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Abstract
A fundamental skill among human developers is
the ability to understand and reason about pro-
gram execution. As an example, a programmer
can mentally simulate code execution in natural
language to debug and repair code (aka. rubber
duck debugging). However, large language mod-
els (LLMs) of code are typically trained on the
surface textual form of programs, thus may lack a
semantic understanding of how programs execute
at run-time. To address this issue, we propose
NEXT, a method to teach LLMs to inspect the
execution traces of programs (variable states of
executed lines) and reason about their run-time
behavior through chain-of-thought (CoT) ratio-
nales. Specifically, NEXT uses self-training to
bootstrap a synthetic training set of execution-
aware rationales that lead to correct task solutions
(e.g., fixed programs) without laborious manual
annotation. Experiments on program repair tasks
based on MBPP and HUMANEVAL demonstrate
that NEXT improves the fix rate of a PaLM 2
model, by 26.1% and 10.3% absolute, respec-
tively, with significantly improved rationale qual-
ity as verified by automated metrics and human
raters. Our model can also generalize to scenarios
where program traces are absent at test-time.

1. Introduction
Recent years have witnessed the burgeoning of large lan-
guage models (LLMs) trained on code (Austin et al., 2021;
Chen et al., 2021a; Anil et al., 2023; Touvron et al., 2023;
Li et al., 2023; Roziere et al., 2023). While those LLMs
achieve impressive performance in assisting developers with
writing (Chen et al., 2021a), editing (Fakhoury et al., 2023),
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explaining (Hu et al., 2018), and reviewing (Li et al., 2022)
code, they still struggle on more complex software engineer-
ing tasks that require reasoning about the runtime execution
behavior of programs (Ma et al., 2023). On the other hand,
it is not always sufficient for the model to suggest good code
solutions, but it is often necessary to provide an explanation
to developers to document what the change does and why
it is needed. These explanations can help developers better
understand the code solutions from models and make more
informative decisions. (Cito et al., 2022; Ross et al., 2023;
Kang et al., 2023).

For example, program repair (Chen et al., 2018; Li et al.,
2020; Le Goues et al., 2019) is the task of fixing bugs in
a program. Human developers usually learn to debug and
fix code by interacting with code interpreters or debuggers
to inspect the variable states of executed lines (Siegmund
et al., 2014). Such practice helps them acquire a mental
model of program execution (Heinonen et al., 2022), so
that they could mentally simulate code execution in a more
abstract manner using natural language as in rubber duck
debugging (Hunt & Thomas, 1999). Therefore, a program
repair model would be more helpful to developers if the
model could carry out similar reasoning about program
execution in order to explain bugs to programmers.

With this inspiration, our goal is to improve the ability of
LLMs to reason about program execution when solving cod-
ing tasks. In this paper we propose Naturalized Execution
Tuning (NEXT), which aims to teach LLMs to reason with
code execution by inspecting program execution traces and
reasoning about the code’s runtime behavior in natural lan-
guage (NL). At a general level, for a coding task, the main
idea is to train a model to generate intermediate NL ratio-
nales, as in chain-of-thought reasoning (Wei et al., 2022a),
but to provide the model with a trace of the execution of the
program in question, so the rationale can be more accurate
and grounded on program semantics. Teaching LLMs to
reason about program execution in NL would not only offer
better interpretability, it could also increase the diversity of
solutions predicted by the model (Yin et al., 2023).

Fig. 1 illustrates our proposed approach when applied to pro-
gram repair. Given an NL task instruction (x in Fig. 1) and
a buggy program (ỹ), as well as the execution traces of the
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CoT Rationales
…

Code Output

def extract_values(string):
str_list = string.replace('"',’’).split(",")
return str_list

The problem spec asks to extract values between 
quotation marks of a string.

Now let’s look at the program. The program first uses 
replace() to remove all quotation marks, and then uses 
split() to split the string by commas. This seems to 
work fine for the second and third assertions. But for 
the first assertion, the return value is ['Python', 
' PHP', ' Java'] while the expected output is 
['Python', 'PHP', 'Java']. The reason is that the 
input string has spaces before and after each comma, 
and split() will split the string by commas and also
keep the spaces.

Here is a fixed version that uses re.findall() to 
extract the substrings between quotation marks:

import re

def extract_values(string):
str_list = re.findall('"(.*?)"', string)

return str_list
correctness filtering
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Executor 𝓔LLMs 𝑷𝜽(𝒊)

tests

Example Rationale + Fix
(Generated by PaLM-2-L + NExT)

NExT Iteration
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def extract_values(string): # (0) string='"Python", "PHP", "Java”’;
str_list = string.replace('"','').split(",") # (1) str_list=['Python', ' PHP', ' Java'];

return str_list # (2) __return__=['Python', ' PHP', ' Java'];

assert extract_values('"Python", "PHP", "Java"')==['Python', 'PHP', 'Java’] \
# (3) __exception__ = AssertionError()

assert extract_values('"Python", "PHP", "Java"')==['Python', 'PHP', 'Java']

# Write a function to extract values 
between quotation marks of a string.

NL instruction 𝒙 buggy code 𝒚#
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Figure 1: NEXT finetunes an LLM to naturalize execution traces into the chain-of-thought rationales for solving coding
tasks. It performs iterative self-training from weak supervision, by learning from samples that lead to correct task solutions.

program (ε), an LLM solves the task (e.g., predict the fixed
code ŷ) using chain-of-thought (CoT) reasoning to generate
a natural language rationale (r̂) leveraging the execution
information1. Intuitively, program traces encode useful de-
bugging information such as line-by-line variable states (e.g.,
the value of str list in ε, Fig. 1) or any exceptions thrown,
which could be useful for LLMs to identify and fix bugs by
reasoning over the expected and the actual execution results
(e.g., “highlighted text” in r̂). To help LLMs understand ex-
ecution traces, NEXT represent traces as compact inline
code comments (e.g., # (1) str list=. . . in ε, more in §3),
without interrupting the original program structure.

While execution traces capture informative runtime behav-
ior, we find it challenging for LLMs to effectively leverage
them out-of-box through CoT prompting (§3). Therefore
we opt to finetune LLMs on high-quality CoT rationales that
reason about program execution (§4). NEXT uses weakly-
supervised self-training (Zelikman et al., 2022) to bootstrap
a synthetic training set by sampling rationales that lead to
correct task solutions (e.g., fixed code ŷ in Fig. 1) verified
by unit tests (Ye et al., 2022). Using unit tests as weak su-
pervision, NEXT learns to discover task-specific, execution-
aware NL rationales without relying on laborious manual
annotation of rationales (Chung et al., 2022; Longpre et al.,
2023; Lightman et al., 2023) or distilling such data from
stronger teacher models (Gunasekar et al., 2023; Mukherjee

1While there are a variety types of execution information that
we may provide to an LLM (e.g., variable read/write, runtime
environments), in this work we limit the execution information to
program states and variable values from the execution trace, which
is common information that (human) developers also use.

et al., 2023; Mitra et al., 2023; Fu et al., 2023). NEXT exe-
cutes this self-training loop for multiple iterations (Anthony
et al., 2017; Dasigi et al., 2019), solving more challenging
tasks with improved success rate and rationale quality (§5).

We evaluate NEXT with the PaLM 2-L model (Anil et al.,
2023) on two Python program repair tasks. Experiments
(§5) show that NEXT significantly improves PaLM 2’s abil-
ity to reason about program execution in natural language,
improving the program fix rate on MBPP-R by 26.1% and
HUMANEVALFIX-PLUS by 10.3% absolute, respectively.
When compared against a strong self-training program re-
pair approach without predicting NL rationales (Ye et al.,
2022), our model achieves comparable accuracy with sig-
nificantly improved sample diversity. Interestingly, while
our model learns to reason with pre-existing execution in-
formation in input program traces, it also generalizes to
the out-of-distribution scenario where execution traces are
unavailable at test-time. Finally, to measure the quality of
model-generated rationales, we propose a proxy-based eval-
uation approach, which estimates rationale quality using the
performance of smaller LLMs when prompted to solve the
original task following those rationales from our models.
Through both proxy-based evaluation and human annotation,
we demonstrate that NEXT produces helpful NL rationales
which explain the causes of bugs while suggesting potential
fixes. The generated rationales are of significantly higher
quality compared to those from the base PaLM 2-L model.
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1 def separate_odd_and_even(lst): # (0) lst=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
2 odd_list = [] # (1) odd_list=[];
3 even_list = [] # (2) even_list=[];
4 for n in lst: # (3) n=1; (5) n=2; (7) n=3; ...; (21) n=10;
5 if n % 2 == 1:
6 even_list.append(n) # (4) even_list=[1]; (8) even_list=[1, 3]; ...; (20) even_list=[1, 3, 5, 7, 9];
7 else:
8 odd_list.append(n) # (6) odd_list=[2]; (10) odd_list=[2, 4]; ...; (22) odd_list=[2, 4, 6, 8, 10];
9 return odd_list, even_list # (23) __return__=([2, 4, 6, 8, 10], [1, 3, 5, 7, 9])

10
11 separate_odd_and_even([1,2,3,4,5,6,7,8,9,10]) == [1,3,5,7,9], [2,4,6,8,10]

Figure 2: NEXT represents execution trace as inline comments. More details are discussed in §2 and Appendix A.1.

2. Task: Program Repair with Traces
Here we introduce our task of program repair with execution
traces using chain-of-thought reasoning.

Program Repair with Execution Traces. As in Fig. 1,
given an instruction x and a buggy code solution ỹ, au-
tomated program repair (Le Goues et al., 2019) aims to
generate a fixed program ŷ such that ŷ passes all test cases
t ∈ T in an executor E , i.e., E(ŷ, T ) = 1 while E(ỹ, T ) = 0.
In this paper we focus on the task of program repair using
execution traces (Bouzenia et al., 2023). Specifically, a pro-
gram trace ε is a sequence of intermediate variable states
after executing each statement in ỹ against a test case t. In-
tuitively, traces record the computation of a program, and
can provide useful debugging information (e.g., exceptions)
to repair ỹ.

To use LLMs to repair programs with traces, we concatenate
the task instruction, the buggy code, the test cases, and
their execution traces as a prompt (Fig. 1). To help LLMs
understand program traces, we design a prompt-friendly
trace representation by formatting ε as compact inline code
comments (i.e., ε in Fig. 1), as discussed later.

CoT Reasoning with Execution. We focus on using
chain-of-thought reasoning (Wei et al., 2022b) to solve pro-
gram repair problems by reasoning with execution, where
an LLM is prompted to generate an NL rationale r̂ together
with a fixed program ŷ as in Fig. 1. Specifically, we con-
sider rationales that contain reasoning steps to identify and
explain bugs in the original code (e.g., the second paragraph
in r̂, Fig. 1), as well as suggestions to fix the buggy code
(e.g., “a fixed version that uses re.findall()” in r̂). Since
rationales are generated using traces, they often include use-
ful reasoning about program execution that helps localize
the bug, such as identifying a counterfactual between the
expected and the actual variable values of a statement (e.g.,
the “highlighted text” in r̂). Such explanations can be help-
ful for developers to understand bugs in the original code
and the model’s fixed solutions (Kang et al., 2023). We
therefore aim to improve the quality of NL rationales along
with the fix rate by teaching LLMs to reason with execution
information.

An LLM-friendly Trace Representation. The raw exe-
cution traces collected at runtime contain complete variable
states for each executed statement.2 Encoding all such in-
formation in prompts is not feasible given the context limit
and computation overhead of LLMs. To address this is-
sue and make execution information more intelligible to
LLMs, we propose an inline trace representation format,
which encodes variable states as inline comments of the
traced program. Fig. 2 shows an example. Specifically, each
inline comment only encodes changed variables after execut-
ing that line. Because statements may be invoked multiple
times in non-obvious orders (e.g., in loops like lines 4 to 8
in Fig. 2), we index the variable states based on the execu-
tion order (e.g., (3) n=1; and (4) even list=[1]), and one
may reconstruct the original execution footprint by follow-
ing those variable states in order. We further compress the
trace information for loops by omitting the variable states
in intermediate iterations (e.g., “...” in lines 4, 6, and 8).
Intuitively, by showing states as pseudo-comments within
the original code without interrupting the program structure,
our trace representation is significantly more compact than
existing approaches that unroll executed lines of code and
pair them with line-by-line variable states (c.f., Nye et al.,
2021; Bouzenia et al., 2023),3 while allowing an LLM to
leverage its learned code representation to understand the
additional execution effect of each statement. Implementa-
tion details about handling complex control structures are
discussed in Appendix A.1.

3. Preliminary Study: Can LLMs reason with
program traces in natural language?

Before introducing NEXT, we first conduct a preliminary
study to explore whether LLMs could reason with execu-
tion traces in natural language out-of-box without additional
training. Answering this question will motivate our finetun-
ing approach to improve such reasoning skills. Specifically,

2We use the sys.settrace() hook in Python.
3As a comparison, 95% examples in our MBPP-R benchmark

can fit into a 2K context window using our inline representation,
while only 60% of them can fit into the same window using the
Scratchpad trace format in Nye et al. (2021). A more detailed
comparison is shown in Tab. 7.
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Mixtral DeepSeek StarCoder Avg.Benchmarks Prompting Methods PaLM 2-L GPT-3.5 GPT-4 8x7B Coder 33B 15.5B

Vanilla w/ trace 27.5 41.8 62.6 16.1 23.9 13.3 30.9
+ CoT 26.6 46.4 62.8 21.1 18.2 12.6 31.3+0.4MBPP-R
+ CoT; − trace 19.0 47.1 51.3 18.1 12.9 10.6 26.5−4.8

Vanilla w/ trace 59.1 70.1 88.4 32.9 57.3 29.3 56.2
+ CoT 48.8 75.6 84.8 34.1 30.5 16.5 48.4−7.8HEFIX+
+ CoT; − trace 43.3 72.0 82.9 25.6 22.6 18.3 44.1−4.3

Table 1: Few(3)-shot prompting repair accuracy using greedy decoding. Results worse than the settings specified in the
previous row above are underlined in red.

we follow the trace representation in §2 and few-shot prompt
an LLM to solve program repair tasks using CoT reasoning.

Models. We evaluate the following general-purpose mod-
els: PaLM 2 (Anil et al., 2023), GPT (OpenAI, 2023)4,
and Mixtral (Jiang et al., 2024). We also test two code-
specific LLMs: StarCoder (Li et al., 2023) and DeepSeek
Coder (Guo et al., 2024). Tab. 1 reports the results on two
Python program repair datasets (see §5 for details).

LLMs struggle on CoT reasoning with traces. We ob-
served mixed results when comparing vanilla prompting
with traces without CoT (Vanilla w/ trace in Tab. 1) and
CoT prompting with rationales (+CoT). Surprisingly, CoT
prompting is even worse on HUMANEVALFIX-PLUS, with
an average drop of −7.8% compared to vanilla prompt-
ing, especially for code-specific LLMs (57.3 7→ 30.5 for
DeepSeek Coder and 29.3 7→ 16.5 for StarCoder). After in-
specting sampled rationales predicted by PaLM 2-L, we ob-
serve that the model is subject to strong hallucination issues,
such as mentioning exceptions not reflected in the given
traces. Indeed, as we later show in §5.2, the overall correct-
ness rate of explaining errors in input programs among these
sampled rationales from PaLM 2-L is only around 30%.
Moreover, CoT reasoning is even more challenging for those
models when we remove execution traces from the inputs
(+CoT;−trace), resulting in an average performance drop
of 4.8% on MBPP-R and 4.3% on HUMANEVALFIX-PLUS.
These results suggest that while our trace representation is
useful for LLMs to understand and leverage execution infor-
mation for program repair (since “−trace” leads to worse
results), they could still fall short on CoT reasoning using
natural language with those program traces. This finding
therefore motivates us to improve LLMs in reasoning with
execution through finetuning, which we elaborate in §4.

4. NEXT: Naturalized Execution Tuning
We present NEXT, a self-training method to finetune LLMs
to reason with program execution using synthetic rationales.

Overview of NEXT. Fig. 1 illustrates NEXT, with its al-

4We use gpt-3.5-turbo-1106 and gpt-4-1106-preview.

gorithm detailed in Algo. 1. NEXT is based on existing
self-trained reasoning approaches (Zelikman et al., 2022;
Uesato et al., 2022), which employ expert iteration to im-
prove a base LLM using synthetic rationales sampled from
the model. Given a training set D of repair tasks with exe-
cution traces, NEXT first samples candidate NL rationales
and fixed code solutions from the LLM. Those candidate
solutions are filtered using unit test execution diagnostics,
and those that pass all test cases are then used to update
the model via finetuning. This sample-filter-train loop is
performed for multiple iterations, improving the model’s
rationales and repair success rate after each iteration.

Sampling rationales and code solutions. For each itera-
tion i, we sample rationales r̂ and fixes ŷ in tandem from
the current model Pθ(i) (Line 5, Algo. 1). We use few-shot
prompting (§3) when i = 0 and zero-shot prompting with
trained models for later iterations. In contrast to existing
self-training methods that leverage all training problems,
NEXT only samples candidate solutions from the subset of
problems in D that are challenging for the base model Pθ(0)
to solve (Line 1). Specifically, given a metricM(·), we only
use problems d ∈ D if Pθ(0) ’s metric on d is below a thresh-
old m. Refer to §5 for more details about theM(·) and m
of our program repair task. Focusing on sampling solutions
from those hard problems not only significantly reduces
sampling cost, it also improves program repair accuracy, as
it helps the model towards learning to solve more challeng-
ing problems (Kommrusch et al., 2023). See Appendix C
for a more detailed analysis.

Filtering candidate solutions. Given a candidate set of
sampled NL rationales and their code fixes, NEXT uses
unit test execution results to identify plausible rationales
that lead to correct fixes for learning (Line 6). Using test
execution diagnostics as a binary reward function is natural
for program repair tasks since each repair problem in our
dataset comes with unit tests to test the functional correct-
ness of its proposed fixes (Ye et al., 2022). While we remark
that this filtering criteria does not directly consider rationale
quality, we empirically demonstrate in §5 that the quality of
rationales improves as learning continues.5

5Note that the rationale and fix quality may plateau at a different
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Algorithm 1 Naturalized Execution Tuning (NEXT)

Input: Training set D = {(xj , ỹj , Tj , εj)}|D|j=1 (§2); Development set Ddev; Base LLM Pθ(0) ; Number of iterations I; Executor E ;
Evaluation metricM and threshold m

1: DH ← {d | d ∈ D,M(Pθ(0) , d) < m} // Identify hard problems DH with metricM(·) < m
2: for i = 0 to I do
3: B(i) ← {}
4: for (xj , ỹj , Tj , εj) in DH do
5: S

(i)
j ∼ Pθ(i)(r, y | xj , ỹj , Tj , εj) // Sample rationales r and fixes y using trace εj .

6: B(i) ← B(i) ∪ {(r̂, ŷ) | (r̂, ŷ) ∈ S(i)
j , E(ŷ, Tj) = 1} // Filter with test cases Tj and add to B(i).

7: θ(i+1) ← argmaxθ EB(i) [Pθ(r̂, ŷ | x, ỹ, T, ε)] // Finetune model Pθ(0) with data in B(i).
8: i∗ ← argmaxi

∑
d∼Ddev

M(Pθ(i) , d)/|Ddev| // Select the best checkpoint i∗

Output: model Pθ(i∗)

Model training. After collecting a set of training exam-
ples B(i), we finetune the model to maximize the probability
of generating the target rationales and code fixes given the
task input (Line 7). Following Zelikman et al. (2022), we al-
ways finetune the model from its initial checkpoint Pθ(0) to
avoid over-fitting to instances sampled from early iterations
that are potentially of lower-quality.

Discussion. NEXT can be seen as an instantiation of the
rationale bootstrapping method proposed in Zelikman et al.
(2022) (§ 3.1), which synthesizes latent rationales with cor-
rect answers for math and logical reasoning tasks. However,
NEXT focuses on program comprehension by reasoning
with execution traces, which is critical for solving chal-
lenging coding tasks that require understanding execution
information, such as program repair (§5). Besides, NEXT
models both rationales and programs (code fixes) as latent
variables. Using unit test execution results as weak supervi-
sion, NEXT is able to explore possible strategies to reason
with execution and discover plausible rationales catered to-
wards solving the specific downstream task. As we show in
Appendix D, rationales generated by NEXT employ a vari-
ety of reasoning patterns to locate and explain bugs in our
repair dataset. Finally, while we apply NEXT to program re-
pair, our framework is general and can be extended to other
programming tasks that require reasoning about execution,
such as code generation with partial execution contexts (Yin
et al., 2023) or inferring program execution results (Nye
et al., 2021), which we leave as important future work.

5. Experiments
Models. We evaluate NEXT using PaLM 2-L (Unicorn)
as the base LLM (Anil et al., 2023). Its finetuning API is
publicly accessible on Google Cloud Vertex AI platform.

Datasets. We use two Python program repair benchmarks,
MBPP-R and HUMANEVALFIX-PLUS (HEFIX+ here-
after). MBPP-R is a new repair benchmark that we create
from MBPP (Austin et al., 2021), a popular function-level

iteration i.

Python code generation dataset. We create MBPP-R by col-
lecting LLM-generated incorrect code solutions to MBPP
problems, with a total of 10, 047 repair tasks for training and
1, 468 tasks (from a disjoint set of MBPP problems) in the
development for evaluation (Appendix B.1). In addition to
MBPP-R, we also evaluate on HEFIX+. HEFIX+ is derived
from HUMANEVALFIX (Muennighoff et al., 2023) which
consists of 164 buggy programs for problems in the HU-
MANEVAL dataset (Chen et al., 2021a). We further augment
HUMANEVALFIX with the more rigorous test suites from
EvalPlus (Liu et al., 2023) to obtain HEFIX+. While both
original datasets MBPP and HUMANEVAL feature function-
level algorithmic code generation problems, problems from
the two datasets may still differ in their topics, algorithms or
data structures used. Therefore, we use HEFIX+ to measure
generalization ability without further finetuning.

Evaluating Code Fixes. We use PASS@k (Kulal et al.,
2019; Chen et al., 2021a), defined as the fraction of solved
repair tasks using k samples (k ≤ 25), to measure the end-
to-end functional correctness of fixed programs with tests.

Evaluating Rationale Quality. Decoupling the quality of
intermediate CoT rationales and downstream task perfor-
mance (program repair PASS@k) is a non-trivial research
question in LLM reasoning (Prasad et al., 2023), with most
works on improving CoT reasoning still hill-climbing to-
wards downstream task performance without evaluating in-
termediate rational quality (e.g., Lightman et al. (2023)). To
disentangle the evaluation of rationale quality from end-to-
end repair accuracy, we propose an extrinsic proxy-based
evaluation metric for rationales. Specifically, given a ra-
tionale r, we prompt a smaller LLM to solve the original
repair task conditioning on r, and use the correctness of
the predicted code fix (using greedy decoding) to approx-
imate the quality of r. Intuitively, smaller LLMs would
rely more on information from the rationale and could be
more sensitive to its errors. Therefore, their performance
could be a better indicator of rationale quality. We report
averaged scores on two PaLM 2 variants for proxy-based
evaluation: 1) a smaller general-purpose language model
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End-to-end Fix Rate Proxy-based Evaluation (PASS@k on smaller LMs)

Models PASS@1 PASS@5 PASS@10 PASS@25 PASS@1 PASS@5 PASS@10 PASS@25

GPT-4; 3-shot 63.2 75.1 78.5 82.7 44.8 66.5 72.5 77.8
GPT-3.5; 3-shot 42.9 65.0 70.7 76.7 26.6 48.8 57.0 66.4
PaLM 2-L; 3-shot 23.2 45.7 54.7 65.0 22.5 43.4 51.9 61.5

PaLM 2-L+NEXT; 0-shot 49.3+26.1 68.1+22.4 73.5+18.8 79.4+14.4 28.8+6.3 49.9+6.5 57.3+5.4 65.5+4.0

Table 2: Improvements by NEXT on the PaLM 2-L model (in subscripts) on MBPP-R. GPT-3.5/4 results are for reference.
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Figure 3: Greedy-decoding results on MBPP-R on PaLM 2-L+NEXT and existing LLMs.

PaLM 2-S; and 2) PaLM 2-S∗ which is specialized in cod-
ing (Anil et al., 2023). Note that while we primarily use
proxy-based metrics to evaluate rationales, we also perform
human ratings of rationale quality (§5.2), with results in line
with our proxy-based evaluation.

Hyperparameters. We perform temperature sampling
(T = 0.8) with a sample size of 32 for training (|Sj | = 32
in Algo. 1) and PASS@k evaluation. In the first iteration in
Algo. 1, we use PASS@1 estimated with these 32 samples
as the filtering metricM(·) to find challenging problems
whoseM(·) ≤ 10% for training. We perform 10 iterations
of NEXT training and pick the best model using PASS@1
on the development set.

5.1. Main Results

In our experiments, we compare our model with strong
LLMs (used in §3), analyze the impact of rationales and
program traces, and perform generalization experiments on
HEFIX+ and human evaluation of rationale quality.

NEXT improves program fix rate. We first compare the
end-to-end program repair performance of PaLM 2-L be-
fore and after NEXT training (PaLM 2-L+NExT) in Tab. 2
(Left). NEXT leads to significant improvements on the end-
to-end fix rates across the board, with a 26.1% absolute im-
provement on PASS@1. Interestingly, the gain on PASS@k
is generally higher for smaller k. This might suggest that
the model becomes more confident about program fixes
after NEXT training, while the sample diversity also im-
proves, as indicated by improved PASS@25. For reference,
we also include results from GPT models. Notably, PaLM
2-L+NEXT outperforms GPT-3.5 on all PASS@k metrics.

NEXT improves rationale quality. Tab. 2 (Right) shows
the improvements of PaLM 2-L+NEXT on our proxy-based
evaluation, where we approximate rationale quality using
the performance of smaller LMs when conditioned on those
rationales. Again, NEXT yields consistent improvements
across all PASS@k metrics. This suggests that NEXT im-
proves PaLM 2-L’s skill in reasoning with execution to solve
MBPP-R problems, leading to rationales that are more help-
ful for smaller LMs. In Appendix D, we present a case
study to demonstrate different reasoning strategies PaLM
2-L+NEXT adopts to repair programs using execution infor-
mation. As we later show in §5.2, our proxy-based metrics
are also consistent with human ratings, and rationales from
PaLM 2-L+NEXT are strongly preferred by annotators
compared to those from PaLM 2-L.

PaLM 2-L+NEXT outperforms strong LLMs. We
compare PaLM 2-L+NEXT with a series of strong LLMs
from the preliminary study (§3) in Fig. 3. PaLM 2-
L+NEXT outperforms strong open-source LLMs by a min-
imum of 29.4% and 11.1% on end-to-end and proxy-based
PASS@1 results, respectively, while on par with GPT-3.5.
These results show that PaLM 2-L+NEXT is a competitive
model on program repair by reasoning with execution.

Learning to reason in natural language improves gener-
alization and sample diversity. To further demonstrate
the importance of using CoT reasoning in NEXT self-
training, we compare PaLM 2-L+NEXT with a strong self-
training-based program repair model implemented in NEXT,
which directly generates code fixes using runtime execution
information without CoT reasoning. This ablation resembles
SelfAPR (Ye et al., 2022), which also adopts self-training to
iteratively synthesize data using unit test diagnostics, while
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Figure 4: Ablations on removing rationales and/or traces during the iterative training of NEXT. Note that different min/max
values are taken for y-axis for clarify among different curves but consistent gridline intervals are used for easier comparison.

our ablation uses traces with richer execution information.
Fig. 4 shows model performance w.r.t. NEXT training iter-
ations. When trained without CoT reasoning (NEXT w/o
rationale), PaLM 2-L converges much faster on the training
set, which is not surprising since the model only learns to
generate code fixes without additional reasoning tasks such
as explaining bugs in NL. However, on the DEV set, PaLM 2-
L+NEXT still outperforms this baseline in PASS@10 with
comparable PASS@1 accuracy, and the gap on PASS@10
becomes larger with more iterations. This shows that by
reasoning in natural language, PaLM 2-L+NEXT general-
izes much better to unseen MBPP-R problems with greater
sample diversity. In Fig. 6 of Appendix C, we also show that
the gain from PaLM 2-L+NEXT against this ablation on
PASS@k is even more pronounced for larger k > 10, which
suggests that learning to reason in CoT rationales improves
sample diversity on program repair, similar to the findings
on other code generation tasks (Yin et al., 2023).

Reasoning with execution traces is critical. To under-
stand the importance of leveraging program traces to reason
with execution, we compare with an ablation of NEXT with-
out using program traces, which follows the same procedure
in Algo. 1 except that traces ε are not used to generate ratio-
nales in Line 5 (NEXT w/o traces, Fig. 4). This variant can
also be seen as a direct application of the rationale genera-
tion bootstrapping method in Zelikman et al. (2022), which
trains a model on sampled rationales that lead to correct
task solutions without relying on additional execution in-
formation. Without traces, PaLM 2-L is consistently worse
than PaLM 2-L+NEXT on the DEV set across iterations,
both in terms of end-to-end fix rate and proxy-based metrics.
This suggests that reasoning with execution information is
critical for PaLM 2-L on program repair tasks. Interestingly,
while the gap on the development set is significant, the two
models achieve similar scores on the training set, which sug-
gests that reasoning with pre-existing execution traces also
help the model generalize better to unseen tasks at test-time.

Test w/ Trace Test w/o Trace

Methods E2E Proxy E2E Proxy

PaLM 2-L 23.2 22.5 19.0 14.8
+NEXT (w/ trace) 49.3+26.1 28.8+6.3 40.8+21.8 19.5+4.7

+NEXT w/o trace − − 44.1+25.1 23.9+9.1

Table 3: PaLM 2-L+NEXT trained with traces outperforms
PaLM 2-L when traces are absent at test time as shown
in highlighted results . Results are on MBPP-R; Test w/
Trace: results from Tab. 2.

Our model works without traces at test-time. While
program traces are crucial for reasoning with execution,
such execution information may not always be available at
test time (e.g., when execution is prohibitively expensive).
To stress-test PaLM 2-L+NEXT in scenarios where exe-
cution information is absent, we remove execution traces
from its input at test time in Tab. 3. PaLM 2-L+NEXT still
yields an end-to-end fix rate of 40.8%, which is an 21.8%
improvement over the 3-shot PaLM 2-L baseline and is only
3.3% lower than NEXT trained without traces, for which
is tested in-distribution. The results from the proxy-based
evaluation of rationales are also consistent with the fix rate.

Our model generalizes to HEFIX+ at test-time. To
further evaluate the generalization ability of PaLM 2-
L+NEXT, we test our model (trained on MBPP-R) on
HEFIX+. Tab. 4 summarizes the results. NEXT achieves
reasonable generalization on HEFIX+, outperforming the
base PaLM 2-L model by a large margin (i.e., 14.3% on
end-to-end fix rate and 6.0% on proxy evaluation). Aligned
with our previous findings on MBPP-R in Fig. 4, reasoning
with execution traces (c.f. w/o traces) improves fix rate and
rationale quality. Moreover, we remark that with iterative
learning, PaLM 2-L+NEXT is on par with the strong pro-
gram repair method without CoT reasoning (w/o rationale),
similar to the results on MBPP-R. This is in contrast with
our preliminary study in §3, where PaLM 2-L with CoT
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Models / PASS@1 End-to-End Proxy-based

Baselines w/ 3-shot prompting
Mistral-7B∗ 12.8 16.5
OctoCoder-15.5B∗ 17.7 17.7
StarCoder-15.5B∗ 14.6 13.1
DeepSeekCoder-33B∗ 28.0 18.3
Mixtral-8x7B∗ 32.3 30.8
GPT-4 77.6 56.6
GPT-3.5 59.4 41.8

PaLM-2-L 32.2 31.9
PaLM-2-L w/o tracing† 30.3 30.4

PaLM 2-L+NEXT 42.5+10.3 38.0+6.1

w/o tracing† 38.1+7.8 30.6+0.2

w/o rationale 44.5+12.3 −
w/o tracing + rationale† 31.4+1.1 −

Table 4: Generalization results on HEFIX+. PaLM 2-
L+NEXT models are only trained with MBPP-R. ∗obtained
using greedy decoding; †no traces provided at test time.

prompting is much worse than vanilla prompting without
using rationales. Overall, these results indicate that PaLM
2-L+NEXT could robustly generalize to out-of-distribution
repair tasks without additional dataset-specific finetuning.

5.2. Human Evaluation of Rationale Quality

Our proxy-based evaluation suggests the extrinsic value of
the CoT rationales from PaLM 2-L+NEXT. We further con-
duct an intrinsic evaluation by manually rating the quality
of model-predicted rationales on 104 sampled MBPP-R re-
pair tasks from the DEV set. Specifically, we ask raters to
judge the quality of rationales generated by three models
(PaLM 2-L+NEXT, PaLM 2-L and GPT-3.5) in a three-way
side-by-side setting. Each rationale is rated in two aspects:
(1) its helpfulness in explaining bugs (Q1, e.g., first two
paragraphs in r̂, Fig. 1), and (2) its helpfulness in suggest-
ing code fixes (Q2, e.g., “a fixed version that uses . . .” in
r̂). Each question has a three-scale answer ( Completely
correct and very helpful; Partially correct with minor
errors but still helpful; Incorrect and not helpful). We
also compute an overall score of rationale quality using
numeric values of {+1, 0.5, 0} for the three scales and aver-
aged over Q1 and Q2. Finally, we ask raters to pick a single
best choice if there is not a clear tie. More details about our
human evaluation pipeline is described in Appendix B.3.

Tab. 5 summarizes the result. Compared to the base PaLM
2 model, PaLM 2-L+NEXT generates significantly more
high-quality rationales with correct explanations of bugs
and fix suggestions. Additionally, compared to GPT-3.5,
PaLM 2-L+NEXT also has more rationales with correct
bug explanations, while interestingly, GPT-3.5 generates
more rationales with partially correct fix suggestions. We
hypothesize that including more exemplars with detailed fix

Explain bugs? Suggest fixes?

Overall Best?

GPT-3.5 43 26 35 44 16 44 51.9% 34.6%

PaLM 2-L 27 24 53 31 5 68 34.9% 6.7%
+NEXT 48 24 32 42 6 56 50.5% 32.7%

Table 5: Results for human annotation of rationale quality.
Base models use 3-shot prompting. Numbers under the
questions are counts of ratings.

suggestions to our few-shot prompts during NEXT training
(Appendix E) would help mitigate this issue. Nevertheless,
the overall scores and rater-assigned best choice suggest that
the rationales predicted by PaLM 2-L+NEXT are of signif-
icantly higher quality compared to those from PaLM 2-L,
and are on par with the predictions from GPT-3.5. Overall,
this finding is in line with the proxy evaluation results in
Fig. 3 (GPT 3.5 ≈ PaLM 2-L+NEXT� PaLM 2-L), sug-
gesting that the latter is a reasonable surrogate metric for
rationale quality. In Appendix D, we present example gen-
erated rationales that show a variety of reasoning patterns.

6. Related Work
Reasoning about Program Execution Several lines of
research has explored learning methods to reason about pro-
gram execution. Program synthesis systems often leverage
the execution states of partially generated programs (Shin
et al., 2018; Wang et al., 2018; Chen et al., 2021b; Shi
et al., 2022) or the next execution subgoals (Shi et al., 2024)
to guide search in sequence-to-sequence models. There
has also been work on training neural networks to mimic
program execution, like a learned interpreter (Zaremba &
Sutskever, 2014; Bieber et al., 2020; Nye et al., 2021; Pi
et al., 2022), often with specialized neural architectures to
model the data flow of program execution (Graves et al.,
2014; Gaunt et al., 2016; Bosnjak et al., 2016; Bieber et al.,
2022). Instead of using domain-specific architectures to
encode and reason about program execution, our work fo-
cuses on teaching LLMs to reason with execution in natural
language. In particular, Scratchpad (Nye et al., 2021) and
Self-Debugging (Chen et al., 2023) are two notable works
that also models execution traces using LLMs. The core
difference is that these methods focus on predicting reason-
ing chains that contain trace information, such as executed
lines with variable states (Nye et al., 2021) or their natu-
ral language summaries (Chen et al., 2023). On the other
hand, NEXT aims to leverage existing execution traces from
a runtime to aid the reasoning process, which often leads
to more compact rationales tailored for downstream tasks.
We present a more detailed comparison and discussion on
NEXT and these related works in Appendix A.3.

Program Repair Several works in program repair have
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leveraged execution information such as traces (Gupta et al.,
2020; Bouzenia et al., 2023) or test diagnostics (Xia &
Zhang, 2023; Ye et al., 2022). Different from Bouzenia
et al. (2023) which represents traces by directly pairing
unrolled executed lines with their variable states, NEXT
inlines indexed variable states as code comments, which
is more token efficient while preserving the original code
structure. Similar to NEXT, Ye et al. (2022) construct syn-
thetic self-training data using test execution results, while
our approach generates both NL rationales and fixed pro-
grams with better interpretability. Recently, LLMs have
been applied to program repair (Fan et al., 2022; Xia &
Zhang, 2022; Xia et al., 2023; Sobania et al., 2023; Paul
et al., 2023; Jiang et al., 2023). Among them, Kang et al.
(2023) uses a ReAct-style CoT reasoning loop (Yao et al.,
2022) to predict repair actions based on interactive feedback
from debuggers, while NEXT focuses on tuning LLMs to
reason with pre-existing execution information without in-
termediate feedback. Finally, as a related stream of research,
self-improvement methods iteratively refine a model’s code
solutions using CoT reasoning over self-provided (Madaan
et al., 2023) or test-driven feedback (Chen et al., 2023;
Olausson et al., 2023). Instead of relying on high-level exe-
cution signals like error messages, NEXT trains LLMs to
reason with step-wise program traces. Our learnable ratio-
nales are also more flexible without following a predefined
reasoning template. Besides, since traces already capture
rich execution semantics, the resulting rationales could be
more succinct and targeted to the downstream task (e.g.,
explain bugs), without redundant reasoning steps to trace
the program by the model itself to recover useful execution
information.

Supervised CoT Reasoning LLMs can solve problems
more accurately when instructed to work out the answer
step by step in a chain of thought or a scratchpad (Wei et al.,
2022a; Nye et al., 2021; Rajani et al., 2019; Shwartz et al.,
2020). Improvements on this approach involve finetuning
LLMs on chain-of-thought reasoning data. Such CoT data is
either manually curated (Chung et al., 2022; Longpre et al.,
2023; Lightman et al., 2023), or distilled from more capable
teacher models (Gunasekar et al., 2023; Mukherjee et al.,
2023; Mitra et al., 2023; Fu et al., 2023). Instead of relying
on labeled or distilled data, NEXT uses self-training to itera-
tively bootstrap a synthetic dataset of high-quality rationales
with minimal manual annotation. Our work differs from
previous work using bootstrapping (Zelikman et al., 2022;
Hoffman et al., 2023) in the type of rationales and the use of
execution information; see §4 for more discussion. While
we use the correctness of the program fix for filtering the
rationales, which is reminiscent of outcome supervision; it
is also possible to use process supervision with human anno-
tations (Uesato et al., 2022; Lightman et al., 2023), or obtain
such supervision automatically by estimating the quality of

each step using Monte Carlo Tree Search (Wang et al., 2024)
and by identifying partially-correct program prefixes (Ni
et al., 2022). Finally, existing research has investigated fine-
tuning of LLMs to predict the execution information directly,
such as predicting line-by-line execution traces (Nye et al.,
2021), abstract runtime properties (Pei et al., 2023), or final
output (Zaremba & Sutskever, 2014; Bieber et al., 2020).
NEXT addresses a different problem; instead of predicting
the execution information, NEXT takes it as given, and in-
stead learns to discover flexible task-specific NL rationales
that aid a downstream programming task.

7. Conclusion
In this paper we present NEXT, a self-training method to
finetune LLMs to reason with program execution given
traces. We demonstrate that PaLM 2-L trained using NEXT
yields high-quality natural language rationales and achieves
stronger success rates on two program repair tasks. As
future work, we plan to apply NEXT to a broader range
of program understanding tasks while expanding the trace
representation to support more programming languages.
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A. Additional Details of NEXT
A.1. Details for Inline Trace Representation

Definitions. A program y ∈ Y consists of a sequence of statements {u1, ..., um}. And a program state h is a mapping
between identifiers (i.e., variable names) to values, i.e., h ∈ {k 7→ v|k ∈ K, v ∈ V}. Given an input to the program, an
execution trace is defined as a sequence of program states, i.e., ε = {h1, ..., ht}, which are the results after executing the
statements with the order of execution, i.e., {ue1 , ue2 , ..., uet}. In this way, the relation between program statements and
execution states can be seen as a function that maps from states to statements, i.e., hi 7→ uei , because each statement could
be executed multiple times due to loops or recursion.

Program state representation. For typical programs, most of the variable values will stay the same between two adjacent
states hi−1 and hi. Thus to save tokens, we represent a state hi only by the variables that have changed the value compared
with the previous state hi−1. And we use a reified variable state representation, i.e., using the grammar for an init function
in Python (e.g., lst=[1, 2, 3]). Note that it is possible for a statement to have no effect on any traceable variables (e.g.,
“pass”, or “print”, or “lst[i]=lst[i]”). To distinguish this case with unreached statements (e.g., “else” branch that next
got executed), we append a string “NO CHANGE” instead. In addition to the variable state, we number all the states by the
order of execution and prepend the ordinal number to the beginning of the state, e.g., “(1) odd list=[]” in Fig. 2.

Inline trace representation. To obtain the inline trace representation, we first group the program states in a trace ε by the
corresponding program statements to collect a sequence of states for the same statement ui as Hi = {hj |uej = ui}, and we
order the states in Hi by the execution order. For statements inside a loop body, or a function that is called recursively, the
number of corresponding states can be very large. In order to further save tokens, if |Hi| > 3, we will only incorporate
the first two states and the last state, and skip the ones in the middle. After that, we simply concatenate all the state
representations with the semicolon “;” as the delimiter, and append it after the statement itself ui following a hash “#” to
note it as an inline comment. An example of the resulting representation is “even list.append(n) # (4) even list=[1];

(8) even list=[1, 3]; ...; (20) even list=[1, 3, 5, 7, 9];”, as shown in Fig. 2.

Limitations. First of all, our tracing framework currently do not extend beyond native Python programs, thus it can not
trace code that is not written in Python (e.g., C code in numpy). One other limitation of our tracing representation is that for
“if” conditions, though it would be better to leave traces of “(1) True; (2) True; (3); False;”, currently our tracing
framework that based on the “sys.settrace()” hook of Python does not capture this. However, since we labeled all the
states by the execution order, the LLMs can infer the conditions by the fact that certain branch is taken. Another limitation
is the representation of Collections. Currently we still present all the elements in a collection, and empirically it works
well with benchmarks as MBPP-R and HEFIX+. However, certain heuristics may be needed to skip certain elements (e.g.,
like the one we use to skip certain states in a loop) to be more token efficient. For more complex objects (e.g., Tensors,
DataFrames), while we can define heuristics to represent key properties of those objects in traces (e.g., “a float tensor of
shape 128 x 64”,“a Dataframe with columns Name, Math, ...”), perhaps a more interesting idea would be to let the models
decide which properties they would inspect and generate relevant code (e.g., “tensor.shape” or “df.head(3)”) to inspect
them in a debugger or interpreter (e.g., pdb). The same idea can be applied to longer programs, as the model can selectively
decide which lines of code to inspect and create traces for, similar to how human developers debug programs. We will leave
these as exciting future directions.

A.2. Details for Iterative Self-Training

Bootstrapping rationales and fixes via temperature sampling. To avoid potential “cold start” problem (Liang et al.,
2018; Ni et al., 2020), for the first iteration, we use few-shot prompting with three exemplars (shown in Appendix E) and set
the sample size to 96. For all later iterations, we use zero-shot prompting as the model is already adapted to the style of the
rationales and fixes after the first round of finetuning, and we set the sample size to 32. We set the sampling temperature
T = 0.8 for all iterations.

Filtering rationales and fixes. Given the inputs in the prompt, we sample the rationale and fixes in tandem. To separate
the natural language rationale and the program fix, we use an regular expression in Python to extract the content between two
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Methods Use of Trace Rationale Format Model Fine-tuning

NEXT Input Natural Language Yes
Scratchpad (Nye et al., 2021) Output Scratchpad Repr. Yes
Self-Debugging (Chen et al., 2023) Output Natural Language No

Table 6: Comparison between the methods proposed in NEXT, Scratchpad, and Self-Debugging.

Trace Repr. Length Cutoff (# Tokens)
128 256 512 1,024 2,048 4,096 8,192 16,384

Inline (ours) 0.1% 7.3% 37.5% 78.9% 95.1% 98.5% 99.2% 99.5%
Scratchpad 0.0% 0.2% 15.1% 38.2% 60.1% 76.1% 85.1% 92.1%

Table 7: Percentage of MBPP-R examples that can be fit into different context windows using different trace representations
(i.e., ours and Nye et al. (2021)). Traces of all three tests are included.

sets of three backticks (```), which is commonly used to note code blocks in markdown.6 After we filter out the rationales
and fixes that are incorrect using the test cases, we create the training set by sub-sampling correct “(rationale, fix)” pairs
to allow a maximum of 3 correct fixes with their rationales for each problem in MBPP-R. This is to balance the number
of rationales and fixes for each problem and avoid examples from certain examples (typically easier ones) being overly
represented in the training set.

A.3. Discussion with Previous Work

Here we discuss NEXT in the context of two important previous work in the domain of reasoning about program execution,
namely Scratchpad (Nye et al., 2021) and Self-Debugging (Chen et al., 2023). Such comparison is also characterized by
Tab. 6.

Scratchpad and NEXT. Similarly to NEXT, Nye et al. (2021) also proposed to use execution traces to help the LLMs to
reason about program execution. However, Nye et al. (2021) aimed to generate these traces as intermediate reasoning steps
at inference time, either via few-shot prompting or model fine-tuning. Yet in NEXT, we use execution traces as part of
the input to the LLMs, so they can directly use the execution states to ground the generated natural language rationales.
Moreover, we choose to use natural language as the primary format for reasoning, which is more flexible and easier to be
understood by the human programmers. We also perform a length comparison of our proposed inline trace representation
with the scratchpad representation proposed in Tab. 7, and results show that our proposed inline trace representation is much
more compact than scratchpad.

Self-Debugging and NEXT. Self-Debugging (Chen et al., 2023) is a seminal approach that also performs CoT reasoning
over program execution to identify errors in code solutions. Different from NEXT, Self-Debugging can optionally leverages
high-level execution error messages to bootstrap CoT reasoning, while our method trains LLMs to reason with concrete
step-wise execution traces. In addition, Self-Debugging also introduced a particular form of CoT rationales that resemble
step-by-step traces in natural language. Notably, such rationales are generated by LLMs to aid the model in locating bugs by
simulating execution in a step-by-step fashion. They are not the ground-truth execution traces generated by actually running
the program. As we discussed in §6, in contrast, our model relies on existing traces from program execution. Since those
traces already capture rich execution information, intuitively, the resulting CoT rationales in NEXT could be more succinct
and “to the point” without redundant reasoning steps to “trace” the program step-by-step by the model itself in order to
recover useful execution information.

Finally, we remark that our “Test w/o Trace” setting in §5.1 shares similar spirits with the setup in Self-Debugging, as both
methods perform CoT reasoning about execution without gold execution traces. From the results in Tab. 3, NEXT also
greatly improves the model’s ability to repair programs even without using gold execution traces at test time. This may
suggest that NEXT can potentially improve the self-debugging skills of LLMs through iterative training, for which we leave

6For the strong LLMs that we used in this work, we did not observe any issue for following this style, which is specified in the
few-shot prompt. The only exceptions are with GPT models, where they typically append the language (i.e., “python”) after the first set of
backticks (e.g., ```python), which we also handled with regex.
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as exciting future work to explore.

B. Experiment Setup Details
B.1. Creating MBPP-R

The original MBPP dataset (Austin et al., 2021) consists of three splits, i.e., train/dev/test sets of 374/90/500 Python
programming problems. To increase the number of training example, we first perform a re-split of the original MBPP dataset,
by moving half of the test data into the training split, resulting in 624/90/250 problems in the re-split dataset. Then for each
MBPP problem in the re-split train and dev set, we collect a set of failed solutions from the released model outputs in Ni
et al. (2023). More specifically, we take the 100 samples for each problems, filter out those correct solutions, and keep the
ones that do not pass all the tests. As different problems have various number of buggy solutions, we balance this out by
keeping at most 20 buggy solutions for each MBPP problem.7 This yields the MBPP-R dataset, with 10, 047 repair tasks in
the training set and 1, 468 examples in the dev set.

B.2. Use of test cases.

For each program repair task, there is typically a set of open test cases that are used for debugging purposes, as well as a
set of hidden test cases that are only used for evaluation of correctness. When we generate traces using test cases, we use
only the open test cases and only feed the open test cases to the model as part of the prompt. Then when we evaluate the
generated fix, we resort to all test cases (i.e., open + hidden tests) and only regard a fix as correct when it passes all test
cases. While the HUMANEVAL dataset makes this distinction between open and test cases, the MBPP dataset does not make
such distinction. Thus for MBPP-R, we use all test cases both as the inputs and during evaluation. While this may lead to
false positives when the fixes are overfit to the test cases, and we did find such case during human annotations.

B.3. Details of Human Annotation of Rationale Quality

We annotated model predictions on 104 sampled MBPP-R repair tasks from the DEV set. Those fix tasks are randomly
sampled while ensuring that they cover all the 90 dev MBPP problems. All the tasks are pre-screened to be valid program
repair problems. Annotation is performed in a three-way side-by-side setting. Models are anonymized and their order is
randomized. Raters are asked to judge the quality of rationales from three models (PaLM 2-L+NEXT, PaLM 2-L and
GPT-3.5) on the same MBPP-R problem. Each rationale is rated from two aspects: (1) its helpfulness in explaining bugs (Q1 :
Does the rationale correctly explain bugs in the original code? e.g., first two paragraphs in r̂, Fig. 1), and (2) its helpfulness
in suggesting code fixes (Q2 : Does the rationale suggest a correct and helpful fix? e.g., “a fixed version that uses . . .” in r̂,
Fig. 1).8 Each question has a three-scale answer ( Completely correct and very helpful ; Partially correct with minor
errors but still helpful; Incorrect and not helpful). In a pilot study, we find that fix suggestions could often be redundant if
the rationale already contains detailed explanation of bugs such that a developer could easily correct the code without an
explicit fix suggestion (e.g., Example 2, Appendix D). Therefore, for Q2, we also consider such cases as correct ( ) if a
model didn’t suggest a fix in its rationale but the fix is obvious after bug explanations. We list our annotation guideline in
Fig. 5. Note that for Q2, both answers (1) and (3) are counted as correct ( ) answers.

C. Additional Experiment Results
Here we show the learning curve of NEXT and all its ablations in Fig. 6. We also show the full results for MBPP-R and
HEFIX+ in Tab. 8 and Tab. 9, respectively.

Learning CoT rationales further improves PASS@25. From §5.1, we mention that learning to reason in natural language
improves sample diversity, registering higher PASS@10 than the baseline of finetuning for generating fixes only (NEXT
w/o Rationale). From Tab. 8 and Tab. 9, we can observe that such performance advantage is even larger with PASS@25,
with 7.6% improvements on MBPP-R and 6.8% improvements on HEFIX+.

7This actually biased the dataset towards harder problems as easier problems may not have more than 20 buggy solutions from 100
samples, thus it might be one of the reasons for repairing solutions in MBPP-R to be more challenging than generating code for the
original MBPP dataset.

8We only rate the quality of rationales (not the fixed code), while we still show the predicted fixed code to raters for reference.
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Figure 5: Instructions for the human annotators when annotating the quality of the model generated rationales.

Training on hard-only examples. One part of our data filtering pipeline is to only perform sampling and train on the
samples from hard problems (§4). Here we discuss more about the benefits and potential issues of doing so, by presenting
results on a “w/o hard-only” ablation, where the model learns from rationales and fixes from both hard and easy examples.
Efficiency-wise, by only sampling on the hard example, which is around half of the problems, we greatly can accelerate the
sampling process. And from results in Fig. 6, only training with hard example also comes with performance benefits under
the iterative self-training framework. More specifically, we notice a non-trivial gap between the training curve of this “w/o
hard-only” baseline and the rest of the ablations, especially for PASS@10 and PASS@25 performance on the training set.
This means that the model trained on both easy and hard examples leads to more problems in the training set unsolved (i.e.,
none of the samples are correct), and no learning signal can come from such problems. This also reflects on the dev set
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Figure 6: PASS@k performance on the train and dev sets of MBPP-R for NEXT and all its ablations.

performance. While it is worth noticing that the end-to-end PASS@1 performance for “w/o hard-only” is slightly better than
NEXT trained only trained on hard examples, it performs worse in all other evaluations, with the trend of larger gaps with
higher k values for PASS@k, especially for the proxy-based evaluation. This suggests that training on hard examples not
only improves sample efficiency, but also improves the general fix rate as well as the quality of the generated rationales.

Proxy-based evaluation results are consistent with different proxy models. In the previous proxy-based evaluation
§5.1, we report the proxy-based fix rates by averaging over the performance using PaLM 2-S and PaLM 2-S∗ as the proxy
models. In Tab. 8 and Tab. 9, we show the separated results for different proxy models. From these results, we can observe
that the relative rationale quality evaluated by different proxy models are largely consistent, with the stronger proxy model
(PaLM 2-S∗) having better proxy-based fix rates. In addition to the consistency we show with human annotations, this shows
the robustness of our proposed proxy-based evaluation method for measuring CoT rationale quality.

D. Case Study
In this section we present a set of examples to showcase how PaLM 2-L+NEXT reasons with program execution to solve
MBPP-R problems. We discover several reasoning patterns the model exhibits that leverage trace information to identify and
explain bugs in programs. First, as shown in Example 1, the model could refer to exceptions or error messages in the trace
(eg in Trace 2) to explain bugs in the code. Next, Example 2 shows that the model could also leverage variable states in
the trace (e.g., in Trace 2) and compare them with the expected values to locate the cause of bugs. Besides, the NO CHANGE

annotations for variables whose values are preserved after execution of a step could also help the model explain the execution
process in the rationale (e.g., (3)NO CHANGE 7→ “the first sublist is already sorted”). Perhaps a more interesting scenario is
when the model reasons over multiple steps of computation to track down the cause of a bug. In Example 3, the model
attempts to trace the computation of steps 2 - 4 in Trace 1 to explain why the sum is a float instead of an integer. Another
example is Example 4, where the model summarizes the loop iterations in steps 2 - 9 of Trace 1 to explain the cause of
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Models
End-to-End Fix Rate Proxy-based Fix Rate (PaLM 2–S) Proxy-based Fix Rate (PaLM 2–S∗)

GD PASS@k w/ Sampling GD PASS@k w/ Sampling GD PASS@k w/ Sampling
Acc. k=1 k=5 k=10 k=25 Acc. k=1 k=5 k=10 k=25 Acc. k=1 k=5 k=10 k=25

GPT–3.5 46.4 42.9 65.0 70.7 76.7 27.9 24.7 46.1 54.5 64.6 31.8 28.5 51.5 59.5 68.2
GPT–3.5 w/o trace 47.1 46.8 65.9 70.7 75.7 27.2 25.6 47.0 55.5 64.7 30.9 30.2 53.0 60.7 68.8
GPT–4 62.8 63.2 75.1 78.5 82.7 41.8 42.2 64.5 71.0 76.6 47.8 47.4 68.5 73.9 79.0
GPT–4 w/o trace 51.3 44.8 68.5 73.4 78.5 29.4 27.1 54.2 63.4 72.2 34.9 32.0 60.3 68.5 75.7
PaLM 2-L 26.6 23.2 45.7 54.7 65.0 21.5 21.1 41.1 49.5 59.2 24.9 23.9 45.8 54.3 63.8
PaLM 2-L w/o trace 19.0 16.3 42.1 52.8 64.8 14.7 13.7 33.9 44.1 56.7 17.4 15.9 38.3 48.9 61.6
PaLM 2-L w/o rationale 27.5 25.7 44.5 51.7 60.0 – – – – – – – – – –
PaLM 2-L w/o rationale + trace 23.8 23.1 45.8 54.6 64.5 – – – – – – – – – –

NEXT 50.5 49.3 68.1 73.5 79.4 25.3 26.1 46.8 54.4 62.9 31.8 31.6 53.0 60.2 68.1
test w/o trace 41.1 40.8 61.8 68.9 76.4 17.6 17.5 35.6 43.5 53.4 21.0 21.5 42.2 50.6 60.1

NEXT w/o hard–only 52.9 52.1 65.0 68.8 73.4 23.5 25.1 38.6 44.0 50.9 30.0 29.7 44.1 49.7 55.9
test w/o trace 41.9 42.2 58.1 63.2 69.2 16.3 17.8 32.1 37.9 45.0 18.7 21.0 36.7 43.0 50.5

NEXT w/o rationale 51.8 51.1 63.9 67.9 71.8 – – – – – – – – – –
test w/o trace 43.7 43.0 57.2 61.7 66.3 – – – – – – – – – –

NEXT w/o trace 44.5 44.1 63.0 68.5 75.0 22.3 21.8 42.3 50.1 59.2 25.9 25.9 48.0 55.4 63.2
NEXT w/o rationale w/o trace 46.3 44.9 58.9 63.2 67.8 – – – – – – – – – –

Table 8: Full results on MBPP-R. “GD Acc.” denotes PASS@1 evaluated with greedy decoding. All models in the top half
are few-shot prompted while the bottom half shows the result of NEXT and its ablations.

Models
End-to-End Fix Rate Proxy-based Fix Rate (PaLM 2–S) Proxy-based Fix Rate (PaLM 2–S∗)

GD PASS@k w/ Sampling GD PASS@k w/ Sampling GD PASS@k w/ Sampling
Acc. k=1 k=5 k=10 k=25 Acc. k=1 k=5 k=10 k=25 Acc. k=1 k=5 k=10 k=25

GPT-3.5 68.9 59.4 84.5 89.2 93.0 42.1 39.0 66.1 73.4 80.2 46.3 44.6 71.6 78.8 86.8
GPT-3.5 w/o trace 65.2 65.4 85.3 89.2 92.6 45.7 41.7 68.2 76.3 84.5 50.0 47.2 73.8 81.1 88.6
GPT-4 79.9 77.6 89.3 91.1 92.9 56.1 55.4 75.7 80.8 85.8 61.0 57.7 77.5 82.7 87.4
GPT-4 w/o trace 79.3 68.9 88.3 90.7 92.9 54.9 46.1 72.3 79.0 86.1 59.8 48.7 74.4 80.8 87.5
PaLM 2-L 43.3 32.2 64.3 73.8 81.5 32.9 28.9 59.0 69.2 79.1 43.3 34.9 65.8 74.3 82.9
PaLM 2-L w/o trace 38.4 30.3 61.9 72.9 83.3 25.6 27.8 56.2 66.0 76.6 31.1 33.0 63.5 72.7 81.8
PaLM 2-L w/o rationale 53.0 45.3 71.5 78.9 85.4 – – – – – – – – – –
PaLM 2-L w/o rationale + trace 48.2 43.2 71.4 80.0 87.7 – – – – – – – – – –

NEXT 46.3 42.5 62.6 69.1 76.5 31.7 34.8 54.8 62.4 70.2 40.9 41.3 61.8 68.9 76.4
test w/o trace 42.7 41.2 62.9 70.6 79.5 26.8 26.4 48.0 56.1 64.2 36.0 32.6 55.7 64.4 72.8

NEXT w/o hard-only 48.8 47.7 64.8 70.4 76.6 32.9 37.2 50.8 55.5 61.9 41.5 42.4 56.3 60.8 66.9
test w/o trace 47.6 44.2 64.4 70.4 75.5 31.7 33.3 46.9 51.4 57.3 38.4 38.5 54.6 59.2 63.9

NEXT w/o rationale 47.6 44.5 58.9 63.7 69.4 – – – – – – – – – –
test w/o trace 46.3 44.7 60.4 65.2 70.2 – – – – – – – – – –

NEXT w/o trace 40.9 38.1 59.1 65.3 71.5 29.3 26.9 52.1 61.1 71.5 33.5 34.4 63.1 70.8 77.4
NEXT w/o rationale w/o trace 30.5 31.4 44.6 49.0 54.1 – – – – – – – – – –

Table 9: Full results on HEFIX+. Same notations from Tab. 8 apply.

the missing last element in the result list. Interestingly, while the model is able to reason over multiple steps of execution in
its rationales, as the reasoning chain becomes longer, it is more likely to contain minor logical errors, as highlighted in the
rationales of Examples 3 and 4.

Besides minor logical errors in CoT reasoning, we also identify several more pronounced error modes. First, even if the NL ra-
tionale looks valid, the actual code fix might be incorrect (Example 4). Second, for cases where there are multiple bugs in the
program, the model might only focus on the more obvious bugs during reasoning (e.g., explaining the reason of IndexError
in Trace 2 of Example 5), while ignoring the other more nuanced bugs that are buried in the trace (e.g., Incorrect outputs
in Trace 1 and Trace 3 caused by zero-initialized freq arr). This could be especially problematic when there are hidden
bugs not captured by the trace, which could happen when a buggy program crashes in the middle of execution and the rest the
of the code is not covered in the trace. Since the model could be more reliant on trace information after fine-tuning, it might
be more likely to miss such implicit bugs. As an example, in Example 6 the model only noticed the TypeError in the trace,
without spotting that the code that computes the end index in the output tuple is off by one.
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Example 1: An example where our model explains exceptions in the trace

Task: Write a function to remove leading zeroes from an ip address
Buggy Code:
def removezero ip(ip):

ip list = ip.split(".")
for i in range(4):

ip list[i] = str(int(ip list[i]))
return ".".join(ip list)

Test Cases:
assert removezero ip("216.08.094.196")==('216.8.94.196')
assert removezero ip("12.01.024")==('12.1.24')
assert removezero ip("216.08.094.0196")==('216.8.94.196')

Traces:
# Trace 1:
def removezero ip(ip): # (0) ip='216.08.094.196';

ip list = ip.split(".") # (1) ip list=['216', '08', '094', '196'];
for i in range(4): # (2) i=0; (4) i=1; (6) i=2; ...; (10) NO CHANGE;

ip list[i] = str(int(ip list[i])) # (3) NO CHANGE; (5) ip list=['216', '8', '094', '196']; (7) ip list=['216', '8', '94',
'196']; (9) NO CHANGE;

return ".".join(ip list) # (11) return ='216.8.94.196';

assert removezero ip("216.08.094.196")==('216.8.94.196')

# Trace 2:
def removezero ip(ip): # (0) ip='12.01.024';

ip list = ip.split(".") # (1) ip list=['12', '01', '024'];
for i in range(4): # (2) i=0; (4) i=1; (6) i=2; (8) i=3;

ip list[i] = str(int(ip list[i])) # (3) NO CHANGE; (5) ip list=['12', '1', '024']; (7) ip list=['12', '1', '24']; (9)
exception = IndexError(’list index out of range’)

return ".".join(ip list)

assert removezero ip("12.01.024")==('12.1.24')

# Trace 3:
def removezero ip(ip): # (0) ip='216.08.094.0196';

ip list = ip.split(".") # (1) ip list=['216', '08', '094', '0196'];
for i in range(4): # (2) i=0; (4) i=1; (6) i=2; ...; (10) NO CHANGE;

ip list[i] = str(int(ip list[i])) # (3) NO CHANGE; (5) ip list=['216', '8', '094', '0196']; (7) ip list=['216', '8', '94',
'0196']; (9) ip list=['216', '8', '94', '196'];

return ".".join(ip list) # (11) return ='216.8.94.196';

assert removezero ip("216.08.094.0196")==('216.8.94.196')

Rationale and Code Solution: (code fix is correct )
The problem spec asks to write a function to remove leading zeroes from an IP address.

Now let's look at the program. The program first splits the IP address into a list of strings, and then iterates through the list
to convert each string to an integer, and then back to a string. This will remove leading zeroes.
However, the problem is that it iterates through the list for 4 times, but the length of the
list might not be 4. For example, when ‘ip="12.01.024"‘, the length of the list is only 3. Thus when ‘i=3‘,
it will throw an ‘IndexError‘ .

Here is a simple fix:

def removezero ip(ip):
ip list = ip.split(".")
for i in range(len(ip list)):

ip list[i] = str(int(ip list[i])).lstrip('0')
return ".".join(ip list)

Example 2: An example where our model uses variable states to solve the task

Task: Write a function to sort each sublist of strings in a given list of lists
Buggy Code:
def sort sublists(words):

words.sort(key = len)
for w in words:

w.sort()
return words

Test Cases:
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assert sort sublists([['green', 'orange'], ['black', 'white'], ['white', 'black', 'orange']])==[['green', 'orange'], ['black', '
white'], ['black', 'orange', 'white']]
assert sort sublists([['green', 'orange'], ['black'], ['green', 'orange'], ['white']])==[['green', 'orange'], ['black'], ['green',
'orange'], ['white']]
assert sort sublists([['a','b'],['d','c'],['g','h'] , ['f','e']])==[['a', 'b'], ['c', 'd'], ['g', 'h'], ['e', 'f']]

Traces:
# Trace 1:
def sort sublists(words): # (0) words=[['green', 'orange'], ['black', 'white'], ['white', 'black', 'orange']];

words.sort(key = len) # (1) NO CHANGE;
for w in words: # (2) w=['green', 'orange']; (4) w=['black', 'white']; (6) w=['white', 'black', 'orange']; (8) NO CHANGE;

w.sort() # (3) NO CHANGE; (5) NO CHANGE; (7) w=['black', 'orange', 'white'], words=[['green', 'orange'], ['black', 'white
'], ['black', 'orange', 'white']];

return words # (9) return =[['green', 'orange'], ['black', 'white'], ['black', 'orange', 'white']];

assert sort sublists([['green', 'orange'], ['black', 'white'], ['white', 'black', 'orange']])==[['green', 'orange'], ['black', '
white'], ['black', 'orange', 'white']]

# Trace 2:
def sort sublists(words): # (0) words=[['green', 'orange'], ['black'], ['green', 'orange'], ['white']];

words.sort(key = len) # (1) words=[[’black’], [’white’], [’green’, ’orange’], [’green’, ’orange’]];
for w in words: # (2) w=['black']; (4) w=['white']; (6) w=['green', 'orange']; ...; (10) NO CHANGE;

w.sort() # (3) NO CHANGE; (5) NO CHANGE; (7) NO CHANGE; (9) NO CHANGE;
return words # (11) return =[['black'], ['white'], ['green', 'orange'], ['green', 'orange']];

assert sort sublists([['green', 'orange'], ['black'], ['green', 'orange'], ['white']])==[['green', 'orange'], ['black'], ['green',
'orange'], ['white']] # (12) exception = AssertionError()

# Trace 3:
def sort sublists(words): # (0) words=[['a', 'b'], ['d', 'c'], ['g', 'h'], ['f', 'e']];

words.sort(key = len) # (1) NO CHANGE;
for w in words: # (2) w=['a', 'b']; (4) w=['d', 'c']; (6) w=['g', 'h']; ...; (10) NO CHANGE;

w.sort() # (3) NO CHANGE; (5) w=['c', 'd'], words=[['a', 'b'], ['c', 'd'], ['g', 'h'], ['f', 'e']]; (7) NO CHANGE; (9) w
=['e', 'f'], words=[['a', 'b'], ['c', 'd'], ['g', 'h'], ['e', 'f']];

return words # (11) return =[['a', 'b'], ['c', 'd'], ['g', 'h'], ['e', 'f']];

assert sort sublists([['a','b'],['d','c'],['g','h'] , ['f','e']])==[['a', 'b'], ['c', 'd'], ['g', 'h'], ['e', 'f']]

Rationale and Code Solution: (code fix is correct )
The problem spec asks to sort each sublist of strings in a given list of lists.

Now let's look at the program. The program first sorts the list of lists by the length of each sublist, and then sorts each sublist
. The first assertion passes as the first sublist is already sorted, and the second sublist is also sorted, and the third sublist
is sorted in the for loop. The second assertion fails as the list of lists is sorted by the length of each sublist, and thus the
return value is not the same as the input. The third assertion passes as the first and the last sublists are already sorted, and
the second and the third sublists are sorted in the for loop.

The problem is that the program sorts the list of lists by the length of each sublist, which is not required by the problem spec.
Thus we can simply remove the first line of the function.

Here is the corrected code:

def sort sublists(words):
for w in words:

w.sort()
return words

Example 3: An example where PaLM 2-L+NEXT reasons over multiple steps of execution

Task: Write a function to get the sum of a non-negative integer
Buggy Code:
def sum digits(number):

sum = 0
while(number):

sum += number %
number = number / 10

return sum

Test Cases:
assert sum digits(345)==12
assert sum digits(12)==3
assert sum digits(97)==16

Traces:
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# Trace 1:
def sum digits(number): # (0) number=345;

sum = 0 # (1) sum=0;
while(number):

sum += number %
number = number / 10 # (3) number=34.5; (5) number=3.45; (7) number=0.34500000000000003; ...; (655) number=0.0;

return sum # (656) return =13.33333333333333;

assert sum digits(345)==12 # (657) exception = AssertionError()

# Trace 2:
def sum digits(number): # (0) number=12;

sum = 0 # (1) sum=0;
while(number):

sum += number %
number = number / 10 # (3) number=1.2; (5) number=0.12; (7) number=0.012; ...; (651) number=0.0;

return sum # (652) return =3.3333333333333335;

assert sum digits(12)==3 # (653) exception = AssertionError()

# Trace 3:
def sum digits(number): # (0) number=97;

sum = 0 # (1) sum=0;
while(number):

sum += number %
number = number / 10 # (3) number=9.7; (5) number=0.97; (7) number=0.097; ...; (653) number=0.0;

return sum # (654) return =17.77777777777777;

assert sum digits(97)==16 # (655) exception = AssertionError()

Rationale and Code Solution: (code fix is correct )
The problem spec asks to write a function to get the sum of all digits in a non−negative integer.

Now let's look at the program. The program seems to be correct at the first glance. It first initializes the sum to 0, and then it
uses a while loop to get each digit in the number and add it to the sum. However, if we look at the output of the program, we will
find that the sum is not an integer.
This is because the program does not convert the number to an integer before it gets the digits. For example,
for the first assertion, when ‘number=345‘, the first digit ‘5‘ is added to the sum and ‘sum=5‘. Then ‘number‘
is updated to ‘34.5‘, and the second digit ‘4‘ is added to the sum and ‘sum=9.5‘. And so on.

Here is a fixed version:

def sum digits(number):
number = int(number)
sum = 0
while(number):

sum += number %
number = number // 10

return sum

Example 4: An example where PaLM 2-L+NEXT reasons over multiple steps of execution

Task: Write a function to convert tuple into list by adding the given string after every element.
Buggy Code:
def add str(test tuple, add str):

res = list(test tuple)
for i in range(1,len(test tuple)):

res.insert(i∗2−1,add str)
return res

Test Cases:
assert add str((5, 6, 7, 4, 9) , "FDF") == [5, 'FDF', 6, 'FDF', 7, 'FDF', 4, 'FDF', 9, 'FDF']
assert add str((7, 8, 9, 10) , "PF") == [7, 'PF', 8, 'PF', 9, 'PF', 10, 'PF']
assert add str((11, 14, 12, 1, 4) , "JH") == [11, 'JH', 14, 'JH', 12, 'JH', 1, 'JH', 4, 'JH']

Traces:
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# Trace 1:
def add str(test tuple, add str):

# Write your code here
res = list(test tuple) # (1) res=[5, 6, 7, 4, 9];
for i in range(1,len(test tuple)): # (2) i=1; (4) i=2; (6) i=3; ...; (10) NO CHANGE;

res.insert(i∗2−1,add str) # (3) res=[5, ’FDF’, 6, 7, 4, 9]; (5) res=[5, ’FDF’, 6, ’FDF’, 7, 4, 9];
(7) res=[5, ’FDF’, 6, ’FDF’, 7, ’FDF’, 4, 9]; (9) res=[5, ’FDF’, 6, ’FDF’, 7, ’FDF’, 4, ’FDF’, 9];

return res # (11) return =[5, 'FDF', 6, 'FDF', 7, 'FDF', 4, 'FDF', 9];

assert add str((5, 6, 7, 4, 9) , "FDF") == [5, 'FDF', 6, 'FDF', 7, 'FDF', 4, 'FDF', 9, 'FDF'] # (12) exception =
AssertionError()

# Trace 2:
def add str(test tuple, add str):

# Write your code here
res = list(test tuple) # (1) res=[7, 8, 9, 10];
for i in range(1,len(test tuple)): # (2) i=1; (4) i=2; (6) i=3; (8) NO CHANGE;

res.insert(i∗2−1,add str) # (3) res=[7, 'PF', 8, 9, 10]; (5) res=[7, 'PF', 8, 'PF', 9, 10]; (7) res=[7, 'PF', 8, 'PF', 9,
'PF', 10];

return res # (9) return =[7, 'PF', 8, 'PF', 9, 'PF', 10];

assert add str((7, 8, 9, 10) , "PF") == [7, 'PF', 8, 'PF', 9, 'PF', 10, 'PF'] # (10) exception = AssertionError()

# Trace 3:
def add str(test tuple, add str):

# Write your code here
res = list(test tuple) # (1) res=[11, 14, 12, 1, 4];
for i in range(1,len(test tuple)): # (2) i=1; (4) i=2; (6) i=3; ...; (10) NO CHANGE;

res.insert(i∗2−1,add str) # (3) res=[11, 'JH', 14, 12, 1, 4]; (5) res=[11, 'JH', 14, 'JH', 12, 1, 4]; (7) res=[11, 'JH',
14, 'JH', 12, 'JH', 1, 4]; (9) res=[11, 'JH', 14, 'JH', 12, 'JH', 1, 'JH', 4];

return res # (11) return =[11, 'JH', 14, 'JH', 12, 'JH', 1, 'JH', 4];

assert add str((11, 14, 12, 1, 4) , "JH") == [11, 'JH', 14, 'JH', 12, 'JH', 1, 'JH', 4, 'JH'] # (12) exception =
AssertionError()

Rationale and Code Solution: (code fix is wrong )
The problem spec asks to convert a tuple to a list and add a given string after every element.

Now let's look at the program. The program first converts the tuple to a list, which is good. Then it iterates from 1 to the length
of the list, and inserts the given string at index `i∗2−1`. This seems correct at the first glance, but

the problem is that it will not add the string after the last element. For example, when
‘test tuple=(5, 6, 7, 4, 9)‘, the length of the list is 5, and the for loop will iterate from 1 to 4. Thus the
string will be inserted at index 1, 3, 5, and 7, which corresponds to after the second, fourth, and sixth element.
The string will not be inserted after the last element (i.e., the ninth element).

Here is a simple fix:

def add str(test tuple, add str):
res = list(test tuple)
for i in range(len(test tuple)):

res.insert(i∗2,add str)
return res

Example 5: An example where PaLM 2-L+NEXT failed to identify all the bugs in the program

Task: Write a python function to find the difference between highest and least frequencies in a given array.
Buggy Code:
def find Diff(nums, n):

freq arr = [0 for i in range(n)]
for i in range(len(nums)):

freq arr[nums[i]] = freq arr[nums[i]] + 1
return max(freq arr) − min(freq arr)

Test Cases:
assert find Diff([1,1,2,2,7,8,4,5,1,4],10) == 2
assert find Diff([1,7,9,2,3,3,1,3,3],9) == 3
assert find Diff([1,2,1,2],4) == 0

Traces:
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# Trace 1:
def find Diff(nums, n): # (0) n=10, nums=[1, 1, 2, 2, 7, 8, 4, 5, 1, 4]; (1) .0=<range iterator object>;

freq arr = [0 for i in range(n)] # (2) i=0; (3) i=1; (4) i=2; ...; (13) freq arr=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
for i in range(len(nums)): # (14) i=0; (16) i=1; (18) i=2; ...; (34) NO CHANGE;

freq arr[nums[i]] = freq arr[nums[i]] + 1 # (15) freq arr=[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]; (17) freq arr=[0, 2, 0, 0, 0, 0,
0, 0, 0, 0]; (19) freq arr=[0, 2, 1, 0, 0, 0, 0, 0, 0, 0]; ...; (33) freq arr=[0, 3, 2, 0, 2, 1, 0, 1, 1, 0];

return max(freq arr) − min(freq arr) # (35) return =3;

assert find Diff([1,1,2,2,7,8,4,5,1,4],10) == 2 # (36) exception = AssertionError()

# Trace 2:
def find Diff(nums, n): # (0) n=9, nums=[1, 7, 9, 2, 3, 3, 1, 3, 3]; (1) .0=<range iterator object>;

freq arr = [0 for i in range(n)] # (2) i=0; (3) i=1; (4) i=2; ...; (12) freq arr=[0, 0, 0, 0, 0, 0, 0, 0, 0];
for i in range(len(nums)): # (13) i=0; (15) i=1; (17) i=2;

freq arr[nums[i]] = freq arr[nums[i]] + 1 # (14) freq arr=[0, 1, 0, 0, 0, 0, 0, 0, 0]; (16) freq arr=[0, 1, 0, 0, 0, 0, 0,
1, 0]; (18) exception = IndexError('list index out of range')

return max(freq arr) − min(freq arr)

assert find Diff([1,7,9,2,3,3,1,3,3],9) == 3

# Trace 3:
def find Diff(nums, n): # (0) n=4, nums=[1, 2, 1, 2]; (1) .0=<range iterator object>;

freq arr = [0 for i in range(n)] # (2) i=0; (3) i=1; (4) i=2; ...; (7) freq arr=[0, 0, 0, 0];
for i in range(len(nums)): # (8) i=0; (10) i=1; (12) i=2; ...; (16) NO CHANGE;

freq arr[nums[i]] = freq arr[nums[i]] + 1 # (9) freq arr=[0, 1, 0, 0]; (11) freq arr=[0, 1, 1, 0]; (13) freq arr=[0, 2, 1,
0]; (15) freq arr=[0, 2, 2, 0];

return max(freq arr) − min(freq arr) # (17) return =2;

assert find Diff([1,2,1,2],4) == 0 # (18) exception = AssertionError()

Rationale and Code Solution: (code fix is wrong )
The problem spec asks to find the difference between the highest and the least frequencies in a given array.

Now let's look at the program. The program first creates a frequency array of length `n`, and then iterates through the input array
to count the frequency of each number. It then returns the difference between the maximum and the minimum frequencies in the

frequency array.

The program looks good at the first glance.
However, the problem is that the length of the frequency array is ‘n‘, which is the length of the input array.
However, the numbers in the input array can be larger than ‘n‘, and thus the frequency array will not be able
to accommodate all the numbers in the input array. For example, in the second assertion, the input array is `[1, 7, 9, 2, 3, 3, 1,
3, 3]`, and the length of the frequency array is also `9`. When `nums[i]=9`, it will try to access `freq arr[9]`, which is out of

bound, and thus an `IndexError` is thrown.

Here is a simple fix:

def find Diff(nums, n):
freq arr = {}
for i in range(len(nums)):

if nums[i] in freq arr:
freq arr[nums[i]] += 1

else:
freq arr[nums[i]] = 1

max freq = 0
min freq = 0
for num, freq in freq arr.items():

if freq > max freq:
max freq = freq

if freq < min freq or min freq == 0:
min freq = freq

return max freq − min freq

Example 6: An example where PaLM 2-L+NEXT failed to identify a bug not revealed in the trace

Task: Write a function to search a literals string in a string and also find the location within the original string where the pattern occurs.
Buggy Code:
def search literal(pattern, text):

match = tuple(text.find(pattern), text.find(pattern) + len(pattern) - 1)

return match

Test Cases:
assert search literal('python','python programming language')==(0,6)
assert search literal('programming','python programming language')==(7,18)
assert search literal('language','python programming language')==(19,27)

Traces:
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# Trace 1:
def search literal(pattern, text):

match = tuple(text.find(pattern), text.find(pattern) + len(pattern) − 1) # (1) exception = TypeError('tuple expected at
most 1 argument, got 2')

return match

assert search literal('python','python programming language')==(0,6)

# Trace 2:
def search literal(pattern, text):

match = tuple(text.find(pattern), text.find(pattern) + len(pattern) − 1) # (1) exception = TypeError('tuple expected at
most 1 argument, got 2')

return match

assert search literal('programming','python programming language')==(7,18)

# Trace 3:
def search literal(pattern, text):

match = tuple(text.find(pattern), text.find(pattern) + len(pattern) − 1) # (1) exception = TypeError('tuple expected at
most 1 argument, got 2')

return match

assert search literal('language','python programming language')==(19,27)

Rationale and Code Solution: (code fix is wrong )
Now let's look at the program. The program looks good at the first glance as `text.find(pattern)` is the correct way to find the
location of a literal string in a given string. But the problem is that it does not use the `tuple()` function correctly. The `
tuple()` function takes a single iterable as input, and returns a tuple with the elements from the iterable.
But in the program, it takes two arguments, which will throw a ‘TypeError‘ of ‘tuple expected at most 1 argument, got 2‘.

Here is a simple fix:

def search literal(pattern, text):
match = tuple(text.find(pattern),)
match = match + (text.find(pattern) + len(pattern) − 1,)

return match
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E. Full Prompt
Here we show the instruction and all three few-shot examples used in this work. The rationales and fixes in the few-shot
examples are hand annotated by the authors. Each exemplar has three unit tests and their traces.

1 We are doing pair programming, I will give you the problem definition and my implementation, which does not
pass all test cases. And you need to help me to fix my code.↪→

2
3 # Example 1
4
5 Here is the specification in natural language and the program that I wrote:
6 ```
7 # Write a function to find the similar elements from the given two tuple lists.
8 def similar_elements(t1, t2):
9 s1 = set(t1)

10 s2 = set(t2)
11 return s1.intersection(s2)
12
13 ```
14 Here are the assertions I need to pass:
15 ```
16 assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)
17 assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4)
18 assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14)
19 ```
20
21 Here is a *cheatsheet* for the gold execution trace for each assertions, use the information here but pretend

you did all the reasoning about execution yourself.↪→
22
23 #################### cheatsheet starts ####################
24 def similar_elements(t1, t2): # (0) t1=(3, 4, 5, 6), t2=(5, 7, 4, 10);
25 s1 = set(t1) # (1) s1={3, 4, 5, 6};
26 s2 = set(t2) # (2) s2={10, 4, 5, 7};
27 return s1.intersection(s2) # (3) __return__={4, 5}
28
29
30 assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5) #
31 --------------------
32 def similar_elements(t1, t2): # (0) t1=(1, 2, 3, 4), t2=(5, 4, 3, 7);
33 s1 = set(t1) # (1) s1={1, 2, 3, 4};
34 s2 = set(t2) # (2) s2={3, 4, 5, 7};
35 return s1.intersection(s2) # (3) __return__={3, 4}
36
37
38 assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4) #
39 --------------------
40 def similar_elements(t1, t2): # (0) t1=(11, 12, 14, 13), t2=(17, 15, 14, 13);
41 s1 = set(t1) # (1) s1={11, 12, 13, 14};
42 s2 = set(t2) # (2) s2={17, 13, 14, 15};
43 return s1.intersection(s2) # (3) __return__={13, 14}
44
45
46 assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14) #
47 #################### cheatsheet ends ####################
48
49 Given the above information, can you tell me why my code is wrong, and also provide a fixed version?
50
51 The problem spec asks to find the similar elements in the two tuples, from the assertion we can see that it

essentially wants the common elements from the two tuples. It also seems that the common elements should be
returned in a tuple with ascending order.

↪→
↪→

52
53 Now let's look at the program. While it is correct and efficient to use `intersection()` to find the common

elements between two sets, it will also return a set. Take the first assertion as an example, `s1` will
first be converted to a set like `{3, 4, 5, 6}` and similarly for `s2`, then the return value will be `{4,
5}`. Though the elements are right, the expected return value is a tuple and not a set. Thus we only need
to further convert the sets to tuples using `tuple()`.

↪→
↪→
↪→
↪→

54
55 Here is the corrected code:
56 ```
57 def similar_elements(t1, t2):
58 s1 = set(t1)
59 s2 = set(t2)
60 return tuple(s1.intersection(s2))
61 ```
62
63 # Example 2
64
65 Here is the specification in natural language and the program that I wrote:
66 ```
67 # Write a python function to identify non-prime numbers.
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68 def is_not_prime(n):
69 if n==1:
70 return False
71 else:
72 for i in range(2,n//2+1):
73 if n%i==0:
74 return False
75 else:
76 return True
77 ```
78 Here are the assertions I need to pass:
79 ```
80 assert is_not_prime(2) == False
81 assert is_not_prime(10) == True
82 assert is_not_prime(35) == True
83 ```
84
85 Here is a *cheatsheet* for the gold execution trace for each assertions, use the information here but pretend

you did all the reasoning about execution yourself.↪→
86
87 #################### cheatsheet starts ####################
88 def is_not_prime(n): # (0) n=2;
89 if n==1: #
90 return False
91 else:
92 for i in range(2,n//2+1): # (1) __return__=None
93 if n%i==0:
94 return False
95 else:
96 return True
97
98
99 assert is_not_prime(2) == False #

100 --------------------
101 def is_not_prime(n): # (0) n=10;
102 if n==1: #
103 return False
104 else:
105 for i in range(2,n//2+1): # (1) i=2;
106 if n%i==0: #
107 return False # (2) __return__=False
108 else:
109 return True
110
111
112 assert is_not_prime(10) == True #
113 --------------------
114 def is_not_prime(n): # (0) n=35;
115 if n==1: #
116 return False
117 else:
118 for i in range(2,n//2+1): # (1) i=2;
119 if n%i==0: #
120 return False
121 else:
122 return True # (2) __return__=True
123
124
125 assert is_not_prime(35) == True #
126 #################### cheatsheet ends ####################
127
128 Given the above information, can you tell me why my code is wrong, and also provide a fixed version?
129
130 The problem spec asks to write a Python function that identifies non-prime numbers. Non-prime numbers are

numbers that are divisible by numbers other than 1 and itself. Note that 0 and 1 are also non-prime
numbers.

↪→
↪→

131
132 Now let's check the program. Let's run the program through some examples. For the first assertion, when `n=2`,

it will enter the `else` branch, and then in the for loop, since the condition is `i in range(2, n//2+1)`,
which is `range(2, 2)`, it will actually not enter the loop since the condition is not met in the first
place. And then it will reach the end of the function, and the return value will be `None`. And for the
third assertion, when `n=35`, it also enters the `else` branch, and it then enters the loop with `i=2` as
`n//2+1=18 > 2`. Then in the next step, since `n%i==0` is false, it enters the else branch and returns
`True`. This somehow matches the expected output, but it is by chance.

↪→
↪→
↪→
↪→
↪→
↪→

133
134 While it is not obvious how to correct this program, another way to implement the `is_not_prime()` function is

just to first create a helper function to identify prime numbers as `is_prime()`, and then simply `return
not is_prime(x)`.

↪→
↪→

135
136 Here is a re-implementation:
137 ```
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138 def is_prime(x):
139 if x <= 1:
140 return False
141 else:
142 for i in range(2,x):
143 if x%i == 0:
144 return False
145 return True
146
147 def is_not_prime(x):
148 return not is_prime(x)
149 ```
150
151 # Example 3
152
153 Here is the specification in natural language and the program that I wrote:
154 ```
155 # Write a function to find the largest integers from a given list of numbers using heap queue algorithm.
156 def heap_queue_largest(list1,n):
157 largest=heapq.nlargest(n,list1)
158 return largest
159
160 ```
161 Here are the assertions I need to pass:
162 ```
163 assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],3)==[85, 75, 65]
164 assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],2)==[85, 75]
165 assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],5)==[85, 75, 65, 58, 35]
166 ```
167
168 Here is a *cheatsheet* for the gold execution trace for each assertions, use the information here but pretend

you did all the reasoning about execution yourself.↪→
169
170 #################### cheatsheet starts ####################
171 def heap_queue_largest(list1,n): # (0) list1=[25, 35, 22, 85, 14, 65, 75, 22, 58], n=3;
172 largest=heapq.nlargest(n,list1) # (1) __exception__ = NameError("name 'heapq' is not defined")
173 return largest
174
175
176 assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],3)==[85, 75, 65]
177 --------------------
178 def heap_queue_largest(list1,n): # (0) list1=[25, 35, 22, 85, 14, 65, 75, 22, 58], n=2;
179 largest=heapq.nlargest(n,list1) # (1) __exception__ = NameError("name 'heapq' is not defined")
180 return largest
181
182
183 assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],2)==[85, 75]
184 --------------------
185 def heap_queue_largest(list1,n): # (0) list1=[25, 35, 22, 85, 14, 65, 75, 22, 58], n=5;
186 largest=heapq.nlargest(n,list1) # (1) __exception__ = NameError("name 'heapq' is not defined")
187 return largest
188
189
190 assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],5)==[85, 75, 65, 58, 35]
191 #################### cheatsheet ends ####################
192
193 Given the above information, can you tell me why my code is wrong, and also provide a fixed version?
194
195 The problem spec asks to find `n` largest integers in a given list. It also suggests that the heap queue shall

be used.↪→
196
197 Now let's look at the program. The program looks good at the first glance as `heapq.nlargest()` is the correct

way to get the `n` largest integers from an iterable (e.g., a list). But the problem is that it does not
import the `heapq` package first. Thus all three assertions will fail at the first line of the function,
and throw a `NameError` of `name 'heapq' is not defined`.

↪→
↪→
↪→

198
199 Here is a simple fix:
200 ```
201 import heapq
202 def heap_queue_largest(list1,n):
203 largest=heapq.nlargest(n,list1)
204 return largest
205 ```
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