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Abstract
Mixture-of-experts (MoE) model incorporates the
power of multiple submodels via gating functions
to achieve greater performance in numerous re-
gression and classification applications. From
a theoretical perspective, while there have been
previous attempts to comprehend the behavior of
that model under the regression settings through
the convergence analysis of maximum likelihood
estimation in the Gaussian MoE model, such anal-
ysis under the setting of a classification problem
has remained missing in the literature. We close
this gap by establishing the convergence rates
of density estimation and parameter estimation
in the softmax gating multinomial logistic MoE
model. Notably, when part of the expert param-
eters vanish, these rates are shown to be slower
than polynomial rates owing to an inherent in-
teraction between the softmax gating and expert
functions via partial differential equations. To ad-
dress this issue, we propose using a novel class
of modified softmax gating functions which trans-
form the input before delivering them to the gat-
ing functions. As a result, the previous interaction
disappears and the parameter estimation rates are
significantly improved.

1. Introduction
Mixture of experts (MoE) (Jacobs et al., 1991; Jordan &
Jacobs, 1994) is a statistical machine learning model which
aggregates several submodels represented by expert net-
works associated with standard softmax gating functions.
Due to its modular and flexible structure, there has been
a surge of interests in leveraging the MoE model in vari-
ous fields, including large language models (Shazeer et al.,
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2017; Lepikhin et al., 2021; Zhou et al., 2022; Du et al.,
2022; Fedus et al., 2022; Zhou et al., 2023; Do et al., 2023),
computer vision (Deleforge et al., 2015; Riquelme et al.,
2021; Dosovitskiy et al., 2021; Bao et al., 2022; Liang et al.,
2022), speech recognition (Peng et al., 1996; Gulati et al.,
2020; You et al., 2022), reinforcement learning (Ren et al.,
2021; Chow et al., 2023) and multi-task learning (Hazimeh
et al., 2021; Gupta et al., 2022; Chen et al., 2023). De-
spite its recent progress in the aforementioned applications,
the theoretical comprehension of the MoE model has been
found relatively restricted in the literature.

In general, that model can be formulated as either a re-
gression problem, namely when the distribution of MoE
outputs is continuous, or a classification problem, i.e., when
the MoE outputs follow a discrete distribution. Under the
setting of a regression problem, there are some previous
works attempting to theoretically understand the MoE model
through the convergence analysis of maximum likelihood
estimation (MLE) by focusing on Gaussian MoE equipped
with different types of gating functions. First, (Ho et al.,
2022) established the convergence rates of parameter estima-
tion in the covariate-free gating Gaussian MoE model using
the generalized Wasserstein loss function (Villani, 2003;
2008). In that paper, they discovered that those parameter
estimation rates were significantly slow owing to an interac-
tion between expert parameters via some partial differential
equations (PDEs). Next, (Nguyen et al., 2024c) considered
the Gaussian density gating Gaussian MoE model. Since
that gating function depended on the covariates, there was
another interaction between the parameters of the gating
function and the expert function. To this end, the authors
proposed Voronoi loss functions to capture those interac-
tions and demonstrate that the convergence rates of parame-
ter estimation were determined by the solvability of a system
of polynomial equations. Subsequently, the Gaussian MoE
models with softmax gating function and top-K sparse soft-
max gating function were investigated in (Nguyen et al.,
2023) and (Nguyen et al., 2024b), respectively. Due to the
non-linearity and sophisticated structures of those gating
functions, the parameter estimation rates were shown to
vary with the solvability of a more complex system of poly-
nomial equations than that in (Nguyen et al., 2024c), and
became substantially slow when the number of fitted experts
increased.
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On the other hand, such theoretical analysis of the MoE
model under the setting of a classification problem has re-
mained poorly understood, to the best of our knowledge.
Therefore, the main objective of our paper is to provide new
insights on the convergence behavior of MLE in the softmax
gating multinomial logistic MoE model (Chen et al., 1999;
Yuksel & Gader, 2010; Huynh & Chamroukhi, 2019; Pham
& Chamroukhi, 2022). Before going into further details, it
is necessary to introduce the formulation of that model and
associated assumptions.

Problem Setup. In this paper, we assume that the output
Y ∈ {1, 2, . . . ,K} is a discrete response variable, where
K ∈ N, while X ∈ X is an covariate vector having an effect
on Y , in which X is a compact subset of Rd. Next, the data
points (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are independently
drawn from the standard softmax gating multinomial logistic
mixture of experts of order k∗, which admits the conditional
probability function gG∗(Y = s|X) defined for any s ∈
{1, 2, . . . ,K} as follows:

k∗∑

i=1

Softmax((β∗
1i)

⊤X + β∗
0i)× f(Y = s|X; a∗i , b

∗
i )

:=

k∗∑

i=1

exp((β∗
1i)

⊤X + β∗
0i)∑k∗

j=1 exp((β
∗
1j)

⊤X + β∗
0j)

× exp(a∗is + (b∗is)
⊤X)

∑K
ℓ=1 exp(a

∗
iℓ + (b∗iℓ)

⊤X)
. (1)

Here, each expert f(·|X; a∗i , b
∗
i ) is a multinomial logistic

regression with parameters a∗i := (a∗i1, . . . , a
∗
iK) ∈ RK and

b∗i := (b∗i1, . . . , b
∗
iK) ∈ Rd×K . Meanwhile, β∗

1i ∈ Rd and
β∗
0i ∈ R are referred to as gating parameters. Additionally,

G∗ :=
∑k∗

i=1 exp(β
∗
0i)δ(β∗

1i,a
∗
i ,b

∗
i )

denotes a true yet un-
known mixing measure, that is, a combination of Dirac mea-
sures δ associated with true parameters (β∗

0i, β
∗
1i, a

∗
i , b

∗
i ) ∈

Θ, where Θ is a bounded subset of R×Rd ×RK ×Rd×K .
Lastly, we define for any vector v = (v1, . . . , vk∗) ∈ Rk∗

that Softmax(vi) := exp(vi)/
∑k∗

j=1 exp(vj).

It is worth noting that if we translate β∗
1i to β∗

1i + t1 and
β∗
0i to β∗

0i + t0, then the values of the standard softmax
gating function do not change. This implies that gating
parameters β∗

1i, β
∗
0i are only identifiable up to some trans-

lation. To alleviate this problem, we assume without loss
of generality (WLOG) that β∗

1k∗
= 0d and β∗

0k∗
= 0. Sim-

ilarly, we also assume that a∗iK = 0 and b∗iK = 0d for
any i ∈ {1, 2, . . . , k∗}. Furthermore, at least one among
β∗
11, β

∗
12, . . . , β

∗
1k∗

must be non-zero so that the softmax gat-
ing function depends on the covariate X . Lastly, we let
(a∗i , b

∗
i ), for i ∈ {1, 2, . . . , k∗}, be pairwise distinct to en-

sure that the epxert functions are different from each other.

Maximum Likelihood Estimation. Regarding the parame-
ter estimation problem in the standard softmax gating multi-

nomial logistic MoE, we propose using the maximum like-
lihood method in this work. However, as the true number
of experts k∗ is generally unknown in practice, it is neces-
sary to consider an over-specified setting where we fit the
true model with a mixture of k multinomial logistic experts,
where k > k∗. In particular, the maximum likelihood es-
timation (MLE) of the true mixing measure G∗ is given
by:

Ĝn ∈ argmax
G∈Ok(Θ)

n∑

i=1

log(gG(Yi|Xi)), (2)

where Ok(Θ) denotes the set of all mixing mea-
sures with at most k components of the form G =∑k′

i=1 exp(β0i)δ(β1i,ai,bi), in which 1 ≤ k′ ≤ k and
(β0i, β1i, ai, bi) ∈ Θ.

Main Challenges. To characterize the parameter estimation
rates, we need to decompose the difference gĜn

(Y |X) −
gG∗(Y |X) into a linear combination of linearly independent
terms using Taylor expansions. Then, when the density esti-
mation gĜn

(Y |X) converges to the true density gG∗(Y |X),
all the associated coefficients, which involve the discrep-
ancies between true parameters and their estimations, also
tend to zero. Consequently, we achieve our desired pa-
rameter estimation rates based on the density estimation
rate. However, when part of the expert parameters van-
ishes, there is an interaction between the numerator of the
standard softmax gating function and the expert function,
which induces several challenges in the density decomposi-
tion. In particular, let us denote u(Y = s|X;β1i, ai, bi) :=
exp((β1i)

⊤X)f(Y = s|X; ai, bi). If there exists an index
i ∈ [k∗] such that b∗iℓ = 0d for any ℓ ∈ [K], then the
aforementioned interaction is expressed via the following
PDE:

∂u

∂β1i
(Y = s|X;β∗

1i, a
∗
i , b

∗
i )

= Ca∗
i
· ∂u

∂bis
(Y = s|X;β∗

1i, a
∗
i , b

∗
i ), (3)

where Ca∗
i
> 0 is a constant depending only on a∗i . The

above PDE shows that there are a number of linearly de-
pendent derivative terms in the Taylor expansion. Then,
we have to incorporate these terms by taking the summa-
tion of their associated coefficients in order to form a linear
combination of linearly independent terms. Therefore, the
structure of resulting coefficients becomes complex, which
makes the parameter estimation rates slower than polyno-
mial rates. This finding indicates that the standard softmax
gating function might hurt the performance of the model
in equation (1) despite its widespread use in the literature
(Jacobs et al., 1991; Jordan & Jacobs, 1994; Nguyen et al.,
2023).

Contribution. Following the above challenge discussion,
we construct a generic Voronoi-based metric Dr among
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Table 1. Summary of density estimation rates and parameter estimation rates in the multinomial logistic MoE model with standard and
modified softmax gating functions. Here, we refer to exact-specified parameters β∗

1j , a
∗
j , b

∗
j as those fitted by exactly one component (i.e.

|Cj | = 1), while over-specified parameters are approximated by more than one component (i.e. |Cj | > 1), where Cj is a Voronoi cell
defined in Section 2.

Gating Parameter
Setting Density Exact-specified Parameters Over-specified Parameters

Standard
Softmax

Regime 1 Õ(n−1/2) Õ(n−1/2) Õ(n−1/4)

Regime 2 Õ(n−1/2) slower than Õ(n−1/2r) for any r ≥ 1

Modified
Softmax Any regime Õ(n−1/2) Õ(n−1/2) Õ(n−1/4)

parameters in equation (5) to capture the convergence be-
havior of the MLE Ĝn to the true mixing measure G∗ in the
standard softmax gating multinomial logistic MoE model.
Moreover, we also design a novel class of modified softmax
gating functions which improves the convergence rate of
the MLE. Our contributions are two-fold and can be sum-
marized as follows (see also Table 1):

1. Standard Softmax Gating Function. With the standard
softmax gating function, we demonstrate that the density
estimation gĜn

converges to the true density gG∗ under
the Hellinger distance h at the parametric rate of order
Õ(n−1/2). Next, we consider the parameter estimation
problem under two following complement regimes of the
expert parameters b∗i :

(i) Regime 1: For any i ∈ {1, 2, . . . , k∗}, we can find an
index ℓ ∈ [K − 1] that satisfies b∗iℓ ̸= 0d. Under this
regime, the PDE in equation (3) does not hold and there is
no interaction between the standard softmax gating and the
expert functions. By deriving the Hellinger lower bound
EX [h(gG(·|X), gG∗(·|X))] ≳ D2(G,G∗) for any mixing
measure G ∈ Ok(Θ) in Theorem 3.1, we obtain that the
rates for estimating over-specified parameters β∗

1i, a
∗
i and b∗i ,

i.e. those whose Voronoi cells have more than one element,
are identical of order Õ(n−1/4). At the same time, the
estimation rates for their exact-specified parameters, namely
those whose Voronoi cells have exactly one element, are
substantially faster of order Õ(n−1/2).

(ii) Regime 2: There exists an index i ∈ {1, 2, . . . , k∗} such
that b∗iℓ = 0d for any ℓ ∈ [K − 1]. Since the PDE (3) holds
true under this regime, an interaction between the standard
softmax gating and the expert functions occurs. Then, we
demonstrate in Theorem 3.3 that the minimax lower bound
infGn∈Ok(Θ) supG∈Ok(Θ)\Ok∗−1(Θ) EpG

[Dr(Gn, G)] ≳

n−1/2 holds for any r ≥ 1. This bound together with the
formulation of Dr indicate that true parameters β∗

1i, a
∗
i and

b∗i enjoy much worse rates than those in Regime 1. Remark-
ably, those for over-specified parameters are even slower
than polynomial rates.

2. Modified Softmax Gating Function. To resolve the
aforementioned downsides of the standard softmax gating
function towards the convergence rates of parameter esti-
mation, we propose using the following modified softmax
gating functions:

Softmax((β∗
1i)

⊤M(X) + β∗
0i)

:=
exp((β∗

1i)
⊤M(X) + β∗

0i)∑k∗
j=1 exp((β

∗
1j)

⊤M(X) + β∗
0j)

,

for any i ∈ {1, 2, . . . , k∗} where M : Rd → Rd is a
bounded function such that the set

{
Xp[M(X)]q : p, q ∈

Nd, 0 ≤ |p|+ |q| ≤ 2
}

is linearly independent for almost
surely X . These assumptions guarantee that the PDE in
equation (3) does not hold for any values of expert parame-
ters b∗i , and therefore, the previous interaction between the
gating and expert functions disappears. As a consequence,
we show in Theorem 4.4 that the parameter estimations un-
der the modified softmax gating multinomial logistic MoE
model share the same convergence behavior as those in
Regime 1 regardless of the values of expert parameters b∗i .

Practical Implications. Below are three practical implica-
tions from our convergence analysis of the softmax gating
multinomial logistic MoE:

1. Expert parameter collapse: It is worth noting that
the parameter estimation rates when the expert parame-
ters collapse are significantly slow, and could be of order
O(1/ log(n)) (see Table 1). Therefore, during the training
process, if ones observe that the model convergence be-
comes abnormally slow, or the updated loss values almost
remain unchanged, then it is highly likely that the expert
parameter collapse occurs.

2. Model design: Despite the widespread use of the stan-
dard softmax gate in the practical applications of MoE mod-
els, the insights from our theory indicates that this gate is not
always beneficial for the model performance, particularly
when the expert parameter collapse happens. Therefore,
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our analysis suggests using a novel modified softmax gate
which helps stabilize the training process regardless of the
parameter collapse.

3. Expert selection: The practical problem of selecting
important experts can benefit from the modified softmax
gate. In particular, in many applications of MoE models,
there are some experts which do not play an essential role
in learning, and even become redundant. In such scenario,
we would like the gate to put more weights on the important
experts. However, if the input magnitude is huge, then the
weight distribution will become uniform, which is undesir-
able. To address this issue, practitioners can use an input
normalization function, i.e. M(X) = X

||X|| , in the softmax
weights so that the input magnitude remains unchanged of
one. Another possible option is M(X) = sigmoid(X),
which allows the magnitude of the input to vary between 0
and 1.

Outline. The remainder of the paper is organized in the fol-
lowing way. In Section 2, we verify the identiability of the
standard softmax gating multinomial logistic MoE model
and establish the parametric density estimation rate under
that model prior to introducing a novel class of Voronoi loss
functions used for the parameter estimation problem. Sub-
sequently, we characterize the parameter estimation rates
under the multinomial logistic MoE model equipped with
the standard softmax gating function and the modified soft-
max gating function in Section 3 and Section 4, respectively.
Finally, we conclude the paper in Section 5. Meanwhile,
full proofs, additional results and a simulation study are
relegated to the Appendices.

Notations. First, we let [n] stand for the set {1, 2, . . . , n}
for any number n ∈ N. Next, for any vector u, v ∈ Nd,
we denote |v| := v1 + v2 + . . .+ vd, vu := vu1

1 vu2
2 . . . vud

d

and v! := v1!v2! . . . vd!, whereas ∥v∥ represents for its 2-
norm value. Meanwhile, for any set S, we denote |S| as its
cardinality. Additionally, for any two probability density
functions p, q dominated by the Lebesgue measure µ, we de-
fine V (p, q) := 1

2

∫
|p−q|dµ as the Total Variation distance

between them, and h(p, q) :=
(

1
2

∫
|√p−√

q|2dµ
)1/2

as
their Hellinger distance. Lastly, for any two sequences (sn)
and (tn) in R+, the notations sn = O(tn) and sn ≲ tn
means there exists some constant C > 0 independent of
n such that sn ≤ Ctn for sufficiently large n ∈ N, while
the notation sn = Õ(tn) suggests that the aforementioned
inequality might hold up to some logarithmic function of n.

2. Preliminaries
In this section, we study the identifiability of the standard
softmax gating multinomial logistic MoE model and the con-
vergence behavior of density estimation under that model.
Then, we further highlight the necessity for Voronoi-based

loss functions to determine parameter estimation rates accu-
rately.

Firstly, we show that the standard softmax gating multino-
mial logistic MoE model is identifiable.

Proposition 2.1 (Identifiability). Given two mixing mea-
sures G and G′ in Ok(Θ), if gG(Y |X) = gG′(Y |X) holds
true for almost surely (X,Y ), then G ≡ G′.

The proof of Proposition 2.1 is in Appendix C.1. This result
ensures the convergence of the MLE Ĝn to the true mixing
measure G∗ as long as the conditional density gĜn

con-
verges to gG∗ for almost surely (X,Y ). Next, we character-
ize the density estimation rate under the Hellinger distance
in the following proposition:

Proposition 2.2 (Density Estimation Rate). With the MLE
Ĝn defined in equation (2), the convergence rate of the
density estimation gĜn

to the true density gG∗ is given by:

P
(
EX [h(gĜn

(·|X), gG∗(·|X))] > C0

√
log(n)/n

)

≲ exp(−c0 log(n)), (4)

where C0 and c0 are universal positive constants that de-
pend only on Θ.

The proof of Proposition 2.2 is in Appendix B.1. It is evident
from the bound in equation (4) that the rate for estimating
gG∗ is parametric of order Õ(n−1/2). Therefore, if we are
able to construct a metric D among parameters that satis-
fies the inequality EX [h(gG(·|X), gG∗(·|X))] ≳ D(G,G∗)
for any mixing measure G ∈ Ok(Θ), then the MLE Ĝn

will also converge to the true mixing measure G∗ at the
parametric rate of order Õ(n−1/2).

Voronoi-based Loss: As the MLE Ĝn is constrained to
have more components than its true counterpart, there ex-
ists a true component approximated by at least two com-
ponents while others could be fitted by exactly one com-
ponent. This possibly leads to different estimation rates
among the true parameters, which requires us to design
novel loss functions tailored to this observation. To this
end, let us recall a notion of Voronoi cells, which was
previously studied in (Manole & Ho, 2022). In partic-
ular, for any mixing measure G ∈ Ok(Θ), a Voronoi
cell of G generated by θ∗j := (β∗

1j , a
∗
j , b

∗
j ) is defined as

Cj ≡ Cj(G) := {i ∈ [k] : ∥θi − θ∗j ∥ ≤ ∥θi − θ∗ℓ ∥, ∀ℓ ̸= j}
for any j ∈ [k∗], where θi := (β1i, ai, bi). Here, the cardi-
nality of each Voronoi cell Cj indicates the number of fitted
components approximating the true component θ∗j . Based
on these Voronoi cells, we define a generic Voronoi-based
metric of order r ≥ 1 between any two mixing measures,
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denoted by Dr(G,G∗), as follows:

Dr(G,G∗) :=
k∗∑

j=1

∣∣∣∣∣∣
∑

i∈Cj

exp(β0i)− exp(β∗
0j)

∣∣∣∣∣∣
,

+
∑

j:|Cj |>1,
i∈Cj

exp(β0i)
[
∥∆β1ij∥r +

K−1∑

ℓ=1

(|∆aijℓ|r + ∥∆bijℓ∥r)
]

+
∑

j:|Cj |=1,
i∈Cj

exp(β0i)
[
∥∆β1ij∥+

K−1∑

ℓ=1

(|∆aijℓ|+ ∥∆bijℓ∥)
]
,

(5)

where ∆β1ij := β1i − β∗
1j , ∆aijℓ := aiℓ − a∗jℓ and

∆bijℓ := biℓ − b∗jℓ. The above Voronoi loss function allows
us to capture precisely the distinct convergence behaviors of
parameter estimations under the multinomial logistic MoE
model with (modified) softmax gating function.

3. Standard Softmax Gating Multinomial
Logistic MoE

In this section, we present the convergence analysis of pa-
rameter estimation in the standard softmax gating multino-
mial logistic MoE model.

Given the parametric density estimation rate in Proposi-
tion 2.2, we observe that if the Hellinger lower bound

EX [h(gĜn
(·|X), gG∗(·|X))] ≳ Dr(Ĝn, G∗),

holds true for some r ≥ 1, then the convergence rate of
the MLE Ĝn to the true mixing measure G∗ would also be
parametric of order Õ(n−1/2). Therefore, our goal is to
establish the above bound. Since the Hellinger distance is
lower bounded by the Total Variation distance, i.e., h ≥ V ,
it is sufficient to show that

EX [V (gĜn
(·|X), gG∗(·|X))] ≳ Dr(Ĝn, G∗). (6)

Then, we consider the term V (gĜn
(·|X), gG∗(·|X)) which

involves the density discrepancy gĜn
(Y |X)− gG∗(Y |X).

We aim to decompose this discrepancy into a linear combina-
tion of linearly independent terms using Taylor expansion so
that when gĜn

converges to gG∗ , the associated coefficients

involving the parameter differences β̂n
1i − β∗

1j , âni − a∗j and
b̂ni − b∗j also tend to zero, where (β̂n

1i, â
n
i , b̂

n
i ) are compo-

nents of Ĝn. For that purpose, we first rewrite the previous
density discrepancy in terms of

u(Y |X; β̂n
1i, â

n
i , b̂

n
i )− u(Y |X;β∗

1j , a
∗
j , b

∗
j ),

where u(Y |X;β1i, ai, bi) = exp((β1i)
⊤X)f(Y |X; ai, bi).

Next, we apply the Taylor expansion to the function

u(Y |X; β̂n
1i, â

n
i , b̂

n
i ) about the point (β∗

1j , a
∗
j , b

∗
j ). In this

step, we notice that if there exists j ∈ [k∗] such that
b∗jℓ = 0d for any ℓ ∈ [K − 1], then the gating parame-
ters interact with the expert parameters via the following
PDEs:

∂u

∂β1j
(Y = s|X;β∗

1j , a
∗
j , b

∗
j )

= Ca∗
j
· ∂u

∂bjs
(Y = s|X;β∗

1j , a
∗
j , b

∗
j ), (7)

for any s ∈ [K], where Ca∗
j
> 0 is some constant depending

only on a∗j . This interaction indicates that there are several
linearly dependent derivative terms in the previous Taylor
expansion, which induces a number of challenges in rep-
resenting the density discrepancy gĜn

(Y |X)− gG∗(Y |X)
as a linear combination of linearly independent terms. On
the other hand, if for any j ∈ [k∗], we can find an index
ℓ ∈ [K − 1] such that b∗jℓ ̸= 0d, then the PDEs inequa-
tion (7) no longer hold true and the previous interaction
does not occur, which facilitates the decomposition of the
density discrepancy.

For those reasons, we will characterize the parameter esti-
mation rates under two following complement regimes of
expert parameters b∗j in Section 3.1 and Section 3.2, respec-
tively:

• Regime 1: For any j ∈ [k∗], there exists an index
ℓ ∈ [K − 1] such that b∗jℓ ̸= 0d;

• Regime 2: There exists an index j ∈ [k∗] such that
b∗jℓ = 0d for any ℓ ∈ [K − 1].

3.1. Regime 1 of Expert Parameters

Under this regime, it can be verified that the PDEs in equa-
tion (7) are no longer valid for any j ∈ [k∗]. Then, we
provide in the following theorem the convergence rate of
the MLE Ĝn to its true counterpart G∗ under the Voronoi
loss function D2 in equation (5).

Theorem 3.1 (Parameter Estimation Rate). Suppose that
the assumption of Regime 1 holds true, then we achieve the
Hellinger lower bound

EX [h(gG(·|X), gG∗(·|X))] ≳ D2(G,G∗)

for any mixing measure G ∈ Ok(Θ). Therefore, combin-
ing this bound with Proposition 2.2 leads to the following
convergence rate of the MLE Ĝn:

P
(
D2(Ĝn, G∗) > C1

√
log(n)/n

)
≲ exp(−c1 log(n)),

where C1 > 0 is a constant depending on Θ and G∗, while
the constant c1 > 0 depends only on Θ.
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Proof of Theorem 3.1 is in Appendix A.1. A few comments
regarding this result are in order.

(i) Theorem 3.1 suggests that the MLE Ĝn converges to
the true mixing measure G∗ under the loss function D2

at the parametric rate of order Õ(n−1/2). Based on the
formulation of D2 in equation (5), it follows that exact-
specified parameters β∗

1j , a
∗
j , b

∗
j , whose Voronoi cells Cj

have exactly one element, share the same estimation rate of
order Õ(n−1/2).

(ii) On the other hand, for over-specified parameters
β∗
1j , a

∗
j , b

∗
j whose Voronoi cells Cj have more than one ele-

ment, the rates for estimating them are slower, standing at
order Õ(n−1/4). Nevertheless, these rates are substantially
faster than their counterparts under the softmax gating Gaus-
sian MoE model studied in (Nguyen et al., 2023), which
decreases monotonically with the cardinality of Voronoi
cells.

3.2. Regime 2 of Expert Parameters

Under this regime, we can find an index j ∈ [k∗] that satis-
fies b∗jℓ = 0 for any ℓ ∈ [K−1]. By simple calculations, we
can validate that the PDEs in equation (7) hold true. This
result leads to so many linearly dependent terms among the
derivatives of the function u w.r.t its parameters that the
density discrepancy gĜn

(Y |X)− gG∗(Y |X) cannot be de-
composed into a linear combination of linearly independent
elements as our expectation. As a consequence, we demon-
strate in the following proposition that the Total Variation
lower bound in equation (6) no longer holds under Regime
2.

Proposition 3.2. Suppose that the assumption of Regime 2
is satisfied, then we obtain that

inf
G∈Ok(Θ),

Dr(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]/Dr(G,G∗) → 0,

as ε → 0, for any r ≥ 1.

Proof of Proposition 3.2 is in Appendix A.2.2. Based on
the above result, we establish a minimax lower bound for
estimating the true mixing measure G∗ in Theorem 3.3.

Theorem 3.3 (Minimax Lower Bound). Under Regime 2,
the following minimax lower bound of estimating G∗ holds
true for any r ≥ 1:

inf
Gn∈Ok(Θ)

sup
G∈Ok(Θ)\Ok∗−1(Θ)

EgG [Dr(Gn, G)] ≳ n−1/2.

Here, EgG represents the expectation taken with respect to
the product measure with mixture density gnG.

Proof of Theorem 3.3 can be found in Appendix A.2. This
result together with the formulation of Dr in equation (5)

indicates that the rates for estimating exact-specified param-
eters β∗

1j , a
∗
j , b

∗
j are not better than Õ(n−1/2), while those

for their over-specified counterparts are even slower than
any polynomial rates.

3.3. Proof Sketches

In this section, we provide proof sketches for both Theo-
rem 3.1 and Theorem 3.3.

3.3.1. PROOF SKETCH OF THEOREM 3.1

Due to the inequality h ≥ V , it suffices to show the To-
tal Variation lower bound EX [V (gG(·|X), gG∗(·|X)] ≳
D2(G,G∗) for any G ∈ Ok(Θ). We divide this problem
into two parts as follows:

Local structure. In this part, we need to show that

lim
ε→0

inf
G∈Ok(Θ):

D2(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]

D2(G,G∗)
> 0.

Assume by contrary that there exists Gn ∈ Ok(Θ)
such that EX [V (gGn(·|X), gG∗(·|X))]/D2(Gn, G∗) and
D2(Gn, G∗) both converge to zero.

Step 1. In this step, we use Taylor expansions to decom-
pose the quantity Tn(s) :=

[∑k∗
j=1 exp((β

∗
1j)

⊤X+β∗
0j)
]
·

[gGn(Y = s|X) − gG∗(Y = s|X)] into a linear combina-
tion of linearly independent terms as

Tn(s) =

k∗∑

j=1

ωjEj(Y = s|X) +R(X,Y ),

where R(X,Y ) is a Taylor remainder such that
R(X,Y )/D2(Gn, G∗) → 0.

Step 2. In this step, we show by contradiction that not all
the ratios ωj/D2(Gn, G∗) tend to zero as n → ∞. Assume
that all of them converge to zero, then we deduce that 1 =
D2(Gn, G∗)/D2(Gn, G∗) → 0, which is a contradiction.
Therefore, at least one among the ratios wj/D2(Gn, G∗)
does not vanish.

Step 3. Since EX [V (gGn(·|X), gG∗(·|X))]/D2(Gn, G∗)
converges to zero, then by applying the Fatou’s lemma, we
deduce that Tn(s)/D2(Gn, G∗) → 0 as n → ∞. Note
that Tn(s) is written as a linear combination of linearly
independent terms, thus, all the associated coefficients in
that combination go to zero, which contradicts the result in
Step 2. Hence, the proof of the local structure is completed.

Global Structure. In this part, we demonstrate that

inf
G∈Ok(Θ),

D2(G,G∗)>ε

EX [V (gG(·|X), gG∗(·|X))]

D2(G,G∗)
> 0.
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Assume that this claim is not true. Then, we can
find a mixing measure G′ ∈ Ok(Θ) such that
EX [V (gG(·|X), gG∗(·|X))] = 0. By the Fatou’s lemma,
we obtain that gG′(Y = s|X) = gG∗(Y = s|X) for any
s ∈ [K] for almost surely X . It follows from Proposition 2.2
that G′ ≡ G. This result implies that D2(G

′, G∗) = 0,
which contradicts the constraint D2(G

′, G∗) > ε > 0.
Hence, the proof sketch is completed.

3.3.2. PROOF SKETCH OF THEOREM 3.3

Let M1 be some fixed positive constant. Following from the
result of Proposition 3.2, for any suffciently small ε > 0,
we can seek a mixing measure G′

∗ ∈ Ok(Θ) such that
Dr(G

′
∗, G∗) = 2ε and EX [V (gG′

∗
(·|X), gG∗(·|X))] ≤

M1ε. Note that for any sequence of mixing measures
Gn ∈ Ok(Θ), we have

2 max
G∈{G∗,G′

∗}
EgG [Dr(Gn, G)]

≥ EgG∗
[Dr(Gn, G∗)] + EgG′

∗
[Dr(Gn, G

′
∗)].

Moreover, since Dr satisfies the weak triangle inequality,
there exists some constant M2 > 0 such that

Dr(Gn, G∗) +Dr(Gn, G
′
∗) ≥ M2Dr(G∗, G

′
∗) = 2M2ε.

Then, by leveraging the Le Cam’s minimax lower bound
approach (Yu, 1997), we get that

max
G∈{G∗,G′

∗}
EgG [Dr(Gn, G)]

≥ M2ε(1− EX [V (gnG∗
(·|X), gnG′

∗
(·|X))])

≥ M2ε
[
1−

√
1− (1−M2

1 ε
2)n
]
.

By setting ε = n−1/2/M1, we obtain that

max
G∈{G∗,G′

∗}
EgG [Dr(Gn, G)] ≳ n−1/2,

for any sequence Gn ∈ Ok(Θ). Furthermore, since
{G∗, G′

∗} is a subset of Ok(Θ) \ Ok∗−1(Θ), we reach the
conclusion of Theorem 3.3.

4. Modified Softmax Gating Multinomial
Logistic MoE

In this section, we propose a novel class of modified softmax
gating functions to resolve the interaction between gating
parameters and expert parameters via the PDE (7) which
leads to significantly slow parameter estimation rates. Then,
we also capture the convergence rates of parameter estima-
tion under the multinomial logistic MoE model with that
those gating functions.

First of all, let us introduce the formulation of the modified
softmax gating multinomial logistic MoE model.

Problem Setup. Suppose that the i.i.d samples
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ X × [K] are drawn
from the multinomial logistic MoE model of order k∗ with
modified softmax gating function, whose conditional den-
sity function g̃G∗(Y = s|X) is given by

k∗∑

i=1

Softmax((β∗
1i)

⊤M(X) + β∗
0i)× f(Y = s|X; a∗i , b

∗
i )

:=

k∗∑

i=1

exp((β∗
1i)

⊤M(X) + β∗
0i)∑k∗

j=1 exp((β
∗
1j)

⊤M(X) + β∗
0j)

× exp(a∗is + (b∗is)
⊤X)

∑K
ℓ=1 exp(a

∗
iℓ + (b∗iℓ)

⊤X)
, (8)

for any s ∈ [K], where M is a function defined in Defini-
tion 4.1. Here, we reuse all the assumptions imposed on
the model in equation (1) unless stating otherwise. In the
above model, we would transform the covariate X using the
function M first rather than routing it directly to the softmax
gating function as in the model (1). This transformation step
allows us to overcome the interaction between gating pa-
rameters and expert parameters emerging from Section 3.2,
which we will discuss below.

Definition 4.1 (Modified Function). Let M : X → Rd be
a bounded function such that the following set is linearly
independent for almost surely X:

{
Xp[M(X)]q : p, q ∈ Nd, 0 ≤ |p|+ |q| ≤ 2

}
. (9)

To understand the above condition better, we provide below
both intuitive and technical explanations for it.

Intuitively, Under the multinomial logistic MoE model with
the standard softmax gate, we observe an interaction among
the gating parameters β1 and the expert parameters b when a
fraction of expert parameters vanish (see equation (3). This
interaction mainly accounts for the slow parameter estima-
tion rates, which could be as slow as O(1/ log(n)). We
realize that the previous interaction occurs as parameters
β1 and b are both associated with the input X in the con-
dition density in equation (1). To address this issue, we
propose transforming the input X in the softmax gate by
the function M . Then, in the modified conditional density
in equation (8), β1 is associated with M(X), while b is
still with X . However, to eliminate the parameter interac-
tion completely, we need to impose an assumption of linear
independence between the input X and its transformation
M(X) in Definition 4.1.

Technically, the set in equation (9) is assumed to be linearly
independent for almost surely X to guarantee there does
not exist any constant Ca∗

i
depending only a∗i such that the
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PDEs

∂u

∂β1j
(Y = s|X;β∗

1j , a
∗
j , b

∗
j )

= Ca∗
j
· ∂u

∂bjs
(Y = s|X;β∗

1j , a
∗
j , b

∗
j ),

for s ∈ [K], do not hold under any setting of the expert
parameters b∗i . As a result, the interaction between gating
parameters and expert parameters mentioned in the Regime
2 does not appear in the modified softmax gating multino-
mial logistic MoE model. Next, we provide below a few
valid instances of the function M .

Example. It can verified that all the following element-wise
functions satisfy the condition in Definition 4.1: M(X) =
tanh(X), M(X) = cos(X) and M(X) = Xm for m ≥ 3.
Additionally, M could also be a normalization function,
i.e. M(X) = X

||X|| . The practical problem of selecting
important experts can benefit from this choice of function
M . In particular, in many applications of MoE models,
there are some experts which do not play an essential role
in learning, and even become redundant. In such scenario,
we would like the gate to put more weights on the important
experts. However, if the input magnitude is huge, then the
weight distribution will become uniform, which is undesir-
able. Therefore, the input normalization function M , which
helps remain the input magnitude of one, is beneficial in this
case. Regarding the parameter estimation problem, since
the function M helps remove the parameter interaction, the
parameter estimation rates are ensured to be of polynomial
orders under any parameter settings (see Table 1). Another
potential option is M(X) = sigmoid(X), which allows
the magnitude of the input to vary between 0 and 1.

Maximum Likelihood Estimation. Due to the modification
of the conditional density in equation (8), the formulation
of MLE of the true mixing measure G∗ under the modi-
fied softmax gating multinomial logistic MoE model also
changes as follows:

G̃n ∈ argmax
G∈Ok(Θ)

n∑

i=1

log(g̃G(Yi|Xi)). (10)

Next, we validate the identifiability of the modified softmax
gating multinomial logistic MoE model in the following
proposition.

Proposition 4.2 (Identifiability). Assume that G and G′ are
two mixing measures in Ok(Θ). If g̃G(Y |X) = g̃G′(Y |X)
holds true for almost surely (X,Y ), then we obtain that
G ≡ G′.

Proof of Proposition 4.2 is in Appendix B.1.2. This result
points out that the modified softmax gating multinomial
logistic MoE model is still identifiable. In other words, if

the density estimation g̃G̃n
converges to the true density

g̃G∗ , then the MLE G̃n also approaches its true counterpart
G∗.

Now, we are ready to derive the convergence rate of density
estimation g̃G̃n

to the true density g̃G∗ under the Hellinger
distance.

Proposition 4.3 (Density Estimation Rate). With the MLE
G̃n defined in equation (10), the density estimation g̃G̃n

converges to the true density g̃G∗ at the following rate:

P
(
EX [h(g̃G̃n

(·|X), g̃G∗(·|X))] > C2

√
log(n)/n

)

≲ exp(−c2 log(n)), (11)

where C2 and c2 are universal positive constants that de-
pend only on Θ.

Proof of Proposition 4.3 is in Appendix B.2. It follows
from the above proposition that the density estimation rate
under the modified softmax gating multinomial logistic MoE
model is parametric of order Õ(n−1/2). This result matches
the rate for estimating the true density under the multinomial
logistic MoE model with standard softmax gating function
in Proposition 2.2. Based on this observation, we then
capture the convergence behavior of the MLE G̃n in the
following theorem.

Theorem 4.4 (Parameter Estimation Rate). The following
Hellinger lower bound holds true for any mixing measure
G ∈ Ok(Θ):

EX [h(g̃G(·|X), g̃G∗(·|X))] ≳ D2(G,G∗).

This lower bound together with Proposition 4.3 imply that
there exists a constant C3 > 0 depending on Θ and G∗ such
that

P(D2(G̃n, G∗) > C3

√
log(n)/n) ≲ exp(−c3 log(n)),

where c3 > 0 is a constant that depends only on Θ.

Proof of Theorem 4.4 is deferred to Appendix A.3. This
theorem reveals that the MLE G̃n converges to the true
mixing measure G∗ under the Voronoi loss function D2 at
a rate of order Õ(n−1/2). From the definition of D2 in
equation (5), we deduce that the exact-specified parameters
β∗
1j , a

∗
j , b

∗
j , which are fitted by exactly one component, en-

joy the same estimation rate of Õ(n−1/2), whereas those
for their over-specified counterparts, i.e. those fitted by at
least two components, are of order Õ(n−1/4). It is worth
emphasizing that these rates remain stable regardless of any
values of the expert parameters b∗i . This highlights the bene-
fits of modified softmax gating functions over the standard
softmax gating in the multinomial logistic MoE model.

In summary, replacing the standard softmax gating function
with its modified versions in the multinomial logistic MoE
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model remains the identifiability of that model and the para-
metric density estimation rate as well as ensures the stability
of parameter estimation rates under any settings of the ex-
pert parameters (see Table 1). As a consequence, we can
conclude that the modified softmax gating functions outper-
form their standard counterpart in the parameter estimation
problem under the multinomial logistic MoE model.

5. Discussion

In this paper, we investigate the convergence behavior of
maximum likelihood estimation in the softmax gating multi-
nomial logistic mixture of experts under the over-specified
settings. For that purpose, we design a novel generic
Voronoi loss function, and then discover that the rates for
estimating the true density and exact-specified true param-
eters are all parametric on the sample size, while those for
over-specified true parameters are slightly slower. However,
when part of the expert parameters vanishes, the estimation
rates for the over-specified true parameters experience a sur-
prisingly slow rates due to an intrinsic interaction between
the parameters of gating and expert functions. To tackle
this issue, we propose a novel class of modified softmax
gating functions that not only keep the identifiability of the
multinomial logistic mixture of experts and the parametric
density estimation rate unchanged, but also stabilize the
parameter estimation rates irrespective of the collapse of
expert parameters. This highlights the advantages of using
modified softmax gating functions over the standard soft-
max gating function in the parameter estimation problem of
the multinomial logistic MoE model.

Technical novelty. Compared to previous works, our paper
is technically novel in terms of the following aspects:

(1) Covariate-dependent gate: We consider softmax gate
whose value depends on the covariate X , while (Ho et al.,
2022) use covariate-free weights, which are significantly
simpler. Thus, in Step 1 of our proofs of Theorems 3.1 and
4.4, if we apply Taylor expansions directly to the density
discrepancy gGn

(Y |X)− gG∗(Y |X) as in (Ho et al., 2022),
we cannot represent that discrepancy as a combination of
elements from some linearly independent set, which is a
key step. Therefore, we have to take the product of the
softmax’s denominator and the density discrepancy, denoted
by Tn(s) :=

[∑k∗
j=1 exp((β

∗
1j)

⊤X + β∗
0j)
]
· [gGn(Y =

s|X) − gG∗(Y = s|X)]. Then, we decompose Tn(s)
such that it includes two functions exp((βn

1i)
⊤X)f(Y =

s|X; ani , b
n
i ) and exp((βn

1i)
⊤X)gGn

(Y = s|X) (see equa-
tion (14)). Then, we need to apply two Taylor expansions to
those functions rather than only one as in (Ho et al., 2022).

(2) Minimax lower bound: A key step to derive polynomial
rates for estimating parameters (even in extreme cases) in

(Nguyen et al., 2023; 2024b) is to establish Total Variation
lower bounds EX [V (gG(·|X), gG∗(·|X))] ≳ D(G,G∗),
where D is a loss function. However, we show in Proposi-
tion 3.2 that such bound does not hold true under the Regime
2 due to the PDEs in equation (3). Thus, we provide a mini-
max lower bound in Theorem 3.3 to show that the parameter
estimation rates are slower than any polynomial rates, and
therefore, could be as slow as O(1/ log(n)). As far as we
are concerned, this phenomenon has never been observed in
previous works.

(3) Non-trivial solution for rate improvement: (Ho et al.,
2022; Nguyen et al., 2023; 2024b) characterized the slowest
rates of the same form O(n−1/2r̄), for some r̄ ≥ 4, with-
out proposing any solutions to improve them. By contrast,
although the slowest rate in our work is even slower than
any polynomial rates, we provide a non-trivial modified
gating function in Section 4 to alleviate that issue. More
importantly, since that modified gate generally helps address
interactions among gating and expert parameters, it can be
applied to (Ho et al., 2022; Nguyen et al., 2023; 2024b)
(up to some changes of the conditions of function M(·) in
Definition 4.1) for rate improvement. As shown in Table 1,
the modified softmax gate enhances the estimation rates
from O(n−1/2r̄) to at least O(n−1/4) under any parameter
settings. To the best of our knowledge, such flexible and
effective solution had never been proposed in the literature.

Limitation and future directions. In this paper, we
consider a well-specified setting when the data are as-
sumed to be sampled from a softmax gating multino-
mial logistic MoE. However, in practice, the data are
not necessarily generated from that model, which we re-
fer to as the misspecified setting. Under the misspec-
ified setting, the MLE converges to a mixing measure
G̃ ∈ argminG∈Ok(Θ) KL(P (Y |X)||gG(Y |X)), where
P (Y |X) is the true conditional distribution of Y given X
and KL stands for the Kullback-Leibler divergence. As
the space Ok(Θ) is non-convex, the existence of G̃ is not
unique. Furthermore, the current analysis of the MLE un-
der the misspecified setting of statistical models is mostly
conducted when the function space is convex (van de Geer,
2000). Thus, it is necessary to develop new technical tools
to establish the convergence rate of the MLE under the non-
convex misspecified setting. Since this is beyond the scope
of our work, we leave it for future development. Another
potential direction is to comprehend the effects of the tem-
perature parameter (Nie et al., 2022; Nguyen et al., 2024a),
which controls the softmax weight distribution and the spar-
sity of the MoE, on the convergence of parameter estimation
under the softmax gating multinomial logistic MoE. This
direction has remained unexplored in the literature.
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Supplementary Materials for “A General Theory for Softmax Gating
Multinomial Logistic Mixture of Experts”

In this supplementary material, we first present rigorous proofs for results regarding the convergence rates of parameter
estimation under the (modified) softmax gating multinomial logistic mixture of experts in Appendix A, while those for
density estimation are then provided in Appendix B. Next, we theoretically verify the identifiability of the proposed models
in Appendix C. Lastly, we conduct several experiments in Appendix D to empirically validate our theoretical results.

A. Proof for Convergence Rates of Parameter Estimation
In this appendix, we provide proofs for Theorem 3.1 and Theorem 3.3 in Appendix A.1 and Appendix A.2, respectively.
Meanwhile, the proof of Theorem 4.4 can be found in Appendix A.3.

A.1. Proof of Theorem 3.1

To reach the conclusion in Theorem 3.1, we need to show that

inf
G∈Ok(Θ)

EX [V (gG(·|X), gG∗(·|X))]/D2(G,G∗) > 0. (12)

Local Structure: Firstly, we prove by contradiction the local structure of inequality (12), which is given by

lim
ε→0

inf
G∈Ok(Θ),

D2(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]/D2(G,G∗) > 0. (13)

Assume that this claim does not hold true, then there exists a sequence of mixing measures Gn :=∑kn

i=1 exp(β
n
0i)δ(βn

1i,a
n
i ,b

n
i )

∈ Ok(Θ) such that both EX [V (gGn
(·|X), gG∗(·|X))]/D2(Gn, G∗) and D2(Gn, G∗) approach

zero as n tends to infinity. In addition, we define the set of Voronoi cells generated by the support of G∗ for this sequence as
follows:

Cn
j := {i ∈ [kn] : ∥θni − θ∗j ∥ ≤ ∥θni − θ∗ℓ ∥, ∀ℓ ̸= j},

where θni := (βn
1i, a

n
i , b

n
i ) and θ∗j := (β∗

1j , a
∗
i , b

∗
i ) for any j ∈ [k∗]. Recall that β∗

1k∗
= 0d is known, thus we set βn

1i = 0d

for any i ∈ Ck∗ . Similarly, note that (a∗jK , b∗jK) = (0,0d) are known for any j ∈ [k∗], we also let (aniK , bniK) = (0,0d)
for any i ∈ kn. As our proof argument is asymptotic, we can assume without loss of generality (WLOG) that the above
Voronoi cells are independent of n, that is, Cj = Cn

j for any j ∈ [k∗]. Next, since D2(Gn, G∗) → 0 as n → ∞, it follows
from the formulation of D2 in equation (5) that βn

1i → β∗
1j , (aniℓ, b

n
iℓ) → (a∗jℓ, b

∗
jℓ) and

∑
i∈Cn

j
exp(βn

0i) → exp(β∗
0j) for

any ℓ ∈ [K], i ∈ Cj and j ∈ [k∗] when n → ∞. Subsequently, we divide our remaining arguments into three steps as below.

Step 1. In this step, we use Taylor expansions to decompose the following quantity:

Tn(s) :=
[ k∗∑

j=1

exp((β∗
1j)

⊤X + β∗
0j)
]
·
[
gGn

(Y = s|X)− gG∗(Y = s|X)
]
.

Denote u(Y = s|X;β1i, ai, bi) := exp(β⊤
1iX) · f(Y |X; ais, bis) and v(Y = s|X;β1i) = exp(β⊤

1iX)gGn
(Y = s|X) for

any s ∈ [K], we have

Tn(s) =

k∗∑

j=1

∑

i∈Cj

exp(βn
0i)
[
u(Y = s|X;βn

1i, a
n
i , b

n
i )− u(Y = s|X;β∗

1j , a
∗
j , b

∗
j )
]

−
k∗∑

j=1

∑

i∈Cj

exp(βn
0i)
[
v(Y = s|X;βn

1i)− v(Y = s|X;β∗
1j)
]

+

k∗∑

j=1

(∑

i∈Cj

exp(βn
0i)− exp(β∗

0j)
)[

u(Y = s|X;β∗
1j , a

∗
j , b

∗
j )− v(Y = s|X;β∗

1j)
]

:= An −Bn + En. (14)
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Given the above formulations of An and Bn, we continue to decompose them into two smaller terms based on the cardinality
of Voronoi cells Cj . In particular,

An =
∑

j:|Cj |=1

∑

i∈Cj

exp(βn
0i)
[
u(Y = s|X;βn

1i, a
n
i , b

n
i )− u(Y = s|X;β∗

1j , a
∗
j , b

∗
j )
]

+
∑

j:|Cj |>1

∑

i∈Cj

exp(βn
0i)
[
u(Y = s|X;βn

1i, a
n
i , b

n
i )− u(Y = s|X;β∗

1j , a
∗
j , b

∗
j )
]

= An,1 +An,2.

Next, let us denote hℓ(X, aℓ, bℓ) := aℓ + b⊤ℓ X for any ℓ ∈ [K], then

f(Y = s|X; ai, bi) =
exp(ais + b⊤isX)

∑K
ℓ=1 exp(aiℓ + b⊤iℓX)

=
exp(hs(X, ais, bis))∑K
ℓ=1 exp(hℓ(X, aiℓ, biℓ))

.

By means of the first-order Taylor expansion, An,1 can be represented as

An,1 =
∑

j:|Cj |=1

∑

i∈Cj

exp(βn
0i)
∑

|α|=1

1

α!
(∆βn

1ij)

K−1∏

ℓ=1

(∆anijℓ)
α2ℓ(∆bnijℓ)

α3ℓ
∂|α|u(Y = s|X;β∗

1j , a
∗
j , b

∗
j )

∂βα1
1j

∏K−1
ℓ=1 ∂aα2ℓ

jℓ ∂bα3ℓ

jℓ

+R1(X,Y ).

Here, α := (α1, α21, . . . , α2(K−1), α31, . . . , α3(K−1)), where α1, α3ℓ ∈ Nd and α2ℓ ∈ N for any ℓ ∈ [K−1]. Additionally,
R1(X,Y ) is a Taylor remainder such that R1(X,Y )/D2(Gn, G∗) → 0 as n → ∞. From the formulation of u, we have

An,1 =
∑

j:|Cj |=1

∑

i∈Cj

exp(βn
0i)
∑

|α|=1

1

α!
(∆βn

1ij)

K−1∏

ℓ=1

(∆anijℓ)
α2ℓ(∆bnijℓ)

α3ℓ

×Xα1+
∑K−1

ℓ=1 α3ℓ exp((β∗
1j)

⊤X)
∂
∑K−1

ℓ=1 (α2ℓ+|α3ℓ|)f

∂h
α21+|α31|
1 . . . ∂h

α2(K−1)+|α3(K−1)|
K−1

(Y = s|X; a∗j , b
∗
j ) +R1(X,Y ).

Let q1 = α1 +
∑K−1

ℓ=1 α3ℓ ∈ Nd, q2 = (q2ℓ)
K−1
ℓ=1 := (α2ℓ + |α3ℓ|)K−1

ℓ=1 ∈ NK−1 and

Iq1,q2 :=

{
α = (α1, α21, . . . , α2(K−1), α31, . . . , α3(K−1)) : α1 +

K−1∑

ℓ=1

α3ℓ = q1, (α2ℓ + |α3ℓ|)K−1
ℓ=1 = q2

}
, (15)

we can rewrite An,1 as

An,1 =
∑

j:|Cj |=1

2∑

|q1|+|q2|=1

∑

i∈Cj

∑

α∈Iq1,q2

1

α!
(∆βn

1ij)
α1

K−1∏

ℓ=1

(∆anijℓ)
α2ℓ(∆bnijℓ)

α3ℓ

×Xq1 exp((β∗
1j)

⊤X)
∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j ) +R1(X,Y ).

Similarly, by means of second order Taylor expansion, An,2 is expressed as follows:

An,2 =
∑

j:|Cj |>1

4∑

|q1|+|q2|=1

∑

i∈Cj

∑

α∈Iq1,q2

1

α!
(∆βn

1ij)
α1

K−1∏

ℓ=1

(∆anijℓ)
α2ℓ(∆bnijℓ)

α3ℓ

×Xq1 exp((β∗
1j)

⊤X)
∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j ) +R2(X,Y ),

where R2(X,Y ) is also a Taylor remainder such that R2(X,Y )/D2(Gn, G∗) → 0 as n → ∞. By employing the same
arguments for decomposing An to Bn, we get

Bn =
∑

j:|Cj |=1

∑

|γ|=1

∑

i∈Cj

exp(βn
0i)

γ!
(∆βn

1ij)
γ ×Xγ exp((β∗

1j)
⊤X)gGn

(Y = s|X) +R3(X,Y )

+
∑

j:|Cj |>1

2∑

|γ|=1

∑

i∈Cj

exp(βn
0i)

γ!
(∆βn

1ij)
γ ×Xγ exp((β∗

1j)
⊤X)gGn

(Y = s|X) +R4(X,Y ).
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Putting the above results together, we obtain that

Tn(s) =

k∗∑

j=1

2+2·1{|Cj |>1}∑

|q1|+|q2|=0

Un
q1,q2(j)×Xq1 exp((β∗

1j)
⊤X)

∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j )

+

k∗∑

j=1

1+1{|Cj |>1}∑

|γ|=0

Wn
γ (j)×Xγ exp((β∗

1j)
⊤X)gGn(Y = s|X) +R(X,Y ),

where R(X,Y ) is the sum of Taylor remainders such that R(X,Y )/D2(X,Y ) → 0 as n → ∞ and

Un
q1,q2(j) =

{∑
i∈Cj

∑
α∈Iq1,q2

exp(βn
0i)

α! (∆βn
1ij)

α1
∏K−1

ℓ=1 (∆anijℓ)
α2ℓ(∆bnijℓ)

α3ℓ , (q1, q2) ̸= (0d,0K−1),∑
i∈Cj

exp(βn
0i)− exp(β∗

0j), (q1, q2) = (0d,0K−1),

and

Wn
γ (j) =

{
−∑i∈Cj

exp(βn
0i)

γ! (∆βn
1ij)

γ , |γ| ≠ 0d,

−∑i∈Cj
exp(βn

0i) + exp(β∗
0j), |γ| = 0d,

for any j ∈ [k∗].

Step 2. In this step, we will prove by contradiction that at least one among Un
q1,q2(j)/D2(Gn, G∗) and Wn

γ (j)/D2(Gn, G∗)
does not vanish as n tends to infinity. Assume that all of them approach zero, then by taking the summation
of |Un

q1,q2(j)|/D2(Gn, G∗) for j ∈ [k∗] : |Cj | = 1, q1 ∈ {e1, e2, . . . , ed} and q2 = 0K−1, where ei :=

(0, . . . , 0, 1︸︷︷︸
i-th

, 0, . . . , 0) ∈ Rd, we achieve that

1

D2(Gn, G∗)
·
∑

j:|Cj |=1

∑

i∈Cj

exp(βn
0i) · ∥∆βn

1ij∥1 → 0. (16)

Similarly, for q1 = 0d and q2 ∈ {e′1, e′2, . . . , e′K−1}, where e′ℓ := (0, . . . , 0, 1︸︷︷︸
ℓ-th

, 0, . . . , 0) ∈ RK−1, we have

1

D2(Gn, G∗)
·
∑

j:|Cj |=1

∑

i∈Cj

K−1∑

ℓ=1

exp(βn
0i) · |∆anijℓ| → 0. (17)

On the other hand, for q1 ∈ {e1, e2, . . . , ed} and q2 ∈ {e′1, e′2, . . . , e′K−1}, we obtain that

1

D2(Gn, G∗)
·
∑

j:|Cj |=1

∑

i∈Cj

K−1∑

ℓ=1

exp(βn
0i) · ∥∆bnijℓ∥1 → 0. (18)

Combine the limits in equations (16), (17) and (18), we get

1

D2(Gn, G∗)
·
∑

j:|Cj |=1

∑

i∈Cj

exp(βn
0i) ·

[
∥∆βn

1ij∥1 +
K−1∑

ℓ=1

(|∆anijℓ|+ ∥∆bnijℓ∥1)
]
→ 0.

Due to the topological equivalence between 1-norm and 2-norm, the above limit is equivalent to

1

D2(Gn, G∗)
·
∑

j:|Cj |=1

∑

i∈Cj

exp(βn
0i) ·

[
∥∆βn

1ij∥+
K−1∑

ℓ=1

(|∆anijℓ|+ ∥∆bnijℓ∥)
]
→ 0. (19)

Next, we consider the summation of |Un
q1,q2(j)|/D2(Gn, G∗) for j ∈ [k∗] : |Cj | > 1, q1 ∈ {2e1, 2e2, . . . , 2ed} and

q2 = 0K−1, which leads to

1

D2(Gn, G∗)
·
∑

j:|Cj |>1

∑

i∈Cj

exp(βn
0i) · ∥∆βn

1ij∥2 → 0. (20)
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For q1 = 0d and q2 ∈ {2e′1, 2e′2, . . . , 2e′K−1}, we have

1

D2(Gn, G∗)
·
∑

j:|Cj |>1

∑

i∈Cj

exp(βn
0i) ·

K−1∑

ℓ=1

|∆anijℓ|2 → 0. (21)

Meanwhile, for q1 ∈ {2e1, 2e2, . . . , 2ed} and q2 ∈ {2e′1, 2e′2, . . . , 2e′K−1}, we get

1

D2(Gn, G∗)
·
∑

j:|Cj |>1

∑

i∈Cj

exp(βn
0i) ·

K−1∑

ℓ=1

∥∆bnijℓ∥2 → 0. (22)

It follows from equations (20), (21) and (22) that

1

D2(Gn, G∗)
·
∑

j:|Cj |>1

∑

i∈Cj

exp(βn
0i) ·

[
∥∆βn

1ij∥2 +
K−1∑

ℓ=1

(|∆anijℓ|2 + ∥∆bnijℓ∥2)
]
→ 0. (23)

Note that

k∗∑

j=1

|Un
0d,0K−1

(j)|
D2(Gn, G∗)

=
1

D2(Gn, G∗)
·

k∗∑

j=1

∣∣∣∣∣∣
∑

i∈Cj

exp(βn
0i)− exp(β∗

0j)

∣∣∣∣∣∣
→ 0. (24)

By taking the sum of limits in equations (19), (23) and (24), we deduce that 1 = D2(Gn, G∗)/D2(Gn, G∗) → 0 as
n → ∞, which is a contradiction. Thus, at least one among the limits of Un

q1,q2(j)/D2(Gn, G∗) and Wn
γ (j)/D2(Gn, G∗)

is non-zero.

Step 3. Finally, we will leverage Fatou’s lemma to point out a contradiction to the result in Step 2.

Let us denote by mn the maximum of the absolute values of Un
q1,q2(j)/D2(Gn, G∗) and Wn

γ (j)/D2(Gn, G∗) for j ∈ [k∗],
0 ≤ |q1|+ |q2| ≤ 2 + 2 · 1{|Cj |>1} and 0 ≤ |γ| ≤ 1 + 1{|Cj |>1}. Then, it follows from the Fatou’s lemma that

0 = lim
n→∞

EX [2V (gGn(·|X), gG∗(·|X))]

mnD2(Gn, G∗)
≥
∫ K∑

s=1

lim inf
n→∞

|gGn(Y = s|X)− gG∗(Y = s|X)|
mnD2(Gn, G∗)

dX ≥ 0.

As a result, we get that |gGn
(Y = s|X) − gG∗(Y = s|X)|/[mnD2(Gn, G∗)] converges to zero, which implies that

Tn(s)/[mnD2(Gn, G∗)] → 0 as n → ∞ for any s ∈ [K] and almost surely X . Let Un
q1,q2(j)/[mnD2(Gn, G∗)] →

τq1,q2(j) and Wn
γ (j) → ηγ(j) as n approaches infinity, then the previous result indicates that

k∗∑

j=1

2+2·1{|Cj |>1}∑

|q1|+|q2|=0

τq1,q2(j)×Xq1 exp((β∗
1j)

⊤X)
∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j )

+

k∗∑

j=1

1+1{|Cj |>1}∑

|γ|=0

ηγ(j)×Xγ exp((β∗
1j)

⊤X)gG∗(Y = s|X) = 0. (25)

for any s ∈ [K] and almost surely X . Here, at least one among τq1,q2(j) and ηγ(j) is different from zero. Assume the set

F : =

{
Xq1 exp((β∗

1j)
⊤X)

∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j ) : j ∈ [k∗], 0 ≤ |q1|+ |q2| ≤ 2 + 2 · 1{|Cj |>1}

}

∪
{
Xγ exp((β∗

1j)
⊤X)gG∗(Y = s|X) : j ∈ [k∗], 0 ≤ |γ| ≤ 1 + 1{|Cj |>1}

}
(26)

is linearly independent, we deduce that τq1,q2(j) = ηγ(j) = 0 for any j ∈ [k∗], 0 ≤ |q1| + |q2| ≤ 2 + 2 · 1{|Cj |>1} and
0 ≤ |γ| ≤ 1 + 1{|Cj |>1}, which is a contradiction.
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Thus, it suffices to show that F is a linearly independent set to attain the local inequality in equation (13). In particular,
assume that equation (25) holds true for any s ∈ [K] and almost surely X , we will show that τq1,q2(j) = ηγ(j) = 0 for any
j ∈ [k∗], 0 ≤ |q1|+ |q2| ≤ 2 + 2 · 1{|Cj |>1} and 0 ≤ |γ| ≤ 1 + 1{|Cj |>1}. Firstly, we rewrite this equation as follows:

k∗∑

j=1

1+1{|Cj |>1}∑

|ω|=0

[ 2+2·1{|Cj |>1}−|ω|∑

|q2|=0

τq1,q2(j)
∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j ) + ηω(j)gG∗(Y = s|X)

]

×Xω exp((β∗
1j)

⊤X) = 0,

for any s ∈ [K] and almost surely X . Note that β∗
11, β

∗
12, . . . , β

∗
1k∗

are k∗ different values, therefore, it can be seen that
{Xω exp((β∗

1j)
⊤X) : j ∈ [k∗], 0 ≤ |ω| ≤ 1 + 1{|Cj |>1}} is a linearly independent set. As a result, we obtain that

2+2·1{|Cj |>1}−|ω|∑

|q2|=0

τq1,q2(j)
∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j ) + ηω(j)gG∗(Y = s|X) = 0,

for any j ∈ [k∗], 0 ≤ |ω| ≤ 1+1{|Cj |>1}, s ∈ [K] and almost surely X . Similarly, the following set is linearly independent:
{

∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j ), gG∗(Y = s|X) : 0 ≤ |q2| ≤ 2 + 2 · 1{|Cj |>1} − |ω|

}
,

we achieve that τq1,q2(j) = ηγ(j) = 0 for any j ∈ [k∗], 0 ≤ |q1|+ |q2| ≤ 2 + 2 · 1{|Cj |>1} and 0 ≤ |γ| ≤ 1 + 1{|Cj |>1},
which completes the proof of local structure.

Global Structure: As the local inequality in equation (13) holds true, there exists a positive constant ε′ that satisfies

inf
G∈Ok(Θ),

D2(G,G∗)≤ε′

EX [V (gG(·|X), gG∗(·|X))]/D2(G,G∗) > 0.

Therefore, it is sufficient to demonstrate that

inf
G∈Ok(Θ),

D2(G,G∗)>ε′

EX [V (gG(·|X), gG∗(·|X))]/D2(G,G∗) > 0. (27)

Assume by contrary that this inequality does not hold, then we can find a sequence G′
n ∈ Ok(Θ) such that D2(G

′
n, G∗) > ε′

and EX [V (gG′
n
(·|X), gG∗(·|X))] → 0 as n tends to infinity. It is worth noting that Θ is a compact set, therefore, we can

replace G′
n by its subsequence which converges to some mixing measure G′ ∈ Ok(Θ). Thus, we get that D2(G

′, G∗) > ε′.
On the other hand, according to Fatou’s lemma,

0 = lim
n→∞

EX [2V (gG′
n
(·|X), gG∗(·|X))]

D2(G′
n, G∗)

≥
∫ K∑

s=1

lim inf
n→∞

|gG′
n
(Y = s|X)− gG∗(Y = s|X)| dX.

Consequently, it follows that

∫ K∑

s=1

|gG′(Y = s|X)− gG∗(Y = s|X)| dX = 0,

which means that gG′(Y = s|X) = gG∗(Y = s|X) for any s ∈ [K] for almost surely X . Recall that the softmax
gating multinomial logistic mixture of experts is identifiable, we deduce that G′ ≡ G, which contradicts the results that
D2(G

′, G∗) > ε′. Hence, we obtain the global inequality in equation (27) and complete the proof.

A.2. Proof of Theorem 3.3

In Appendix A.2.1, we present the proof of Theorem 3.3 given the result of Proposition 3.2. Then, we provide the proof of
Proposition 3.2 in Appendix A.2.2.
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A.2.1. MAIN PROOF

Given a fixed constant M1 > 0 and a sufficiently small ε > 0 that we will choose later, it follows from the
result of Proposition 3.2 that there exists a mixing measure G′

∗ ∈ Ok(Θ) that satisfies Dr(G
′
∗, G∗) = 2ε and

EX [V (gG′
∗
(·|X), gG∗(·|X)) ≤ M1ε. Note that for any sequence Gn ∈ Ok(Θ), we have

2 max
G∈{G′

∗,G∗}
EgG [Dr(Gn, G)] ≥ EgG∗

[Dr(Gn, G∗)] + EgG′
∗
[Dr(Gn, G

′
∗)],

where EgG denotes the expectation taken with respect to the product measure with density gnG. Moreover, since the loss Dr

satisfies the weak triangle inequality, we can find a constant M2 > 0 such that

Dr(Gn, G∗) +Dr(Gn, G
′
∗) ≥ M2Dr(G∗, G

′
∗) = 2M2ε.

As a result, we observe that

max
G∈{G∗,G′

∗}
EgG [Dr(Gn, G)] ≥ 1

2

(
EgG∗

[Dr(Gn, G∗)] + EgG′
∗
[Dr(Gn, G

′
∗)]
)

≥ M2ε · inf
f1,f2

(
EgG∗

[f1] + EgG′
∗
[f2]
)
.

Here, f1 and f2 in the above infimum are measurable functions in terms of X1, X2, . . . , Xn that satisfy f1 + f2 = 1. By
the definition of Total Variation distance, the above infimum value is equal to 1− EX [V (gnG∗

(·|X), gnG′
∗
(·|X))]. Therefore,

we obtain that

max
G∈{G∗,G′

∗}
EpG

[Dr(Gn, G)] ≥ M2ε
(
1− EX [V (gnG∗

(·|X), gnG′
∗
(·|X))]

)

≥ M2ε
[
1−

√
1− (1−M2

1 ε
2)n
]
.

By choosing ε = n−1/2/M1, we have M2
1 ε

2 = 1
n , which implies that

sup
G∈Ok(Θ)\Ok∗−1(Θ)

EgG [Dr(Gn, G)] ≥ max
G∈{G∗,G′

∗}
EgG [Dr(Gn, G)] ≳ n−1/2,

for any mixing measure Gn ∈ Ok(Θ). Hence, we reach the conclusion of Theorem 3.3, which says that

inf
Gn∈Ok(Θ)

sup
G∈Ok(Θ)\Ok∗−1(Θ)

EgG [Dr(Gn, G)] ≳ n−1/2,

for any r ≥ 1.

A.2.2. PROOF OF PROPOSITION 3.2

From the conditions of Regime 2, we may assume without loss of generality that b∗1ℓ = 0d for any ℓ ∈ [K − 1].
To reach the conclusion of Proposition 3.2, we need to find a sequence Gn ∈ Ok(Θ) such that Dr(Gn, G∗)
and V (pGn

, pG∗)/Dr(Gn, G∗) both tend to zero when n approaches infinity. For that purpose, we choose Gn =∑k∗+1
i=1 exp(βn

0i)δ(βn
1i,a

n
11,...,a

n
1(K−1)

,bn11,...,b
n
1(K−1)

) where

• exp(βn
01) = exp(βn

02) =
1
2 exp(β

∗
01)− tn

2 , exp(βn
0i) = exp(β∗

0(i−1)) for any 3 ≤ i ≤ k∗ + 1;

• βn
11 = βn

12 = β∗
11 + cn1d, βn

1i = β∗
1(i−1) for any 3 ≤ i ≤ k∗ + 1;

• an1ℓ = an2ℓ = a∗1ℓ + cn, aniℓ = a∗(i−1)ℓ for any ℓ ∈ [K − 1] and 3 ≤ i ≤ k∗ + 1;

• bn1ℓ = bn2ℓ = b∗1ℓ, b
n
iℓ = b∗(i−1)ℓ for any ℓ ∈ [K − 1] and 3 ≤ i ≤ k∗ + 1,

where tn, cn > 0 will be chosen later such that tn → 0 and cn = O(tn) as n → ∞. Then, it can be verified that

Dr(Gn, G∗) = (K − 1)
[
exp(β∗

01)− tn

]
crn(1 + dr/2) + tn. (28)
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Now, we will show that EX [V (gGn
(·|X), gG∗(·|X))]/Dr(Gn, G∗) vanishes as n → ∞. Let us reconsider the quantity

Tn(s) =
[∑k∗

j=1 exp((β
∗
1j)

⊤X + β∗
0j)
]
·
[
gGn

(Y = s|X)− gG∗(Y = s|X)
]

in equation (14) under the above setting of
Gn as follows:

Tn(s) =

2∑

i=1

exp(βn
0i)[u(Y = s|X;βn

1i, a
n
i , b

n
i )− u(Y = s|X;β∗

11, a
∗
1, b

∗
1)]

−
2∑

i=1

exp(βn
0i)[v(Y = s|X;βn

1i)− v(Y = s|X;β∗
11)]

+

(
2∑

i=1

exp(βn
0i)− exp(β∗

01)

)
[u(Y = s|X;β∗

11, a
∗
1, b

∗
1)− v(Y = s|X;β∗

11)]

:= An −Bn + En,

where u(Y = s|X;β1, a, b) := exp(β⊤
1 X)f(Y = s|X; a, b) and v(Y = s|X;β1) = exp(β⊤

1 X)gGn
(Y = s|X) for any

s ∈ [K]. Recall that we denote hℓ(X, aℓ, bℓ) := aℓ + b⊤ℓ X for any ℓ ∈ [K] and

f(Y = s|X; ai, bi) =
exp(ais + b⊤isX)

∑K
ℓ=1 exp(aiℓ + b⊤iℓX)

=
exp(hs(X, ais, bis))∑K
ℓ=1 exp(hℓ(X, aiℓ, biℓ))

.

Then, by means of Taylor expansion up to order r, we have

An =

2∑

i=1

exp(βn
0i)

r∑

|α|=1

1

α!
(βn

1i − β∗
11)

α1

K−1∏

ℓ=1

(aniℓ − a∗1ℓ)
α2ℓ(bniℓ − b∗1ℓ)

α3ℓ ·Xα1+
∑K−1

ℓ=1 α3ℓ exp((β∗
11)

⊤X)

× ∂
∑K−1

ℓ=1 (α2ℓ+|α3ℓ|)f

∂h
α21+|α31|
1 . . . ∂h

α2(K−1)+|α3(K−1)|
K−1

(Y = s|h∗
11, . . . , h

∗
1K) +R5(X,Y ),

Here, R5(X,Y ) is a Taylor remainder that satisfies R5(X,Y )/Dr(Gn, G∗) → 0 as n → ∞. Since b∗1ℓ = 0d for any
ℓ ∈ [K − 1], the derivatives of f with respect to h1, . . . , hK−1 in the above representation of An are constants depending
on (α2ℓ)

K−1
ℓ=1 and (α3ℓ)

K−1
ℓ=1 . Therefore, we can denote them as Cα2,α3 .

Additionally, since βn
1i − β∗

11 = 0d and bniℓ − b∗1ℓ = 0d for any ℓ ∈ [K − 1] and i ∈ {1, 2}, we can let α1 = 0d, α3ℓ = 0d,
and rewrite An as follows:

An =

r∑

|α1|+|α2|=1

2∑

i=1

exp(βn
0i)

α1!α2!
(βn

1i − β∗
11)

α1

K−1∏

ℓ=1

(aniℓ − a∗1ℓ)
α2ℓXα1 exp((β∗

11)
⊤X)Cα2,0 +R5(X,Y )

=

r∑

|α1|+|α2|=1

exp(β∗
01)− tn

α1!α2!
· c|α1|+|α2|

n ·Xα1 exp((β∗
11)

⊤X)Cα2,0 +R5(X,Y ).

Similarly, by applying the Taylor expansion up to order r to Bn, we have

Bn =

r∑

|γ|=1

2∑

i=1

1

γ!
exp(βn

0i)(β
n
1i − β∗

11)
γ ·Xγ exp((β∗

11)
⊤X)gGn

(Y = s|X) +R6(X,Y )

=

r∑

|γ|=1

exp(β∗
01)− tn
γ!

· c|γ|n ·Xγ exp((β∗
11)

⊤X)gGn(Y = s|X) +R6(X,Y ),

where R6(X,Y ) is a Taylor remainder such that R6(X,Y )/Dr(Gn, G∗) → 0 as n → ∞.

Now, we aim to demonstrate that (An + En,1)/Dr(Gn, G∗) → 0 and (Bn + En,2)/Dr(Gn, G∗) → 0 as n → ∞, where
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we define

En,1 :=

(
2∑

i=1

exp(βn
0i)− exp(β∗

01)

)
u(Y = s|X;β∗

11, a
∗
1, b

∗
1),

En,2 :=

(
2∑

i=1

exp(βn
0i)− exp(β∗

01)

)
v(Y = s|X;β∗

11),

in which u(Y = s|X;β∗
11, a

∗
1, b

∗
1) = exp((β∗

11)
⊤X)f(Y = s|X; a∗1, b

∗
1) = exp((β∗

11)
⊤X)C0,0, and 0 < C0,0 < 1.

Part 1. Prove that (An + En,1)/Dr(Gn, G∗) → 0 as n → ∞.

Since X is a bounded set, we assume that ∥X∥ ≤ B for some positive constant M . Then, we can verify that

0 ≤ An + En,1 −R5(X,Y ) ≤
r∑

|α1|+|α2|=0

Ln
α1,α2

exp((β∗
11)

⊤X),

where we denote

Ln
α1,α2

:=





exp(β∗
01)− tn

α1!α2!
· c|α1|+|α2|

n ·B|α1|Cα2,0, |α1|+ |α2| > 0,

−tnC0,0, |α1|+ |α2| = 0.

Note that for α1, α2 such that 2 ≤ |α1|+ |α2| ≤ r, as cn = O(tn), we have Ln
α1,α2

/Dr(Gn, G∗) → 0 as n → ∞. Now,
we show that

∑1
|α1|+|α2|=0 L

n
α1,α2

= 0. Indeed, we have

1∑

|α1|+|α2|=0

Ln
α1,α2

= [exp(β∗
01)− tn] · (C0,0B +N)cn − C0,0tn,

where N :=
∑

|α2|=1 Cα2,0. By setting tn = B
nN and cn = 1

nN exp(β∗
01)−B , the above sum reduces to zero. Thus, we get

that

[An + En,1 −R5(X,Y )]/Dr(Gn, G∗) → 0,

as n → ∞. Recall that R5(X,Y )/Dr(Gn, G∗) → 0, we deduce that (An + En,1)/Dr(Gn, G∗) → 0 as n → ∞.

Part 2. Prove that (Bn + En,2)/Dr(Gn, G∗) → 0 as n → ∞.

It is worth noting that

0 ≤ Bn + En,2 −R6(X,Y ) ≤
r∑

|γ|=0

Jn
γ exp((β∗

11)
⊤X)gGn

(Y = s|X),

where we denote

Jn
γ :=





exp(β∗
01)− tn
γ!

· c|γ|n B|γ|, |γ| > 0,

−tn, |γ| = 0.

For 2 ≤ |γ| ≤ r, we have that Jn
γ /Dr(Gn, G∗) → 0 as n → ∞. Additionally, we have

1∑

|γ|=0

Jn
γ = [exp(β∗

01)− tn] · cn ·B − tn = 0.

As a result, we get that

[Bn + En,2 −R6(X,Y )]/Dr(Gn, G∗) → 0,
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as n → ∞. Since R6(X,Y )/Dr(Gn, G∗) → 0, we obtain that (Bn + En,2)/Dr(Gn, G∗) → 0 as n → ∞.

Putting the results of Part 1 and Part 2 together, we obtain that

Tn(s)

Dr(Gn, G∗)
=

An −Bn + En

Dr(Gn, G∗)
→ 0,

which indicates that EX [V (gGn
(·|X), gG∗(·|X))]/Dr(Gn, G∗) → 0 as n → ∞. Furthermore, it follows from equation (28)

that Dr(Gn, G∗) → 0 as n → ∞. Hence, we reach the conclusion of Proposition 3.2.

A.3. Proof of Theorem 4.4

To reach the desired conclusion in Theorem 4.4, we need to show the following key inequality:

inf
G∈Ok(Θ)

EX [V (g̃G(·|X), g̃G∗(·|X))]/D2(G,G∗) > 0, (29)

which is then divided into two parts named local structure and global structure. Since the global structure can be argued
similarly to that in Appendix A.1 with a note that the modified softmax gating multinomial logistic MoE model is identifiable
(see Proposition 4.2), the proof for it is omitted in this appendix.

Local Structure: For this part, we use the proof by contradiction method to show that

lim
ε→0

inf
G∈Ok(Θ),

D2(G,G∗)≤ε

EX [V (g̃G(·|X), g̃G∗(·|X))]/D2(G,G∗) > 0. (30)

Assume that this local inequality does not hold, then by utilizing some derivations in Appendix A.1, we proceed the
three-step framework as follows:

Step 1. First of all, by deriving in the same fashion as in equation (14), we get the following decomposition of T̃n(s) :=[∑k∗
j=1 exp((β

∗
1j)

⊤X + β∗
0j)
]
·
[
g̃Gn

(Y = s|X)− g̃G∗(Y = s|X)
]
:

T̃n(s) =

k∗∑

j=1

∑

i∈Cj

exp(βn
0i)
[
ũ(Y = s|X;βn

1i, a
n
i , b

n
i )− ũ(Y = s|X;β∗

1j , a
∗
j , b

∗
j )
]

−
k∗∑

j=1

∑

i∈Cj

exp(βn
0i)
[
ṽ(Y = s|X;βn

1i)− ṽ(Y = s|X;β∗
1j)
]

+

k∗∑

j=1

(∑

i∈Cj

exp(βn
0i)− exp(β∗

0j)
)[

ũ(Y = s|X;β∗
1j , a

∗
j , b

∗
j )− ṽ(Y = s|X;β∗

1j)
]

:= An −Bn + En,

where we define

ũ(Y = s|X;β1i, ai, bi) := exp(β⊤
1iM(X)) · f(Y = s|X; ai, bi),

ṽ(Y = s|X;β1i) := exp(β⊤
1iM(X)) · gGn

(Y = s|X).

for any s ∈ [K]. Next, we will apply first order and second order Taylor expansions to two terms in the following sum:

An =
∑

j:|Cj |=1

∑

i∈Cj

exp(βn
0i)
[
ũ(Y = s|X;βn

1i, a
n
i , b

n
i )− ũ(Y = s|X;β∗

1j , a
∗
j , b

∗
j )
]

+
∑

j:|Cj |>1

∑

i∈Cj

exp(βn
0i)
[
ũ(Y = s|X;βn

1i, a
n
i , b

n
i )− ũ(Y = s|X;β∗

1j , a
∗
j , b

∗
j )
]

:= An,1 +An,2.
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For the first term, we get that

An,1 =
∑

j:|Cj |>1

∑

i∈Cj

exp(βn
0i)
∑

|α|=1

1

α!
(∆βn

1ij)
α1

K−1∏

ℓ=1

(∆anijℓ)
α2ℓ(∆bnijℓ)

α3ℓ · [M(X)]α1X
∑K−1

ℓ=1 α3ℓ

× exp((β∗
1j)

⊤M(X)) · ∂
∑K−1

ℓ=1 (α2ℓ+|α3ℓ|)f

∂h
α21+|α31|
1 . . . ∂h

α2(K−1)+|α3(K−1)|
K−1

(Y = s|X; a∗j , b
∗
j ) + R̃1(X,Y ),

where R̃1(X,Y ) is a Taylor remainder such that R̃1(X,Y )/D2(Gn, G∗) → 0 as n → ∞. Let q2 = (α2ℓ + |α3ℓ|)K−1
ℓ=1 ∈

NK−1, q3 =
∑K−1

ℓ=1 α3ℓ ∈ Nd and q4 = α1 ∈ Nd, we rewrite An,1 as

An,1 =
∑

j:|Cj |=1

∑

|q4|+|q2|=1

|q2|∑

|q3|=0

∑

i∈Cj

∑

α∈Iq2,q3,q4

exp(βn
0i)

α!
(∆βn

1ij)
α1

K−1∏

ℓ=1

(∆anijℓ)
α2ℓ(∆bnijℓ)

α3ℓ

× [M(X)]q4Xq3 exp((β∗
1j)

⊤M(X)) · ∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j ) + R̃1(X,Y ),

where we define

Iq2,q3,q4 :=
{
α = (α1, α21, . . . , α2(K−1), α31, . . . , α3(K−1)) : α1 = q4,

K−1∑

ℓ=1

α3ℓ = q3, (α2ℓ + |α3ℓ|)K−1
ℓ=1 = q2

}
.

For the second term An,2, we have

An,2 =
∑

j:|Cj |>1

2∑

|q4|+|q2|=1

|q2|∑

|q3|=0

∑

i∈Cj

∑

α∈Iq2,q3,q4

exp(βn
0i)

α!
(∆βn

1ij)
α1

K−1∏

ℓ=1

(∆anijℓ)
α2ℓ(∆bnijℓ)

α3ℓ

× [M(X)]q4Xq3 exp((β∗
1j)

⊤M(X)) · ∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j ) + R̃2(X,Y ),

where R̃2(X,Y ) is a Taylor remainder such that R̃2(X,Y )/D2(Gn, G∗) → 0 when n → ∞.

Meanwhile, by arguing similarly, we can decompose Bn as

Bn =
∑

j:|Cj |=1

∑

|γ|=1

∑

i∈Cj

exp(βn
0i)

γ!
(∆βn

1ij)
γ × [M(X)]γ exp((β∗

1j)
⊤M(X))gGn

(Y = s|X) + R̃3(X,Y )

+
∑

j:|Cj |>1

2∑

|γ|=1

∑

i∈Cj

exp(βn
0i)

γ!
(∆βn

1ij)
γ × [M(X)]γ exp((β∗

1j)
⊤M(X))gGn

(Y = s|X) + R̃4(X,Y ),

where R̃3(X,Y ) and R̃4(X,Y ) are Taylor remainders such that their ratios to D2(Gn, G∗) vanish as n approaches infinity.

Combine the above results, we deduce that T̃n(s) can be represented as follows:

T̃n(s) =

k∗∑

j=1

1+1{|Cj |>1}∑

|q4|+|q2|=0

|q2|∑

|q3|=0

Zn
q2,q3,q4(j)× [M(X)]q4Xq3 exp((β∗

1j)
⊤M(X))

∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j )

+

k∗∑

j=1

1+1{|Cj |>1}∑

|γ|=0

Wn
γ (j)× [M(X)]γ exp((β∗

1j)
⊤M(X))gGn(Y = s|X) + R̃(X,Y ), (31)

where R̃(X,Y ) is the sum of Taylor remainders such that R̃(X,Y )/D2(Gn, G∗) → 0 as n → ∞ and

Zn
q2,q3,q4(j) =

{∑
i∈Cj

∑
α∈Iq2,q3,q4

exp(βn
0i)

α! (∆βn
1ij)

α1
∏K−1

ℓ=1 (∆anijℓ)
α2ℓ(∆bnijℓ)

α3ℓ , (q2, q3, q4) ̸= (0K−1,0d,0d),∑
i∈Cj

exp(βn
0i)− exp(β∗

0j), (q2, q3, q4) = (0K−1,0d,0d),
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and

Wn
γ (j) =

{
−∑i∈Cj

exp(βn
0i)

γ! (∆βn
1ij)

γ , |γ| ≠ 0d,

−∑i∈Cj
exp(βn

0i) + exp(β∗
0j), |γ| = 0d,

for any j ∈ [k∗].

Step 2. Subsequently, we will show that at least one among Zn
q2,q3,q4(j)/D2(Gn, G∗) does not approach zero as n tends to

infinity. Assume by contrary that all of them vanish as n → ∞, then we consider some typical tuples (q2, q3, q4). Firstly, by
taking the sum of Zn

q2,q3,q4(j) for j ∈ [k∗] : |Cj | > 1 (resp. j ∈ [k∗] : |Cj | = 1) and (q2, q3, q4) ∈ {(0K−1,0d, 2ei) : i ∈
[d]} (resp. (q2, q3, q4) ∈ {(0K−1,0d, ei) : i ∈ [d]}) where ei := (0, . . . , 0, 1︸︷︷︸

i-th

, 0, . . . , 0) ∈ Rd, we get

1

D2(Gn, G∗)
·
∑

j:|Cj |>1

∑

i∈Cj

exp(βn
0i)∥∆βn

1ij∥2 → 0,

1

D2(Gn, G∗)
·
∑

j:|Cj |=1

∑

i∈Cj

exp(βn
0i)∥∆βn

1ij∥ → 0. (32)

For (q2, q3, q4) ∈ {(0K−1, 2ei,0d) : i ∈ [d]} (resp. (q2, q3, q4) ∈ {(0K−1, ei,0d) : i ∈ [d]}) where , we obtain that

1

D2(Gn, G∗)
·
∑

j:|Cj |>1

∑

i∈Cj

exp(βn
0i)

K−1∑

ℓ=1

∥∆bnijℓ∥2 → 0,

1

D2(Gn, G∗)
·
∑

j:|Cj |=1

∑

i∈Cj

exp(βn
0i)

K−1∑

ℓ=1

∥∆bnijℓ∥ → 0. (33)

On the other hand, for (q2, q3, q4) ∈ {(e′ℓ,0d,0d) : ℓ ∈ [K − 1]} (resp. (q2, q3, q4) ∈ {(e′ℓ,0d,0d) : ℓ ∈ [K − 1]}) where
e′ℓ := (0, . . . , 0, 1︸︷︷︸

ℓ-th

, 0, . . . , 0) ∈ RK−1, we have

1

D2(Gn, G∗)
·
∑

j:|Cj |>1

∑

i∈Cj

exp(βn
0i)

K−1∑

ℓ=1

∥∆anijℓ∥2 → 0, (34)

1

D2(Gn, G∗)
·
∑

j:|Cj |=1

∑

i∈Cj

exp(βn
0i)

K−1∑

ℓ=1

∥∆anijℓ∥ → 0. (35)

Additionally, when (q2, q3, q4) = (0K−1,0d,0d), it follows that

k∗∑

j=1

|Zn
0K−1,0d,0d

(j)|
D2(Gn, G∗)

=
1

D2(Gn, G∗)
·

k∗∑

j=1

∣∣∣∣∣∣
∑

i∈Cj

exp(βn
0i)− exp(β∗

0j)

∣∣∣∣∣∣
→ 0. (36)

It is induced from the limits in equations (32), (33), (34) and (36) that 1 = D2(Gn, G∗)/D2(Gn, G∗) → 0 when n → ∞,
which is a contradiction. Thus, at least one among Zn

q2,q3,q4(j)/D2(Gn, G∗) does not go to zero as n → ∞.

Step 3. Now, we denote m̃n as the maximum of the absolute values of Zn
q2,q3,q4(j)/D2(Gn, G∗) and Wn

γ (j)/D2(Gn, G∗)
for any j ∈ [k∗], 0 ≤ |q2|+ |q4| ≤ 1 + 1{|Cj |>1}, 0 ≤ |q3| ≤ |q2| and 0 ≤ |γ| ≤ 1 + 1{|Cj |>1}. Since at least one among
Zn
q2,q3,q4(j)/D2(Gn, G∗) does not go to zero as n → ∞, we deduce that m̃n ̸→ 0, and therefore, 1/m̃n ̸→ ∞. Then, we

denote

Zn
q2,q3,q4(j)/[mnD2(Gn, G∗)] → τ̃q2,q3,q4(j)

Wn
γ (j)/D2(Gn, G∗) → η̃γ(j)
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as n → ∞. Here, at least one among τ̃q2,q3,q4(j) for j ∈ [k∗], 0 ≤ |q2| + |q4| ≤ 1 + 1{|Cj |>1} and 0 ≤ |q3| ≤ |q2| is
non-zero. By invoking the Fatou’s lemma, we have that

0 = lim
n→∞

EX [2V (g̃Gn
(·|X), g̃G∗(·|X))]

mnD2(Gn, G∗)
≥
∫ K∑

s=1

lim inf
n→∞

|g̃Gn
(Y = s|X)− g̃G∗(Y = s|X)|

mnD2(Gn, G∗)
dX ≥ 0,

which indicates that [g̃Gn
(Y = s|X)− g̃G∗(Y = s|X)]/[m̃nD2(Gn, G∗)] tends to zero as n goes to infinity for any s ∈ [K]

and almost surely X . This result is equivalent to

T̃n(s)/[m̃nD2(Gn, G∗)] → 0, (37)

as n → ∞, for any s ∈ [K]. Putting the results in equations (31) and (37) together, we have

k∗∑

j=1

1+1{|Cj |>1}∑

|q4|+|q2|=0

|q2|∑

|q3|=0

τ̃q2,q3,q4(j)× [M(X)]q4Xq3 exp((β∗
1j)

⊤M(X))
∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j )

+

k∗∑

j=1

1+1{|Cj |>1}∑

|γ|=0

η̃γ(j)× [M(X)]γ exp((β∗
1j)

⊤M(X))gG∗(Y = s|X) = 0. (38)

Regime 1: For any j ∈ [k∗], there exists an index ℓ ∈ [K − 1] such that b∗jℓ ̸= 0d.

By using the same arguments for proving the set F in equation (26) is linearly independent for almost surely X , we get that
the following set also admits that property:
{
[M(X)]q4Xq3 exp((β∗

1j)
⊤M(X))

∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j ),

[M(X)]γ exp((β∗
1j)

⊤M(X))gG∗(Y = s|X) : j ∈ [k∗], 0 ≤ |q2|+ |q4|, |γ| ≤ 1 + 1{|Cj |>1}, 0 ≤ |q3| ≤ |q2|
}
.

As a result, it follows that τ̃q2,q3,q4(j) = η̃γ(j) = 0 for any j ∈ [k∗], 0 ≤ |q2|+ |q4|, |γ| ≤ 1+1{|Cj |>1} and 0 ≤ |q3| ≤ |q2|,
which contradicts the fact that at least one among τ̃q2,q3,q4(j) is different from zero.

Regime 2: There exists an index j ∈ [k∗] such that b∗jℓ = 0d for any ℓ ∈ [K − 1].

Note that equation (38) can be rewritten as

k∗∑

j=1

P (j)(X) exp((β∗
1j)

⊤M(X)) +

k∗∑

j=1

Q(j)(X) exp((β∗
1j)

⊤M(X))gG∗(Y = s|X) = 0,

where we define

P (j)(X) :=

1+1{|Cj |>1}∑

|q4|+|q2|=0

|q2|∑

|q3|=0

τ̃q2,q3,q4(j)X
q3 [M(X)]q4 · ∂|q2|f

∂hq21
1 . . . ∂h

q2(K−1)

K−1

(Y = s|X; a∗j , b
∗
j ),

Q(j)(X) :=

1+1{|Cj |>1}∑

|γ|=0

η̃γ(j)[M(X)]γ .

Since the following set is linearly independent for almost surely X:
{
exp((β∗

1j)
⊤M(X)), exp((β∗

1j)
⊤M(X))gG∗(Y = s|X) : j ∈ [k∗]

}
,

we achieve that P (j)(X) = Q(j)(X) = 0 for any j ∈ [k∗] for almost surely X . Then, it follows from the formulation of
P (j)(X) that

1+1{|Cj |>1}∑

|q4|+|q2|=0

|q2|∑

|q3|=0

τ̃q2,q3,q4(j)X
q3 [M(X)]q4 = 0,
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for any j ∈ [k∗] for almost surely X . It can be seen from the above equation that 0 ≤ |q3| + |q4| ≤ |q2| + |q4| ≤
1 + 1{|Cj |>1} ≤ 2. Moreover, by definition of function M (see Definition 4.1), the set

{
Xp[M(X)]q : p, q ∈ Nd, 0 ≤

|p| + |q| ≤ 2
}

is linearly independent for almost surely X . As a consequence, we achieve that τ̃q2,q3,q4(j) = 0 for any
j ∈ [k∗], 0 ≤ |q2|+ |q4|, |γ| ≤ 1 + 1{|Cj |>1} and 0 ≤ |q3| ≤ |q2|, contradicting the fact that at least one among τ̃q2,q3,q4(j)
is non-zero.

Combine the results of the above two regimes, we reach the bound in equation (30).

B. Proofs for Convergence Rates of Density Estimation
In this appendix, we present the proof of Propostion 2.2 in Appendix B.1, while that for Proposition 4.3 is given in
Appendix B.2.

B.1. Proof of Proposition 2.2

In this appendix, we will firstly introduce key results on density estimation with MLE which are mainly based on (van de
Geer, 2000), and then provide the proof of Proposition 2.2 at the end.

B.1.1. KEY RESULTS

To begin with, it is necessary to define some notations that will be used in our presentation. First, we define Pk(Θ) :=
{gG(Y |X) : G ∈ Ok(Θ)} as the set of conditional density functions of all mixing measures belonging to Ok(Θ). In
addition, let N(ε,Pk(Θ), ∥ · ∥1) be the covering number (van de Geer, 2000) of metric space (Pk(Θ), ∥ · ∥1) while
HB(ε,Pk(Θ), h) be the bracketing entropy (van de Geer, 2000) of Pk(Θ) under the Hellinger distance. Then, the following
result gives us the upper bound of these quantities:

Lemma B.1. For any bounded set Θ and ε ∈ (0, 1/2), we have

(i) logN(ε,Pk(Θ), ∥ · ∥1) ≲ log(1/ε);

(ii) HB(ε,Pk(Θ), h) ≲ log(1/ε).

Proof of Lemma B.1. Part (i) Firstly, we define Ω := {(a, b) ∈ RK × Rd×K : (β0, β1, a, b) ∈ Θ}. Since Θ is a compact
set, then Ω is also compact. Therefore, Ω admits an ε-cover of size T2 denoted by Ωε. In addition, we also define
∆ := {(β0, β1) ∈ R× Rd : (β0, β1, a, b) ∈ Θ}, and ∆ε as an ε-cover of ∆. It can be validated that

|Ωε| ≲ O(ε−K(d+1)k), |∆ε| ≲ O(ε−(d+1)k).

Next, given a mixing measure G =
∑k′

i=1 exp(β0i)δ(β1i,ai,bi) ∈ Ok(Θ), where k′ ∈ [k], we define G̃ :=
∑k′

i=1 exp(β0i)δ(β1i,ai,bi)
in which (ai, bi) ∈ Ωε such that it is the closet point to (ai, bi) for any i ∈ [k′]. Addition-

ally, we also consider the mixing measure G :=
∑k′

i=1 exp(β0i)δ(β1i,ai,bi)
, where (β0i, β1i) ∈ ∆ε is the closest point to

(β0i, β1i). By this construction, it can be justified that gG ∈ H, where we define

H :=
{
gG ∈ Pk(Θ) : (β0i, β1i) ∈ ∆ε, (ai, bi) ∈ Ωε, ∀i ∈ [k]

}
.

Now, we show that H is an ε-cover of the metric space (Pk(Ω), ∥ · ∥1) but not necessarily the smallest one. For that purpose,
we aim to find a bound for the term ∥gG − gG∥1. According to the triangle inequality, we have

∥gG − gG∥1 ≤ ∥gG − gG̃∥1 + ∥gG̃ − gG∥1.
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Regarding the first term in the above right hand side,

∥gG̃ − gG∥1 =

K∑

s=1

∫

X

∣∣∣gG(Y |X)− gG̃(Y |X)
∣∣∣dX

=

K∑

s=1

∫

X

k′∑

i=1

Softmax(β⊤
1iX + β0i) ·

∣∣∣f(Y = s|X; ai, bi)− f(Y = s|X; ai, bi)
∣∣∣dX

≤
K∑

s=1

∫

X

k′∑

i=1

∣∣∣Softmax(ais + b⊤isX)− Softmax(ais + b
⊤
isX)

∣∣∣dX.

Since Softmax is a differentiable function, it is also a L-Lipschitz function where L > 0. Additionally, as X is a bounded
function, we may assume that ∥X∥ ≤ B for some constant B > 0. As a result, we have

∥gG̃ − gG∥1 ≤
K∑

s=1

k′∑

i=1

L ·
(
|ais − ais|+ ∥X∥ · ∥bis − bis∥

)

≤ Kk′L · (ε+Bε) ≲ ε.

Similarly, the second term is bounded as

∥gG̃ − gG∥1 =

K∑

s=1

∫

X

k′∑

i=1

∣∣∣Softmax(β⊤
1iX + β0i)− Softmax(β

⊤
1iX + β0i)

∣∣∣ · f(Y |X; ais, bis)dX

≤
K∑

s=1

k′∑

i=1

L ·
(
∥β1i − β1i∥ · ∥X∥+ |β0i − β0i|

)

≤ Kk′L(Bε+ ε) ≲ ε.

Consequently, we get ∥gG − gG∥1 ≲ ε. This result implies that H is an ε-cover of the metric space (Pk(Θ), ∥ · ∥1). Then, it
follows from the definition of the covering number that

N (ε,Pk(Θ), ∥ · ∥1) ≤ |H| = |Θε| × |∆ε| = O(ε−K(d+1)k)×O(ε−(d+1)k) = O(ε−(K+1)(d+1)k),

which is equivalent to logN (ε,Pk(Θ), ∥ · ∥1) ≤ log(1/ε).

Part (ii) Given ε > 0 and let η ≤ ε that we will choose later. Assume that Pk(Θ) has an η-cover denoted by {p1, p2, . . . , pN}
where N := N(η,Pk(Θ), ∥ · ∥1). Next, we start to construct brackets of the form [Li(Y |X), Ui(Y |X)] for all i ∈ [N ] as
below:

Li(Y |X) := max{pi(Y |X)− η, 0},
Ui(Y |X) := max{pi(Y |X) + η, 1}.

By this construction, we can verify that Pk(Θ) ⊂ ⋃N
i=1[Li(Y |X), Ui(Y |X)] and Ui(Y |X) − Li(Y |X) ≤ min{2η, 1}.

Additionally, we also have

∥Ui(·|X)− Li(·|X)∥1 =

K∑

ℓ=1

[Ui(Y = ℓ|X)− Li(Y = ℓ|X)] ≤ 2Kη.

By definition, since HB(2Kη,Pk(Θ), ∥ · ∥1) is the logarithm of the smallest number of brackets of size 2Kη required for
covering Pk(Θ), we obtain that

HB(2Kη,Pk(Θ), ∥ · ∥1) ≤ logN(η,Pk(Θ), ∥ · ∥1) ≤ log(1/η),

where the last inequality follows from the result of Part (i). Thus, by choosing η = ε/(2K), we have HB(ε,Pk(Θ), ∥·∥1) ≲
log(1/ε). Furthermore, as h ≤ ∥ · ∥1, we achieve the desired conclusion:

HB(ε,Pk(Θ), h) ≲ log(1/ε).

Hence, the proof is completed.
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Subsequently, we denote

Pk(Θ) := {g(G+G∗)/2(Y |X) : G ∈ Ok(Θ)},
P1/2

k (Θ) := {g1/2(G+G∗)/2
(Y |X) : G ∈ Ok(Θ)}.

For any ξ > 0, the Hellinger ball centered around the true conditional density gG∗(Y |X) and intersected with the set

P1/2

k (Θ) is defined as

P1/2

k (Θ, ξ) := {g1/2 ∈ Pk(Θ) : EX [h(g(·|X), gG∗(·|X))] ≤ ξ}.

Moreover, Geer et al. (van de Geer, 2000) proposes the following term to capture the size of the Hellinger ball P1/2

k (Θ, ξ):

JB(ξ,P
1/2

k (Θ, ξ)) :=

∫ ξ

ξ2/213
H

1/2
B (t,P1/2

k (Θ, t), ∥ · ∥)dt ∨ ξ, (39)

where t∨ ξ := max{t, ξ}. Now, let us recall below an important result regarding the density estimation rate in (van de Geer,
2000) with adapted notations of this paper.

Lemma B.2 (Theorem 7.4, (van de Geer, 2000)). Take Ψ(ξ) ≥ JB(ξ,P
1/2

k (Θ, ξ)) such that Ψ(ξ)/ξ2 is a non-increasing
function of ξ. Then, given a universal constant c and a sequence (ξn) that satisfies

√
nξ2n ≥ cΨ(ξn), we get

P
(
EX [h(gĜn

(·|X), gG∗(·|X))] > ξ
)
≤ c exp

(
− nξ2

c2

)
,

for any ξ ≥ ξn.

The proof of this Lemma is in (van de Geer, 2000).

B.1.2. MAIN PROOF

It is worth noting that HB(t,P
1/2

k (Θ, t), ∥ · ∥) ≤ HB(t,Pk(Θ), h) for any t > 0. Then, equation (39) indicates that

JB(ξ,P
1/2

k (Θ, ξ)) ≤
∫ ξ

ξ2/213
H

1/2
B (t,P1/2

k (Θ, t), h)dt ∨ ξ ≲
∫ ξ

ξ2/213
log(1/t)dt ∨ ξ,

where the second inequality follows from part (ii) of Lemma B.1. By setting Ψ(ξ) = ξ
√
log(1/ξ) such that Ψ(ξ) ≥

JB(ξ,P
1/2

k (Θ, ξ)) and ξn = ξ
√
log(1/ξ), Lemma B.2 gives us that

P
(
EX [h(gĜn

(·|X), gG∗(·|X))] > ξ
)
≤ c exp

(
− nξ2

c2

)
,

where C and c are universal positive constants depending only on Θ. Hence, the proof is completed.

B.2. Proof of Proposition 4.3

From Definition 4.1, since M(X) is a bounded function of X , the arguments presented in Appendix B.1 still hold under the
modified softmax gating multinomial logistic mixture of experts.

C. Proofs for the Identifiablity of the (Modified) Softmax Gating Multinomial Logistic MoE
In this appendix, we provide the proofs of Proposition 2.1 and Proposition 4.2 in Appendix C.1 and Appendix C.2,
respectively.
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C.1. Proof of Proposition 2.1

From the assumption of Proposition 2.1, the following equation holds for any s ∈ [K] and almost surely X ∈ X :
k∑

i=1

exp((β1i)
⊤X + β0i)∑k

j=1 exp((β1i)⊤X + β0i)
· exp(ais + (bis)

⊤X)
∑K

ℓ=1 exp(aiℓ + (biℓ)⊤X)

=

k′∑

i=1

exp((β′
1i)

⊤X + β′
0i)∑k′

j=1 exp((β
′
1i)

⊤X + β′
0i)

· exp(a′is + (b′is)
⊤X)

∑K
ℓ=1 exp(a

′
iℓ + (b′iℓ)

⊤X)
. (40)

According to (Grün & Leisch, 2008), the multinomial logistic mixtures are identifiable, which implies that two mixing
measures G and G′ share the number of experts and the gating set of the mixing measure, i.e. k = k′ and

{
exp((β1i)

⊤X + β0i)∑k
j=1 exp((β1i)⊤X + β0i)

: i ∈ [k]

}
≡
{

exp((β′
1i)

⊤X + β′
0i)∑k

j=1 exp((β
′
1i)

⊤X + β′
0i)

: i ∈ [k]

}
,

for almost surely X ∈ X . WLOG, we assume that

exp((β1i)
⊤X + β0i)∑k

j=1 exp((β1i)⊤X + β0i)
=

exp((β′
1i)

⊤X + β′
0i)∑k

j=1 exp((β
′
1i)

⊤X + β′
0i)

,

for any i ∈ [k]. As β1k = β′
1k = 0d and β0k = β′

0k = 0, the above result leads to β1i = β′
1i and β0i = β′

0i for all i ∈ [k].
Thus, the equation (40) becomes

k∑

i=1

exp(β0i)u(Y = s|X;β1i, ai, bi) =

k∑

i=1

exp(β0i)u(Y = s|X;β1i, a
′
i, b

′
i), (41)

for any s ∈ [K] and almost surely X ∈ X , where u(Y = s|X;β1i, ai, bi) := exp(β⊤
1iX) · exp(ais + (bis)

⊤X)
∑K

ℓ=1 exp(aiℓ + (biℓ)⊤X)
and

ai = (ai1, ai2, . . . , aiK), bi = (bi1, bi2, . . . , biK).

Subsequently, we will consider r subsets of the set [k], denoted by S1, S2, . . . , Sr that satisfy the following property:
exp(β0i) = exp(β0i′) for any i, i′ ∈ St for t ∈ [r]. Therefore, we can rewrite equation (41) as

r∑

t=1

∑

i∈St

exp(β0i)u(Y = s|X;β1i, ai, bi) =

r∑

t=1

∑

i∈St

exp(β0i)u(Y = s|X;β1i, a
′
i, b

′
i),

for any s ∈ [K] and almost surely X ∈ X . It follows from the above equation that for each t ∈ [r], we get {(aiℓ +
(biℓ)

⊤X)Kℓ=1 : i ∈ St} ≡ {(a′iℓ + (b′iℓ)
⊤X)Kℓ=1 : i ∈ St} for almost surely X ∈ X . This leads to

{
(ai1, . . . , aiK , bi1, . . . , biK) : i ∈ St

}
≡
{
(a′i1, . . . , a

′
iK , b′i1, . . . , b

′
iK) : i ∈ St

}
.

Again, we may assume WLOG that (ai1, . . . , aiK , bi1, . . . , biK) = (a′i1, . . . , a
′
iK , b′i1, . . . , b

′
iK) for any i ∈ St. As a result,

we obtain that
r∑

t=1

∑

i∈St

exp(β0i)δ(β1i,ai1,...,aiK ,bi1,...,biK) =

r∑

t=1

∑

i∈St

exp(β′
0i)δ(β′

1i,a
′
i1,...,a

′
iK ,b′i1,...,b

′
iK).

In other words, we achieve that G ≡ G′, which completes the proof.

C.2. Proof of Proposition 4.2

According to the assumption of Proposition 4.2, the following equation holds for any s ∈ [K] and almost surely X ∈ X :
k∑

i=1

exp((β1i)
⊤M(X) + β0i)∑k

j=1 exp((β1i)⊤M(X) + β0i)
· exp(ais + (bis)

⊤X)
∑K

ℓ=1 exp(aiℓ + (biℓ)⊤X)

=

k′∑

i=1

exp((β′
1i)

⊤M(X) + β′
0i)∑k′

j=1 exp((β
′
1i)

⊤M(X) + β′
0i)

· exp(a′is + (b′is)
⊤X)

∑K
ℓ=1 exp(a

′
iℓ + (b′iℓ)

⊤X)
. (42)
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Since the multinomial logistic mixtures are identifiable (see (Grün & Leisch, 2008)), two mixing measures G and G′ admit
the same number of experts and the same gating set, i.e. k = k′ and

{
exp((β1i)

⊤M(X) + β0i)∑k
j=1 exp((β1i)⊤M(X) + β0i)

: i ∈ [k]

}
≡
{

exp((β′
1i)

⊤M(X) + β′
0i)∑k

j=1 exp((β
′
1i)

⊤M(X) + β′
0i)

: i ∈ [k]

}
,

for almost surely X ∈ X . WLOG, we assume that

exp((β1i)
⊤X + β0i)∑k

j=1 exp((β1i)⊤X + β0i)
=

exp((β′
1i)

⊤X + β′
0i)∑k

j=1 exp((β
′
1i)

⊤X + β′
0i)

,

for any i ∈ [k]. From the Definition 4.1, we know that M(X) is a bounded function of X . Moreover, since β1k = β′
1k = 0d

and β0k = β′
0k = 0, the above result implies that β1i = β′

1i and β0i = β′
0i for all i ∈ [k]. Therefore, the equation (42) can

be reformulated as follows:

k∑

i=1

exp(β0i)u(Y = s|X;β1i, ai, bi) =

k∑

i=1

exp(β0i)u(Y = s|X;β1i, a
′
i, b

′
i),

for any s ∈ [K] and almost surely X ∈ X , where u(Y = s|X;β1i, ai, bi) := exp(β⊤
1iX) · exp(ais + (bis)

⊤X)
∑K

ℓ=1 exp(aiℓ + (biℓ)⊤X)
and

ai = (ai1, ai2, . . . , aiK), bi = (bi1, bi2, . . . , biK). Then, we can apply the arguments used in Appendix C.1 to deduce that
G ≡ G′.

D. Simulation Studies
In this appendix, we carry out several numerical experiments to empirically verify our theoretical results regarding the
convergence rates of maximum likelihood estimation in the standard softmax gating multinomial logistic MoE model under
the Regime 1 in Appendix D.1. Meanwhile, under the Regime 2, we aim to empirically demonstrate the benefits of using
modified softmax gating functions over the standard softmax gating function in the parameter estimation problem of the
multinomial logistic MoE model in Appendix D.2.

D.1. Regime 1

Synthetic Data. We first sample the covariates X from the uniform distribution over [0, 1]. Then, we draw the response Y
from the following conditional density gG∗(Y = s|X) of a softmax gating binomial logistic mixture of k∗ = 2 experts:

gG∗(Y = s|X) :=
2∑

i=1

exp((β∗
1i)

⊤X + β∗
0i)∑2

j=1 exp((β
∗
1j)

⊤X + β∗
0j)

× exp(a∗is + (b∗is)
⊤X)

∑K
ℓ=1 exp(a

∗
iℓ + (b∗iℓ)

⊤X)
, (43)

for s ∈ [K], where K = 2. Here, the true mixing measure G∗ =
∑2

i=1 exp(β
∗
0i)δ(β∗

1i,a
∗
i1,a

∗
i2,b

∗
i1,b

∗
i2)

consists of k∗ = 2
components with parameters given in Table 2, which satisfy the assumptions of Regime 1.

Gating parameters Expert parameters

Class 1 Class 2

i = 1 (β∗
01, β

∗
11) = (1, 3) (a∗11, b

∗
11) = (−1, 2) (a∗12, b

∗
12) = (0, 0)

i = 2 (β∗
02, β

∗
12) = (0, 0) (a∗21, b

∗
21) = (1,−1) (a∗22, b

∗
22) = (0, 0)

Table 2. True parameters under the Regime 1.

Initialization. We then compute the MLE Ĝn w.r.t. with the number of components k ∈ {k∗ + 1, k∗ + 2} for each sample
using the EM algorithm (Dempster et al., 1977) with convergence criterion ε = 10−6 and 2000 maximum EM iterations.
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For each k ∈ {k∗ + 1, k∗ + 2}, we randomly assign elements of the set {1, 2, ..., k} into k∗ distinct sets S1, S2, . . . , Sk∗ ,
ensuring that each set contains at least one element. Moreover, we repeat this process for each replication. Following this,
for each i ∈ [k∗], we initialize the parameters by sampling from a Gaussian distribution with a mean centered around its true
counterpart and a small variance. For each of 200 different choices of sample size n between nmin = 104 and nmax = 105,
we generate 40 samples of size n. All the code for our simulation study was written in Python 3.9 on a standard Unix
machine.

Empirical Convergence Rates. Subsequently, we report the empirical means of the discrepancy D2 between Ĝn and G∗,
and the choices of k under the Regime 1 in Figure 1. It can be observed from Figures 1a and 1b that the empirical vanishing
rates of the average discrepancy D2(Ĝn, G∗) are of orders Õ(n−0.48) and Õ(n−0.43) when k = 3 and k = 4, respectively.
These rates are slightly slower than the theoretical rate of order Õ(n−0.5) in Theorem 3.1. The main reason is that there
has been only theoretical guarantee of global convergence for the parameter estimation under the mixture of experts with
covariate-free gating function (see (Kwon et al., 2021; Kwon & Caramanis, 2020; Kwon et al., 2019)), while that for the
softmax gating mixture of experts has remained missing in the literature. In order for the empirical vanishing rate to match
the theoretical one, the sample size n must be large enough to compensate for the global convergence problem.
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Figure 1. Two log-log scaled plots for the empirical convergence rates of the MLE Ĝn when the true model in equation (43) is over-
specified by a softmax gating binomial logistic mixture of k = 3 and k = 4 experts, respectively. In these figures, the empirical means of
the discrepancy D2(Ĝn, G∗) are illustrated by the blue curves, while the oranges dash-dotted lines represent for the least-squares fitted
linear regression lines.

D.2. Regime 2

Synthetic Data. We also generate the covariates X from the uniform distribution over [0, 1]. For the multinomial logistic
MoE model with standard softmax gating function, we draw the response Y from the conditional density gG∗(Y = s|X)
given in equation (43), while for the modified softmax gating function, we sample Y from the following conditional density:

g̃G∗(Y = s|X) :=

2∑

i=1

exp((β∗
1i)

⊤M(X) + β∗
0i)∑2

j=1 exp((β
∗
1j)

⊤M(X) + β∗
0j)

× exp(a∗is + (b∗is)
⊤X)

∑K
ℓ=1 exp(a

∗
iℓ + (b∗iℓ)

⊤X)
, (44)

where we consider the standard softmax gating function M(X) = X and M(X) = sigmoid(X). Next, while we keep the
formulation of the true mixing measure G∗ =

∑2
i=1 exp(β

∗
0i)δ(β∗

1i,a
∗
i1,a

∗
i2,b

∗
i1,b

∗
i2)

, the parameter values are slightly changed
to satisfy the assumptions of Regime 2. In particular, we set b∗21 = b∗22 = 0, while other parameters remains the same. More
details can be found in Table 3.

D.2.1. EMPIRICAL CONVERGENCE RATES OF THE VORONOI-BASED LOSS

Initialization. We first initialize fitted parameters in the same fashion as those in Appendix D.1.

Standard Gating Function. For k = 3 we choose 35 different values of sample size n between nmin ≈ 37 × 103 and
nmax = 105, while for k = 4 we select 28 different choices of sample size n between nmin ≈ 50× 103 and nmax = 105.
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Gating parameters Expert parameters

Class 1 Class 2

i = 1 (β∗
01, β

∗
11) = (1, 3) (a∗11, b

∗
11) = (−1, 2) (a∗12, b

∗
12) = (0, 0)

i = 2 (β∗
02, β

∗
12) = (0, 0) (a∗21, b

∗
21) = (1, 0) (a∗22, b

∗
22) = (0, 0)

Table 3. True parameters under the Regime 2.
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Figure 2. log-log scaled plots for the empirical convergence rates of the MLE Ĝn when the true model in equation (44) is over-specified
by a softmax gating binomial logistic mixture with M(X) = X and M(X) = sigmoid(X) of k = 3 and k = 4 experts, respectively. In
these figures, the empirical means of the discrepancy D2(Ĝn, G∗) are illustrated by the blue curves, while the oranges dash-dotted lines
represent for the least-squares fitted linear regression lines.

In both cases we generate the corresponding samples of size n.

Modified Gating Function. We employ M(X) = sigmoid(X) and conduct 40 experiments for each sample size, covering
a spectrum of 20 different sample sizes ranging from 104 to 105.

Empirical Convergence Rates. Subsequently, we report the empirical means of the discrepancy D2 between Ĝn and G∗,
and the choices of k under the Regime 2 for standard gating function and modified gating function in Figure 2. It can be
observed from Figures 2a and 2b that the empirical vanishing rates of the average discrepancy D2(Ĝn, G∗) are of orders
Õ(n−0.34) and Õ(n−0.21) when k = 3 and k = 4, respectively. These rates are slightly slower than the theoretical rate
of order Õ(n−1/2r) for some r ≥ 1 in Theorem 3.3. Moreover, for M(X) = sigmoid(X) as illustrated in Figures 2c and
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2d the utilization of M(X) = sigmoid(X) in the gating function resulted in an enhanced convergence rate of Õ(n−1/2)
for both k = 3 and k = 4. The main reasons are that the literature lacks a theoretical guarantee of global convergence for
parameter estimation under the softmax mixture of experts, and that the MLE Ĝn (which is the standard softmax mixture
function) takes a very long time to converge to the true mixture measure G∗ even when we use 2000 maximum number of
EM iterations, see more in Appendices D.1 and D.2.2.

D.2.2. EMPIRICAL CONVERGENCE RATES OF THE EM ALGORITHM

Initialization. We assume that the MLEs Ĝn (w.r.t. the standard softmax gating function) and G̃n (w.r.t. the modified
softmax gating functions) have k = 3 components. Next, we initialize fitted parameters in the same fashion as those in
Appendix D.1. With the sample size n = 104, we run the EM algorithm for N = 200 iterations, and compute the negative
log-likelihood value at each iteration.
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Figure 3. Empirical convergence rates of the EM algorithm with the standard softmax gating function and three different modified softmax
gating functions with M(X) ∈ {sin(X), cos(X), log(|X|)}. The y-axis indicates the negative log-likelihood, while the x-axis illustrates
the number of EM iterations.

Negative Log-likelihood. It can be seen from Figure 3 that the negative log-likelihood corresponding to the modified
softmax gating function with M(X) = cos(X) experiences a sharp drop after 200 iterations. Meanwhile, those for
M(X) = sin(X) and M(X) = log(|X|) decline at a nearly same rate but slower than that for M(X) = cos(X). On the
other hand, the negative log-likelihood corresponding to the standard softmax gating function remains almost unchanged.
Those observations suggest that it would take a very long time for the MLE Ĝn (w.r.t. the standard softmax gating
function) to converge to the true mixing measure G∗. By contrast, if we use the modified softmax gating functions with
M(X) ∈ {sin(X), cos(X), log(|X|)}, the convergence rates of the corresponding MLE G̃n to G∗ would be substantially
faster. As a consequence, this figure highlights the advantages of using the modified softmax gating functions over the
standard softmax gating function in the parameter estimation of the multinomial logistic MoE model.

32


