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Abstract
Estimating the uncertainty of a model’s predic-
tion on a test point is a crucial part of ensuring
reliability and calibration under distribution shifts.
A minimum description length approach to this
problem uses the predictive normalized maximum
likelihood (pNML) distribution, which considers
every possible label for a data point, and decreases
confidence in a prediction if other labels are also
consistent with the model and training data. In
this work we propose IF-COMP, a scalable and
efficient approximation of the pNML distribu-
tion that linearizes the model with a temperature-
scaled Boltzmann influence function. IF-COMP
can be used to produce well-calibrated predic-
tions on test points as well as measure complexity
in both labelled and unlabelled settings. We ex-
perimentally validate IF-COMP on uncertainty
calibration, mislabel detection, and OOD detec-
tion tasks, where it consistently matches or beats
strong baseline methods.

1. Introduction
Safely deploying machine learning models in real world
settings requires making accurate predictions, as well as
quantifying the uncertainty in those predictions. This is par-
ticularly important in high-stakes settings such as healthcare
(Ghassemi & Mohamed, 2022), medical imaging (Esteva
et al., 2017), and self-driving cars (Bojarski et al., 2016),
where uncertainty estimates can help accurately assess the
risk in utilizing a model’s decision and decide when to
ignore it altogether (Ovadia et al., 2019). Common meth-
ods for quantifying uncertainty rely on Bayesian principles,
which require defining a prior distribution and sampling
from a posterior distribution. However, specifying a good
prior is difficult in the context of modern deep learning, and
Bayesian methods face significant scalability challenges.
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The Minimum Description Length (MDL) Principle (Rissa-
nen, 1996) provides an alternative approach to uncertainty
estimation which does not require explicitly defining a prior
or even a notion of ground truth. MDL instantiates a version
of Occam’s Razor by favoring models that minimize the
combined codelength of both the model and the observed
data under a suitable coding scheme. This code can then
be used to make a prediction for an unseen test point by
selecting the label with the shortest code. However, this
code may perform poorly compared to a hindsight-optimal
code that is allowed to observe the test point and label. We
can attempt to minimize this difference in codelengths, or
regret, by using a universal code such as the predictive nor-
malized maximum likelihood (pNML) (Roos & Rissanen,
2008; Fogel & Feder, 2018) distribution, which minimizes
the maximum possible regret for all labels.

Intuitively, given a query data point x, pNML considers aug-
menting the training set with the pair (x,y) for some label
y and fitting a hindsight-optimal model to the augmented
training set. If one can just as easily fit the augmented
dataset with arbitrary labels, then one is highly uncertain
about the label; if one choice of labels is much easier to fit
than the others, then one has low uncertainty. This intuition
is captured by the minimax optimality of pNML. The univer-
sal codelength pNML defines for a data point is called the
stochastic data complexity (Rissanen, 1986), and consists
of two terms. The error term captures the best possible loss
a hindsight-optimal model could achieve by observing the
true label. The second parametric complexity term quanti-
fies how many essentially different distributions the model
class could assign to the test data. Minimizing the pNML
codelength then requires both learning an accurate model of
the data as well as avoiding overfitting outlier observations.

Calculating the pNML distribution requires optimizing a
hindsight-optimal model over the training set and the ad-
ditional example for each possible label, which is both
computationally intractable and misspecified for overparam-
eterized neural networks that can easily fit random labels
(Zhang et al., 2017). A simple way to restrict the hindsight-
optimal model subclass is with a proximal objective that
penalizes movement in function and weight space. Approxi-
mating this proximal objective by linearizing the network
and applying a second order approximation of the proxi-
mal terms has been shown to correspond to the influence
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function (IF) in neural networks (Bae et al., 2022).

However, when models are overconfident on training exam-
ples, the proximal terms can become too restrictive, making
the hindsight-optimal model unable to fit low probability
labels. In this work we propose to temperature-scale the
proximal objective and approximate it with a Boltzmann
influence function (BIF), allowing the hindsight-optimal
model to better accommodate arbitrary labels. We then
propose Influence Function Complexity (IF-COMP), a
complexity measure and associated pNML code which uses
the BIF to produce estimates of the hindsight-optimal out-
put probabilities. These estimates can then be used to pro-
duce calibrated output distributions as well as measure the
stochastic complexity of both labelled and unlabelled exam-
ples.

We validate IF-COMP’s ability to reliably estimate ground
truth pNML complexity, then investigate its use on three
tasks that test its different capabilities. We consider (1)
uncertainty calibration, which requires producing reliable
uncertainty estimates under distribution shifts, (2) mislabel
detection, which requires estimating complexity for labelled
training examples, and (3) OOD detection, which requires
estimating complexity for unlabelled test examples. Across
all three tasks, IF-COMP displays strong performance, con-
sistently matching or beating Bayesian and optimization
tracing approaches that often use more information than
is available to our method, as well as a similar pNML ap-
proximation method that explicitly takes steps in parameter
space (Zhou & Levine, 2021). Compared to this baseline,
IF-COMP also provides a 7-15 times speedup in computa-
tional efficiency. IF-COMP demonstrates the potential of
MDL-based approaches for uncertainty and complexity esti-
mation in deep neural networks, enabling better calibrated
decision making.

2. Background and Preliminaries
2.1. Minimum Description Length and Stochastic

Complexity

In this work we consider a supervised classification task
from an input space X to a discrete output space Y , where
we are given a finite training set Dtrain = {(xi,yi)}n con-
sisting of pairs of examples (xi,yi). We consider a hypothe-
sis class of possible models {θ ∈ Θ}, each of which defines
a conditional probability distribution pθ(y|x) = σ(fθ(x))
where σ is the softmax function. We can define a prefix
code for y using the Kraft inequality (Cover & Thomas,
1991), such that the codelength L(θ,x,y), or number of
bits required to describe y given x, is:

L(θ,x,y) = − log pθ(y|x), (1)

or the log loss.

The Minimum Description Length (MDL) Principle (Rissa-
nen, 1978; Grunwald, 2004) dictates that we should choose
the model in our hypothesis class whose code can describe
the training labels given the training inputs in the fewest
number of bits. For parametric hypothesis classes such as
neural networks, the MDL principle reduces to the maxi-
mum likelihood principle (Grunwald, 2004; Dwivedi et al.,
2023). Then, a given learner q will aim to find the parame-
ters θ̂ ∈ Θ that minimizes the standard training objective:

J (θ,Dtrain) =

n∑
i=1

L(θ,xi,yi) (2)

We call the resulting model the base model and the code-
length it defines for an example the base codelength.

We now consider an unseen test example z = (x,y), for
which our base model may not achieve the optimal code-
length. If q is additionally given access to this test example,
it will be able to find the parameters that minimize the total
codelength on both the training set and the test example:

θ⋆(x,y, ϵ) = argmin
θ∈Θ

J (θ,Dtrain)− ϵ log pθ(y|x) (3)

where ϵ represents the amount to weight the test point rel-
ative to the training set. We call the resulting model the
hindsight-optimal model and the codelength it defines for
an example the hindsight-optimal codelength. Typically we
will always set ϵ = 1/n so that the test point is weighted
equally to the other training points, but we include this addi-
tional parameter for reasons that will become clear later. For
ease of notation, we define the hindsight-optimal parameters
as θ⋆(x,y) := θ⋆(x,y, 1/n).

The regret of the learner q for a test point z is the differ-
ence between the base codelength and the hindsight-optimal
codelength:

R(q,Dtrain, (x,y)) =

− log pθ̂(y|x) + log pθ⋆(x,y)(y|x). (4)

The predictive normalized maximum likelihood (pNML)
distribution (Shtar’kov, 1987; Roos et al., 2008; Roos &
Rissanen, 2008) is then defined as the universal model which
minimizes the worst case regret across all possible labels:

ppNML(y|x) =
pθ⋆(x,y)(y|x)∑

y′∈Y
pθ⋆(x,y′)(y′|x)

. (5)

The codelength of the pNML distribution is

Γ(z) =

error︷ ︸︸ ︷
− log pθ⋆(x,y)(y|x)+

log
∑
y′∈Y

pθ⋆(x,y′)(y
′|x)︸ ︷︷ ︸

parametric complexity

, (6)
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also known as the stochastic complexity (Rissanen, 1996;
Barron et al., 1998) of z relative to the model class Θ. The
first error term measures the hindsight-optimal codelength
or log loss for z. The second parametric complexity term
quantifies how many distinguishable distributions the model
class Θ could assign to the data in hindsight. A model
that is expressive enough to overfit its training data and any
arbitrary test data will be able to achieve low error but at the
cost of high parametric complexity. A less expressive model
that underfits its training data and any arbitrary test data will
have low parametric complexity but will incur high error.
Choosing a model with a small description length under
the pNML code necessitates trading off between these two
extremes.

2.2. The Infinity Problem and Proximal Bregman
Objective

For many overparameterized model classes, the denomina-
tor in (5) is either infinite (for continuous label spaces) or
constant (for discrete label spaces). To solve this infinity
problem, the hindsight-optimal model must be restricted to a
subclass of models that “comply” with the original training
data (Fogel & Feder, 2019). This can be done by restricting
the label space (Stine & Foster, 2001), enforcing moment
matching (Farnia & Tse, 2017), confidence intervals, or
minimum training likelihood (Fogel & Feder, 2019).

Another approach directly alters the objective with a proxi-
mal term, such as in a ridge estimator (Dwivedi et al., 2023).
In this work we propose to use a proximal bregman objective
(PBO) (Bae et al., 2022) that restricts movement in function
and weight space away from the base model optimum while
training on the additional unseen test example:

Qβ(θ,Dtrain, z) = − log pθ(y|x)+
n∑

i=1

DKL(pθ(yi|xi) ∥ pθ̂(yi|xi)) +
λ

2
||θ − θ̂||22. (7)

Since the base model may not have reached convergence,
the PBO penalizes movement in function space using the
KL divergence between the base and hindsight model output
distributions rather than using the true training labels.

2.3. Influence Functions

Influence functions (Cook, 1979; Hampel, 1974) are a clas-
sical method from robust statistics that attempt to mea-
sure the sensitivity of an estimator to individual datapoints
(Fisher et al., 2023). We can formulate this alternative ob-
jective using Eq. 3 which we rewrite as a response function
r(x,y) : R → Θ

r(x,y)(ϵ) = θ⋆(x,y, ϵ)

where we assume that the objective (3) is strongly convex
and hence the optimum is unique given some factor ϵ. Under
these assumptions, note that r(x,y)(0) = θ̂ and the response
function is differentiable at ϵ0 = 0 by the Implicit Func-
tion Theorem (Griewank & Walther, 2008; Krantz & Parks,
2002). This allows us to approximate the response function
with a first order Taylor expansion about ϵ0:

r(x,y)(ϵ) = θ̂ +G−1∇θL(θ̂,x,y)ϵ,

where G is the Hessian of (2) or a positive definite approxi-
mation such as the Generalized Gauss-Newton Hessian or
Fisher Information.

To approximate the effects on the loss at a specific test point
z′ = (x′,y′), we can linearize the model about θ̂ and apply
the chain rule:

L(θ⋆(x,y, ϵ),x′,y′) = L(θ̂,x′,y′)+

ϵ∇θL(θ̂,x′,y′)⊺G−1∇θL(θ̂,x,y)

If the train and test point are the same, the quantity

IF (θ,x,y) = ∇θL(θ̂,x,y)⊺G−1∇θL(θ̂,x,y) (8)

is often referred to as the self-influence of z relative to the
model parameterized by θ (Koh & Liang, 2017).

Although influence functions were meant to approximate
the effects of true retraining (Basu et al., 2020), recent work
has shown that they more closely approximate an alternate
objective (Bae et al., 2022; Grosse et al., 2023), which
coincides with the proximal bregman objective (7) described
in Section 2.2.

3. IF-COMP: Measuring Complexity with
Boltzmann Influence Functions

Although the pNML distribution and stochastic complexity
are useful for calibrating the uncertainty of a given base
model, exactly calculating them is intractable because they
require finding the hindsight-optimal model for each possi-
ble label. In addition, overparameterized neural networks
can achieve arbitrarily low log loss on the additional test
point regardless of its label, introducing the infinity prob-
lem. We empirically verify this behavior in Appendix A.1.
Methods such as ACNML (Zhou & Levine, 2021) which
take explicit steps in parameter space are also computation-
ally expensive and can become unreliable for overconfident
models.

To solve these issues, we begin by defining a temperature-
scaled proximal Bregman objective that softens the local
curvature, allowing the hindsight-optimal model to fit low
probability labels. Linearizing the model produces a cor-
responding Boltzmann influence function (BIF) which can
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directly approximate the hindsight-optimal output distri-
bution. We then propose Influence Function Complexity
(IF-COMP), a complexity measure and associated pNML
code that uses the BIF to produce calibrated output distri-
butions as well as approximate the stochastic complexity
for labelled and unlabelled data points. Finally, we describe
how to efficiently compute IF-COMP and then validate it
against the ground truth pNML complexity.

3.1. Boltzmann Influence Functions

Since the PBO (Eq. 7) regularizes movement in function
space using the model’s own output distribution, overconfi-
dent predictions can make this objective too restrictive for
training the hindsight-optimal model with very low prob-
ability labels. Inspired by the use of temperature scaling
to reduce model overconfidence and improve calibration
for predictions (Guo et al., 2017), as well as the alternative
Boltzmannian MDL formulation (Perotti et al., 2018), we
propose to directly temperature scale our codelength as:

Eβ,θ(x,y) = − log pβ,θ(y|x) := − log σ(βfθ(x)). (9)

which gives us a corresponding minimax optimal Boltzmann
pNML distribution

pβ,pNML(y|x) =
pβ,θ⋆(x,y)(y|x)∑

y′∈Y
pβ,θ⋆(x,y′)(y′|x)

. (10)

and a stochastic complexity

Γβ(z) = − log pβ,θ⋆(x,y)(y|x)+

log
∑
y′∈Y

pβ,θ⋆(x,y′)(y
′|x) (11)

We can replace the loss in the original PBO with our
temperature-scaled loss to define a corresponding hindsight-
optimal model with a Boltzmann PBO (BPBO):

Q(θ,Dtrain, z) = Eβ,θ(x,y)+
n∑

i=1

DKL(pβ,θ(yi|xi) ∥ pβ,θ̂(yi|xi)) +
λ

2
||θ − θ̂||22.

(12)

If we take a first order approximation of the log loss and a
second order approximation of the proximal terms about θ̂,
we can formulate the influence function as

IFβ(θ̂,x,y) = ∇θEβ,θ̂(x,y)
⊺G−1

β ∇θEβ,θ̂(x,y), (13)

with a corresponding Fisher information:

Gβ =

1

n

n∑
i=1

E
y′
i∼pβ,θ̂(yi|xi)

[
∇θEβ,θ̂(xi,y

′
i)∇θEβ,θ̂(xi,y

′
i)

⊺
]
.

Intuitively, temperature scaling softens the function space
distance loss and allows the model to better accommodate ar-
bitrarily labelled data points. We call the influence function
calculated with this temperature-scaled loss the Boltzmann
influence function (BIF).

Different choices for β define different BIFs. At β = 1,
we recover the standard influence function. As β → 0+,
the KL divergence loss becomes an MSE loss over logits
(Kim et al., 2021) and we recover a BIF resembling TRAK
(Park et al., 2023). In Section 4.3 we will see that tuning β
directly within the influence function is an important part of
achieving high quality complexity estimates.

3.2. IF-COMP

We now describe IF-COMP, which estimates the Boltz-
mann pNML distribution and stochastic complexity using
our Boltzmann influence function. Recall from (10) and
(11) that our goal is to approximate pβ,θ⋆(x,y)(y|x) for all
y ∈ Y . Using the BIF formulation above, we can apply a
first order Taylor expansion of the output probability about
θ̂ to approximate

pβ,θ⋆(x,y)(y|x) = pβ,θ̂(y|x) +
1

n
pβ,θ̂(y|x) IFβ(θ̂,x,y).

Similar to other work (Ilyas et al., 2022; Park et al., 2023),
we choose to linearize our model in the log probability space,
where we have used the identity

∇pβ,θ̂(y|x) = pβ,θ̂(y|x)∇ log pβ,θ̂(y|x)

to change the log probability gradient into a probability
space gradient.

We can then rewrite the Boltzmann pNML parametric com-
plexity as

log
∑
y′∈Y

pβ,θ⋆(x,y′)(y
′|x) =

log

(
1 +

1

n
Ey′∼pβ,θ̂(y|x)

[
IFβ(θ̂,x,y

′)
])

.

For large enough n we can further simplify log(1 + x) ≈ x,
which gives us a final complexity

Γβ(z) =

error︷ ︸︸ ︷
− log pβ,θ⋆(x,y)(y|x)+

1

n
Ey′∼pβ,θ̂(y|x)

[
IFβ(θ̂,x,y

′)
]
.︸ ︷︷ ︸

parametric complexity

(14)

We leave the error term in its original form, since we assume
access to true labels only for training data, for which our
model is already hindsight-optimal. For unlabelled data that
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Table 1. Average pNML output distribution (16) inference time per input (in seconds). On smaller models such as LeNet, IF-COMP can
be computed almost as efficiently as a gradient norm while ACNML is nearly 7 times slower. On larger ResNet18 models, IF-COMP
maintains a greater than 10 times speedup compared to ACNML.

Method MNIST LeNet CIFAR-10 ResNet18 CIFAR-100 ResNet18

GradNorm 0.000226s 0.00336s 0.03783s
ACNML-EKFAC 0.001770s 0.23183s 2.33628s
IF-COMP (ours) 0.000241s 0.01576s 0.18883s

IF-COMP vs. ACNML Speedup 7.34 × 14.71 × 12.4 ×

CIFAR-10 CIFAR-100 MNIST All
0

0.2

0.4

0.6

0.8

1

Pe
ar

so
n

R

GradNorm Self-IF ACNML-EKFAC IF-COMP

Figure 1. Pearson R correlation of different methods of approx-
imating hindsight-optimal outputs with ground truth parametric
complexity on in-domain (CIFAR-10) and out-of-domain datasets.
IF-COMP achieves the highest correlation across all datasets, beat-
ing ACNML, a computationally more expensive alternative.

may not have a valid label, the error term is undefined and
we compute only the parametric complexity term.

Γβ(x) = Ey′∼pβ,θ̂(y|x)

[
IFβ(θ̂,x,y

′)
]

(15)

If we are interested in the calibrated probabilities of the
Boltzmann pNML distribution, we can calculate the distri-
bution directly as

pβ,pNML(y|x) =
pβ,θ̂(y|x) + α/n pβ,θ̂(y|x) IFβ(θ̂,x,y)

1 + α/n Ey′∼pβ,θ̂(y|x)

[
IFβ(θ̂,x,y′)

]
(16)

where α controls the weighting of the test point relative to
the training set. A value of α = 0 corresponds to the original
model output distribution. Compared to ACNML (Zhou &
Levine, 2021), which explicitly optimizes the hindsight-
optimal parameters using a weighted approximate posterior,
IF-COMP linearizes the model directly which allows us to
easily control this weighting after computing the BIF for
each label.

3.3. Efficiently Computing IF-COMP

Although we have simplified the calculation of stochas-
tic data complexity considerably, calculating the BIF still

requires estimating and inverting the Fisher information
matrix. Similar to previous work (Grosse et al., 2023),
we use an eigenvalue-corrected Kronecker-factored ap-
proximation to the Fisher information matrix (EKFAC)
(George et al., 2018) which produces an eigendecompo-
sition Gβ ≈ QλQT . We can then calculate the influence
function as the squared L2 norm in the inverse eigenspace:

IFβ(θ̂,x,y) = ||∇θEβ,θ(x,y)
⊺Q(λ+ δ)−

1/2||22, (17)

where δ is a damping term added to ensure invertibility.
Since we need only calculate and invert the EKFAC once
for a given model and training set, calculating the IF-COMP
then requires only one jacobian vector product (JVP) per
label per sample.

We verify the computational efficiency of this approach
by comparing the time to calculate the final pNML output
distribution (16) for a single example with IF-COMP, AC-
NML, and gradient norm methods. Specific experimental
details are provided in Appendix B. We present our results
in Table 1. For small LeNet models, we find that the ad-
ditional overhead of the EKFAC multiplication performed
in IF-COMP is relatively small (6%) compared to a simple
gradient norm, while ACNML is nearly 7 times slower. For
larger ResNet18 models, IF-COMP becomes slower than
the gradient norm, but still provides a 12-15 times speedup
over ACNML.

3.4. pNML Validation

To verify that IF-COMP can accurately approximate the
ground truth pNML parametric complexity on both in-
distribution (ID) and out-of-distribution (OOD) samples,
we fine-tune a CIFAR-10 (Krizhevsky, 2009) pre-trained
ResNet-18 (He et al., 2016) model with the BPBO (12) on 20
random test images each from CIFAR-10, CIFAR-100, and
MNIST (Deng, 2012). We label each example with every
possible output class for a total of 600 individual training
example pairs. After training, we can use the hindsight-
optimal output probabilities to calculate the complexity as
in Eq. 15.

We compare IF-COMP with other baselines for approxi-
mating hindsight-optimal training. Specifically, we consider
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Figure 2. Reliability diagrams for Pixelate corruptions on CIFAR-10C. IF-COMP outperform ACNML as well as Bayesian methods and
ensembles even as corruptions increase in severity. Although IF-COMP and ACNML perform similarly on lower confidence examples,
IF-COMP maintains this reliability on higher confidence examples. Dotted lines represent perfect calibration.
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Figure 3. Expected calibration error (ECE) for various methods
across increasing levels of CIFAR-10C corruptions. We plot me-
dians and inter-quartile ranges. IF-COMP achieves lower ECE
across almost all corruption levels compared to both Bayesian
methods and other NML-based methods.

averaging gradient norms across classes, self influence calcu-
lated with EKFAC, and ACNML with an EKFAC posterior.
We present our results in Figure 1. We find that IF-COMP
consistently achieves the highest Pearson correlation with
true complexity on all datasets, beating ACNML which ex-
plicitly takes steps in parameter space. For ID CIFAR-10
examples, IF-COMP achieves a strong Pearson R of 0.928,
which it maintains on CIFAR-100 examples. All methods
degrade considerably on MNIST, which indicates that com-
plexity becomes more difficult to estimate for further OOD
examples.

4. Experiments
To experimentally validate IF-COMP, we consider three
tasks that test different capabilities. The first, uncertainty
quantification, requires producing calibrated outputs across
distribution shifts. The second, mislabel detection, requires

measuring complexity on labelled training examples. We
use this task as a case study to understand how the error
and parametric complexity terms trade off during training,
as well as the effects of temperature scaling. Finally, OOD
detection requires measuring complexity on unlabelled out-
of-distribution test examples. Across all three tasks, IF-
COMP consistently exhibits strong performance compared
to baseline methods. We provide additional experiments on
data pruning and hindsight-optimal retraining in Appendix
A as well as full experimental details in Appendix B.

4.1. Uncertainty Calibration

We begin by evaluating the uncertainty calibration of IF-
COMP output distributions under distribution shifts. Fol-
lowing the experimental setup in Ovadia et al. (2019), we
measure the expected calibration error (ECE) (Naeini et al.,
2015) of ResNet18 models trained on CIFAR-10 and tested
on the CIFAR10-C datasets (Hendrycks & Dietterich, 2019).
CIFAR-10C applies 19 corruptions with 5 severity levels
across the test images of CIFAR-10, allowing us to compare
calibration on a wide range of distribution shifts. We calcu-
late ECE by dividing model predictions sorted by confidence
into 20 equal sized bins (Zhou & Levine, 2021).

We compare against a wide range of Bayesian and NML
baselines, including ensembling (Lakshminarayanan et al.,
2017), Stochastic Weight Averaging (SWA) (Izmailov et al.,
2019), SWA Gaussian Diagonal (SWAG-D) (Maddox et al.,
2019), Monte-Carlo dropout (Gal & Ghahramani, 2016),
and ACNML (Zhou & Levine, 2021) with a SWAG-D poste-
rior. For a fair comparison, all methods except ensembling
and MC-Dropout use the same SWA base model. Addition-
ally, we apply the same IF-COMP temperature scaling to
the SWA output logits, which is equivalent to using a value
of α = 0. We produce 30 model samples for all Bayesian
methods.

We present median ECE and inter-quartile ranges across
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Table 2. Mislabel detection AUROC for CIFAR-10 and CIFAR-100 with various types and rates of label noise (best method bolded). IF-
COMP achieves strong detection across all CIFAR-10 noise types without requiring extra checkpoints, even on the difficult data-dependent
noise that other methods fail to perform better than random on. On CIFAR-100, IF-COMP achieves strong performance on symmetric and
asymmetric noise, although it fails to detect mislabelled data with human and data-dependent noise, similar to other methods.

Extra
Checkpoints?

CIFAR10 CIFAR100

Method Human Data Asym 0.3 Sym 0.6 Human Data Asym 0.3 Sym 0.6

Trac-IN ✓ 90.50 49.13 70.98 64.40 50.01 50.25 58.25 57.95
EL2N ✓ 73.38 52.18 51.53 51.61 49.79 50.51 56.30 55.45
GraNd ✓ 70.53 51.30 50.48 50.52 50.52 50.07 52.26 50.16
Self-IF ✗ 95.38 55.77 87.30 43.16 49.81 50.29 72.15 58.40

IF-COMP ✗ 96.86 88.07 95.69 97.83 49.52 50.30 79.39 95.21

corruptions for each severity level in Figure 3. On more se-
vere corruptions (3-5), IF-COMP produces better calibrated
uncertainties than all baselines, beating the most relevant
ACNML baseline as well as a Bayesian ensemble of 30
trained models. At corruption severity 2 IF-COMP outper-
forms all other baselines except the ensemble. At the lowest
corruption level all methods perform similarly.

The reliability diagrams in Figure 2 show a more detailed
look at the calibration for varying Pixelate corruption sever-
ity levels. For low corruption levels all methods perform
similarly. As severity increases, IF-COMP maintains strong
calibration compared to Bayesian baselines and improves
over ACNML for high confidence outputs. Although all
methods degrade considerably at the highest corruption
severity, IF-COMP still improves over the strong ACNML
baseline.

4.2. Mislabel Detection

Next, we investigate IF-COMP’s ability to measure the com-
plexity of labelled training examples. We follow the misla-
bel detection setup in Zhu et al. (2021); Srikanth et al. (2023)
and use CIFAR-10 and CIFAR-100 datasets corrupted with
various types of label noise and noise rates. We train a
ResNet-18 model on this corrupted dataset then attempt to
identify which examples were mislabelled using only the
trained model and noised dataset. We consider 4 types of la-
bel noise. Human noise replaces all labels with labels from
a single human annotator (Zhu et al., 2021; Wei et al., 2022).
Data-dependent noise is generated by jointly modelling the
clean label and a class-dependent projection of the feature
vector (Zhu et al., 2021). Symmetric noise changes the label
to another uniformly at random. Asymmetric noise changes
each label to another fixed similar label.

For each example, we calculate the full stochastic complex-
ity (14) by combining the model’s log error on the true
label as well as the parametric complexity across all la-
bels. For our baselines, we consider the self-influence score
(Self-IF) (Koh & Liang, 2017), Trac-IN (Pruthi et al., 2020),

EL2N (Paul et al., 2021), and GraNd (Paul et al., 2021)
and measure performance using AUROC. Trac-IN requires
evaluating intermediate checkpoints, and EL2N and GraNd
require multiple short training runs, meaning they utilize
more information than is available to IF-COMP.

We present our results in Table 2. For CIFAR-10 datasets,
IF-COMP consistently achieves the highest AUROC across
all types of noise, beating even the baselines that utilize
additional checkpoint information. On the difficult data-
dependent noise where all other methods achieve close to
random AUROC, IF-COMP maintains strong performance.
For CIFAR-100 datasets where all baselines consistently
achieve close to random AUROC across all noise types, IF-
COMP is still able to detect both asymmetric and symmetric
noise. On human and data-dependent noise no method
performs better than random.

4.3. Analyzing the Components of IF-COMP

We take a brief detour and use mislabel detection as a case
study to understand how each component of IF-COMP
contributes to the final complexity estimate. We consider
CIFAR-10 human mislabel noise and train a model to con-
vergence, taking checkpoints every 5 epochs. For each
model, we calculate IF-COMP, log error, and temperature-
scaled parametric complexity. We plot the mislabel detec-
tion AUROC across training for these values in Figure 4.

Figure 4a shows that mislabelled examples are ignored early
in training, increasing their error and making them easy to
distinguish. Later in training the model learns to memorize
these examples and decrease their error, increasing para-
metric complexity accordingly. Choosing only one of these
values to detect mislabelled examples with would fail in
different scenarios, while IF-COMP accurately captures the
tradeoff between the two throughout all stages of training.
Figure 4b shows that temperature-scaling is a crucial com-
ponent of IF-COMP. With a standard temperature β = 1,
parametric complexity estimates are inaccurate and mirror
log error, providing no additional signal for mislabel detec-
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(b) Parametric complexity AUROC at varying tem-
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Figure 4. IF-COMP accurately trades off between log error and parametric complexity, maintaining strong AUROC throughout training.
Tuning the temperature is critical to achieving accurate complexity estimates near convergence.

Table 3. AUROC for OOD detection methods on near and far dis-
tribution shifts. Best methods are bolded, and second best methods
are starred. We show only the most common baseline methods,
although we compare against all methods in the OpenOOD bench-
mark. IF-COMP achieves a new state of the art on MNIST and
CIFAR-10 benchmarks, beating out all 20 other baselines.

MNIST CIFAR-10 CIFAR-100

Method Near Far Near Far Near Far

MSP 91.45 98.51 88.03 90.73 80.27 77.76
ODIN 92.38 99.02 82.87 87.96 79.90 79.28
Energy 90.77 98.77 87.58 91.21 80.91∗ 79.77
MLS 92.49 99.08 87.52 91.10 81.05 79.67
KNN 96.52 96.66 90.64∗ 92.96 80.18 82.40∗

GradNorm 76.55 96.39 54.90 57.55 70.13 69.14
RMDS 98.00∗ 98.12 89.80 92.20 80.15 82.92
VIM 94.63 98.99 88.68 93.48∗ 74.98 81.70
Gram 73.90 99.75∗ 58.66 71.73 51.66 73.36

IF-COMP 99.40 99.97 92.23 95.63 79.40 79.41

tion. As we increase the temperature we soften the second
order restrictions, making complexity estimates more accu-
rate and providing a complementary signal to the error.

4.4. OOD Detection

Finally, we investigate IF-COMP’s ability to measure com-
plexity on unlabelled data by detecting OOD examples. We
use the OpenOOD benchmark (Yang et al., 2022; Zhang
et al., 2023) and consider the ID MNIST, CIFAR-10, and
CIFAR-100 datasets using the provided pretrained LeNet
(Lecun et al., 1998) and ResNet-18 models. For each dataset,
the benchmark provides a set of Near-OOD datasets which
exhibit similar visual features to the ID training set, and a
set of Far-OOD datasets that do not. Given a test example
from one of these datasets, an OOD detection method aims
to assign a high score to OOD examples and a low score to
ID examples. We use the IF-COMP parametric complexity
(15) as our score function, and measure performance using

AUROC. We compare our method against the full suite of 20
baseline approaches implemented in OpenOOD, although
we show only 9 of the most common or most similar meth-
ods in our results. We refer readers to Zhang et al. (2023)
for more details on baseline methods.

Our results are shown in Table 3. On MNIST, IF-COMP
achieves a new state of the art AUROC, beating all 20 base-
lines with near perfect detection on both Near and Far OOD
datasets. IF-COMP similarly achieves a new state of the
art AUROC for CIFAR-10, beating the next best method by
over 2 AUROC on Far OOD datasets. On CIFAR-100 IF-
COMP ranks in the middle of the baselines. For this dataset
all baselines perform quite similarly, with only small AU-
ROC gaps between the best and second best method. Strong
baselines exhibit variance in performance across datasets,
with the best method, RMDS (Ren et al., 2021), beating all
other baselines only on 2 datasets. In contrast, IF-COMP
achieves the best AUROC across 4 of the 6 datasets.

5. Related Work
The Minimum Description Length Principle MDL
is one of many ways to measure complexity, including
Kolmogorov complexity(Kolmogorov, 1965; Solomonoff,
1964), VC dimension (Vapnik & Chervonenkis, 1971) and
Rademacher complexity (Bartlett & Mendelson, 2003). The
Refined MDL coding scheme (Barron et al., 1998) which
defines stochastic complexity (Rissanen, 1986) is based on
the normalized maximum likliehood (NML) distribution
(Shtar’kov, 1987), which has been modified for predictive
settings (pNML) (Roos et al., 2008; Fogel & Feder, 2019).
Refined MDL bears similarity to model selection criteria
such as Akaike Information Criterion (AIC) (Akaike, 1973)
and the Bayesian Information Criterion (BIC) (Schwarz,
1978). We point readers to Grunwald (2004) for further
discussion of MDL.
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MDL principles have been used to motivate methods to
train autoencoders (Hinton & Zemel, 1993) and regularize
weights (Hinton & van Camp, 1993). Applying MDL di-
rectly to overparameterized model classes is difficult, requir-
ing subclass restrictions such as ridge estimators (Dwivedi
et al., 2023). Recent work in MDL methods for neural
networks have mainly attempted to approximate pNML dis-
tributions by performing additional gradient steps (Bibas
et al., 2020) or optimizing with an approximate posterior
(Zhou & Levine, 2021). Instead of explicitly calculating
model weights, IF-COMP directly linearizes the model mak-
ing optimization unnecessary and allowing post-hoc tuning
of example weighting.

Quantifying Predictive Uncertainty A wide variety of
methods have been proposed to quantify predictive uncer-
tainty in deep neural networks. Bayesian approaches include
Laplace approximations (Mackay, 1992; Ritter et al., 2018),
variational inference (Graves, 2011), stochastic gradient
MCMC (Welling & Teh, 2011), dropout (Gal & Ghahra-
mani, 2016), and weight averaging (Izmailov et al., 2019;
Maddox et al., 2019). Non-Bayesian methods include
model ensembling (Lakshminarayanan et al., 2017; Osband
et al., 2016), Platt scaling (Platt, 2000) with logit temper-
atures, (Guo et al., 2017) and more recently, MDL based
approaches.

Bayesian and MDL methods have a deep connection. For
parametric hypothesis classes, MDL reduces to standard
maximum likelihood estimation (Grunwald, 2004). Refined
MDL model selection coincides with Bayes factor model
selection (Kass & Raftery, 1995) based on a Jeffreys prior
(Bernardo & Smith, 1994), where codes correspond to MAP
estimates. NML distributions over the full dataset can also
be seen as a form of Bayesian marginal likelihood (Grun-
wald, 2004), although pNML does not coincide with any
standard Bayesian interpretations.

Influence Functions Influence functions (Cook, 1979;
Hampel, 1974) are a classical method from robust statistics
that has found renewed interest in deep neural networks
(Koh & Liang, 2017; Grosse et al., 2023). They have been
applied for a wide range of tasks including detecting bias
(Brunet et al., 2019), data poisoning (Koh et al., 2021),
auditing predictions (Schulam & Saria, 2019), and fixing
model mistakes (Tanno et al., 2022). The self-influence of a
data point is related to its memorization (Feldman, 2021),
which has been shown is necessary to cover the long tails of
the data distribution and improve generalization (Feldman
& Zhang, 2020). Although influence functions have been
found to poorly match true retraining for neural networks
(Basu et al., 2020), they correlate well with an alternate
proximal objective (7) (Bae et al., 2022).

6. Conclusion
In this paper we have proposed IF-COMP, an efficient
method for estimating stochastic data complexity in deep
neural networks with temperature-scaled Boltzmann influ-
ence functions (BIFs). The BIF softens the second order
curvature and linearizes the model, allowing us to efficiently
approximate hindsight-optimal outputs even for low proba-
bility labels. Using these output estimates, IF-COMP can
produce well calibrated output distributions as well as mea-
sure complexity on both labelled and unlabelled points. On
tasks covering uncertainty calibration, mislabel detection,
and OOD detection, IF-COMP consistently matches or out-
performs strong baselines, including Bayesian and optimiza-
tion tracing based approaches. Our results demonstrates the
potential of MDL based approaches for improving uncer-
tainty estimates in deep neural networks.
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Figure 5. Data pruning results. Shaded regions correspond to standard deviations over 5 seeds.IF-COMP performs similarly to other
methods that require access to additional checkpoints, including Trac-IN, GraNd, and EL2N. At the highest pruning levels for CIFAR-100,
IF-COMP and Self-IF outperform baselines that perform worse than random.

A. Additional Experiments
A.1. Hindsight-Optimal Retraining

We consider ground truth retraining with the original hindsight objective (3) on CIFAR-10 with a ResNet-18 model. Similar
to our experiments in Section 3.4, we select 20 examples randomly from CIFAR-10, CIFAR-100, and MNIST test sets, then
apply each of the possible 10 CIFAR labels for a total of 600 additional training examples.

For each example, we train the model from scratch on the full training set with the added example, and evaluate the
probability of the true label class at convergence. We find that the model is able to effectively memorize all additional
examples provided to it, achieving close to 1 probability consistently across all classes. Using this hindsight-optimal
probability in the pNML formulation produces a constant uniform distribution that is useless for any tasks.

A.2. Dataset Pruning

We consider the task of dataset pruning, with the goal of removing training examples that do not provide essential training
information to the model. Specifically, given a model trained on a dataset, we aim to rank training examples such that
removing the least important examples degrades final test accuracy as little as possible. We consider ResNet-18 models
trained on both CIFAR-10 and CIFAR-100 datasets, with varying levels of data pruning. We use IF-COMP to rank points,
removing ones with the lowest complexity first and keeping those with higher complexity.

For baselines, we consider Trac-IN, GraNd, EL2N, and Self-IF, which follow our experimental setup for mislabel detection.
We also consider a no pruning and random pruning baseline. Once points are ranked, we train 5 models with different seeds
on each pruned dataset. Results are shown in Figure 5. We find that IF-COMP performs similarly to baseline methods across
both datasets, even those that utilize additional training checkpoints. On CIFAR-100 at the highest pruning levels, IF-COMP
and Self-IF outperform baselines, although all methods perform worse than random.

A.3. α and β Ablations

In this section we provide additional ablations on the α weighting parameter and β inverse temperature parameter for the
uncertainty calibration task. We measure their effect on accuracy in Figure 6 and on ECE in Figure 7. We compare all
methods against the SWA baseline. When not specified, we set default values of β = 0.66 and α = 0.15.

We find that accuracy is minimally affected by α, and only begins to slightly degrade as α becomes particularly large
(> 0.5). Since a maximum value of only α = 0.3 is required to achieve optimal ECE on severity level 5, even prioritizing
calibration on the highest severity levels does not degrade accuracy. Similarly, β values have little effect on accuracy, even
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Figure 6. Ablations on the effects of the α and β hyperparameters on model accuracy. IF-COMP exhibits minimal differences from SWA
baseline accuracy at all severity levels, except for particularly large values of α.

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

Corruption Severity

E
C

E

α = 1
α = 0.5
α = 0.3
α = 0.15
α = 0.1
α = 0.05

α = 0 (SWA + Temp)

(a) α ablations on ECE

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Corruption Severity

E
C

E

SWA (β = 1.25)
IF-COMP (β = 1.25)

SWA (β = 1)
IF-COMP (β = 1)
SWA (β = 0.66)

IF-COMP (β = 0.66)

(b) β ablations on ECE

Figure 7. Ablations on the effects of the α and β hyperparameters on ECE. Different values of α are optimal for different severity levels.
Selecting an α value allows practitioners to prioritize calibration on different images. Applying IF-COMP on top of SWA models improves
ECE across all severity levels even for varying values of β (α is not tuned and held constant at 0.15).

for extremely small values. This indicates that the BIF for each label provides as much information as the model output.

We find that the ECE for each corruption severity level changes with α, where smaller values of α are better for cleaner
images, and larger values of α are better for noisier images. Tuning α allows practitioners to select what kinds of test images
to prioritize strong calibration on. Compared to the raw outputs produced by temperature scaling SWA model outputs,
IF-COMP consistently improves ECE across all severity levels for varying values of β. We do not tune a separate α for each
β, and use the same value of 0.15.

B. Experimental Details
B.1. Computing Environment

All experiments were implemented in PyTorch and were run on single RTX6000 or A40 GPUs.

B.2. EKFAC

We implement a version of the Eigenvalue Kronecker-Factored Approximate Curvature (EKFAC) (George et al., 2018) to
efficiently approximate the inverse Fisher information matrix. For efficiency, in convolutional layers we assume spatially
uncorrelated activations (SUA), except for MNIST LeNet models, for which removing the SUA assumption does not
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introduce significant computational overhead. BatchNorm layers are implemented with a diagonal approximation which do
not require eigendecomposition. We take a single pass through the full training set and sample a single label to calculate the
activation and output gradient covariances, then perform the relevant eigendecompositions. We then take another full pass
through the training set to estimate the second moments in the eigenbasis with a single label sample. Both passes perform
no data augmentation and use the original training images. Calculating the BIF is performed by taking a temperature-scaled
loss gradient, projecting into the eigenbasis, then taking the norm scaled by the inverse of the second moments. We apply a
consistent damping value of δ = 1e−30 for LeNet models and δ = 1e−12 for ResNet-18 models.

To further improve efficiency, we use the PyTorch vmap operation to vectorize computations both across label spaces and
across examples. We use an example chunk size of 8 for MNIST and CIFAR-10 experiments, and an example chunk size of
4 for CIFAR-100 experiments, with full chunking across the label space.

B.3. Uncertainty Calibration

All models are ResNet-18 models. CIFAR-10 ensemble models were trained with following standard training procedures
using SGD with momentum of 0.9, weight decay of 0.0005, and a learning rate of 0.1 that decays by a factor of 5 at epochs
60, 120, and 160. To train SWA models we follow the setup from (Izmailov et al., 2019) and follow this setup for 160
epochs, then set a constant 0.01 learning rate and average checkpoints for another 140 epochs for a total of 300 epochs. For
SWA and SWAG-D models, batch statistics were then updated on the full training set. For dropout models, we place dropout
layers after the ReLU nonlinearities in each block before the residual connection, and test rates of 0.1, 0.2, 0.3, and 0.4.
Empirically we find a rate of 0.3 to perform the best without significant accuracy degradation. We follow the setup described
in Zhou & Levine (2021) for training ACNML models, including the recommended step size and weighting term. All
Bayesian methods use 30 samples from the posterior which we average. IF-COMP uses a temperature of 1.5 and an α weight
of 0.15, which we find by tuning on a held out validation set of additional perturbations of varying severity. Reliability
diagrams and ECE values are calculated siimlar to Zhou & Levine (2021) by binning exampels sorted by confidence into 20
bins, then calculating the average L1 norm between the average confidence and accuracy within each bin.

B.4. Mislabel Detection

For both CIFAR-10 and CIFAR-100 datasets we use a ResNet-18 model trained with the standard training procedure detailed
in the section above, with early stopping calculated on a clean validation set. We retrieve human and data-dependent noise
directly from the relevant repositories, and generate asymmetric and symmetric noise locally. Asymmetric noise is applied
to CIFAR-10 with a predefined label mapping, and for CIFAR-100 we perform a mapping to the next fine-grained class in
the corresponding coarse model class.

For Trac-IN we take model checkpoints every 20 epochs for a total of 10 checkpoints, then compute gradient norms on
the full model. EL2N and GraNd are computed by training a model for epoch 20 with 10 different seeds, then calculating
average error L2 norm and gradient norms across all models. Self-IF is calculated using the same EKFAC estimated for
IF-COMP with full gradients. IF-COMP is calculated at β = 0.001 for all CIFAR-10 experiments and β = 1 for all
CIFAR-100 experiments. Note that we fit the EKFAC on the dataset with noised labels.

B.5. OOD Detection

All baseline results are provided in the OpenOOD benchmark (Yang et al., 2022; Zhang et al., 2023), as well as the
pre-trained LeNet and ResNet-18 models used for MNIST and CIFAR-10/CIFAR-100 experiments. We use a temperature of
β = 2 for MNIST experiments, β = 0.001 for CIFAR-10 experiments, and β = 1 for CIFAR-100 experiments. Temperature
values are found by tuning on a held out validation set of OOD examples that share no classes with the ones used for testing.
This validation set is the same one used to tune hyperparameters for all benchmarks in the OpenOOD and are provided as a
standard procedure from the framework (Zhang et al., 2023). We hypothesize that the extremely high temperatures necessary
for strong CIFAR-10 results are a result of the stable and flat optima found with Batchnorm which prevent learning arbitrary
labels without moving far away in weight and function space.

B.6. Timing Comparisons

For all experiments we use a single A40 GPU and attempt to use the same chunk size for all vmap operations. However,
ACNML on CIFAR-100 runs out of memory, so we reduce the chunk size from 4 to 1, meaning we perform the vmap only
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over the label space. We follow the set of best practices provided in Zhou & Levine (2021) and perform 5 optimization steps.
As in other experiments, we do not use the spatially uncorrelated activations (SUA) assumption for MNIST models, making
the EKFAC computations slightly more expensive.
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