
Box Facets and Cut Facets of Lifted Multicut Polytopes

Lucas Fabian Naumann 1 Jannik Irmai 1 Shengxian Zhao 1 2 Bjoern Andres 1 2

Abstract
The lifted multicut problem has diverse applica-
tions in the field of computer vision. Exact algo-
rithms based on linear programming require an
understanding of lifted multicut polytopes. De-
spite recent progress, two fundamental questions
about these polytopes have remained open: Which
lower box inequalities define facets, and which
cut inequalities define facets? In this article, we
answer the first question by establishing condi-
tions that are necessary, sufficient and efficiently
decidable. Toward the second question, we show
that deciding facet-definingness of cut inequali-
ties is NP-hard. This completes the analysis of
canonical facets of lifted multicut polytopes.

1. Introduction
The lifted multicut problem (Keuper et al., 2015) is a com-
binatorial optimization problem whose feasible solutions
relate one-to-one to the clusterings of a graph. A clustering
or decomposition of a graph G = (V,E) is a partition Π of
the node set V such that for every U ∈ Π the subgraph of G
induced by U is connected. Horňáková et al. (2017) cast the
lifted multicut problem in the form of a binary linear pro-
gram in which costs are associated to binary variables xuw

that indicate for pairs of distinct nodes u,w ∈ V whether
these nodes are in the same cluster, xuw = 0, or in distinct
clusters, xuw = 1.

Such variables are introduced for neighboring nodes
(elements of E), but also for some non-neighboring nodes
(elements of F , formally defined later) which allows to re-
ward or penalize nodes being in the same cluster without
changing the set of feasible clusterings. This property is
employed, for example, in multiple object tracking, where
nodes V represent object occurrences at different time steps,
edges E only occur between occurrences in consecutive
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Figure 1. Depicted on the left is a graph G = (V,E) with E =

{e1, e2} and an augmentation Ĝ = (V,E ∪ F ) of G with F =
{f}. Depicted in the middle are the four feasible solutions to the
lifted multicut problem with respect to G and Ĝ. Depicted on the
right is the lifted multicut polytope ΞGĜ. The figure is adopted
from Andres et al. (2023).

time steps, a cluster represents the time-continuous track
of an object moving through time, and variables for non-
neighboring nodes are used to reward similar occurrences
apart in time being in the same cluster, i.e. being connected
by a path of edges E whose variables get assigned 0 (Tang
et al., 2017). For the special case of no variables correspond-
ing to non-neighboring nodes (F = ∅), the lifted multicut
problem specializes to the multicut problem (Deza et al.,
1992; Chopra & Rao, 1993) and the correlation clustering
problem (Bansal et al., 2004; Demaine et al., 2006).

In the following, we formally introduce the described binary
linear program formulation of the lifted multicut problem:
Definition 1.1. (Horňáková et al., 2017, Def. 9) For any
connected graph G = (V,E), any augmentation Ĝ =
(V,E ∪ F ) with E ∩ F = ∅, and any c ∈ RE∪F , the
instance of the (minimum cost) lifted multicut problem has
the form

min

{ ∑
e∈E∪F

ce xe

∣∣∣∣∣ x ∈ XGĜ

}
(1)

with XGĜ the set of all x ∈ {0, 1}E∪F that satisfy the
following linear inequalities that we discuss in Section 3:

∀C ∈ cycles(G) ∀e ∈ EC : xe ≤
∑

e′∈EC\{e}

xe′ (2)

∀uw ∈ F ∀P ∈ uw-paths(G) : xuw ≤
∑
e∈EP

xe (3)

∀uw ∈ F ∀δ ∈ uw-cuts(G) : 1− xuw ≤
∑
e∈δ

(1− xe) .

(4)
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We analyze the convex hull ΞGĜ := convXGĜ of the feasi-
ble set XGĜ in the real affine space RE∪F , complementing
properties established by Horňáková et al. (2017) and An-
dres et al. (2023) who call ΞGĜ the lifted multicut polytope
with respect to G and Ĝ (see Figure 1 for an example).
More specifically, we establish necessary, sufficient and ef-
ficiently decidable conditions for an inequality 0 ≤ xe with
e ∈ E ∪ F to define a facet of ΞGĜ. Our proof involves
an application of Menger’s theorem (Menger, 1927). In
addition, we show: Deciding whether a cut inequality (4)
defines a facet of ΞGĜ is NP-hard. In our proof, we first
give a necessary and sufficient condition for the special case
|F | = 1 and then show that deciding even this condition is
NP-hard.

2. Related Work
The lifted multicut problem was introduced in the context
of image and mesh segmentation by Keuper et al. (2015)
and is discussed in further detail by Horňáková et al. (2017)
and Andres et al. (2023). It has diverse applications, no-
tably to the tasks of image segmentation (Keuper et al.,
2015; Beier et al., 2016; 2017), video segmentation (Keuper,
2017; Keuper et al., 2020), and multiple object tracking
(Tang et al., 2017; Nguyen et al., 2022; Kostyukhin et al.,
2023). For these applications, local search algorithms are
defined, implemented and compared empirically by Keuper
et al. (2015); Levinkov et al. (2017). Two branch-and-cut
algorithms for the lifted multicut problem are defined, im-
plemented and compared empirically by Horňáková et al.
(2017).

In order to significantly reduce the runtime of their branch-
and-cut algorithm, Horňáková et al. (2017) are also the first
to establish properties of lifted multicut polytopes, including
its dimension dimΞGĜ = |E ∪ F | and a characterization
of facets induced by cycle inequalities (2), path inequalities
(3), upper box inequalities xe ≤ 1 for e ∈ E ∪F , and lower
box inequalities 0 ≤ xe for e ∈ E. Moreover, they establish
necessary conditions on facets of lifted multicut polytopes
induced by cut inequalities (4) and lower box inequalities
0 ≤ xe for e ∈ F . Andres et al. (2023) describe an ad-
ditional class of facets induced by so-called half-chorded
odd cycle inequalities and show that these are facets also of
a polytope isomorphic to the clique partitioning polytope
(Deza et al., 1992; Grötschel & Wakabayashi, 1990; Deza &
Laurent, 1997; Sørensen, 2002). Additionally, they establish
the class of facets induced by so-called intersection inequal-
ities, which is discovered based on a necessary condition
for facets induced by cut inequalities. However, they do
not make progress toward characterizing the facets of lifted
multicut polytopes induced by cut inequalities themselves or
lower box inequalities 0 ≤ xe for e ∈ F , which motivates
the work we show in this article.

3. Preliminaries
For clarity, we adopt elementary terms and notation: Let
G = (V,E) be a graph. For any subset A ⊆ E, we write
1A ∈ {0, 1}E for the characteristic vector of the set A,
i.e. (1A)e = 1 ⇔ e ∈ A for all e ∈ E. For any distinct
u,w ∈ V , we write uw and wu as an abbreviation of the
set {u,w}. We further call a path P = (VP , EP ) in G a
uw-path in G if and only if its end-nodes are u and w. We
call a set of edges δ ⊆ E a uw-cut of G if and only if every
uw-path in G contains an edge of δ and the same does not
hold for any proper subset δ′ ⊂ δ.

Note that we interpret edges as two-elementary node sets,
and will use them interchangeably with these sets. This
means especially that for an edge f = {u,w} = uw we
use, e.g. f -path as an abbreviation of uw-path.

Properties of Feasible Solutions. We discuss briefly (2)–
(4) in Definition 1.1; for details, we refer to Andres et al.
(2023, Proposition 3). The inequalities (2) state that no cycle
in G intersects with the set {e ∈ E | xe = 1} in precisely
one edge. This property is equivalent to the existence of a
clustering Π of G such that for any uw ∈ E: xuw = 0 if
and only if there exists a cluster U ∈ Π such that uw ⊆ U .
The inequalities (3) and (4) together state for any uw ∈ F
that xuw = 0 if and only if there exists a uw-path (VP , EP )
in G with all edges e ∈ EP such that xe = 0, i.e. if and
only if there exists a cluster U ∈ Π such that uw ⊆ U .

One consequence of these properties that we apply in this
article is that each set of clusters A has a vector xA ∈ XGĜ
such that the clustering induced by this vector contains
exactly the clusters in A and otherwise singleton clusters
(see Figure 2 for examples):

Definition 3.1. For any connected graph G = (V,E), any
augmentation Ĝ = (V,E ∪ F ) with E ∩ F = ∅ and
any disjoint node sets A ⊆ 2V such that for all U ∈ A
the subgraph G[U ] of G induced by U is connected, we
denote by xA ∈ {0, 1}E∪F the unique vector for which
xA
uw = 0 ⇔ ∃U ∈ A : uw ⊆ U .

Lemma 3.2. For any connected graph G = (V,E), any
augmentation Ĝ = (V,E ∪ F ) with E ∩ F = ∅ and any
disjoint node sets A ⊆ 2V such that for all U ∈ A the sub-
graph G[U ] of G induced by U is connected, xA ∈ XGĜ.

Proof. Firstly, Π = (A \ {∅}) ∪ {{v} | v ∈ V \ ∪U∈AU}
is a clustering of G. Secondly, xA is such that for any
uw ∈ E ∪ F we have xA

uw = 0 if and only if there is a
U ∈ Π such that uw ⊆ U . Thus, xA ∈ XGĜ.

Geometry of Convex Polytopes. We recall terms and facts
about the geometry of convex polytopes that we will apply:
An inequality is said to be valid for a polytope P if and
only if it is satisfied by all x ∈ P . For an inequality aTx ≤
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Figure 2. Depicted above are four graphs G (solid edges) with
corresponding augmentations Ĝ (dashed edges), which are marked
to illustrate a vector xA as given in Definition 3.1, that is stated
below them. Nodes depicted in blue are contained in a cluster of
A and edges depicted blue get assigned 0 by xA.

α that is valid for a convex polytope P , the set Paα :=
{x ∈ P | aTx = α} of those points in P that satisfy
the inequality at equality is a maximal extremal face, or
facet, of P if and only if 1 + dimaff Paα = dimaff P ,
i.e. if and only if the dimension of the affine span of Paα

is (only) one less than the dimension of the affine span of
P . For example, the inequality xf ≤ 1 defines a facet of
the polytope depicted in Figure 1 because it is valid and the
intersection of the hyperplane defined by xf = 1 with the
3-dimensional polytope is 2-dimensional. In contrast, the
inequality xe1 ≤ 1 is valid but not facet-defining because
the intersection of the hyperplane defined by xe1 = 1 and
the 3-dimensional polytope is only 1-dimensional.

In order to prove that an inequality aTx ≤ α that is valid
for a convex polytope P defines a facet of P , it is sufficient
to construct dimaff P −1 many linearly independent points
in the difference space Paα − Paα = {x − y | x, y ∈
Paα} because dimaff Paα = dim lin(Paα−Paα). In order
to prove that an inequality aTx ≤ α that is valid for a
convex polytope P ⊆ Rn with dimaff P = n does not
define a facet of P , it is sufficient to show that all points
in Paα satisfy another, orthogonal equality, for this implies
2 + dimaff Paα ≤ dimaff P .

Separators and Cut Nodes. For any graph G = (V,E),
any distinct u,w ∈ V and any S ⊆ V , we call S a uw-
separator of G and say that u and w are separated by S in
G if and only if every uw-path in G contains a node of S.
We call S proper if and only if u /∈ S and w /∈ S.

For any graph G = (V,E) and any u, v, w ∈ V such that
S = {v} is a uw-separator of G, we call v a uw-cut-node
of G. We call it proper if and only if S is proper. We let
Cuw(G) denote the set of all proper uw-cut-nodes of G.

u

v0

v1

v2

v3

v4

v5

w

0 = xuv0 − xv0v1 + xv1v2 − xv2v3 + xv3v4 − xv4w

u

v0

v1

v2

v3

v4

v5

w

0 = xv0v1 − xv1v2 + xv2v3 − xv3v4 + xv4v5 − xv5v0

Figure 3. Depicted above are two examples of a graph G
(solid edges) and augmentation Ĝ (dashed edges) such that
a condition of Theorem 4.1 is violated for the inequality
0 ≤ xuw. In the example at the top, the path with the
edge set {uv0, v0v1, v1v2, v2v3, v3v4, v4w} violates (i). In
the example at the bottom, the cycle with the edge set
{v0v1, v1v2, v2v3, v3v4, v4v5, v5v0} violates (ii). For both cases,
Equation (5) from the proof of Theorem 4.1 is stated. Edges de-
picted in blue occur with a positive sign in this equation, and edges
depicted in orange occur with a negative sign.

4. Lower Box Facets
In this section, we establish necessary, sufficient and ef-
ficiently decidable conditions for a lower box inequality
0 ≤ xuw with uw ∈ E ∪ F to define a facet of a lifted
multicut polytope ΞGĜ. Examples for necessity of these
conditions are shown in Figure 3.

Theorem 4.1. For any connected graph G = (V,E), any
augmentation Ĝ = (V,E ∪ F ) with E ∩ F = ∅ and any
uw ∈ E ∪ F , the lower box inequality 0 ≤ xuw is facet-
defining for ΞGĜ if and only if the following two conditions
hold:

(i) There exists no simple path in Ĝ of length at least one,
besides ({u,w}, {uw}), whose end-nodes are uw-cut-
nodes of G and whose edges are uw-separators of G.

(ii) There exists no simple cycle in Ĝ whose edges are
uw-separators of G.

In the remainder of this section, we prove a structural lemma
and then apply this lemma in order to prove Theorem 4.1.
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Figure 4. Depicted on the left is a graph G, and depicted on the
right is the corresponding auxiliary graph G′ whose construction
is described in the proof of Lemma 4.2. The nodes depicted in blue
are proper uw-cut-nodes of G and get removed in the construction
of G′.

Lemma 4.2. Let G = (V,E) be a graph and let u,w ∈ V .
Any simple cycle C = (VC , EC) with VC ⊆ V and EC ⊆(
V
2

)
such that no v ∈ VC is a uw-cut-node of G and every

e ∈ EC is a uw-separator of G is even.

Proof of Lemma 4.2. In a first step, we construct for any
u,w ∈ V and any cycle C = (VC , EC) as defined in the
lemma an auxiliary graph G′ = (V ′, E′) by removing from
G the set Cuw(G) of all proper uw-cut-nodes and connect-
ing remaining nodes, which are connected in G by a path
of only proper uw-cut-nodes, by additional edges, i.e. by
setting

V ′ = V \ Cuw(G)

E′ =
{
st ∈

(
V ′

2

) ∣∣∃(VP , EP ) ∈ st-paths(G) :

VP \ st ⊆ Cuw(G)
}
∪
(
E ∩

(
V ′

2

))
.

An example of this construction is shown in Figure 4.

In a second step, we now show that G′ has the following
properties:

(i) VC ∪ {u,w} ⊆ V ′ and EC ⊆
(
V ′

2

)
;

(ii) there exist no proper uw-cut-nodes of G′;

(iii) all e ∈ EC are proper uw-separators of G′.

Property (i) follows directly from the construction of the
auxiliary graph G′.

Assume (ii) does not hold. Then there exists a v ∈ Cuw(G
′).

It follows that v ̸∈ {u,w} and, by construction of G′, that
v ̸∈ Cuw(G). Thus, v is no uw-cut-node of G and there
exists a uw-path (VP , EP ) in G such that v ̸∈ VP . By
construction of G′, we can create a uw-path (VP ′ , EP ′) in
G′ with v ̸∈ VP ′ by replacing all subpaths of (VP , EP )
whose internal nodes are in Cuw(G) with edges in E′ \ E.
The existence of such a uw-path (VP ′ , EP ′) contradicts
v ∈ Cuw(G

′).

Assume (iii) does not hold. Then there exists an e ∈ EC

that is not a proper uw-separator of G′. As e ∩ {u,w} = ∅
by assumption, e is also no uw-separator of G′. Thus, there

exists a uw-path (VP ′ , EP ′) in G′ with e ∩ VP ′ = ∅. By
construction of G′, we can define a uw-path (VP , EP ) in
G from (VP ′ , EP ′) by replacing all edges in EP ′ \E with
paths in G whose internal nodes are in Cuw(G). For this
path, e ∩ VP = ∅ because e ∩ VP ′ = ∅ (see above) and
e ∩ Cuw(G) = ∅ (by assumption). The existence of such
a uw-path (VP , EP ) contradicts e being a uw-separator of
G.

In a third step, we now prove that C is even: Menger’s
theorem (Menger, 1927) states that for two distinct non-
adjacent nodes a, b ∈ V ′, the number of internally node-
disjoint ab-paths in G′ is equal to the minimal size of proper
ab-separators of G′. By (i), u and w are in V ′. Furthermore,
they are distinct and non-adjacent in G′, as otherwise every
uw-separator of G′ would contain u or w, in contradiction
to the elements of EC being proper uw-separators of G′ by
(iii). As Cuw(G

′) = ∅ by (ii), and all edges in EC are proper
uw-separators of G′ by (iii), the minimal size of proper uw-
separators of G′ is two. Thus, there exist precisely two
internally node-disjoint uw-paths P1 = (VP1

, EP1
) and

P2 = (VP2
, EP2

) in G′, by Menger’s theorem.

W.l.o.g., we enumerate the nodes in the cycle (VC , EC): For
n := |EC |, let v : Zn → VC such that EC = {vjvj+1 | j ∈
Zn}. As v0v1 is a uw-separator of G′ by (iii), the paths P1

and P2 each contain v0 or v1. Moreover, as these paths are
internally node-disjoint, precisely one of them contains v0,
the other v1. Assume w.l.o.g. that v0 ∈ VP1

and v1 ∈ VP2
.

By (iii), any vjvj+1 ∈ EC with j ∈ {1, . . . , n− 2} is a
uw-separator of G′. Thus:

VP1
∩ VC =

{
v2j | j ∈ {0, . . . , ⌊n−1

2 ⌋}
}

VP2
∩ VC =

{
v2j+1 | j ∈ {0, . . . , ⌊n−2

2 ⌋}
}
.

If C were odd, n would be odd. Thus, n− 1 would be even.
Consequently, it would follow that vn−1v0 ∩ VP2 = ∅, in
contradiction to vn−1v0 being a uw-separator of G′ by (iii).
Thus, C must be even.

Proof of Theorem 4.1. Assume there exists a path or cy-
cle H = (VH , EH) of uw-separators of G as defined in
the theorem. W.l.o.g., fix enumerations of the nodes and
edges of H as follows: Let n := |EH |. If H is a path,
let v : {0, . . . , n} → VH and e : {0, . . . , n − 1} → EH

such that ∀j ∈ {0, . . . , n − 1} : ej = vjvj+1 and EH =
{ej | j ∈ {0, . . . , n− 1}}. If H is a cycle, let v : Zn → VH

and e : Zn → EH such that ∀j ∈ Zn : ej = vjvj+1 and
EH = {ej | j ∈ Zn}. If H is a cycle containing uw-cut-
nodes of G, assume further and w.l.o.g. that v0 = vn is such
a uw-cut-node. Finally, consider the partition {E0, E1} of
EH into even and odd edges, i.e.

E0 =
{
e2j ∈ EH

∣∣ j ∈ {0, . . . , ⌊n−1
2 ⌋

}
E1 =

{
e2j+1 ∈ EH

∣∣ j ∈ {0, . . . , ⌊n−2
2 ⌋

}
.
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We will prove that σ = {x ∈ XGĜ | xuw = 0} is not a facet
of ΞGĜ by showing that all x ∈ σ satisfy the additional
orthogonal equality

0 =
∑

j∈{0,...,n−1}

(−1)j xej . (5)

This then implies 2 + dimaff σ ≤ |E ∪ F | = dimΞGĜ
where the last equality stems from the full-dimensionality
of the lifted multicut polytope by Theorem 7 of Horňáková
et al. (2017).

More specifically, we will prove for every x ∈ σ the exis-
tence of a bijection

ϑx : E0 ∩ x−1(1) → E1 ∩ x−1(1) .

Using these bijections, we conclude for every x ∈ σ that
the number of elements in the sum of (5) taking the value
+1 is equal to the number of elements taking the value −1,
and thus that the equality holds.

We now show that these bijections exist. Let x ∈ σ. As
xuw = 0, the clustering of G induced by x has a clus-
ter containing both u and w. Let Vuw be the node set of
that cluster. If n = 1, then H is a path ({v0, v1}, {e0}).
Thus, E1 ∩ x−1(1) = ∅ because E1 = ∅. Moreover,
E0 ∩ x−1(1) = ∅ as v0 and v1 are uw-cut-nodes of G and
thus elements of Vuw, which implies xe0 = 0. In this case,
ϑx = ∅ and (5) specializes to xe0 = 0, which is satisfied.

We now consider n ≥ 2. For every ej = vjvj+1 ∈ E0 ∩
x−1(1), we define:

ϑx(ej) =

{
ej−1 if vj ̸∈ Vuw

ej+1 if vj+1 ̸∈ Vuw

. (6)

We show that ϑx is well-defined: Let ej ∈ E0 ∩ x−1(1). In
general, at least one of vj and vj+1 is not in Vuw because
xej = 1, and at most one of vj and vj+1 is not in Vuw

because ej is a uw-separator of G. Thus, ϑx assigns ej a
unique element. It remains to show that this element is in
E1 ∩ x−1(1).

Firstly, we show ϑx(ej) ∈ E1. Clearly, it holds for j ∈
{1, . . . , n− 2}, that ϑx(ej) ∈ E1. We regard the remaining
cases of j ∈ {0, n − 1}. Let first j = 0. For H a path or
cycle with uw-cut-node, ϑx(e0) = e1 ∈ E1 because v0 ∈
Vuw as v0 is a uw-cut-node of G. For H a cycle without
uw-cut-node, we distinguish v0 ∈ Vuw and v0 ̸∈ Vuw. If
v0 ∈ Vuw, then ϑx(e0) = e1 ∈ E1. If v0 ̸∈ Vuw, then
ϑx(e0) = en−1 ∈ E1 because n− 1 is odd by Lemma 4.2.
Let now j = n − 1. For H a path or cycle with uw-cut-
node, ϑx(en−1) = en−2 ∈ E1 because vn ∈ Vuw as vn is
a uw-cut-node of G. For H a cycle without uw-cut-node,
en−1 ̸∈ E0 ∩ x−1(1) because n− 1 is odd by Lemma 4.2.

Secondly, we show xϑx(ej) = 1. By definition of ϑx, ej
and ϑx(ej) share a node v /∈ Vuw. As ϑx(ej) is a uw-
separator of G, the other node of ϑx(ej) is in Vuw and
therefore xϑx(ej) = 1. Thus, ϑx(ej) ∈ E1 ∩ x−1(1), and
ϑx is well-defined.

We show that ϑx is surjective: Let ej ∈ E1 ∩ x−1(1). As
xej = 1, either vj ̸∈ Vuw or vj+1 ̸∈ Vuw. If vj ̸∈ Vuw, then
ej−1 ∈ E0 ∩ x−1(1) and ϑx(ej−1) = ej . If vj+1 ̸∈ Vuw,
then ej+1 ∈ E0 ∩ x−1(1) and ϑx(ej+1) = ej . Thus, ϑx is
surjective.

We show that ϑx is injective: Assume ϑx is not injec-
tive. Then there exists a j ∈ {0, . . . , n− 1} such that
ej ∈ E1 ∩ x−1(1) and ej−1, ej+1 ∈ E0 ∩ x−1(1) such
that ϑx(ej−1) = ej = ϑx(ej+1), by definition of ϑx. This
implies vj , vj+1 ̸∈ Vuw, which contradicts ej being a uw-
separator. By this contradiction, ϑx is injective.

Altogether, we have shown that ϑx is well-defined, surjec-
tive and injective, and thus a bijection. This concludes the
proof of necessity.

Assume now that (i) and (ii) are satisfied. We prove
that 0 ≤ xuw is facet-defining by constructing |E ∪ F | − 1
linearly independent vectors in lin(σ − σ), implying
dimaff σ = dim lin(σ − σ) = |E ∪ F | − 1 and thus that
aff σ is a facet of ΞGĜ. In particular, we construct the
characteristic vectors of all st ∈ E ∪ F \ {uw}. For this
construction, we distinguish the following cases:

1. st is not a uw-separator of G;

2. st is a uw-separator of G and neither s nor t is a uw-
cut-node;

3. precisely one node of st is a uw-cut-node.

Note that no st ∈ E∪F \{uw} is such that both s and t are
uw-cut-nodes, as otherwise the path ({s, t}, {st}) would
violate (i). Thus, this distinction of cases is complete.

For the first case, let st ∈ E∪F \{uw} such that st is not a
uw-separator of G. By this property, there exists a uw-path
(VPuw

, EPuw
) in G that contains neither s nor t. Let further

(VPst
, EPst

) be an st-path in G. If G[VPuw
∪ VPst

] is not
connected, we define:

V1 = {VPuw , VPst} V2 = {VPuw , VPst \ {s, t}}
V3 = {VPuw , VPst \ {s}} V4 = {VPuw , VPst \ {t}} .

Otherwise, we define:

V1 = {VPuw
∪ VPst

} V2 = {VPuw
∪ VPst

\ {s, t}}
V3 = {VPuw

∪ VPst
\ {s}} V4 = {VPuw

∪ VPst
\ {t}} .

In both cases, it is easy to see for i ∈ {1, . . . , 4} that
G[U ] is connected for all U ∈ Vi and thus xVi ∈ XGĜ,
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by Lemma 3.2. It further holds, 1{st} = −xV1 − xV2 +
xV3 + xV4 and xVi

uw = 0, as for all pq ∈ E ∪ F :

• xVi
pq = 1 for i = 1, . . . , 4 if ∄U ∈ V1 : {p, q} ⊆ U

• xVi
pq = 0 for i = 1, . . . , 4 if ∃U ∈ V2 : {p, q} ⊆ U

• xVi
pq = 0 for i = 1, 3 and xVi

pq = 1 for i = 2, 4
if s ∈ {p, q} , t ̸∈ {p, q} and ∃U ∈ V1 : {p, q} ⊆ U

• xVi
pq = 0 for i = 1, 4 and xVi

pq = 1 for i = 2, 3
if t ∈ {p, q} , s ̸∈ {p, q} and ∃U ∈ V1 : {p, q} ⊆ U

• xV1
pq = 0 and xVi

pq = 1 for i = 2, 3, 4 if {p, q} = {s, t} .

It follows from xVi
uw = 0 that xVi ∈ σ. Thus, 1{st} =

−xV1 − xV2 + xV3 + xV4 ∈ lin(σ − σ), which concludes
the first case.

For the second case, consider the set H of all st ∈ E ∪ F \
{uw} such that st is a uw-separator of G and neither s nor t
is a uw-cut-node of G. Let st ∈ H and let v ∈ st. As v is no
uw-cut-node, there exists a uw-path (VPuw , EPuw) in G that
does not contain v. Let further (VPst

, EPst
) be an st-path in

G and let P = (VP , EP ) = (VPuw
∪ VPst

, EPuw
∪ EPst

).
With EĜ(P, v) = {vv′ ∈ (E ∪ F ) ∩

(
VP

2

)
} denoting the

set of edges of Ĝ containing v whose nodes are in VP , we
first show that 1EĜ(P,v) ∈ lin(σ− σ). If G[VPuw

∪ VPst
] is

not connected, we define:

V1 = {VPuw
, VPst

} V4 = {VPuw
, VPst

\ {v}} .

Otherwise, we define:

V1 = {VPuw
∪ VPst

} V4 = {VPuw
∪ VPst

\ {v}} .

Analogously to the previous case, we get 1EĜ(P,v) =

−xV1 + xV4 ∈ lin(σ − σ). Denoting by EĜ(v) =

{vv′ ∈ (E ∪ F )} the set of edges of Ĝ containing v and
noting that

1{st} = 1EĜ(P,v) −
∑

e∈EĜ(P,v)\{st}

1{e} (7)

and EĜ(P, v) ⊆ EĜ(v), we see that it is sufficient for
proving 1{st} ∈ lin(σ − σ) to show that there exists a node
v ∈ st such that 1{e} ∈ lin(σ−σ) for all e ∈ EĜ(v)\{st}.

Next, we define a sequence {Hj}j∈N0
of subsets of H (for

an example see Figure 5) and show iteratively that the char-
acteristic vectors of their elements are in lin(σ − σ) using
(7). For any j ∈ N0, we define:

Hj =
{
st ∈ H \ ∪k<jHk | ∃v ∈ st∀e ∈ EĜ(v) \ {st} :
e is no uw-separator of G ∨ e ∈ ∪k<jHk

}
.

(8)

u

v0

v1

v2

v3

v4

v5

w

Figure 5. Depicted above is an example of a graph G (solid edges)
and augmentation Ĝ (dashed edges) that fulfills the conditions
of Theorem 4.1 for 0 ≤ xuw. Essential for the sufficiency proof
of this theorem is that the introduced edge sets H and Hj for
j ∈ N0 have the property H ⊆ ∪j≥0Hj . In the given example,
H = {v0v1, v1v2, v2v3, v3v4, v4v5}, H0 = {v0v1, v4v5}, H1 =
{v1v2, v3v4}, H2 = {v2v3} and Hj = ∅ for j ≥ 3. Thus,
H ⊆ ∪j≥0Hj .

By this definition, for any st ∈ H0 there exists a v ∈ st such
that all e ∈ EĜ(v) \ {st} are no uw-separators of G. Thus,
it follows from the previous case that 1{e} ∈ lin(σ− σ) for
all e ∈ EĜ(v) \ {st}. Consequently, 1{st} ∈ lin(σ − σ)
by (7). Let now j > 0 and assume that the characteristic
vectors of all elements in ∪k<jHk are in lin(σ − σ). By
definition, for any st ∈ Hj there exists a v ∈ st such that
any e ∈ EĜ(v) \ {st} is either no uw-separator of G and
thus 1{e} ∈ lin(σ−σ) by the previous case, or is in ∪k<jHk

and thus 1{e} ∈ lin(σ − σ) by assumption. Consequently,
1{st} ∈ lin(σ − σ) by (7).

For completing the second case, it remains to show that we
have constructed the characteristic vectors of all elements
in H by this, i.e. that H ⊆ ∪j≥0Hj . This follows directly
from Claim 4.3, which is proven in Appendix A.

Claim 4.3. If (i) and (ii) are satisfied, the set
{Hj | j ∈ N0 ∧Hj ̸= ∅} is a partition of H .

For the last case, let st ∈ E ∪ F \ {uw} such that precisely
one node of st, say t, is a uw-cut-node. We construct P and
show 1EĜ(P,s) ∈ lin(σ − σ) analogously to the previous
case and again have

1{st} = 1EĜ(P,s) −
∑

e∈EĜ(P,s)\{st}

1{e} . (9)

For any e = s′s ∈ EĜ(P, s)\{st}, s′ is no uw-cut-node of
G, as otherwise the path ({s′, s, t}, {s′s, st}) would violate
(i). Consequently, 1{e} ∈ lin(σ − σ) by the previous two
cases. It follows from (9) that 1{st} ∈ lin(σ − σ), which
concludes the third case. Altogether, we have constructed
|E ∪ F | − 1 linearly independent vectors in lin(σ − σ) and
have thus established sufficiency of the specified conditions.
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xu

¬x1

x2

x3

xd1 xd2

x1

¬x1

x2

¬x2

x3

¬x3

xw

xw′

d

f

Figure 6. Depicted above is an example of the reduction from
3-SAT used in the proof of Lemma 5.3. Graphs G and Ĝ are
constructed from the instance of the 3-SAT problem given by
¬x1 ∨ x2 ∨ x3. The additional edge f as well as the edges in the
f -cut δ are depicted in orange. The fd-path with respect δ, given by
the blue edges and d, corresponds to the solution of the 3-SAT prob-
lem instance: φ(x1) = FALSE, φ(x2) = FALSE and φ(x3) =
TRUE.

5. NP-Hardness of Deciding Cut Facets
In this section, we prove that it is NP-hard to decide facet-
definingness of cut inequalities (4) for lifted multicut poly-
topes. We do so in two steps: Firstly, we establish a nec-
essary and sufficient condition for facet-definingness of
cut inequalities for lifted multicut polytopes in the special
case |F | = 1 (Lemma 5.2). Secondly, we show that decid-
ing this condition for these specific polytopes is NP-hard
(Lemma 5.3). Together, this implies that facet-definingness
is NP-hard to decide for cut inequalities of general lifted
multicut polytopes (Theorem 5.4).

We begin by introducing a structure fundamental to this
discussion, paths crossing a cut in precisely one edge that
have no other edge of the cut as chord:
Definition 5.1. For any connected graph G = (V,E), any
augmentation Ĝ = (V,E ∪F ) with E ∩F = ∅, any f ∈ F ,
any f -cut δ of G and any d ∈ δ, we call an f -path (VP , EP )
in G an fd-path in G with respect to δ if and only if it holds
for all d′ ∈ δ \ {d} that d′ ̸⊆ VP .

We proceed by stating the two lemmata and the theorem in
terms of fd-paths.
Lemma 5.2. For any connected graph G = (V,E), any
augmentation Ĝ = (V,E ∪F ) with E ∩F = ∅, any f ∈ F
and any f -cut δ of G, it is necessary for the cut inequality
1− xf ≤

∑
e∈δ(1− xe) to be facet-defining for ΞGĜ that

an fd-path in G with respect to δ exists for all d ∈ δ. For the
special case of F = {f}, this condition is also sufficient.

Lemma 5.3. For any connected graph G = (V,E), any
augmentation Ĝ = (V,E ∪F ) with E ∩F = ∅, any f ∈ F
and any f -cut δ of G, it is NP-hard to decide if an fd-path in
G with respect to δ exists for all d ∈ δ, even for the special
case of F = {f}.

Theorem 5.4. For any connected graph G = (V,E), any
augmentation Ĝ = (V,E ∪F ) with E ∩F = ∅, any f ∈ F
and any f -cut δ of G, it is NP-hard to decide if the cut
inequality 1 − xf ≤

∑
e∈δ(1 − xe) is facet-defining for

ΞGĜ, even for the special case of F = {f}.

In the remainder of this section, we prove first Theorem 5.4
and then Lemma 5.2 and Lemma 5.3.

Proof of Theorem 5.4. In case F = {f}, a cut inequality
is facet defining if and only if there exists an fd-path in G
with respect to δ for all d ∈ δ, by Lemma 5.2. Deciding if
such paths exist is NP-hard, by Lemma 5.3. Together, this
implies NP-hardness of deciding facet-definingness, even
for the special case of F = {f}.

Proof of Lemma 5.2. Necessity of an equivalent statement
was already proven as Condition C1 of Theorem 5 of Andres
et al. (2023).

We now show sufficiency. For this, let F = {f} = {uw},
let σ = {x ∈ XGĜ | 1− xf =

∑
d∈δ(1− xd)} and as-

sume that there exists an fd-path in G with respect to δ
for all d ∈ δ. We prove that the cut inequality with re-
spect to f and δ is facet-defining under the specified condi-
tions by explicitly constructing |E ∪ F | − 1 = |E| linearly
independent vectors in lin(σ − σ), implying dimaff σ =
dim lin(σ − σ) = |E| and thus that aff σ is a facet of ΞGĜ.
In particular, we first construct the characteristic vectors of
the elements in E \ δ and then 1{d,f} for all d ∈ δ.

For any e ∈ E \ δ, define:

V1 = {e} V2 = ∅ .

As G[U ] is connected for any U ∈ V1 and U ∈ V2, we
have xV1 , xV2 ∈ XGĜ, by Lemma 3.2. It further holds
1{e} = −xV1 + xV2 and, for j ∈ {0, 1}, that xVj

uw = 1 and
x
Vj

d = 1 for all d ∈ δ, as for all pq ∈ E ∪ F :

• xV1
pq = 1 and xV2

pq = 1 if ∄U ∈ V1 : {p, q} ⊆ U

• xV1
pq = 0 and xV2

pq = 1 if ∃U ∈ V1 : {p, q} ⊆ U .

It follows from x
Vj
uw = 1 and x

Vj

d = 1 for all d ∈ δ that
xVj ∈ σ. Thus, 1{e} = −xV1 + xV2 ∈ lin(σ − σ).

For any d ∈ δ, there exists an fd-path P = (VP , EP ) in G
with respect to δ according to our assumptions. We assume
w.l.o.g. that this path is chordless and define:

V1 = {VP } V2 = ∅ .

Analogously to the previous case, we get xV1 ∈ XGĜ,
xV2 ∈ σ and 1EP∪{f} = −xV1 + xV2 . Using the same
distinction of cases as before, we further get xV1

uw = 0 and,

7
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as P is an fd path, xV1

d = 0 and xV1

d′ = 1 for all d′ ∈ δ\{d},
implying xV1 ∈ σ. Consequently, 1EP∪{f} = −xV1 +
xV2 ∈ lin(σ − σ). We now note that the characteristic
vector associated with f and d can be written as

1{f,d} = 1EP∪{f} −
∑

e∈EP \{d}

1{e} . (10)

As 1{e} ∈ lin(σ − σ) for all e ∈ EP \ {d} by the previous
case, this implies 1{f,d} ∈ lin(σ − σ). Altogether, we have
constructed |E| linearly independent vectors in lin(σ − σ)
and have thus established sufficiency of the specified condi-
tion.

Proof of Lemma 5.3. For showing NP-hardness, we use a re-
duction from the NP-hard 3-SAT problem with exactly three
literals per clause and no duplicating literals within clauses
(Schaefer, 1978). For any instance of this 3-SAT problem,
with variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm,
we construct in polynomial time an instance of our decision
problem and show that it has a solution if and only if the
instance of the 3-SAT problem has a solution. An example
of this construction is depicted in Figure 6. We begin by
defining two graphs, G1 and G2, which will be the compo-
nents of G induced by the f -cut δ of our original decision
problem.

In the first graph G1 = (V1, E1), there are 3m + 2 nodes
which are organized in m+ 2 fully-connected layers. For
j ∈ {0, 1, . . . ,m+ 1}, we denote the set of nodes in the
j-th layer by V1j . The 0-th layer contains a single node u
and the m + 1-th layer a single node d1. The remaining
m layers correspond to the m clauses C1, C2, . . . , Cm and
contain three nodes each. The edges between consecutive
layers are the only edges in E1. For j ∈ {1, 2, . . . ,m}, we
label each node in the j-th layer by a different literal in Cj .
For completeness, we label u (respectively d1) by a unique
auxiliary propositional variable xu (respectively xd1

). For
any v ∈ V1, we let l(v) denote the label of that node.

The second graph G2 = (V2, E2) is such that V1 ∩ V2 = ∅
and E1 ∩ E2 = ∅. It consists of 2n + 3 nodes which
are organized in n + 3 fully-connected layers. For k ∈
{0, 1, . . . , n+ 2}, we denote the set of nodes in the k-th
layer by V2k. The 0-th layer contains a single node d2, the
n + 1-th layer a single node w and the n + 2-th layer a
single node w′, which is connected to all other nodes of
G2, besides d2, by a set of edges E′

2 ⊆ E2. The remaining
n layers correspond to the n variables x1, x2, . . . , xn and
contain two nodes each. The edges between consecutive
layers and the edges in E′

2 are the only edges in E2. For
k ∈ {1, 2, . . . , n}, we label one node in the k-th layer by
xk and the other by ¬xk. Again, we label w (respectively
d2 and w′) by a unique auxiliary propositional variable
xw (respectively xd2 and xw′) and denote the label of any
v ∈ V2 by l(v).

We construct a third graph G = (V,E) such that V =
V1 ∪ V2 and E = E1 ∪ E2 ∪ δ with

δ =
{
d1d2, d1w

′} ∪{
st ⊆ V1 ∪ V2 | s ∈ V1 ∧ t ∈ V2 ∧ l(s) = ¬ l(t)

}
.

Finally, we define a fourth graph Ĝ = (V,E ∪ F ) such
that F = {f} = {uw}. Note that G is connected and that
δ is an f -cut of G, partitioning it into V1 and V2. Note
also that |F | = 1, covering the part of the lemma claiming
NP-hardness also for this special case.

For brevity, we introduce the symbol d := d1d2, as this edge
of the cut and its fd-paths will be of particular importance
in the remainder of the proof. For the same reason, we
henceforth mean by an fd-path an fd-path in G with respect
to δ and establish properties of such paths in the following
claim, which is proven in Appendix A.

Claim 5.5. The graph G has the following properties:

(i) For any clause Cj and any fd-path (VP , EP ), there
exists a literal in Cj that is labeled by a node from
VP ∩ V1.

(ii) Any fd-path that contains a node in V1 labeled ¬xk

(respectively xk) does not contain a node labeled xk

(respectively ¬xk).

Using Claim 5.5, we show that the 3-SAT formula is satisfi-
able if and only if there exists an fd′-path for every d′ ∈ δ,
which finishes the reduction. We do so in two steps: Firstly,
we show that the 3-SAT formula is satisfiable if and only if
there exists an fd-path for the specific edge d ∈ δ. Secondly,
we show that there always exists an fd′ -path for every other
edge d′ ∈ δ \ {d}. This second statement is thereby neces-
sary, as otherwise, even when the 3-SAT problem instance
has a solution, the corresponding cut inequality might still
not be facet-defining if there exists a d′ ∈ δ \ {d} for which
no fd′ -path exists.

Let P = (VP , EP ) be an fd-path. We construct an as-
signment of truth values φ to the variables x1, x2, . . . , xn

satisfying the corresponding 3-SAT problem instance by
setting φ(xk) = TRUE for all k ∈ {1, . . . , n} if and only if
there exists a node v ∈ VP ∩ V1 such that l(v) = xk. As-
sume this assignment would not satisfy the 3-SAT problem
instance. Then there exists a clause Cj assigning FALSE to
all of its labels. By (i), there exists a node v ∈ VP ∩ V1

that is labeled by a literal in Cj . If l(v) = xk for some
variable xk, then φ(xk) = TRUE, leading Cj to be true. If
l(v) = ¬xk, then φ(xk) = FALSE by (ii), leading Cj to
be true as well. Consequently, such a clause Cj where all
literals get assigned FALSE cannot exist and φ is a solution
to the given 3-SAT problem instance.
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Let now φ be an assignment of truth values to the variables
x1, x2, . . . , xn that satisfies the corresponding instance of
the 3-SAT problem. In the following, we will show that an
fd-path P = (VP , EP ) in G is given by

VP =
{
u, u1, . . . , um, d1, d2, w1, . . . , wn, w

}
EP =

{
uu1, u1u2, . . . , umd1, d1d2,

d2w1, w1w2, . . . wnw
}
,

where uj ∈ V1j (respectively wk ∈ V2k) has a label that gets
assigned TRUE by φ for all j ∈ {1, . . . ,m} (respectively
k ∈ {1, . . . , n}). It is easy to see that P is an f -path in
G. It remains to show that it is an fd-path, i.e. that there
exist no d∗ = d∗1d

∗
2 ∈ δ \ {d} such that d∗ ⊆ VP . Assume

there exists such a d∗. As w′ ̸∈ VP , it holds then d∗ ∈ δ \
{d, d1w′}. By construction of δ, it follows l(d∗1) = ¬ l(d∗2).
As both l(d∗1) and ¬ l(d∗2) need to get assigned TRUE by φ
according to the construction of P , this is a contradiction.
Thus, there exists no such d∗, and P is an fd-path. For
an example of this correspondence between fd-paths and
solutions of the given 3-SAT problem instance, see again
Figure 6.

Next, we regard the other edges of the cut. Let d′ = d′1d
′
2 ∈

δ \ {d} be an edge in the cut except d. We assume w.l.o.g.
that d′1 ∈ V1i for some i ∈ {1, . . . ,m+ 1} and regard the
path P = (VP , EP ) given by

VP =
{
u, u1, u2, . . . , ui−1, d

′
1, d

′
2, w

′, w
}

EP =
{
uu1, u1u2, . . . , ui−1d

′
1, d

′
1d

′
2, d

′
2w

′, w′w
}
\ {w′},

where uj is an arbitrary node in V1j such that l(uj) ̸= l(d′1)
for all j ∈ {1, . . . i− 1}, and taking the set difference with
{w′} in the definition of EP is necessary for P being a
path in case d′2 = w′. Note that such uj are guaranteed to
exist as we consider the 3-SAT problem with exactly three
literals per clause and no duplicated literals within clauses.
Again, it is easy to see that P is an f -path, and it remains
to show that there exists no d∗ = d∗1d

∗
2 ∈ δ \ {d′} such that

d∗ ⊆ VP . Assume there exists such a d∗. Then one if its
nodes, say d∗1, must be in V1 and its other node must be in
V2. We make a case distinction on whether d∗1 ∈ V1 \ {d1}
or d∗1 = d1. If d∗1 ∈ V1 \ {d1}, then d∗ ∈ δ \ {d, d1w′}.
By construction of δ, it follows l(d∗1) = ¬ l(d∗2). As d∗2 ∈
V2 ∩ VP = {d′2, w′, w} and l(d∗1) ̸= l(d′1) according to the
construction of P , this is a contradiction. On the other hand,
if d∗1 = d1, it holds by construction of P that i = m + 1.
As d′1 ∈ V1i = V1m+1 = {d1}, it follows d′1 = d1 = d∗1.
Furthermore, as d1d2 and d1w

′ are the only edges in δ
containing d1 and d′ ̸= d, we get d′2 = w′. Thus, we
especially have d2 ̸∈ V2 ∩ VP = {w′, w}, leading to d∗2 =
w′ when using the same argument as before. Consequently,
d∗ = d′ which contradicts d∗ ∈ δ \ {d′}. As both cases
lead to a contradiction, there does not exist such a d∗ and
P is an fd-path. This finishes the reduction from the 3-SAT
problem and the proof of the lemma.

6. Conclusion
We characterize in terms of efficiently decidable conditions
the facets of lifted multicut polytopes induced by lower
box inequalities. In addition, we show that deciding facet-
definingness of cut inequalities for lifted multicut polytopes
is NP-hard, even for the special case of |F | = 1. Toward
the design of cutting plane algorithms for the lifted multicut
problem, our hardness result does not rule out the existence
of inequalities strengthening the cut inequalities for which
facet-definingness and possibly also the separation problem
can be solved efficiently. The search for such inequalities
is one direction of future work. In our proof, we identify
a structure (paths crossing the cut that have an edge of the
cut as a chord) that complicates the characterization of cut
inequalities. This structure exists for cuts (edge subsets,
discussed in this article) but does not exist for separators
(node subsets, not discussed in this article). This observation
motivates the study of non-local connectedness with respect
to separators instead of cuts.
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Box Facets and Cut Facets of Lifted Multicut Polytopes

A. Additional Proofs
Proof of Claim 4.3. It follows directly from (8) that Hj ∩
Hk = ∅ for any distinct j, k ∈ N0 and that ∪j≥0Hj ⊆ H .
Let H∞ = H \ ∪j≥0Hj , it remains to show that H∞ =
∅. Assume this does not hold, then there exists an st ∈
H∞, and thus especially a simple st-path ({s, t}, {st}) in
Ĝ whose edges are all in H∞. We show that such a path
cannot exist given (i) and (ii).

Assume there exist simple paths in Ĝ whose edges are all
in H∞. Let P = (VP , EP ) with EP ⊆ H∞ be one of
those simple paths with maximum length, let p, q ∈ V
be its end-nodes and let ep, eq ∈ EP be the unique edges
in EP containing p and q, respectively. Recall that, by
definition of H , all edges in EP are uw-separators of G and
no node in VP is a uw-cut-node of G. By (8), there exists
a qq′ ∈ EĜ(q) \ {eq} such that qq′ is a uw-separator and
qq′ ̸∈ ∪j≥0Hj . By definition of H , this is equivalent to q′

being either a uw-cut-node of G or qq′ ∈ H∞. It is not
possible that qq′ ∈ H∞, as either q′ ∈ VP and there exists a
cycle in (VP , EP ∪ {qq′}) that violates (ii), or q′ ̸∈ VP and
(VP ∪ {q′}, EP ∪ {qq′}) is a simple path in G whose edges
are all in H∞, contradicting P to be the longest such path.
Thus, q′ must be a uw-cut-node. Further, it holds q′ ̸∈ VP

as no node in VP is a uw-cut-node of G. Analogously,
there must exist a uw-cut-node p′ ∈ V \ VP such that
p′p ∈ EĜ(p) \ {ep}.

If p′ = q′, the simple cycle (VP ∪ {p′}, EP ∪ {p′p, qq′})
violates (ii). If p′ ̸= q′, the simple p′q′-path (VP ∪
{p′, q′}, EP ∪ {p′p, qq′}) violates (i). As both cases lead to
a contradiction, there cannot exist simple paths in Ĝ whose
edges are all in H∞, and thus especially no st ∈ H∞. □

Proof of Claim 5.5. For proving (i) and (ii), we first show
that any fd-path contains one node from each layer of G
besides V2n+2 = {w′}. Assume this does not hold. Then
there exists an fd-path P = (VP , EP ) and a layer V1j with
j ∈ {0, . . . ,m+ 1} or V2k with k ∈ {0, . . . , n+ 1} such
that no node in this layer is contained in P . As P is an
fd-path, it holds that d1 ∈ VP and

(
VP

2

)
∩ δ = {d}. As

d1w
′ ∈ δ, this especially implies that w′ ̸∈ VP and thus

EP ∩E′
2 = ∅. Hence, EP must be a subset of the remaining

edges E1∪E2∪{d}\E′
2. As these edges only exist between

consecutive layers and P contains u ∈ V1,0 and w ∈ V2,n+1,
having a layer in-between for which P does not contain a
node would imply P not being connected and thus results
in a contradiction.

Assume (i) does not hold. Then there exists a clause Cj and
an fd-path P such that no node in VP ∩ V1 is labeled by a
literal in Cj . By construction of the labels, this would imply
that there exists no node in P that is in V1j , contradicting
the discussion of the previous paragraph.

Assume (ii) does not hold. Then there exists an fd-path
P = (VP , EP ) containing an s ∈ V1∩VP with l(s) = ¬xk

(respectively xk) and a t ∈ VP with l(t) = xk (respectively
¬xk). We make a case distinction depending on whether
t is in V1 or V2. Suppose t ∈ V1. By the discussion of
the first paragraph, P contains a v ∈ V2k ∩ VP with either
l(v) = xk or l(v) = ¬xk. By construction of δ, it follows
either sv ∈ δ \ {d} or tv ∈ δ \ {d}, contradicting P to
be an fd-path. Suppose t ∈ V2. In this case, st ∈ δ \ {d}
by construction of δ, contradicting P to be an fd-path. As
both cases lead a contradiction, such nodes s and t cannot
exist. □
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