clear answer on how to fuse: signals should be
combined according to the rules of probability. We seek to
exploit this fact in our probabilistic approach to DL. Specif-
ically, our models are factor graphs (Fig. 1) with random
variables for all quantities relevant to DL: inputs, outputs,
activations and parameters. This representation enables
continual learning via online updating of the parameter pos-
terior, and interoperability through connections with other
factor graphs. We seek to design the models so as to retain
the properties which we believe make DL powerful. Namely
random initialisation and over-parameterisation (Allen-Zhu
et al., 2019); architectural motifs encoding good inductive
biases; and non-linearities which switch to selectively acti-
vate and prune when exposed to data (Glorot et al., 2011).

Much recent work has shown that Gaussian BP (GBP) to
be a robust and effective algorithm for distributed inference
in factor graphs, even in the presence of non-linear and
non-Gaussian factors (Davison & Ortiz, 2019; Ortiz et al.,
2020; Murai et al., 2022; Patwardhan et al., 2022). It is
thus our choice of inference engine here. By approximating
the factors in our model as Gaussian, we can use GBP
for training (inference over parameters, given observations)
and prediction (inference of e.g. outputs, given parameters
and inputs). The generality of GBP provides flexibility
as to which variables are observed, meaning training and
prediction are essentially the same computation, and partial
observations or missing labels do not require fundamentally
different treatment. As BP is inherently local and stateful,
our training can be distributed and asynchronous.

Our work shares similar goals to Lucibello et al., (2022),
who train MLP-like factor graphs using GBP with analyti-
cally derived message updates. For computational efficiency,

1

Learning in Deep Factor Graphs with Gaussian Belief Propagation

Figure 1: In GBP Learning, we design factor graphs whose
structure mirrors common NN architectures, enabling dis-
tributed training and prediction with GBP. Learnable pa-
rameters are included as random variables (circles), as are
inputs, outputs and activations. The parameters are shared
over across all observations, where the other variables are
copied once per observation. Factors (black squares) be-
tween layers constrain their representations to be locally
consistent, while those attached to inputs and outputs en-
courage compatibility with observation. The inter-layer
factors are non-linear to enable soft-switching behaviour.
This example architecture for image classification comprises
convolutional, max pooling and dense projection layers. The
same architecture could be trained without supervision by
removing the output observation factor.

they focus on architectures with binary weights and sign ac-
tivation functions. In contrast, our approach enables training
with GBP on arbitrary architectures, without rederivation of
the message updates; and we focus on models with contin-
uous weights in natural analogue to NNs. We demonstrate
this generality, training convolutional architectures with
our approach and showing we can outperform Lucibello
et al., (2022) on image classification tasks.

We call our approach GBP Learning. Our models (Sec-
tion 3.1) are factor graphs with architectures inspired by
those in DL, and factors between layers to enforce multi-
layer consistency as used in the predictive coding literature
(Millidge et al., 2022). Within these models, GBP admits
flexible and distributed training and prediction (Section 3.2),
and learning can be done incrementally via Bayesian filter-
ing over parameters (Section 3.4). Our experiments demon-
strate the benefit of factor graphs with learnable parameters
over hand-designed solvers in a video denoising task (Sec-
tion 5.2). For image classification (Section 5.3), we evaluate

our continual learning approach by single epoch training on
MNIST. We achieve performance equivalent to an Adam-
trained CNN with a replay buffer of 6× 103 examples, and
show this performance is robust to asynchronous training.
Last, we compare to Lucibello et al., (2022), outperforming
them on both MNIST (by 0.8%) and CIFAR10 (by 11.8%).

Our main contributions are as follows:

1. An approach to train deep factor graphs with GBP,
which can be applied to any architecture and supports
incremental learning.

2. Experimental results for convolutional architectures
which show promise for continual image classification
and video denoising.

2. Background
2.1. Factor graphs

A factor graph is a probabilistic graphical model which
defines a joint distribution over variables X as the product
of factors Φ = {ϕj}:

p (X) =
1

Z

|Φ|∏
j=1

ϕj
(
xϕj

)
. (1)

Here xϕj denotes the vector of all Vj variables in the neigh-
bourhood of ϕj and Z is a normalising constant. A factor
graph is bipartite: variables only connect to factors and
vice versa. Each factor may encode an observation, or prior
on one or many variables. Factor functions ϕj(·) may be
unnormalised distributions relating to their energy, Ej(·), as

ϕj
(
xϕj

)
= exp

(
−Ej

(
xϕj

))
. (2)

A Gaussian factor graph is one in which all {Ej} are
quadratic in the related observation yj , i.e.

Ej
(
xϕj

)
=

1

2

(
yj − h

(
xϕj

))⊤
Λyj

(
yj − h

(
xϕj

))
(3)

where h (·) is the measurement function, and Λyj is the
measurement precision. Note that yj may be a “pseudo-
observation”, e.g. the mean of a prior on xϕj

.

2.2. Belief Propagation

Belief Propagation (Pearl, 1988) is a message passing algo-
rithm to perform inference on factor graphs via distributed,
iterative computation. Each message is passed along the
edge between one factor ϕj and one variable xi. Messages
travel in both directions, and we use the notations mϕj→xi

and mxi→ϕj for the two message types. Each message is a
probability distribution in the space of the variable involved.

2

Learning in Deep Factor Graphs with Gaussian Belief Propagation

The following update rules are iterated until convergence:

mxi→ϕj
(xi)←

∏
k∈ne(i)\j

mϕk→xi
(xi) (4)

mϕj→xi
(xi)←

∑
{xn}ne(j)\i

ϕj
(
xϕj

) ∏
n∈ne(j)\i

mxn→ϕi
(xn) , (5)

where ne (k) \ l denotes the indices for variables connected
to factor ϕk, except l. After convergence the posterior
marginal of a variable is estimated by the product of its
incoming messages:

p (xi) =
1

Zi

∏
j∈ne(i)

mϕj→xi
(xi) , (6)

where Zi is straightforward to compute if the messages
belong to a known parametric family. In this work, we
assume the variable nodes are univariate, but BP can be
extended for multivariate posterior inference by passing
vector messages between sets of variables and factors.

BP updates (4), (5), (6) have a number of interesting proper-
ties. First, the required computations rely only on the local
state of the graph; no global context is necessary. Second,
for exponential family distributions under natural parame-
terisation, taking the product of a set of messages is reduced
to the addition of their parameters.

The above routine (4), (5) is guaranteed to converge to the
correct marginals in tree-structured graphs but not for graphs
containing cycles. Despite a lack of guarantees, application
of BP to loopy graphs has been successful in many domains,
most notably for error-correcting codes (Gallager, 1962;
MacKay & Neal, 1997).

2.2.1. GAUSSIAN BELIEF PROPAGATION

In Gaussian factor graphs, messages mxi→ϕj
(xi) and

mϕj→xi
(xi) are normal distributions, with natural parame-

ters being the precision (inverse covariance) matrix Λ and
information vector η. The products in the variable to factor
message formula (4) become sums:

Λxi→ϕj ←
∑

k∈ne(i)\j

Λϕk→xi (xi) ;

ηxi→ϕj ←
∑

k∈ne(i)\j

ηϕk→xi (xi) .
(7)

These updates can be implemented efficiently by computing
the belief for xi once (6) and then subtracting the incoming
message from each factor to get the corresponding outgoing
message. For a factor ϕj with precision matrix Λ(ϕj) ∈
RVj×Vj and information vector η(ϕj) ∈ RVj , the factor to
variable messages are:

Λϕj→xi ← Λ
(ϕj)
i,i − Λ

(ϕj)

i,\i Σ
(ϕj+m)

\i,\i Λ
(ϕj)

\i,i ;

ηϕj→xi ← η
(ϕj)
i − Λ

(ϕj)

i,\i Σ
(ϕj+m)

\i,\i η
(ϕj+m)

\i ,
(8)

where we have used Σ
(ϕj+m)

\i,\i =
(
Λ
(ϕj)

\i,\i +
(
Dϕj

)
\i,\i

)−1

,

η(ϕj+m) := η(ϕj) + eϕj
, Dϕj

for the matrix of precision
messages coming into ϕj , and eϕj

for the vector of incoming
information messages. Subscript \r indicates all elements
except that for variable r. Note that Dϕj

is diagonal for
graphs with scalar variable nodes.

Convergence and correctness of GBP and similar algorithms
has been studied extensively (e.g. Malioutov et al., 2006;
Moallemi & Van Roy, 2009; 2010). As for general mod-
els, BP is not guaranteed to converge in Gaussian models
with cycles. However, if it does converge in linear-Gaussian
models, it is guaranteed to converge to the correct posterior
means (Weiss & Freeman, 1999). Further, many iterative
pre-conditioning schemes have been proposed which guaran-
tee convergence in the linear-Gaussian case (Johnson et al.,
2009; Ruozzi & Tatikonda, 2013). The guarantees do not
hold for models with non-linear factors. We refer the reader
to Ortiz et al., (2021) for an intuitive introduction to GBP.

2.3. Non-linear Factors

GBP supports the use of factors which include non-linear
transformations of their connected variables, and this is
crucial in our proposed use here for representation learn-
ing. Every time a message from a non-linear factor is com-
puted, the factor is linearised around the current variable
estimates, X0, i.e. for each factor h

(
xϕj

)
≈ h

(
xϕj ,0

)
+

J
⊤

j

(
xϕj
− xϕj ,0

)
where Jj := ∂h

(
xϕj

)
/∂xϕj

∣∣
xϕj,0

. The

resulting approximated factor has a quadratic (Gaussian)
energy, and the following factor precision and information
can be derived

Λ(ϕj) ≈ J
⊤

j Λyj
Jj ;

η(ϕj) ≈ J
⊤

j Λyj

(
J

⊤

j xϕj ,0 + yj − h
(
xϕj ,0

))
.

(9)

(9) can be substituted into the message update rules (8),
enabling GBP inference in the linear-approximated model.

To do approximate inference in the original model, one can
alternate between i) setting the linearisation point X0 to be
the MAP estimate of the variables given current messages,
and ii) updating messages given the current linearisation
point. We emphasise that only non-linear factors need to be
iteratively approximated in this way, and linear-Gaussian
factors remain static throughout inference. We refer the
reader to Section 3.3 of (Davison & Ortiz, 2019) for further
details on GBP in non-linear models.

3. GBP Learning
Our aim is to produce factor graphs which have similar
architectural inductive biases to NNs, that can be overpa-
rameterised in a similar way, but can be trained with GBP.

3

Learning in Deep Factor Graphs with Gaussian Belief Propagation

We will now describe the key factors in our model and our
efficient GBP routine for training and prediction. The factor
energies of form (3) contain h (·) and y which, along with
Λy, are sufficient to deduce the linearised factor (9). This,
in turn, defines the GBP message updates (7), (8). It is thus
sufficient to describe our model in terms of factor energies.
We emphasise that our model parameters are included as
random variables in the factor graph and inferred with GBP.

3.1. Deep Factor Graphs

We design networks to find representations based on local
consistency, i.e. the activations xl ∈ RDl in a layer l should
“predict” those in either the previous layer xl−1 ∈ RDl−1 or
subsequent layer xl+1 ∈ RDl+1 , via a parametric non-linear
transformation f(·,Θl). Applying this principle in e.g. the
generative direction, together with the Gaussian assumption,
suggests the following form for the factor energy:

E(xl,xl−1,Θl) =
∥xl−1 − f(xl,Θl)∥22

2σ2
l

, (10)

which is low when f(xl,Θl) matches the input1 xl−1 us-
ing parameters Θl and output xl. σl is the factor strength
(Λyl

= 1
σ2
l
IDl−1

). Through choice of f(·, ·) we can encode
different operations and inductive biases.

CNNs, which have been successfully applied across a range
of computer vision tasks, have a sparse connectivity struc-
ture which suggests efficient factor graph analogues. In our
convolutional layers, a factor at spatial location (a, b) con-
nects to i) theKl×Kl patch of the input within its receptive
field, X(a,b)

l−1 ∈ RKl×Kl×Cl−1 , ii) the corresponding activa-

tion variable for an output channel c, x(a,b,c)
l ∈ RCl and iii)

the parameters: filters θ(c)l ∈ RKl×Kl×Cl−1 and bias b(c)l
for output channel c, which are shared across the layer. The
energy can be written as:

E(a,b,c)
conv =

(
x
(a,b,c)
l − r

(
X

(a,b)
l−1 , θ

(c)
l , b

(c)
l

))2
2σ2

l

, (11)

r (A,B, s) := g (vec (A) · vec (B) + s) . (12)

g(·) is an elementwise non-linear activation function, and
we have removed the functional dependence of E(a,b,c)

conv on
the connected variables for brevity. The total energy of the
layer is found by summing E(a,b,c)

conv over spatial locations
(a, b) and output channels c.

We can similarly define a transposed convolution layer. In
this case, each filter is weighted by the output variable of its

1We use “inputs” to mean the activation variables within a
layer which are closer to the pixels, and “outputs” those which are
further away. However, BP is bidirectional so these quantities are
not equivalent to the inputs of a function.

corresponding channel, and the weighted sum reconstructs
the inputs. Note that for a stride smaller than the kernel size,
each input will belong to multiple receptive fields which are
summed over to give its reconstruction. For example, for a
stride of one and neglecting edge effects, these contributions
can be combined according to:

E
(a,b,c)
convT =

(
x
(a,b,c)
l−1 − r

(
X

(a,b)
l , θ

(c)
l , b

(c)
l

))2
2σ2

l

. (13)

In this case, the parameters have dimension θ
(c)
l ∈

RKl×Kl×Cl and b(c)l ∈ R.

For image classification, we use a dense projection layer
which translates the activations in the preceding layer
XL−1 ∈ RHL−1×WL−1×CL−1 to a vector xL ∈ RCL , where
CL is the number of classes. The dense factor energy is:

Edense =

∥∥xL − g (W⊤
Lvec (XL−1) + dL

)∥∥2
2

2σ2
L

. (14)

where the activation function g(·) is included for generality,
but usually chosen to be identity for a last-layer classifier.

In addition to convolutional and dense factors, we design
factors akin to other common CNN layers. For example, we
use max-pooling factors to reduce the spatial extent of the
representation, upsampling layers to increase it and softmax
observation factors for class supervision. We include the en-
ergies for these factors in App. A. Note the the set of layers
described here is non-exhaustive, we leave the exploration
of other layer types as future work.

These “layer” abstractions can be composed to produce deep
models with similar design freedom to DL. Further, our mod-
els may be overparameterised by introducing large numbers
of learnable weights and we believe that the inclusion of
non-linear activation functions g(·) in our factor graph can
aid representation learning as in DL. In particular, we note
that for non-linear factors, the factor Jacobian is a function
of the current variable estimates Jj = Jj

(
xϕj ,0

)
, which

will cause the strength of the factors (9) to vary depending
on the input data. We expect this to produce a similar “soft
switching” of connections as observed in non-linear NNs.

3.2. Learning and Predicting with GBP Inference

We have described the components of deep factor graph
models, in which inputs, outputs, activations and parameters
are random variables. As these models include non-linear
factors such as (11), (13) and (14), we use the iterative
linearisation scheme described in Section 2.3 to do approxi-
mate inference with GBP. We apply this inference engine to
estimate posteriors over all latent variables. Note that there
is no fundamental difference between training and predic-
tion — only a difference in which variables are observed.

4

Learning in Deep Factor Graphs with Gaussian Belief Propagation

In training, we infer a posterior over parameters given ob-
served inputs and, where supervision is available, outputs.
To then make predictions on new examples, we run GBP
to predict the unobserved inputs/outputs given the observed
inputs/outputs and parameters.

Our message schedule proceeds as follows unless stated oth-
erwise. For a given batch, we initialise the graph and update
messages by sweeping forward and backward through the
layers: first nearest the input observations, progressing to
the deepest layer and back again. We repeat this for a speci-
fied number of iterations. Within each layer, we compute
all factor to variable updates in parallel, and likewise for
the variable to factor messages of each variable type (inputs,
outputs, parameters as applicable). In addition, we exper-
imentally show our approach works well with layerwise
asynchronous message schedules (Section 5.3.1). While we
have demonstrated these schedules work, they are likely sub-
optimal and we leave exploration for future work. We find
that applying damping (Murphy et al., 2013) and dropout to
the factor to variable messages is sufficient for stable GBP.

3.3. Efficient GBP

Efficient inference is necessary for our models to be useful
in practice. However, the inversion of a (Vj − 1)× (Vj − 1)

matrix to compute Σ
(ϕj+m)

\i,\i in (8) has O
(
(Vj − 1)3

)
com-

plexity, bottlenecking GBP. To alleviate this, we exploit the
structure of the matrix being inverted. In particular, i) for
factors with observation dimension M = dim (y) < Vj ,
the precision Λ(ϕj) (9) is low-rank, and ii) for graphs
with scalar variable nodes, D is diagonal. Thus the sum
Λ(ϕj) +Dϕj

may be efficiently inverted via the Woodbury
identity (Woodbury, 1950). Further savings come from
reusing intermediates when computing messages to multiple
variables (9). These optimisations change the complexity
of updating messages from a factor to all V variables, from
O(V (V − 1)

3
) toO

(
VM3

)
. Space complexity is changed

from O(V 2) to O(VM +M2). See App. B for details.

These results constitute significant savings when M << V ,
raising the question of typical values of observation dimen-
sion M . For feedforward factors such as (11) and (14),
M is equal to the number of output variables connected to
the factor. Thus for layers with many outputs, the cubic
complexity of the factor to variable update with M may
be prohibitive. However, we note that such factors can be
decomposed along the output dimension. For example, a
dense factor with energy (14) may be decomposed into M
smaller factors, one per output variable. As the energy of the
original dense factor is recovered by summing the decom-
posed factor energies, Edense =

∑
j Edense,j, the model is

remains unchanged. However, each message update is M2

more efficient because one factor with M outputs has been
replaced by M factors each with one output.

We now consider how the factor to variable message update
complexity translates to the complexity of updating all the
messages in a model. As an illustrative example, we con-
sider a model comprising L dense layers, each with C input
units and C output units. As described, we can decompose
the factor between each pair of layers into C smaller factors,
each with M = 1 and connected to 2 · (C + 1) variables.
The complexity of factor to variable message updates in a
layer is therefore O(C2), the same as the variable to fac-
tor message updates. In the non-linear case, we must also
account for the computation of the factor Jacobian J and
information vector η each time the factor is relinearised.
This requires the matrix-vector product W⊤

Lvec (XL−1),
which is also complexity O(C2). We thus conclude that the
overall complexity for updating all messages in a model of
L such layers, with a batch size of B, is O(BLC2). This
is the same complexity as a forward or backwards pass of
backpropagation in the equivalent MLP, and the same as
that for the approach of Lucibello et al., (2022).

3.4. Continual Learning and Minibatching

We now describe how we can do continual learning of model
parameters with Bayesian filtering. For generality, we use
Ψ = {ψl}Ll=1 to denote the set of all parameters where ψl
is the vector of those for layer l. After initialising parameter
priors pt=1 (ψl,i)← N (0, σ) we perform the following for
each task t in a sequence of datasets [z1, . . . , zT]:

1. construct a copy of the graph with task dataset zt,

2. connect a unary prior factor to each parameter vari-
able, equal to the marginal posterior estimate from the
previous task pt (ψl,i)← p (ψl,i|z1:t−1),

3. run GBP training to get an estimate of the updated
posterior p(Ψ) =

∏
l

∏|ψl|
i=1 p (ψl,i|z1:t).

This method is equivalent to doing message passing in the
combined graphical model for all tasks, but where messages
between tasks are only passed forward in t. The advantage
however, is that datapoints can be discarded after processing,
and the combined graphical model for all tasks does not have
to be stored in memory. As such, we also use this routine
for memory-efficient training by dividing the dataset into
minibatches and treating each minibatch as a task.

4. Related Work
Our models can be viewed as probabilistic energy-based
models (EBMs; LeCun et al., 2006; Du & Mordatch, 2019)
whose energy functions are the sum of the quadratic energies
for all factors in the graph. The benefit of using a Gaussian
factor graph is a model which normalises in closed form
without resorting to expensive MCMC sampling. While the
quadratic energy may seem constraining, we add capacity

5

Learning in Deep Factor Graphs with Gaussian Belief Propagation

with the introduction of non-linear factors and overparame-
terisation. For most EBMs, parameters are attributes of the
factors, where we include them as variables in our graph.
As a result, learning and prediction are the same procedure
in our approach, but two distinct stages for other EBMs.

Of the EBM family, restricted Boltzmann machines (RBMs
Smolensky, 1986) are of particular relevance. Their factor
graph resembles a single layer, fully connected version of
our model, however RBMs are models over discrete vari-
ables which are unable to capture the statistics of continuous
natural images. While exponential family generalisations
exist, such as Gaussian-Bernoulli RBMs (Welling et al.,
2004), scaling RBMs to multiple layers remains a chal-
lenging problem. To our knowledge there are no working
examples of training stacked RBMs jointly, instead they are
trained greedily, with each layer learning to reconstruct the
activations of the trained and fixed previous layer (Hinton
et al., 2006; Hinton & Salakhutdinov, 2006). As an artefact
of this, later layers use capacity to learn artificial correla-
tions induced by the early layers, rather than correlations
present in the data. Global alignment is then found by fine
tuning with either backprop (Hinton & Salakhutdinov, 2006)
or wake-sleep (Hinton et al., 2006). We have found GBP
Learning to work in multiple layer models without issue.

Our approach also relates to Bayesian DL (Neal, 2012) as
we seek to infer a distribution over parameters of a deep net-
work. Common methods to train Bayesian NNs are based
on e.g. variational inference (Blundell et al., 2015; Gal &
Ghahramani, 2016), the Laplace approximation (MacKay,
1992; Ritter et al., 2018), Hamiltonian Monte Carlo (Neal,
2012), Langevin-MCMC (Zhang et al., 2019). Each of these
comes with benefits and drawbacks, but we note two dis-
tinguishing features of our method. Computationally, prior
Bayesian DL methods rely on backprop, and so inherit its re-
strictions to distributed and asynchronous training, which do
not limit GBP Learning. Further, our activations are random
variables, allowing us to model (and resolve) disagreement
between bottom-up and top-down signals.

The factor graphs we consider relate to multi-layer pre-
dictive coding (PC) models (Millidge et al., 2022; Rao &
Ballard, 1999; Friston, 2005; Buckley et al., 2017; Alonso
et al., 2022). Designed as a hierarchical model of biological
neurons in the brain, multi-layer PC networks are trained
by minimising layerwise-local, Gaussian prediction errors
similar to our inter-layer consistency factors. Like ours,
they also include likelihood factors which ensure observed
input/output variables remain close to the observation value.
Moreover, some works have noted the suitability of PC
for layerwise-parallelism and emerging hardware platforms
(Salvatori et al., 2023). Our framework provides a new
method to train PC models with GBP, an alternative to
the standard approach using gradient descent of a varia-

tional free energy (Millidge et al., 2022). The work of Parr
et al., (2019) is an exception, and uses BP for inference in
a model of biological neurons. However, they assume the
model parameters are known, where we infer parameters
jointly with activations. Moreover, we consider larger scale
machine learning applications. Some PC works perform
active inference (Buckley et al., 2017; Friston et al., 2009),
where an agent may use a PC model to choose actions in
uncertain environments. We do not consider this here, but
highlight that GBP Learning could be extended for action
selection in a similar manner.

Much work has focused on augmenting BP with DL (Nach-
mani et al., 2016; Satorras & Welling, 2021; Yoon et al.,
2019; Lázaro-Gredilla et al., 2021). In contrast, our method
does DL within a BP framework. George et al., (2017) pro-
pose a hybrid vision system in which visual features and
graph structure are learnt in a separate process to the discrete
BP routine used to parse scenes (given features and graph).
The work of Lázaro-Gredilla et al., (2016) is more similar
to ours in that parameters are treated as variables in the
graphical model and updated with BP. However, their factor
graph comprises only binary variables, making it ill-suited
to natural images. In addition, max-product BP is used to
find a MAP solution, and not a marginal posterior estimate.
This precludes incremental learning via Bayesian filtering.

Most relevant to our work is that of Lucibello et al., (2022),
who use GBP to train MLPs. Their method relies on an-
alytically derived message updates which only apply to
dense architectures, and they focus on models with binary
weights and sign activations. In contrast, our approach is
straightforward to apply to any network structure without
rederivation of messages, assuming the appropriate factor
energies can be specified. Further, we focus on continuous
weights in direct analogy to NN parameters. Though they
similarly minibatch by filtering over parameters, they visit
each datapoint multiple times and run a small number of
GBP iterations during each visit. After so few iterations,
the resulting messages are unlikely to constitute an accurate
posterior, and ad-hoc “forgetting” factors are necessary to
avoid overcounting data seen multiple times. In contrast, we
train with only a single epoch, running GBP to convergence
on each batch, enabling straightforward filtering.

5. Results
We demonstrate our approach with three experiments: some
small regression tasks, sequential video denoising and im-
age classification. Our TensorFlow (Abadi et al., 2015)
implementation is made available2.

2github.com/sethnabarro/gbp_learning/

6

https://github.com/sethnabarro/gbp_learning/

Learning in Deep Factor Graphs with Gaussian Belief Propagation

(a) Architecture

1 1

1

1

Class 0 observations
Class 1 observations

0.2

0.4

0.6

0.8

(b) XOR, p(y = 1|x1,W1,W2)

1 0 1
x

1

0

1

y

Model y ± y

Training data

(c) Nonlinear regression

Figure 2: GBP Learning in MLP-like factor graphs (a) can
solve nonlinear regression and classification tasks. (b) was
generated with 8 hidden units, (c) with 16 hidden units.

5.1. Toy Experiments

We start by verifying that our model can solve tasks requir-
ing nonlinear modelling. To this end, we run GBP Learning
with single hidden layer, MLP-like factor graphs (Fig. 2a)
in two settings. The first is “Exclusive-OR”, which is a
well-known minimal test for nonlinear modelling (Fig. 2b).
The second is a nonlinear regression problem (Fig. 2c) with
90 training points. In both cases, we employ a nonlinear ac-
tivation function in the first dense layer. Full details are pro-
vided in App. C. It is clear that GBP Learning can solve both
tasks, confirming that the linearisation method described in
Section 2.3 is sufficient to capture nonlinear dependencies.

5.2. Video Denoising

We now ask whether the learnable components in our model
can improve performance over a hand-designed solver. We
apply our method to the task of denoising the “bear” video
from the DAVIS dataset3 (Perazzi et al., 2016), downsam-
pled to 258 × 454 with bilinear interpolation. We sample
10% of the pixels in each frame of the video, replacing their
intensities with noise drawn from U(0, 1). Performance
is assessed by how well the denoised image matches the
ground truth under the peak signal-to-noise ratio (PSNR).

3Creative Commons Attributions 4.0 License

The estimated pixel intensities may explained by the noisy
pixel observations and/or the model reconstruction. Both the
pixel observation and reconstruction factors have robust en-
ergies (see Section 5 of Davison & Ortiz, (2019)) to enable
the pixel variables to “switch” between these explanations.

We evaluate two types of reconstruction model: i) Gaus-
sian factor graphs with learnable parameters, trained with
GBP Learning; and ii) a hand-designed baseline, with no
learnable parameters. In the learnable models, we examine
the impact of model depth by comparing: i) a single trans-
posed convolution layer (factor energies as per (13)) with
four filters, and ii) a five layer model comprising transposed
convolution and upsampling layers (for details see App. D).
In the baseline model, neighbouring pixels are encouraged
to have similar intensities via shared smoothness factors
(see e.g Ortiz et al., (2021)). We refer to this as “pairwise
smoothing”. Robust energies on the smoothness factors aid
the preservation of edges present in the original image.

In both the pairwise smoother and GBP Learning, we do
inference with GBP. Note that in our models, GBP is jointly
estimating the true pixel intensities and the model parame-
ters. We emphasise that our model learns parameters from
the noisy images only and without supervision. It is incen-
tivised to do so by the reconstruction factors in noiseless
regions. To evaluate our continual learning approach, we try
two routines to infer parameters: i) learn them from scratch
on each frame and ii) learn them incrementally, by doing
filtering on the parameters as described in Section 3.4.

The hyperparameters for all models were tuned using the
first five frames of the video. Further details of the final
models can be found in App. D. Denoising the entire 82-
frame video with the single layer model took ∼ 8mins on
a NVIDIA RTX 3090 GPU, and the five layer model took
∼ 27mins. Pairwise smoothing took ∼ 2mins.

The PSNR results are presented in Fig. 3 (and examples of
denoised frames in Fig. D1). All methods exhibit a similar
relative evolution of PSNR over the course of the video,
slowly rising until the fiftieth frame and then falling again.
We conjecture that this is due to varying image content, with
some frames being easier to denoise than others.

The models with learnable parameters (orange and green)
significantly outperform the classical baseline (blue). We
attribute this to the learned models being able to capture im-
age structure, which enables more high-frequency features
to be retained while removing the corruption.

We see a clear benefit of depth, with significantly higher
PSNR scores for the five layer model (orange/green dotted)
over the single layer (orange/green dash). Despite the single
layer model having only four filters, we find that it some-
times learns to reconstruct noise when learning continually
over the video. To counteract this, we set the prior for each

7

Learning in Deep Factor Graphs with Gaussian Belief Propagation

0 10 20 30 40 50 60 70 80
Frame #

31

32

33

34

35

PS
N

R
 (

)
Model

Pairwise smoother (no learning)
Single layer
Five layer

Learning
Per frame
Continual

Figure 3: Video denoising results. Factor graphs with
learnable components outperform a hand-specified pairwise
smoother. Continual learning of parameters over the video
further improves the PSNR over per-frame learning, and
the deep model outperforms the single layer. Shading is ±1
standard error (SE) over 10 seeds.

frame to be an interpolation between the previous posterior
and the original prior (plotted; see App. D). In contrast,
the deeper model does not require additional regularisation
when trained continually. These results imply i) deep factor
graphs have better inductive biases, capturing higher-level
patterns in the data; ii) GBP Learning is can find aligned
multi-layer representations with only local message updates.

In general we see that continual learning (green) leads to an
improvement over learning per-frame (orange), suggesting
that we can effectively fuse what has been learnt in previous
frames and use it to better denoise the current frame.

5.3. Image Classification

Next, we assess our method in a supervised learning context,
evaluating it on MNIST4. The goal here is to gauge both
sample efficiency and the ability to learn continually with
only one pass through the training set.

We train a convolutional factor graph with architecture simi-
lar to Fig. 1: a convolutional layer (with energy as per (11)),
followed by a max-pool (15), dense layer (14) and (at train
time) a class observation factor (17) on the output logit vari-
ables. Training is minibatched via the Bayesian filtering
approach of Section 3.4, so the model only sees each data-
point once after which it can be discarded. To assess sample
efficiency, we train on subsets of varying sizes, as well as
the full training set. We compare against two baselines:

4yann.lecun.com/exdb/mnist/. Creative Commons Attribution-
Share Alike 3.0 license.

102 103 104

Training Examples

60

70

80

90

100

Te
st

 a
cc

ur
ac

y
(%

)

CNN + Adam, Single Epoch, No Replay
CNN + Adam, Single Epoch, w/ Replay
Linear Classifier + Adam, Multi-epoch
Conv. Factor Graph + GBP Learning, Single Epoch

(buffer size)
0.3

1

3

6

10
B

uffer Size, as %
 of #

 Training E
xam

ples

6 × 104
97.2

97.5

97.8

98.1

Figure 4: Single epoch MNIST results. GBP Learning
outperforms other methods in the small data regime, and
performs similarly to a CNN with a replay buffer of 6× 103

examples on the full training set. Error bars cover ±1SE
over 5 seeds.

1. a linear classifier baseline which predicts logits via
a dense projection of the image vector, trained with
Adam over multiple epochs, and

2. the CNN equivalent of our factor graph, trained with
Adam (Kingma & Ba, 2014) for a single epoch, both
i) with a FIFO replay buffer (varying sizes) and ii)
without replay.

The first baseline allows us to verify our method can do
nonlinear learning on images. Further, varying the size of
the replay buffer in the second baseline gives an indication of
how much information our model can fuse via filtering. All
model hyperparameters, including factor strengths σ, were
tuned on validation sets generated by randomly subsampling
15% of the training set. Further details of the models and
hyperparameter selection are included in App. F.

In the low data regime, GBP Learning comprehensively
outperforms all baselines (Fig. 4), likely due to regularising
priors and marginalising over uncertain activations. With the
full training set, GBP Learning achieves a test accuracy of
98.16±0.03%, significantly higher than the linear classifier.
Further, we outperform most CNN + Adam variants except
those with large replay buffers (3600 examples/6% of train-
ing data, 6000 examples/10% training data), to which we
perform similarly. We are thus encouraged that our model
can learn complex relationships incrementally, consolidat-
ing new examples into its parameter posterior online.

Full dataset training with GBP Learning takes ∼ 3 hours
on NVIDIA RTX3090 GPU. While this is much slower
than the few minutes to train the CNNs on CPU, we note
that the software to train NNs with backprop has benefited
from decades of optimisation, as have well-established GPU
hardware platforms. In contrast, our current GBP Learning
implementation runs on a hardware and software stack op-

8

http://yann.lecun.com/exdb/mnist/

Learning in Deep Factor Graphs with Gaussian Belief Propagation

timised for DL. We believe orders of magnitude efficiency
could be gained by developing on a more tailored setup with
optimised software and hardware with on-chip memory. See
Section 6 for discussion.

5.3.1. ASYNCHRONOUS TRAINING

To demonstrate the robustness to different update schedules,
we also trained in a layer-wise asynchronous manner. At
each iteration, we uniformly sample a sequence of L = 4
layers with replacement to determine the layer update or-
der. Sampling with replacement means some layers may
not be updated in an iteration, where some may be updated
multiple times. Such an approach yields a final accuracy of
98.11±0.04% (±1SE over 5 seeds), close to 98.16±0.03%
achieved by the same model trained with synchronous for-
ward/backward sweeps (details and plot of convergence in
App. F.4). This result implies that GBP Learning can work
well when the model is distributed over multiple processors,
without the need for global synchronisation.

5.3.2. COMPARISON WITH LUCIBELLO ET AL., (2022)

To understand how our method compares to previous work,
we evaluate on the same image classification benchmarks
presented in Lucibello et al., (2022): MNIST, FashionM-
NIST and CIFAR10. Lucibello et al., (2022) only support
dense models where our method works with general ar-
chitectures. We thus compare the convolutional model de-
scribed in Section 5.3 with the dense factor graph results
from Lucibello et al., (2022). For GBP Learning, we retain
the same architecture and hyperparameters used for MNIST
— we do not conduct any task-specific tuning.

The results are given in Table 1. The approaches per-
form similarly for FashionMNIST, but our method achieves
higher accuracy for both MNIST and CIFAR10. In the lat-
ter case, we outperform Lucibello et al., (2022) by more
than 10%. Moreover, we obtain such performance with in-
cremental training, passing over the training set once only,
where Lucibello et al., (2022) train for 100 epochs.

We note a significant difference in the relative improve-
ment between FashionMNIST (0%) and CIFAR10 (11.8%),
which we conjecture may result from CIFAR10 benefiting
more from translation equivariance of the convolutional
layer. In FashionMNIST, the objects of interest are mostly
centred and fill the frame, where in CIFAR10 the objects
are smaller and occur in different regions of the images.

6. Conclusion
We have introduced GBP Learning, a method for learn-
ing in Gaussian factor graphs. Parameters are included as
variables in the graph and learnt using the same BP infer-
ence procedure used to estimate all other latent variables.

Table 1: Image classification test accuracy (%). Ranges
cover 1SE either side of the mean for 5 seeds.

Dataset Lucibello et al., (2022) Ours

MNIST 97.40± 0.04 98.16± 0.03
FashionMNIST 88.2± 0.1 88.2± 0.1
CIFAR10 41.3± 0.1 53.1± 0.3

Inter-layer factors encourage representations to be locally
consistent, and multiple layers can be stacked in order to
learn richer abstractions. Experimentally, we have shown
a shallow, learnable model improves over a hand-crafted
method on a video denoising task, with further performance
gains coming from stacking multiple layers. We have also
trained convolutional factor graphs for image classification
with GBP Learning. On MNIST, we demonstrate encourag-
ing sample efficiency, and reach comparable single epoch
performance to a CNN with a replay buffer of 6× 103 ex-
amples. GBP Learning outperforms Lucibello et al., (2022)
by 11.8% on CIFAR10 and 0.8% on MNIST.

While we find these initial results encouraging, we highlight
scaling up GBP Learning to bigger, more complex models
and datasets as an exciting future direction. Our current
implementation is built on software and run on hardware
heavily optimised for DL. Scaling up GBP Learning will re-
quire a bespoke hardware/software system, which can better
leverage the distributed nature of GBP inference. In particu-
lar, we believe processors with memory local to the compute
cores (Graphcore; Cerebras) to be a promising platform for
BP. Different sections of the factor graphs could be mapped
to different cores. Local message updates, between factors
and variables on the same core, would be cheap and could
be updated at high frequency, with occasional inter-core
communication to ensure alignment between different parts
of the model. Low-level GBP primitives, written in e.g.
Poplar5, could be used to ensure the message updates make
best use of high-bandwidth, local memory. A similar system
was applied to bundle adjustment problems with GBP (Ortiz
et al., 2020), and was found to be around 24× faster on IPU
(Graphcore) than a state-of-the-art CPU solver.

Further, this work has only considered GBP for marginal
inference of scalar variables. We note that this is restrictive
and prevents capturing the rich correlation structure if the
energy landscape of deep networks. By including multidi-
mensional variables in the factor graph, we would expect to
mitigate this, and possibly enable more stable BP due to a re-
duced number of loops in the model. As higher dimensional
variables incur greater computational cost per iteration, only
variables which are likely to be highly correlated, e.g. the
activations or weights within a layer, should be combined.

5graphcore.ai/products/poplar

9

https://www.graphcore.ai/products/poplar

Learning in Deep Factor Graphs with Gaussian Belief Propagation

Acknowledgements
We are grateful to many researchers for helpful discussion
relating to this work. In particular, we thank the members of
the Dyson Robotics Lab, especially Riku Murai, Joseph Or-
tiz, Ignacio Alzugaray, Talfan Evans; members of MvdW’s
research group, particularly Anish Dhir; and the Vicarious
team at Google DeepMind.

SN and AJD are funded by EPSRC Prosperity Partnerships
(EP/S036636/1) and Dyson Techonology Ltd.

Impact Statement
Computationally, our method learns via local update rules,
which could enable training to be parallelised over arrays
of low-power devices in place of GPUs which have high
power consumption. In addition, our flexibility to differ-
ent message schedules could further boost efficiency by
executing intra-processor updates at high frequency and
inter-processor updates less often, thus reducing communi-
cation.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Wat-
tenberg, M., Wicke, M., Yu, Y., and Zheng, X. Tensor-
Flow: Large-scale machine learning on heterogeneous
systems. http://download.tensorflow.org/
paper/whitepaper2015.pdf, 2015.

Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and generaliza-
tion in overparameterized neural networks, going beyond
two layers. Advances in neural information processing
systems, 32, 2019.

Alonso, N., Millidge, B., Krichmar, J., and Neftci, E. O. A
theoretical framework for inference learning. Advances
in Neural Information Processing Systems, 35:37335–
37348, 2022.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural network. In International
conference on machine learning, pp. 1613–1622. PMLR,
2015.

Buckley, C. L., Kim, C. S., McGregor, S., and Seth, A. K.
The free energy principle for action and perception: A
mathematical review. Journal of Mathematical Psychol-
ogy, 81:55–79, 2017.

Cerebras. Cerebras. URL https://www.cerebras.net/.

Davison, A. J. and Ortiz, J. FutureMapping 2: Gaus-
sian Belief Propagation for Spatial AI. arXiv preprint
arXiv:1910.14139, 2019.

Du, Y. and Mordatch, I. Implicit generation and modeling
with energy based models. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Friston, K. A theory of cortical responses. Philosophical
transactions of the Royal Society B: Biological sciences,
360(1456):815–836, 2005.

Friston, K. J., Daunizeau, J., and Kiebel, S. J. Reinforcement
learning or active inference? PloS one, 4(7):e6421, 2009.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, pp.
1050–1059. PMLR, 2016.

Gallager, R. Low-density parity-check codes. IRE Transac-
tions on information theory, 8(1):21–28, 1962.

George, D., Lehrach, W., Kansky, K., Lázaro-Gredilla, M.,
Laan, C., Marthi, B., Lou, X., Meng, Z., Liu, Y., Wang,
H., et al. A generative vision model that trains with high
data efficiency and breaks text-based captchas. Science,
358(6368):eaag2612, 2017.

Glorot, X., Bordes, A., and Bengio, Y. Deep sparse recti-
fier neural networks. In Proceedings of the fourteenth
international conference on artificial intelligence and
statistics, pp. 315–323. JMLR Workshop and Conference
Proceedings, 2011.

Graphcore. Graphcore. URL https://www.graphcore.ai/.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the di-
mensionality of data with neural networks. science, 313
(5786):504–507, 2006.

Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning
algorithm for deep belief nets. Neural computation, 18
(7):1527–1554, 2006.

Johnson, J. K., Bickson, D., and Dolev, D. Fixing conver-
gence of gaussian belief propagation. In 2009 IEEE In-
ternational Symposium on Information Theory, pp. 1674–
1678. IEEE, 2009.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lázaro-Gredilla, M., Liu, Y., Phoenix, D. S., and George,
D. Hierarchical compositional feature learning. arXiv
preprint arXiv:1611.02252, 2016.

10

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf

Learning in Deep Factor Graphs with Gaussian Belief Propagation

Lázaro-Gredilla, M., Lehrach, W., Gothoskar, N., Zhou, G.,
Dedieu, A., and George, D. Query training: Learning a
worse model to infer better marginals in undirected graph-
ical models with hidden variables. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 8252–8260, 2021.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang,
F. A tutorial on energy-based learning. Predicting struc-
tured data, 1(0), 2006.

Lucibello, C., Pittorino, F., Perugini, G., and Zecchina,
R. Deep learning via message passing algorithms based
on belief propagation. Machine Learning: Science and
Technology, 3(3):035005, 2022.

MacKay, D. J. A practical bayesian framework for backprop-
agation networks. Neural computation, 4(3):448–472,
1992.

MacKay, D. J. and Neal, R. M. Near shannon limit perfor-
mance of low density parity check codes. Electronics
letters, 33(6):457–458, 1997.

Malioutov, D. M., Johnson, J. K., and Willsky, A. S. Walk-
sums and belief propagation in gaussian graphical mod-
els. The Journal of Machine Learning Research, 7:2031–
2064, 2006.

Millidge, B., Tschantz, A., and Buckley, C. L. Predictive
coding approximates backprop along arbitrary compu-
tation graphs. Neural Computation, 34(6):1329–1368,
2022.

Moallemi, C. C. and Van Roy, B. Convergence of min-
sum message passing for quadratic optimization. IEEE
Transactions on Information Theory, 55(5):2413–2423,
2009.

Moallemi, C. C. and Van Roy, B. Convergence of min-
sum message-passing for convex optimization. IEEE
Transactions on Information Theory, 56(4):2041–2050,
2010.

Murai, R., Ortiz, J., Saeedi, S., Kelly, P., and Davison, A. J.
A robot web for distributed many-device localisation.
arXiv preprint arXiv:2202.03314, 2022.

Murphy, K., Weiss, Y., and Jordan, M. I. Loopy belief
propagation for approximate inference: An empirical
study. arXiv preprint arXiv:1301.6725, 2013.

Nachmani, E., Be’ery, Y., and Burshtein, D. Learning to
decode linear codes using deep learning. In 2016 54th
Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pp. 341–346. IEEE, 2016.

Neal, R. M. Bayesian learning for neural networks, volume
118. Springer Science & Business Media, 2012.

Ortiz, J., Pupilli, M., Leutenegger, S., and Davison, A. J.
Bundle adjustment on a graph processor. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

Ortiz, J., Evans, T., and Davison, A. J. A visual intro-
duction to gaussian belief propagation. arXiv preprint
arXiv:2107.02308, 2021.

Parr, T., Markovic, D., Kiebel, S. J., and Friston, K. J.
Neuronal message passing using mean-field, bethe, and
marginal approximations. Scientific reports, 9(1):1889,
2019.

Patwardhan, A., Murai, R., and Davison, A. J. Distributing
collaborative multi-robot planning with gaussian belief
propagation. arXiv preprint arXiv:2203.08040, 2022.

Pearl, J. Probabilistic reasoning in intelligent systems: net-
works of plausible inference. Morgan kaufmann, 1988.

Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool,
L., Gross, M., and Sorkine-Hornung, A. A benchmark
dataset and evaluation methodology for video object seg-
mentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 724–732,
2016.

Rao, R. P. and Ballard, D. H. Predictive coding in the visual
cortex: a functional interpretation of some extra-classical
receptive-field effects. Nature neuroscience, 2(1):79–87,
1999.

Ritter, H., Botev, A., and Barber, D. A scalable laplace
approximation for neural networks. In 6th International
Conference on Learning Representations, ICLR 2018-
Conference Track Proceedings, volume 6. International
Conference on Representation Learning, 2018.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing internal representations by error propagation. Tech-
nical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

Ruozzi, N. and Tatikonda, S. Message-passing algorithms
for quadratic minimization. The Journal of Machine
Learning Research, 14(1):2287–2314, 2013.

Salvatori, T., Mali, A., Buckley, C. L., Lukasiewicz, T.,
Rao, R. P., Friston, K., and Ororbia, A. Brain-inspired
computational intelligence via predictive coding. arXiv
preprint arXiv:2308.07870, 2023.

Satorras, V. G. and Welling, M. Neural enhanced belief
propagation on factor graphs. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 685–693.
PMLR, 2021.

11

Learning in Deep Factor Graphs with Gaussian Belief Propagation

Smolensky, P. Information processing in dynamical sys-
tems: Foundations of harmony theory. Technical report,
Colorado Univ at Boulder Dept of Computer Science,
1986.

Sutter, H. Welcome to the jungle. URL
https://herbsutter.com/welcome-to-the-jungle, 2011.

Tukey, J. A survey of sampling from contaminated dis-
tributions. Contributions to Probability and Statistics.,
1960.

Weiss, Y. and Freeman, W. Correctness of belief propaga-
tion in gaussian graphical models of arbitrary topology.
Advances in neural information processing systems, 12,
1999.

Welling, M., Rosen-zvi, M., and Hinton, G. E. Ex-
ponential family harmoniums with an application
to information retrieval. In Saul, L., weiss, Y.,
and Bottou, L. (eds.), Advances in Neural In-
formation Processing Systems, volume 17. MIT
Press, 2004. URL https://proceedings.
neurips.cc/paper/2004/file/
0e900ad84f63618452210ab8baae0218-Paper.
pdf.

Woodbury, M. A. Inverting modified matrices. Department
of Statistics, Princeton University, 1950.

Yoon, K., Liao, R., Xiong, Y., Zhang, L., Fetaya, E., Urta-
sun, R., Zemel, R., and Pitkow, X. Inference in proba-
bilistic graphical models by graph neural networks. In
2019 53rd Asilomar Conference on Signals, Systems, and
Computers, pp. 868–875. IEEE, 2019.

Zhang, R., Li, C., Zhang, J., Chen, C., and Wilson, A. G.
Cyclical stochastic gradient mcmc for bayesian deep
learning. arXiv preprint arXiv:1902.03932, 2019.

12

https://proceedings.neurips.cc/paper/2004/file/0e900ad84f63618452210ab8baae0218-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/0e900ad84f63618452210ab8baae0218-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/0e900ad84f63618452210ab8baae0218-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/0e900ad84f63618452210ab8baae0218-Paper.pdf

Learning in Deep Factor Graphs with Gaussian Belief Propagation

A. Energy Functions for Additional Factors
In Section 3.1, we described the energies for factors connecting convolutional and transposed convolutional layers. Here, we
provide the energies for additional factors we use in our models.

For an input patch from channel c, X(a,b,c)
l−1 ∈ RK×K , centred at (a, b), a connected max-pooling factor has energy:

E
(a,b,c)
maxpool =

1

2σ2
l

(
max

(
X

(a,b,c)
l−1

)
− x(a,b,c)l

)2
. (15)

To increase the spatial extent of a representation from layer l to its input l − 1, we use upsampling layers. These factors
connect a single activation variable in l, x(a,b,c)l to the patch within its receptive field in l − 1, X(a,b,c)

l−1 ∈ RK×K . Their
energy is

E
(a,b,c)
upsample =

1

2σ2
l

⌊K/2⌋∑
i,j=−⌊K/2⌋

(
x
(a−i,b−j,c)
l−1 − x(a,b,c)l

)2
. (16)

Last, class supervision may then be incorporated by treating last layer activations xL as logits and connecting them to a
observation factor with energy

Esoftmax =
∥softmax (xL)− 1y∥22

2σ2
softmax

, (17)

where 1y is a one-hot encoding of the observed class y.

B. Factor to Variable Message Update Optimisation
We aim to reduce the complexity of message update computations (8). Naiv̈e inversion of the sum of factor and message preci-

sions Σ(ϕj+m)

\i,\i =
(
Λ
(ϕj)

\i,\i +
(
Dϕj

)
\i,\i

)−1

has complexityO
(
(Vj − 1)

3
)

. This can be reduced toO
(
(V − 1)M2 +M3

)
(M := dimy) by substituting Λ(ϕj) for the linearised factor precision (9) and applying the Woodbury identity (Woodbury,
1950):

S\i = D−1
\i,\i −D−1

\i,\i
(
J:,\i

)⊤ (
Λ−1
y − J:,\iD

−1
\i,\i

(
J:,\i

)⊤)−1

J:,\iD
−1
\i,\i , (18)

where we have dropped subscripts and superscripts relating to ϕj for brevity.

Further efficiencies come from substituting (18) back into the factor to variable message update (8),

Λϕ→xi ← Λi,i − Λi,\i

(
D−1

\i,\i −D−1
\i,\i

(
J:,\i

)⊤ (
Λ−1
y − J:,\iD

−1
\i,\i

(
J:,\i

)⊤)−1

J:,\iD
−1
\i,\i

)
Λ\i,i (19)

ηϕ→xi
← ηi − Λi,\i

(
D−1

\i,\i −D−1
\i,\i

(
J:,\i

)⊤ (
Λ−1
y − J:,\iD

−1
\i,\i

(
J:,\i

)⊤)−1

J:,\iD
−1
\i,\i

)
η
(ϕ+m)
\i , (20)

and noting that Λi,\i = (J:,i)
⊤
ΛyJ:,\i. We can then write:

Λϕ→xi
← Λi,i − (J:,i)

⊤
ΛyJ:,\i

(
D−1

\i,\i −D−1
\i,\i

(
J:,\i

)⊤ (
Λ−1
y − J:,\iD

−1
\i,\i

(
J:,\i

)⊤)−1

J:,\iD
−1
\i,\i

)(
J:,\i

)⊤
ΛyJ:,i

(21)

ηϕ→xi ← ηi − (J:,i)
⊤
ΛyJ:,\i

(
D−1

\i,\i −D−1
\i,\i

(
J:,\i

)⊤ (
Λ−1
y − J:,\iD

−1
\i,\i

(
J:,\i

)⊤)−1

J:,\iD
−1
\i,\i

)
η
(ϕ+m)
\i . (22)

Right-multiplying the J:,\i before the parentheses, and left multiplying the (J:,\i)
⊤

after gives

Λϕ→xi
← Λi,i − (J:,i)

⊤
Λy

(
Ui −Ui

(
Λ−1
y −Ui

)−1
Ui

)
ΛyJ:,i , (23)

13

Learning in Deep Factor Graphs with Gaussian Belief Propagation

where we have defined Ui := J:,\iD
−1
\i,\i

(
J:,\i

)⊤
. For the information update, we instead right-multiply η(ϕ+m)

\i

ηϕ→xi
← ηi − (J:,i)

⊤
Λy

(
Ti −Ui

(
Λ−1
y −Ui

)−1
Ti

)
. (24)

where Ti := J:,\iD
−1
\i,\iη

(ϕ+m)
\i . Given Ui and Ti, both message updates are O

(
M3
)
, i.e. independent of V . However di-

rect computation of Ui or Ti has complexity O
(
(V − 1)M2

)
for each outgoing variable i (D−1 is diagonal), so the overall

complexity is quadratic in V . We achieve linear complexity by exploiting Ui = JD−1J
⊤−J:,iD

−1
i,i (J:,i)

⊤
where JD−1J

⊤

can be computed once for all connected variables. Similarly, we use Ti = JD−1η(ϕ+m) − J:,iD
−1
i,i η

(ϕ+m)
i for the informa-

tion update. This reduces the complexity for updating all outgoing messages from a factor fromO
(
V
(
(V − 1)M2 +M3

))
to O

(
VM3

)
. In addition, these optimisations require memory O

(
VM +M2

)
which, in most cases, is a saving relative to

O
(
V 2
)

needed to store the full factor precision.

C. Toy Experiment Details
C.1. XOR

We use the MLP-inspired factor graph architecture illustrated in Fig. 2a, with 8 units in the hidden layer and a Leaky ReLU
activation in the first-layer dense factor. The full model is described in Table 2.

We run GBP in the training graph (with 4 input/output observations) for 600 iterations. We then fix the parameters, remove
the softmax class observation layer and run GBP for 300 iterations on a grid of 20 × 20 test input points. The last layer
activation variables are then treated as the logits for class predictions. At both train and test time, we use a damping factor of
0.7 applied to the factor to variable message updates from the dense factors.

Layer # 1 2 3

Layer type Dense Dense Softmax
Input dim. 2 8 2
Output dim. 8 2 2
Inc. bias ✓ ✓ -
Weight prior σ 3.0 3.0 -
Activation prior σ 5.0 2.0 -
Input obs. σ 0.02 - -
Class obs. σ - - 0.1
Dense recon. σ 0.1 0.1 -
Activation function g(·) Leaky ReLU Linear -

Table 2: The MLP-like factor graph used for the XOR experiment.

C.2. Regression

To generate the 1D regression data, we sample the 90 input points uniformly in the interval (−1.0, 1.0). For each input point
xi, the output yi is generated according to

zi = 5 · sin (6.7 · xi) + (10 · xi)2 · 0.15 + ϵi , (25)

yi =
zi −mean (z)

2 · std (z)
(26)

where

ϵi ∼ N (0., 1.5 + x2i) (27)

and mean (·), std (·) are empirical estimates over the 90 training points.

14

Learning in Deep Factor Graphs with Gaussian Belief Propagation

To fit the data, we use a similar MLP-inspired factor graph architecture to that illustrated in Fig. 2a. However, this architecture
has only 1 input variable and 1 output variable. We use 16 units in the hidden layer and a sigmoid activation in the first-layer
dense factor. The full model is described in Table 3.

We run GBP in the training graph (with 90 input/output observations) for 4000 iterations. We then fix the parameters,
remove the output observation layer and run GBP for 1000 iterations on 225 uniformly spaced test input points. The last
layer activation variables are then treated as the predictions for these query points. At both train and test time we use a
damping factor of 0.8 and a dropout of 0.6 in the factor to variable message updates from the dense factors.

Layer # 1 2 3

Layer type Dense Dense Output observation
Input dim. 1 16 1
Output dim. 16 1 1
Inc. bias ✓ ✓ -
Weight prior σ 6.0 1.5 -
Activation prior σ 10.0 3.0 -
Input obs. σ 0.02 - -
Output obs. σ - - 0.05
Dense recon. σ 5× 10−3 1× 10−2 -
Activation function g(·) Sigmoid Linear -

Table 3: The MLP-like factor graph used for the regression experiment.

D. Video Denoising Experiment Details
D.1. Single Layer Convolutional Factor Graph

We use the transposed convolution model described in Table D1 for both per-frame and continual learning experiments.
We run for 300 GBP iterations on each frame with damping factor of 0.8 and dropout factor of 0.6 applied to the factor to
variable messages. We used robust factor energies similar to the Tukey loss (Tukey, 1960): quadratic within a Mahalanobis
distance of Nrob from the mean, and flat outside.

Layer # 1

Layer type Transposed Conv.
Number of filters 4
Inc. bias ✓
Kernel size 3× 3
Conv. recon. σ 0.1
Recon Nrob 1.4
Weight prior σ 0.018
Activation prior σ 0.5
Pixel obs. σ 0.2
Pixel obs Nrob 0.2
Activation function g(·) Linear

Table D1: The single layer convolutional factor graph model used for the video denoising experiments. Nrob is the “robust
threshold”: the Mahalanobis distance beyond which the factor energy is flat rather than quadratic.

D.1.1. PREVENTING OVERFITTING IN SINGLE-LAYER MODEL

We find the single-layer convolutional model described above can overfit to the salt-and-pepper noise when the filters are
learnt continually over the course of the video. We find that overfitting can be reduced by choosing the parameter prior at
each frame to be an interpolation of the previous parameter posterior and the original parameter prior.

15

Learning in Deep Factor Graphs with Gaussian Belief Propagation

More concretely, for a parameter θl,i with original prior (before the first frame)N (θl,i;µθl , σ
2
θl
) and posterior from previous

frames N (θl,i;µ
(t−1)
l,i , (σ

(t−1)
l,i)2) we set its prior for a frame t to be

pt(θl,i)← N
(
θl,i;µl,i, (σl,i)

2
)
, (28)

where

µl,i = α · µθl + (1− α) · µ(t−1)
l,i (29)

σl,i = α · σθl + (1− α) · σ(t−1)
l,i . (30)

We used α = 0.5 for the single-layer, continual learning video denoising experiment.

D.2. Five Layer Convolutional Factor Graph

We use the transpose convolution model described in Table D2 for both per-frame and continual learning experiments. We
run for 500 GBP iterations on each frame with damping factor of 0.8 and dropout factor of 0.6 applied to the factor to
variable messages. We used robust factor energies similar to the Tukey loss (Tukey, 1960): quadratic within a Mahalanobis
distance of Nrob from the mean, and flat outside.

To increase the spatial extent of the activations, we use upsampling layers within which each output x(a,b,c)l connects to a
K ×K patch of the input X(a,b,c)

l−1 via a factor with energy (16).

Layer # 1 2 3 4 5

Layer type Transposed Conv. Upsample Transposed Conv. Upsample Transposed Conv.
Number of filters 4 - 8 - 8
Inc. bias ✓ - ✓ N/A ✓
Kernel size 3× 3 2× 2 3× 3 2× 2 3× 3
Conv. recon. σ 0.12 0.03 0.07 0.03 0.07
Recon Nrob 2.5 - - - -
Weight prior σ 0.15 - 0.3 - 0.3
Activation prior σ 0.5 - 0.5 - 0.5
Pixel obs. σ 0.2 - - - -
Pixel obs Nrob 0.2 - - - -
Activation func. g(·) Linear - Leaky ReLU - Leaky ReLU

Table D2: The five-layer convolutional factor graph model used for the video denoising experiments. Nrob is the “robust
threshold”: the Mahalanobis distance beyond which the factor energy is flat rather than quadratic.

D.3. Pairwise Factor Graph

The factor hyperparameters for the pairwise smoother baseline are given in Table D3. We denoise by running 200 GBP
iterations on each frame with damping factor of 0.7 applied to the factor to variable messages. We used robust factor energies
similar to the Tukey loss (Tukey, 1960): quadratic with a Mahalanobis distance of Nrob from the mean, and flat outside.

16

Learning in Deep Factor Graphs with Gaussian Belief Propagation

Layer # 1

Layer type Pairwise smoothing
Pixel obs. σ 0.2
Pixel obs Nrob 0.14
Pairwise σ 1.3
Pairwise Nrob 0.35

Table D3: The pairwise smoothing baseline model used for the video denoising experiments. Nrob is the “robust threshold”:
the Mahalanobis distance beyond which the factor energy is flat rather than quadratic.

E. Denoised Video Frame Example

17

Learning in Deep Factor Graphs with Gaussian Belief Propagation

(a) Clean image (b) Corrupted image

(c) Per-frame learning, single layer (d) Continual learning, single layer

(e) Per-frame learning, five layer (f) Continual learning, five layer

(g) Pairwise smoothing

Figure D1: A crop from frame 5. The learnt models are able to remove more noise while retaining more high-frequency
signal.

18

Learning in Deep Factor Graphs with Gaussian Belief Propagation

(a) Clean image (b) Corrupted image

(c) Per-frame learning, single layer, PSNR = 32.6 (d) Continual learning, single layer, PSNR = 32.9

(e) Per-frame learning, five layer, PSNR = 33.4 (f) Continual learning, five layer, PSNR = 34.3

(g) Pairwise smoothing, PSNR = 31.1

Figure D2: Frame 5 denoised by each method.

19

Learning in Deep Factor Graphs with Gaussian Belief Propagation

F. MNIST experiment details
F.1. Convolutional Factor Graph

For the MNIST experiment we tuned the factor graph architecture and the other hyperparameters on a validation set of
9, 000 examples sampled uniformly from the training set. We then used the same tuned model for every training set size.

The final convolutional factor graph model is summarised in Table D4. Pixel variables are fixed at their observed values. To
produce the results shown in Fig. 4, we train with continual learning, with a batchsize of 50 and run 500 GBP iterations on
each batch. At test time, we fix the parameters and run GBP for 300 iterations per test batch of 200 examples. We apply a
damping factor of 0.9 and a dropout factor of 0.5 to the factor to variable messages at both train and test time. Note that
each iteration includes the updating of the messages in each layer, sweeping from image layer to classification head, and
then sweeping back to image.

Layer # 1 2 3 4†

Layer type Conv. Max pool Dense Softmax
Num. filters 16 - - -
Kernel size 5× 5 2× 2 - -
Dense num. inputs - - 2304 -
Dense num. outputs - - 10 -
Inc. bias ✓ - ✓ -
Weight prior σ 0.1 - 0.15 -
Activation prior σ 3.0 3.0 2.0 -
Recon. σ 0.01 0.01 0.01 -
Activation func. g(·) Leaky ReLU Linear Linear -
Class observation σ - - - 0.01

Table D4: The convolutional factor graph model used for the MNIST experiment. The dimensions of the layers are chosen
such that no padding is necessary. Note that “Recon σ” denotes the strength of the factors which connect one layer to the
next. †Softmax layer only included at training time, when class observation is available. As test time, the final state of the
last layer variables after GBP inference is treated as the logit prediction.

F.2. Linear Classifier Baseline

As a baseline we used a linear classifier trained with Adam to minimise the cross-entropy loss. We tuned the step size
and number of epochs on a randomly sampled validation set comprising 9, 000 training set examples. We tuned a separate
linear classifier configuration for each training set size. As with the factor graph model, we used a batchsize of 50 for all
experiments in Fig. 4.

F.3. CNN + Replay Buffer Baseline

We train a CNN with Adam as a comparison against our convolutional factor graph trained with GBP Learning. To make
this comparison as fair as possible we

• Use a CNN architecture as close as possible to our factor graph (Table D4). The CNN architecture is summarised in
Table D5.

• Train for only one epoch, but equip the CNN with a FIFO replay buffer to reduce forgetting. A fixed number of
elements from each batch are randomly selected and added to the buffer. The size of the buffer necessary to match
the performance of GBP Learning then provides an indication as to the efficacy of our continual learning approach.
We evaluate buffers of various sizes. To allow comparison across different dataset sizes, we express buffer size as a
fraction of the training set size.

We tune the following hyperparameters of the CNN + replay buffer method, finding a different configuration for each
combination of buffer size (as fraction of training set size) and training set size:

• Number of elements in each batch added to the buffer

20

Learning in Deep Factor Graphs with Gaussian Belief Propagation

• Number of steps to take on each training set batch

• Number of steps to take on batches sampled from the replay buffer, for each training set batch

• Step size for training set batch updates

• Step size for replay buffer updates.

These hyperparameters were selected based on a validation set of 9, 000 examples, sampled uniformly from the training set.
The Adam optimiser (Kingma & Ba, 2014) was used for all parameter updates.

Layer # 1 2 3

Layer type Conv. Max pool Dense
Num. filters 16 - -
Kernel size 5× 5 2× 2 -
Dense num. inputs - - 2304
Dense num. outputs - - 10
Inc. bias ✓ - ✓

Table D5: The baseline CNN architecture.

F.4. Asynchronous Training

To test the robustness of our method to asynchronous training regimes, we evaluated training the model in Table D4
on MNIST using random layer schedules. At each iteration, we uniformly sample 4 integers in the interval [1, 4] with
replacement. These integers index the different layers of the network. We then update the messages within each of the
sampled layers, in the sampled order. Note that we sample with replacement, meaning that some layers may not be updated
at all during a given iteration, and some may be updated multiple times.

The progression of test accuracy for both asynchronous and synchronous training is presented in Fig. D3. Both regimes
exhibit similar performance throughout training, suggesting that GBP Learning can be executed in a distributed and
asynchronous manner with little loss in performance.

21

Learning in Deep Factor Graphs with Gaussian Belief Propagation

0 1e4 2e4 3e4 4e4 5e4 6e4
Training Examples

94

95

96

97

98

Te
st

 a
cc

ur
ac

y
(%

)

Synchronous Forward/Backward
Uniform Random Layer Schedule

Figure D3: The evolution in test accuracy over the course of training, for a convolutional factor graph (Table D4) trained
on MNIST, with different message schedules: i) synchronous forward/backward sweeps and ii) random layer ordering.
Intervals represent ±1 standard error either side of the mean, over 5 random seeds.

F.5. Dependence on number of iterations

We seek to understand how the performance of our models depends on different levels of compute at train and test time. We
train replicas of the convolutional factor graph model (summarised in Table D4) on MNIST, each with a different number
of GBP iterations per training batch. We then evaluate the test accuracy of each of the trained models multiple times: for
differing numbers of test time GBP iterations. All configurations used a batch size of 50 at train time and 200 at test time.
We ran our experiments with 50, 100, 200, 400, 800, 1600 iterations per batch at both train time and test time.

The results are presented in Fig. D4. They show that good test time performance can be achieved with relatively few GBP
iterations per training batch (∼ 200), as long as a sufficient number of iterations is run at test time (⩾ 200). However, the
best performance is achieved with 1600 iterations per train batch.

22

Learning in Deep Factor Graphs with Gaussian Belief Propagation

102 103

Train iterations per batch

102

103

#
 T

es
t i

te
ra

tio
ns

 p
er

 b
at

ch

20

40

60

80

Test acc. (%)

102 103

Train iterations per batch

102

103

#
 T

es
t i

te
ra

tio
ns

 p
er

 b
at

ch

97.6

97.7

97.8

97.9

98.0

98.1

98.2
Test acc. (%)

Figure D4: Dependence of MNIST test accuracy on the number of GBP iterations at train and test time. The right-hand plot
covers the range of iterations marked by the red box in the left-hand plot, with the colours rescaled accordingly.

23

	Introduction
	Background
	Factor graphs
	Belief Propagation
	Gaussian Belief Propagation

	Non-linear Factors

	*gbp Learning
	Deep Factor Graphs
	Learning and Predicting with GBP Inference
	Efficient GBP
	Continual Learning and Minibatching

	Related Work
	Results
	Toy Experiments
	Video Denoising
	Image Classification
	Asynchronous Training
	Comparison with lucibello2022deep, lucibello2022deep

	Conclusion
	Energy Functions for Additional Factors
	Factor to Variable Message Update Optimisation
	Toy Experiment Details
	XOR
	Regression

	Video Denoising Experiment Details
	Single Layer Convolutional Factor Graph
	Preventing overfitting in single-layer model

	Five Layer Convolutional Factor Graph
	Pairwise Factor Graph

	Denoised Video Frame Example
	MNIST experiment details
	Convolutional Factor Graph
	Linear Classifier Baseline
	CNN + Replay Buffer Baseline
	Asynchronous Training
	Dependence on number of iterations

