
On the Nonlinearity of Layer Normalization

Yunhao Ni 1 Yuxin Guo 1 Junlong Jia 1 Lei Huang* 1

Abstract

Layer normalization (LN) is a ubiquitous tech-
nique in deep learning but our theoretical under-
standing to it remains elusive. This paper investi-
gates a new theoretical direction for LN, regard-
ing to its nonlinearity and representation capacity.
We investigate the representation capacity of a
network with layerwise composition of linear and
LN transformations, referred to as LN-Net. We
theoretically show that, givenm samples with any
label assignment, an LN-Net with only 3 neurons
in each layer and O(m) LN layers can correctly
classify them. We further show the lower bound
of the VC dimension of an LN-Net. The nonlin-
earity of LN can be amplified by group partition,
which is also theoretically demonstrated with mild
assumption and empirically supported by our ex-
periments. Based on our analyses, we consider
to design neural architecture by exploiting and
amplifying the nonlinearity of LN, and the effec-
tiveness is supported by our experiments.

1. Introduction
Layer normalization (LN) (Ba et al., 2016) is a ubiquitous
technique in deep learning, enabling varies neural networks
to train effectively. It was initially proposed to address
the train-inference inconsistency problem of Batch Nor-
malization (BN) (Ioffe & Szegedy, 2015) applied in the
recurrent neural networks for Natural Language Processing
(NLP) tasks. It then became the key component of Trans-
former (Vaswani et al., 2017) and its variants (Dai et al.,
2019; Xiong et al., 2020; Dosovitskiy et al., 2021), spread-
ing from NLP (Radford et al., 2021; Devlin et al., 2019;
Raffel et al., 2020) to Computer Vision (CV) (Dosovitskiy
et al., 2021; Carion et al., 2020; Cheng et al., 2022) com-
munities. LN has got its firm position (Huang et al., 2023)
in the evolution of neural architectures and is currently a

1SKLCCSE, Institute of Artificial Intelligence, Beihang Uni-
versity, Beijing, China. Correspondence to: Lei Huang <huan-
gleiAI@buaa.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

basic layer in almost all the foundation models (Brown et al.,
2020; Alayrac et al., 2022; Kirillov et al., 2023).

While LN is extensively used in practice, our theoretical
understanding to it remains elusive. One main theoretical
work for LN is its scale-invariant property, which is initially
discussed in (Ba et al., 2016) to illustrate its ability in stabi-
lizing training and is further extended in (Hoffer et al., 2018;
Arora et al., 2019; Li & Arora, 2020) to consider its poten-
tial affects in optimization dynamics. Different from the
previous work focusing on theoretical analyses of LN from
the perspective of optimization, this paper investigates a new
theoretical direction for LN, regarding to its nonlinearity
and representation capacity.

We mathematically demonstrate that LN is a nonlinear trans-
formation. We highlight that LN might be a nonlinear trans-
formation by intuition, but there is no work, to our best
knowledge, demonstrating it. Our demonstration is based
on the defined lower bound named LSSR (Definition 2).
The LSSR will not be broken under any linear transforma-
tion by definition, but we show that a linear neural network
combined with LN can break the LSSR. Therefore, LN has
nonlinearity. We also show that an LN-Net, which is a lay-
erwise composition of linear and LN transformations, has
nonlinearity.

One interesting question is that how powerful the nonlinear
of an LN-Net is in theory. We theoretically show that, given
m samples with any label assignment, an LN-Net with only
3 neurons in each layer and O(m) LN layers can correctly
classify them. We further show the lower bound of the
VC dimension of an LN-Net. In particular, given an LN-
Net with width only 3 neurons in each layer and L LN
layers, its VC dimension is lower bounded by L+ 2. These
results show that LN-Net has great representation capacity
in theory, implying the possibility that a network with linear
and LN layer only can work well in practice.

We further investigate how to amplify and exploit the nonlin-
earity of LN. We find that Group based LN (LN-G)—which
divides neurons of a layer into groups and perform LN in
each group in parallel—has stronger nonlinearity than the
naive LN countpart. This is also theoretically demonstrated
with mild assumption and empirically supported by our com-
prehensive experiments. We also consider practical scenario,
where we replace LN with LN-G on Transformer and ViT,

1

On the Nonlinearity of Layer Normalization

since we believe the amplified nonlinearity can benefits the
models. The preliminary results show the potentiality of
this design in neural architecture.

2. Preliminary and Notation
We use a lowercase letter x ∈ R to denote a scalar, boldface
lowercase letter x ∈ Rd for a vector and boldface uppercase
letter for a matrix X ∈ Rd×m, where R is the set of real-
valued numbers, and d,m are positive integers.

Neural Network. Given the input x, a classical neural net-
work fθ(x) is typically represented as a layer-wise linear1

and nonlinear transformation:

h(l) = W (l)x(l−1) + b(l), (1)
x(l) = ϕ(h(l)), l = 1, ..., L, (2)

where θ = {(W (l), b(l)), l = 1, · · · , L} are learnable pa-
rameters, x(0) = x, W (l) ∈ Rdl×dl−1 , b(l) ∈ Rdl and dl
indicates the number of neurons in the l-th layer. We set
x(L) = h(L) as the output of the network fθ(x) to simplify
denotations. A neural network without nonlinear transfor-
mation ϕ(·) (Eqn. 2) is referred to as a linear neural network,
which is still a linear transformation in native.

Layer Normalization. Layer Normalization (LN) is an
essential layer in modern deep neural networks mainly for
stabilizing training. Given a single sample of layer input
x = [x(1), x(2), · · · , x(d)] ∈ Rd with d neurons in a neural
network, LN standardizes x within the neurons as 2:

x̂(j) = LN(x(j)) =
x(j) − µ

σ
, j = 1, 2, · · · , d, (3)

where µ = 1
d

d∑
i=1

x(j) and σ =

√
1
d

d∑
i=1

(x(j) − µ)2 are the

mean and variance for each sample, respectively. The stan-
dardization operation can be viewed as a combination of
centering and scaling operations. Centering projects x onto
the hyperplane {x ∈ Rd : x(1) + · · · + x(d) = 0}, by
x̃ = (I − 1

d1d1
⊤
d)x. Scaling projects x̃ onto the sphere

{x ∈ Rd : [x(1)]2+ · · ·+[x(d)]2 = d}, by x̂ =
√
dx̃/∥x̃∥2.

We thus also call scaling as Spherical Projection (SP), from
the geometric perspective. Note that SP is the only operation
for normalization in RMSNorm (Zhang & Sennrich, 2019).

Sum of Squares. Sum of Squares (SS) (Fisher, 1970) is
a statistical concept that measures the variability or dis-
persion within a set of data. Denote m samples from

1We follow the convention in deep learning community, and do
not differentiate between the linear and affine transformation.

2LN usually uses extra learnable scale and shift parame-
ters (Ioffe & Szegedy, 2015), and we omit them for simplifying
discussion as they are affine transformation in native

class c as xc1, · · · ,xcm ∈ Rd, represented as a matrix
Xc = [xc1, · · · ,xcm], then SS of Xc is defined as

SS(Xc) =

m∑
i=1

∥xci − x̄c∥2 , (4)

where x̄c = (xc1 + · · ·+ xcm)/m.

3. The Existence of Nonlinearity in LN
In this section, we define Sum of Squares Ratio (SSR) and
its linear invariant lower bound named LSSR. We then show
that LN can break the boundary of SSR and plays a role in
nonlinear representation.

3.1. Linear Invariant Lower Bound

We take binary classification for simplifying discussion. Let
Xc = [xc1, · · · ,xcm] represents m samples3 in Rd from
the corresponding class c ∈ {1, 2}, and [X1,X2] ∈ Rd×2m

represents all the samples together.
Definition 1. (SSR.) Given SS([X1,X2]) ̸= 0, the Sum of
Squares Ratio (SSR) between X1 and X2 is defined as

SSR(X1,X2) =
SS(X1) + SS(X2)

SS([X1,X2])
. (5)

It is easy to demonstrate that SSR(X1,X2) ∈ [0, 1]. SSR
can be an indicator to show how easy the samples in the
Euclidean space from different classes can be separated. I.e.,
the smaller SSR is, the more easily X1 and X2 are to be
separated with Eulcidean distance as a measurement in most
cases. Based on SSR, we further define its lower bound
under any linear transformation as follows.
Definition 2. (LSSR.) The Linear SSR (LSSR) between X1

and X2 is defined as

LSSR(X1,X2) = inf
φ∈Dφ(d)

SSR(φ(X1), φ(X2)), (6)

where Dφ(d) is the set of all linear functions defined on Rd.

By definition, LSSR is the lower bound of SSR under any
linear transformation. LSSR can be an indicator to show
how easy the samples from different classes can be linearly
separated. We provide illustrative examples in Appendix A
for details. In the following proposition, we show a linear
neural network can not break LSSR.
Proposition 1. Given X1,X2 ∈ Rd0×m and a linear neu-
ral network represented as φ̃ = φ1 ◦ · · · ◦ φL, where
φl : Rdl−1 → Rdl , (l = 1, · · · , L) are all linear trans-
formations as shown in Eqn. 1, we have that

SSR(φ̃(X1), φ̃(X2)) ≥ LSSR(X1,X2). (7)
3We use the same number (m) of samples in each class for

simplifying notation, and our subsequent definition and conclusion
are also apply to different number for different classes.

2

On the Nonlinearity of Layer Normalization

Proposition 1 is easily proved by the definition of LSSR,
since we have φ̃ ∈ Dφ(d0). Proposition 1 implies that the
SSR will not break the lower bound if we use an arbitrary
linear neural network as a representation transformation
over the samples. One interesting question is that whether
a linear neural network combined with LN can break the
lower bound of SSR. If Yes, we can show that LN has
nonlinearity.

3.2. Break the Lower Bound of SSR with LN

Here, we focus on the linear neural network combined with
LN. To state more precisely, we denote LN-Net as follows.

Definition 3. (LN-Net.) The LN-Net fθ(x) is defined as
layer-wise composition of linear and LN transformation:

h(l) = W (l)x(l−1) + b(l), l = 1, ..., L, (8)
x(l) = LN(h(l)), l = 1, ..., L− 1,

where θ = {(W (l), b(l)), l = 1, ..., L} are learnable pa-
rameters, x(0) = x and LN(·) denotes the LN operation.
We set x(L) = h(L) as the output of the network fθ(x) to
simplify denotations.

We first provide a tractable method to calculate LSSR, stated
by the following proposition.

Proposition 2. Given X1,X2 ∈ Rd×m, we denote M =
2∑

c=1

m∑
i=1

(xci − x̄c)(xci − x̄c)
⊤, and N =

2∑
c=1

m∑
i=1

(xci −

x̄)(xci − x̄)⊤, where x̄ = (x̄1 + x̄2)/2. Supposing that N
is reversible, we have

LSSR(X1,X2) = λ∗, (9)

and correspondingly,

LSSR(X1,X2) = SSR((u∗)⊤X1, (u
∗)⊤X2), (10)

where λ∗ and u∗ are the minimum eigenvalue and corre-
sponding eigenvector of N−1M .

The proof of Proposition 2 are shown in Appendix B. Based
on Proposition 2, we further define fSSR(t) as

fSSR(t) =

{
LSSR(X1,X2), t = 0,

SSR(ψ̄(t;X1), ψ̄(t;X2)), t ̸= 0,
(11)

where ψ̄(t;xci) = 1⊤φ̄(t;xci)/∥φ̄(t;xci)∥2, φ̄(t;xci) =
[(u∗)⊤xcit, 1]

⊤ and t ∈ R. We point out that fSSR(t) is
derivable at t = 0, and f ′SSR(0) is only decided by X1 and
X2, which is proved in Appendix C.

Based on the definition of fSSR(t), we show that LN-Net
can decrease the LSSR as stated by the following theorem.

Theorem 1. Let ψ = φ1 ◦LN(·) ◦φ2, performing over the
input X1,X2 ∈ Rd×m. If f ′SSR(0) ̸= 0 , we can always
find suitable linear functions φ1 and φ2, such that

SSR(ψ(X1), ψ(X2)) < LSSR(X1,X2). (12)

The proof of Theorem 1 requires complicated derivation.
Please refer to Appendix C for details. Note that LN-Net is
a more general form of ψ in Theorem 1, which implies that
LN-Net can break the lower bound of SSR.

Based on Theorem 1, we can obtain the following statement.
We deduce that LN is a nonlinear transformation.
Corollary 1. LN is a nonlinear transformation.

Proof. We assume that LN(·) is a linear transformation.
We thus have LN-Net is also a linear transformation. Based
on Proposition 1, we have LN-Net can not break LSSR.
This contradicts Theorem 1. Therefore, LN(·) must be a
nonlinear transformation.

Summary. In this section, we mathematically show that
LN is a nonlinear transformation, and LN-Net is a network
with nonlinearity. One interesting question is that how pow-
erful the nonlinearity of an LN-Net is in theory. We will
discuss about it in the following section.

4. Capacity of a Network with LN
In this section, we apply LN-Net to classify m samples with
any label assignment. To prove the existence of such LN-
Net, we propose Projection Merge Algorithm (PMA) and
Parallelization Breaking Algorithm (PBA) to help find the
parameters of the LN-Net.

4.1. LN for Xor Classification

To understand PMA intuitively, we use Spherical Projection
(SP) rather than LN at the beginning. But we replace SP
with LN and linear layers back in the end, according to the
lemma as follows.
Lemma 1. Denote LN(·) as the LN operation in Rd(d ≥
3), and SP (·) as the SP operation4 in Rd−1. We can find
some linear transformations φ̂1 and φ̂2, such that

SP (·) = φ̂1 ◦ LN(·) ◦ φ̂2. (13)

The proof of Lemma 1 is shown in Appendix C. And we can
easily obtain the following corollary.
Corollary 2. SP (·) can be represented by an LN-Net.

Taking xor classification as an example, we primarily show
how we use LN-Net to classify linearly inseparable samples.

4If there are no special instructions, we denote SP projects the
sample on to the unit circle, namely x 7→ x/∥x∥2.

3

On the Nonlinearity of Layer Normalization

y

xO

(a) Initial input.

45◦
y

xO

(b) Rotation.

y

xO

y = 0.5

(c) Linear projection.

y

xO

(d) Spherical projection.

y y

xO1 O2

(e) Linear projection.

Figure 1. Solution to the Xor Classification. To begin with, we rotate them by 45◦, as shown in Figure 1(b). Then we vertically project
them onto y = 0.5, as shown in Figure 1(c). Next, we spherically project them onto the circle x2 + y2 = 1, as shown in Figure 1(d).
Finally, we horizontally project them onto x = 0, as shown in Figure 1(e). Now we have classified the two classes.

As shown in Figure 1(a), (0, 0), (1, 1) and (0, 1), (1, 0) be-
long to different classes. Obviously, the two classes are not
linearly separable. We can classify them with SP and linear
transformations only, please refer to the demonstration in
Figure 1 for details.

By Lemma 1, replace SP with LN-Net. Therefore, we can
construct an LN-Net according to the operations in Figure
1, and then classify the xor samples.

More generally, we discuss binary classification in Section
4.2 and multi-class classification in Section 4.3.

4.2. LN for Binary Classification

Theorem 2. Given m samples with any binary label assign-
ment in {0, 1}, there always exists an LN-Net with only 3
neurons per layer and O(m) LN layers can correctly clas-
sify them.

To prove Theorem 2, we represent the LN-Net with SP and
linear layers. Then we design an algorithm to help compute
the parameters according to the input. We hence get an
LN-Net with proper parameters to classify the samples. The
proof is shown as follows.

We represent an LN-Net as

fθ(·) = φ1 ◦LN(·) ◦φ2 ◦ · · · ◦φL−1 ◦LN(·) ◦φL, (14)

where φ1, · · · , φL denote the linear layers, and LN(·) de-
notes the LN layers. For convenience, we replace LN with
SP temporarily.

Proposition 3. The LN-Net fθ(·) in Eqn.14 can be repre-
sented by SP and linear layers equivalently.

Proof. Since each LN(·) acts on R3, by Lemma 1, we can
construct a 2-dimensional SP (·) = φ̂1◦LN(·)◦φ̂2. Define
each φl in Theorem 2 as

φl =

φ
(1)
l ◦ φ

(2)
l ◦ φ̂1, l = 1,

φ̂2 ◦ φ(1)
l ◦ φ

(2)
l ◦ φ̂1, 1 < l < L,

φ̂2 ◦ φ(1)
l , l = L,

(15)

where φ(1)
l and φ(2)

l are both linear functions. By Eqn.15

and Lemma 1, we can rewrite fθ(·) as

f̃θ(·) = φ
(1)
1 ◦φ

(2)
1 ◦SP (·)◦φ

(1)
2 ◦· · ·◦SP (·)◦φ

(1)
L , (16)

namely, fθ(·) can be represented by SP and linear layers
equivalently.

Hereafter, we consider to compute the parameters of f̃θ(·).
Specifically, for each layer, we denote

φ
(1)
l : X(l−1) 7→ P (l), 1 ≤ l ≤ L;

φ
(2)
l : P (l) 7→H(l), 1 ≤ l ≤ L− 1;

SP (·) : H(l) 7→X(l), 1 ≤ l ≤ L− 1.

(17)

Besides, the input of f̃θ(·) is X(0) = [x
(0)
1 , · · · ,x(0)

m], and
the output is P (L). Now we construct f̃θ(·) step by step.

We denote that for each P (l), (l = 1, · · · , L), these points
are on the x-axis, namely p

(l)
k = [p

(l)
k , 0]⊤, (k = 1, · · · ,m).

To get P (1), we apply φ(1)
1 for initialization as below.

Proposition 4. For any input X(0), we can find some u,
such that

φ
(1)
1 : x

(0)
k 7→ p

(1)
k = [u⊤x

(0)
k , 0]⊤, (18)

where p
(1)
i ̸= p

(1)
j if x(0)

i ̸= x
(0)
j .

Proposition 4 parameterizes φ(1)
1 and initializes P (1) onto

the x-axis, without merging different points5. Please refer
to Appendix D for the proof.

As for other linear functions, the suitable parameters are
generated from the Projection Merge Algorithm, as shown
in Algorithm 1.

In Algorithm 1, P (L) is the output, as well as that of f̃θ(·).
Factually, by Algorithm 1, we get each P (l) in a recursive
way. For the case Ji ̸= ∅, we take 5 points as an example to
show how we get P (l+1) from P (l) in Figure 2.

As for the case Ji = ∅, it indicates that all points with
the same label as p(l)

i are merged together. Therefore, we

5In this paper, we claim that p(l)
i and p

(l)
j are "different points"

means p(l)
i ̸= p

(l)
j rather than i ̸= j, for each hidden layer (applies

to x and h as well).

4

On the Nonlinearity of Layer Normalization

y

xO

45◦45◦

p
(l)
1 p

(l)
4p

(l)
2 p

(l)
3 p

(l)
5

h
(l)
1 h

(l)
4h

(l)
2 h

(l)
3 h

(l)
5

(a) Translation.

y

xO γ
(l)
2

h
(l)
1 h

(l)
4h

(l)
2 h

(l)
3 h

(l)
5

x
(l)
1

x
(l)
2 x

(l)
3
x
(l)
4
x
(l)
5

(b) Spherical projection.

y y

xO1 O2

x
(l)
1

x
(l)
2 x

(l)
3

x
(l)
4
x
(l)
5

p
(l+1)
1,4

p
(l+1)
2,3p

(l+1)
5

(c) Linear projection.

Figure 2. Get P (l+1) from P (l) geometrically. In Figure 2(a), P (l) is shown as the bars on the x-axis. At first, find the leftmost point,
namely p

(l)
1 . Then we find another point with the same label as p(l)

1 , but right of p(l)
1 , choose the leftmost one, namely p

(l)
4 . Afterwards,

shift all the points up by (p
(l)
4 − p

(l)
1)/2, and left by (p

(l)
4 + p

(l)
1)/2, then we get H(l), as shown in Figure 2(a). Next, spherically project

H(l) onto the unit circle and get X(l), shown as ’+’s in Figure 2(b). Finally merge the points in X(l) by their ordinates, as the new
abscissas of P (l+1), and take 0 as the new ordinates of P (l+1), as shown in Figure 2(c). Now, we have P (l+1).

Algorithm 1 Projection Merge Algorithm

input The initial input P (1).
output The final output P (L).

1: l← 1;
2: P← {p(l)

1 ,p
(l)
2 , · · · ,p(l)

m };
3: while P ̸= ∅ do
4: i← argmin

k
{p(l)k : p

(l)
k ∈ P};

5: Ji ← {p(l)
j ∈ P : p

(l)
j ̸= p

(l)
i , yj = yi};

6: if Ji ̸= ∅ then
7: j ← argmin

k
{p(l)k : p

(l)
k ∈ Ji};

8: for k ← 1 to m do

9: h
(l)
k ← p

(l)
k −

[
p
(l)
i + p

(l)
j

p
(l)
i − p

(l)
j

]
/2;

10: x
(l)
k ← h

(l)
k /∥h(l)

k ∥;

11: p
(l+1)
k ←

[
0 1
0 0

]
x
(l)
k ;

12: end for
13: l← l + 1;
14: P← {p(l)

1 ,p
(l)
2 , · · · ,p(l)

m };
15: else
16: remove p

(l)
j from P, as long as p(l)

j = p
(l)
i ;

17: end if
18: end while
19: return P (l);

remove them from P, and choose the leftmost point from
the remaining P, until P = ∅.

Based above, we give the properties of each layer as follows.

Proposition 5. For each layer, φ
(1)
l (2 ≤ l ≤ L)

only merges points with the same label. Nevertheless,
φ
(1)
1 , SP (·) and φ(2)

l (1 ≤ l ≤ L − 1) do not merge any
points.

Please refer to Appendix D for the proof of Proposition 5.

By Proposition 5, we figure out that Algorithm 2 will only

merge points with the same label. Besides, we find that from
P (l) to P (l+1), the number of different points will decrease
at least 1. Since the input is m different points from two
classes, we merge at most m− 2 times by Algorithm 1, we
thus have L− 1 ≤ m− 2.

By Algorithm 1, we can construct other linear functions
with exact parameters as follows.

φ
(1)
l : x

(l−1)
k 7→

[
0 1

0 0

]
x
(l−1)
k , 1 < l ≤ L,

φ
(2)
l : p

(l)
k 7→ p

(l)
k −

[
p
(l)
i + p

(l)
j

p
(l)
i − p

(l)
j

]
/2, 1 ≤ l < L.

(19)

Therefore, f̃θ(·) with the parameters in Eqn.18 and Eqn.19
can classify the samples X(0). Besides, the LN-Net in
Eqn.14 with depth6 L− 1 = O(m) can also classify the m
samples. We hence have proved Theorem 2.

Our results above are based on an LN-Net with 3 neurons
each layer. Furthermore, we can generalize PMA for a wider
neural network, but it is much more complex. Please refer
to Appendix D for more details.

Based on Theorem 2, we can easily obtain the following
corollary related to VC dimension (Bartlett et al., 1998) of
an LN-Net.

Corollary 3. Given an LN-Net fθ(·) with width 3 and depth
L, its VC dimension V Cdim(fθ(·)) is lower bounded by
L+ 2.

4.3. LN for Multi-class Classification

Theorem 3. Given m samples with any binary label assign-
ment, there always exists an LN-Net with only 3 neurons per
layer and O(m) LN layers can correctly classify them.

Applying Algorithm 1 for a multi-class classification may

6We denote the number of LNs as the depth of an LN-Net.

5

On the Nonlinearity of Layer Normalization

confuse two samples with different labels. We thus intro-
duce Parallelization Breaking Algorithm to avoid such con-
fusion. Besides, we can also construct an LN-Net to classify
the samples. The detailed analysis and proof are as below.

To begin with, we are concerned about whether Algorithm
1 applies to multi-class classification—the answer is Not.
Based on Figure 2(c), we recolor x

(l)
3 red, as shown in

Figure 3. When we merge x
(l)
1 and x

(l)
4 , x(l)

2 and x
(l)
3 will

be merged in the meanwhile. In other words, the algorithm
will confuse them to be in the same class. Proposition 6
indicates the necessary condition for such confusion.

y y

xO1 O2

Confusion!

x
(l)
1

x
(l)
2 x

(l)
3

x
(l)
4
x
(l)
5

Figure 3. The case of confusion in the merging process.

Proposition 6. Confusion refers to merging two points with
different labels. If confusion happens when we project
X(l+1) onto the y-axis, there must be a parallelogram7

consisting of four different points in P (l).

In reverse, if there is no parallelograms in P (l), confusion
will never happen when applying Algorithm 1. Please refer
to Appendix D for the proof of Proposition 6.

To avoid such confusion, we propose Parallelization Break-
ing Algorithm (PBA) as follows.

Algorithm 2 Parallelization Breaking Algorithm

input P (l), ul (got by Proposition 7).
output P̂ (l).

1: for k ← 1 to m do
2: p̃

(l)
k = SP (p

(l)
k + [0, 1]⊤);

3: p̂
(l)
k = [u⊤

l p̃
(l)
k , 0]⊤;

4: end for
5: return P̂ (l);

Proposition 7. We can always find ul ∈ R2 for Algorithm 2,
such that there is no parallelograms in P̂ (l), and no points
merged in the algorithm.

Please refer to Appendix D for the proof of Proposition 7.

PBA helps us transform P (l) to P̂ (l), based on which con-
fusion will never happen. For multi-class classification, we
insert PBA between φ(1)

l and φ(2)
l in Eqn.16, then given m

7The parallelogram may be degenerate. Given four points
x1,x2,x3,x4, if the sum of two points is the same with that of
the other two, we regard they form a parallelogram.

samples with any label assignment, f̃θ(·) with PBA can clas-
sify them. Based above, we replace SP with LN and linear
layers in f̃θ(·) with PBA, and then merge the adjacent linear
layers. We figure out f̃θ(·) with PBA is also an LN-Net. We
point out that the depth of this LN-Net is no more than 2m.
We hence have proved Theorem 3.

Summary. In this section, we show that LN-Net also has
powerful capacity in theory. Our theoretical results show
that an LN-Net with width 3 and depth O(m) is able to
classify given m samples with any label assignment. We
see an LN-Net performing over 3 neurons can introduce
nonlinearity. One question is that whether the nonlinearity
of an LN-Net with d > 3 neurons can be amplified, if we
group neurons and perform LN in each group in parallel?
We answer it in the following section.

5. Amplify and Exploit the Nonlinearity of LN
5.1. Comparison of Nonlinearity

In this part, we first define a measurement over the Hessian
matrix to compare the magnitude of the nonlinearity. We
then show the Group based LN (LN-G)8—which divides
neurons of a layer into groups and perform LN in each
group in parallel—has stronger nonlinearity than the naive
LN countpart.

Hessian of Linear Function. Given a twice differential
function f(x) : Rd → R, we focus on its Hessian Matrix
∇2f(x). If f(x) is a linear function, we have∇2f(x) ≡ O.
More generally, suppose that φ : Rd → Rd is a linear
transformation, we define φ(x) =

[
φ1(x), · · · , φd(x)

]⊤
,

and each φi(x) : Rd → R is a linear function, namely each
Hessian matrix∇2

xφi(x) = O.

Measurement of Nonlinearity. Given a twice differential
function9 f : Rd → Rd and y = f(x). Denote y =
[y1, · · · , yd]⊤ and x = [x1, · · · , xd]⊤. We define H(f ;x)
as an indicator to describe the Hessian information of f :
Rd → Rd as

H(f ;x) =
d∑

i=1

∥∥∥∥∂2yi∂x2

∥∥∥∥2
F

, (20)

where each
∂2yi
∂x2

is a Hessian matrix.

8We use the new defined term LN-G rather than Group Nor-
malization (GN) (Wu & He, 2018), considering that: 1) GN is
defined on the convolutional input X ∈ Rd×h×w but not on the
input x ∈ Rd; 2) Given the sequential input (e.g., text) X ∈ Rd×T

in Transformer/ViT, GN will share statistics over T by definition
while LN-G will have no inter-sequence dependence and use sepa-
rate statistics over T, like LN.

9For y = f(x), we require each yi(i = 1, · · · , d) is twice
differential about x.

6

On the Nonlinearity of Layer Normalization

We use the Frobenius norm rather than the operator norm,
For easier calculations. Note that H(f ;x) ≥ 0, and
H(f ;x) = 0 if and only if f is a linear function. We thus
assume that the largerH(f ;x) is, the more nonlinearity f
contains.

Amplifying Nonliearity by Group. Denote ψG(g; ·) as
Group based LN (LN-G) on Rd with group number g, and
ψL(·) as LN on Rd. Compare LN with LN-G, the result is
shown in Proposition 8.

Proposition 8. Given g ≤ d/3, we have

H(ψG(g; ·);x)
H(ψL(·);x)

≥ 1. (21)

Specifically, when g = d/4, we figure out that

H(ψG(g; ·);x)
H(ψL(·);x)

≥ d

8
. (22)

Proposition 8 shows that LN-G can amplify the nonliearity
of LN by using appropriated group number. Compared with
LN, when d is larger, LN-G shows more nonlineaity. Please
refer to Appendix E for the proof. Besides, we generalize
our discussion about H to the typical activation function
ReLU, please refer to Appendix E for more details.

One limit of the result above is the assumption, thatH(f ;x)
is a good indicator for measuring nonlinearity, is from the
intuition and can not be well verified. In the subsequent
experiments, we empirically show that LN-G indeed can
amplify the nonlinearity of LN.

5.2. Comparison of Representation Capacity by Fitting
Random Labels

In this part, we follow the non-parametric randomization
tests fitting random labels (Zhang et al., 2017) to empirically
verify the nonlinearity of LN, and to further compare the
representational capacity of LN-Net with different groups
for LN-G. The experiments are conducted on CIFAR-10
and MNIST with random label assigned (CIFAR-10-RL and
MNIST-RL). We evaluate the classification accuracy on the
training set after the model is trained, which indicates that
the capacity of models in fitting dataset empirically. We only
provide essential components of the experimental setup; for
more details, please refer to the Appendix F.1.

Verify the Nonlinearity of LN. We conduct experiments
on linear neural network and LN-Net with 256 neurons in
each layer and various depths. We first train sufficiently a
linear classifier and obtain the (nearly) upper bound accu-
racy (18.51 % on CIFAR-10 -RL and 15.38% on MNIST-
RL). To rule out the influence in optimization difficulty, we
train the linear neural network and LN-Net with various

2 4 6 8 10 12 14
Depth

10
20
30
40
50
60

Ac
cu

ra
cy

(%
) linear neural network

LN-Net

(a) CIFAR-10-RL.

2 4 6 8 10 12 14
Depth

13
14
15
16
17
18
19
20

Ac
cu

ra
cy

(%
) linear neural network

LN-Net

(b) MNIST-RL.

Figure 4. Results of linear neural network and LN-Net on fitting
random label. The black dashed line represents the upper bound
accuracy of linear classifier. (a) Results on CIFAR-10-RL; (b)
Results on MNIST-RL.

configurations, including different learning rates and (with
or without) residual connection10. We report the best result
from all configurations, as shown in Figure 4.

We observe that linear neural network cannot break the
bound of linear classifier on all datasets, while LN-Net
can reach the accuracy of 55.85% on CIFAR-10-RL and
19.44% on MNIST-RL, which is much better than the linear
classifier. This result also verifies that LN has nonlinearity
empirically. Besides, we observe that LN-Net obtains better
performance in general as the depth increases (namely more
LN layers and greater nonlinearity). We note that an LN-
Net without sufficient depth does not break the bound of
linear classifier on MNIST-RL. The reasons leading to this
phenomenon are likely to be that: 1) MNIST-RL are more
difficult to train, compare to CIFAR-10-RL; 2) LN-Nets
have a non-convex optimization landscape and we cannot
ensure the weight learned to be the optimal point, given
fixed training epochs.

We also conduct experiments with Batch Normalization
(BN) (Ioffe & Szegedy, 2015), where we replace LN with
BN in LN-Net. We find that BN cannot break the bound of
linear classifier on all datasets, like linear neural network.
This preliminary result is interesting, which shows the poten-
tial advantage of LN over BN, in terms of the representation
capacity.

Amplifying the Nonlinearity using Group. We conduct
experiments on LN-Net with d = 256 neurons in each layer
and various depths. We replace LN in LN-Net with LN-G
and also vary the group number g. We train LN-Net with
various learning rates and report the best training accuracy
on CIFAR-10-RL and MNIST-RL, as shown in Figure 5.

We observe that some LN-Net with LN-G (e.g., depth = 8
and g = 32) can perfectly classify all the random labels
on CIFAR-10-RL and MNIST-RL, which suggests that LN-
G can amplify the nonlinearity of LN by using group, as
stated in Proposition 8. We also observe that an LN-Net
with appropriate group number (e.g, g = 32) can obtain

10A linear neural network with residual connection is still a
linear model.

7

On the Nonlinearity of Layer Normalization

2 4 8 16 32 64 128
Group Number

0
20
40
60
80

100

Ac
cu

ra
cy

(%
)

1 2 4 8 12

(a) Accuracy on CIFAR-10-RL.

2 4 8 16 32 64 128
Group Number

0
20
40
60
80

100

Ac
cu

ra
cy

(%
)

1 2 4 8 12

(b) Accuracy on MNIST-RL.

1 2 4 8 16 32 64
Group Number

5

0

5

10

15

H(
f;

x)
 (l

og
2) 2nd Layer

4th Layer
6th Layer

(c) H(f ;x) on CIFAR-10-RL.

1 2 4 8 16 32 64
Group Number

5

0

5

10

15

H(
f;

x)
 (l

og
2) 2nd Layer

4th Layer
6th Layer

(d) H(f ;x) on MNIST-RL.

Figure 5. Results of LN-Net using LN-G. We vary the group number g and show the training accuracy and H(f ;x). (a) Training accuracy
on CIFAR-10-RL; (b) Training accuracy on MNIST-RL; (c)H(f ;x) on CIFAR-10-RL;(d) H(f ;x) on MNIST-RL. The black dashed line
in (a) and (b) has the same meaning as that in Figure 4.

better performance, as the depth increases. Besides, an LN-
Net has better performance in general with larger group
number, along the group number is not too much (relative to
the number of neurons). E.g, An LN-Net has significantly
degenerated performance when g = 128, due to d/g = 2 <
3 that go against the premise in Proposition 8.

We also calculate H(f ;x) in certain layers and show how
H(f ;x) varies as the group number increases in Figure 5
(c) and (d). H(f ;x) is calculated by averaging over 1000
samples in our experiments. We findH(f ;x) increases as
the group number of LN-G increases, which matches our
theoretical analyses in Section 5.1.

5.3. Inspiration for Neural Architecture Design

In this part, we consider designing neural networks in real
scenarios, considering that LN-G can amplify the nonlinear-
ity and have great performance in fitting the random label
shown in Section 5.2. We conduct experiments on both
CNN and Transformer architectures.

5.3.1. CNN WITHOUT ACTIVATION FUNCTION

To validate the representation capacity of LN-G in real sce-
narios further, we conducted experiments on CIFAR-10
using ResNet (He et al., 2016). To exclude the influence
of other nonlinearities, we remove all nonlinear activations
from the ResNet, and refer the network to ResNet-NA. We
set the channel number of each layer to 128 for better ab-
lating the group number of LN-G. We also conduct experi-
ments on more CNNs shown in Appendix F.2

Investigation of LN-G. Note that LN-G may have several
variants for a convolutional input X ∈ Rc×h×w, where
c, h and w indicate the feature mappings’ channel, height
and width dimensions respectively. Following the usage
of LN on CNNs, LN-G should calculate the mean/variance
along all the channel, height and width dimensions, which is
equivalent to Group Normalization (GN) (Wu & He, 2018).
Following the usage of LN on MLP&Transformer, LN-G
should calculate the mean/variance along only the channel
dimension and use separate statistics over each position (a
pair of height and width), and we refer to this method as

G2 G4 G8 G16 G32 G64
Group Number

10
30
50
70
90

Ac
cu

ra
cy

(%
)

68.38 71.92 78.25 76.90 78.33 82.16

99.94 99.98 99.89 99.66
83.65

10.00
GN
LN-G-Position

(a) Training.

G2 G4 G8 G16 G32 G64
Group Number

10
30
50
70
90

Ac
cu

ra
cy

(%
)

63.09 66.53 66.84 66.84 67.32 69.37
85.32 85.14 85.49 86.66

74.26

10.00GN
LN-G-Position

(b) Test.

Figure 6. Results of the variants of LN-G (GN and LN-G-Position)
when using different group number. The experiments are con-
ducted on CIFAR-10 dataset using ResNet without ReLU activa-
tion. We show (a) the training accuracy and (b) the test accuracy.
In the x-axis, G2 refers to a group number of 2.

LN-G-Position.

We investigate how the group number affects the perfor-
mance of the variants of LN-G (GN and LN-G-Position).
We vary the group number g ranging in {2, 4, 8, 16, 32,
64}. We train a total of 200 epochs using SGD with a mini-
batch size of 128, momentum of 0.9 and weight decay of
0.0001. The initial learning rate is set to 0.1, and divided
by 5 at the 60th, 120th, and 160th epochs. The results are
shown in Figure 6. We find that GN obtains slightly better
performance as the group number increases. Note that this
observation does not go against the experimental results of
LN-G in amplifying the nonlinearity in Section 5.2 since
the ‘effective samples’ used to calculate the normalization
statistics in each group of GN is h∗w∗c

g . We observe that LN-
G-Position works particularly well and obtains over 85%
test accuracy for multiple group number (Note that there
is no ReLU activations.). We also find that LN-G-Position
works particularly bad if group number is 64, because the
samples used to calculate the normalization statistics in each
group of LN-G-Position is c

g = 2.

Comparison to other Normalization. We also conduct
experiments to train ResNet-NA by using other normal-
ization methods, including the original Batch Normal-
ization (BN) (Ioffe & Szegedy, 2015), Layer Normal-
ization (LN) (Ba et al., 2016), Instance Normalization
(IN) (Ulyanov et al., 2016). Besides, we also train ResNet-
NA without normalization. We use the same setting up

8

On the Nonlinearity of Layer Normalization

Table 1. Comparison of different normalization methods on
CIFAR-10 using ResNet-NA (ResNet without ReLU activation).

Normalization methods Train Acc(%) Test Acc(%)
IN 10 10
BN 36.0 39.3
LN 59.5 62.85
GN 82.16 69.37

LN-G-Position 99.66 86.66

described in previous experiments. We find that ResNet-NA
without normalization is very difficult to train and shows
a random guess behavior. Similarly, ResNet-NA with IN
is also very difficult to train. ResNet-NA with BN can be
trained normally. However, the performance of the model
is relatively low, with only 39.3% test accuracy. ResNet-
NA with LN obtains 62.85% test accuracy, which is sig-
nificantly better than BN. Furthermore, ResNet-NA with
LN-G-Position obtains the best performance, e.g., a test
accuracy of 86.66% when using a group number 16 for LN-
G-Position. We contribute it to the strong nonlinearity of
LN-G-Position.

5.3.2. LN-G IN TRANSFORMERS

Transformer for Machine Translation. We conduct ex-
periments to apply LN-G on Transformer (Vaswani et al.,
2017) (where LN is the default normalization) for machine
translation tasks using fairseq-py (Ott et al., 2019). We
evaluate the public IWSLT14 German-to-English (De-EN)
dataset using BLEU (higher is better). We use the hyper-
parameters recommended in fairseq-py (Ott et al., 2019)
for Transformer and train over 50 epochs with five random
seeds. The baseline LN has a BLEU score of 35.01± 0.10.
LN-G (replacing all the LNs with LN-G) has a BLEU score
of 35.23± 0.07.

ViT for Image Classification. We conducted experiments
by applying LN-G to Tiny-VIT (with the default normaliza-
tion being LN). We performed classification tests on the test
set of the CIFAR-10 dataset, with hyperparameter settings
referencing (Steiner et al., 2021). The classification accu-
racy on the test dataset was 88.81% for LN and 89.26% for
LN-G (replacing all the LNs with LN-G).

These preliminary results show the potentiality of LN-G
used for neural architecture design in practice.

6. Related Work
Previous theoretical analyses on normalization are mainly
focused on BN, the pioneer work in normalization for deep
learning. One main argument is that BN can improve the
conditioning of the optimization problem (Cai et al., 2019),
either by avoiding the rank collapse of pre-activation matri-

ces (Daneshmand et al., 2020) or by alleviating the patho-
logical sharpness of the landscape (Santurkar et al., 2018;
Karakida et al., 2019; Ghorbani et al., 2019; Lyu et al.,
2022). The improved conditioning enables large learning
rates (Bjorck et al., 2018), thus improving the generaliza-
tion (Luo et al., 2019). Another argument is that BN is scale
invariant (Ba et al., 2016), enabling it to adaptively adjust
the learning rate (Arora et al., 2019; Cai et al., 2019; Zhang
et al., 2019; Li & Arora, 2020), which stabilizes and fur-
ther accelerates training. This scale invariant analyses also
applies to LN (Ba et al., 2016; Lubana et al., 2021). Some
work address to understanding LN empirically through ex-
periments, showing that the learnable parameters in LN
increases the risk of over-fitting (Xu et al., 2019).

Different from these work, we investigate a new theoretical
direction for LN, regarding to its nonlinearity and represen-
tation capacity. We note that there are several work (Huang
et al., 2021; Labatie et al., 2021) investigating the expres-
sive power of normalization empirically by experiments.
However, their experiments are conducted on networks with
activation functions, while our work focuses on analyzing
the representation capacity of a network without activation
functions through theory and experiment.

7. Conclusion
We mathematically demonstrated that LN is a nonlinear
transformation. We also theoretically showed the represen-
tation capacity of an LN-Net in correctly classifying samples
with any label assignment. We demonstrated these results
by finely designing algorithms, considering the geometric
property of LN. We hope that our techniques will inspire the
community to reconsider the analyses of the representation
capacity of a network with normalization layer, though it
suffers from great challenges (Huang et al., 2023).

Limitation and Future Work. Our results in represen-
tation capacity for LN-Net is very loose currently, which
is like the initial universal approximation theory in the ar-
bitrary wide shallow neural network (Hornik et al., 1989).
We believe it is interesting to extend our results along the
direction as universal approximation theory is extended to
the cases of arbitrary depth (Gripenberg, 2003), bounded
depth and bounded width (Maiorov & Pinkus, 1999), and
the question of minimal possible width (Park et al., 2020).
Besides, the effectiveness of group mechanism for LN (i.e.,
LN-G) is only verified on small-scale networks and datasets,
and more results on large-scale networks and datasets are
required to support the practicality of LN-G.

Acknowledgments
This work was partially supported by the National
Science and Technology Major Project under Grant

9

On the Nonlinearity of Layer Normalization

2022ZD0116310, National Natural Science Foundation of
China (Grant No. 62106012), the Fundamental Research
Funds for the Central Universities.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential social con-
sequences of our work, none which feel must be specifically
highlighted here.

References
Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I.,

Hasson, Y., Lenc, K., Mensch, A., Millican, K., Reynolds,
M., et al. Flamingo: a visual language model for few-shot
learning. In NeurIPS, 2022.

Arora, S., Li, Z., and Lyu, K. Theoretical analysis of auto
rate-tuning by batch normalization. In ICLR, 2019.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization,
2016.

Bartlett, P., Maiorov, V., and Meir, R. Almost linear vc
dimension bounds for piecewise polynomial networks. In
NeurIPS, 1998.

Bjorck, N., Gomes, C. P., Selman, B., and Weinberger, K. Q.
Understanding batch normalization. In NeurIPS, 2018.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In NeurIPS, 2020.

Cai, Y., Li, Q., and Shen, Z. A quantitative analysis of
the effect of batch normalization on gradient descent. In
ICML, 2019.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In ECCV, 2020.

Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., and Gird-
har, R. Masked-attention mask transformer for universal
image segmentation. In CVPR, 2022.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., and
Salakhutdinov, R. Transformer-XL: Attentive language
models beyond a fixed-length context. In ACL, 2019.

Daneshmand, H., Kohler, J. M., Bach, F. R., Hofmann, T.,
and Lucchi, A. Batch normalization provably avoids

ranks collapse for randomly initialised deep networks. In
NeurIPS, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In ACL, 2019.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. In ICLR, 2021.

Fisher, R. A. Statistical methods for research workers. In
Breakthroughs in statistics: Methodology and distribu-
tion, pp. 66–70. Springer, 1970.

Ghorbani, B., Krishnan, S., and Xiao, Y. An investiga-
tion into neural net optimization via hessian eigenvalue
density. In ICML, 2019.

Gripenberg, G. Approximation by neural networks with
a bounded number of nodes at each level. Journal of
approximation theory, 122(2):260–266, 2003.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Hoffer, E., Banner, R., Golan, I., and Soudry, D. Norm
matters: efficient and accurate normalization schemes in
deep networks. In NeurIPS, 2018.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral Networks, 2(5):359–366, 1989.

Huang, L., Zhou, Y., Liu, L., Zhu, F., and Shao, L. Group
whitening: Balancing learning efficiency and representa-
tional capacity. In CVPR, 2021.

Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., and Shao, L.
Normalization techniques in training dnns: Methodology,
analysis and application. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2023.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In ICML, 2015.

Karakida, R., Akaho, S., and Amari, S.-i. The normalization
method for alleviating pathological sharpness in wide
neural networks. In NeurIPS, 2019.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo,
W.-Y., Dollar, P., and Girshick, R. Segment anything. In
ICCV, 2023.

10

On the Nonlinearity of Layer Normalization

Labatie, A., Masters, D., Eaton-Rosen, Z., and Luschi, C.
Proxy-normalizing activations to match batch normal-
ization while removing batch dependence. In NeurIPS,
2021.

Li, Z. and Arora, S. An exponential learning rate schedule
for batch normalized networks. In ICLR, 2020.

Lubana, E. S., Dick, R., and Tanaka, H. Beyond batchnorm:
towards a unified understanding of normalization in deep
learning. In NeurIPS, 2021.

Luo, P., Wang, X., Shao, W., and Peng, Z. Towards under-
standing regularization in batch normalization. In ICLR,
2019.

Lyu, K., Li, Z., and Arora, S. Understanding the generaliza-
tion benefit of normalization layers: Sharpness reduction.
In NeurIPS, 2022.

Maiorov, V. and Pinkus, A. Lower bounds for approximation
by mlp neural networks. Neurocomputing, 25(1-3):81–91,
1999.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng,
N., Grangier, D., and Auli, M. fairseq: A fast, extensible
toolkit for sequence modeling. In ACL, 2019.

Park, S., Yun, C., Lee, J., and Shin, J. Minimum
width for universal approximation. arXiv preprint
arXiv:2006.08859, 2020.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), jan 2020.

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. How
does batch normalization help optimization? In NeurIPS,
2018.

Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkor-
eit, J., and Beyer, L. How to train your vit? data, augmen-
tation, and regularization in vision transformers. arXiv
preprint arXiv:2106.10270, 2021.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. S. Instance
normalization: The missing ingredient for fast stylization.
arXiv preprint arXiv:1607.08022, 2016.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In NeurIPS, 2017.

Wu, Y. and He, K. Group normalization. In ECCV, 2018.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C.,
Zhang, H., Lan, Y., Wang, L., and Liu, T.-Y. On layer
normalization in the transformer architecture. In ICML,
2020.

Xu, J., Sun, X., Zhang, Z., Zhao, G., and Lin, J. Under-
standing and improving layer normalization. In NeurIPS,
2019.

Zhang, B. and Sennrich, R. Root mean square layer normal-
ization. In NeurIPS, 2019.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. In ICLR, 2017.

Zhang, G., Wang, C., Xu, B., and Grosse, R. B. Three
mechanisms of weight decay regularization. In ICLR,
2019.

11

On the Nonlinearity of Layer Normalization

A. LSSR as a Linearly Separable Indicator

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) XOR data.

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

(b) Inseparable Gaussian data.

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

(c) Separable Gaussian data.

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

(d) Parallel Gaussian data.

Figure A1. We randomly sample 256 points from each class in the four different distributions of data above. The detailed data is shown in
Table I.
To show how SSR and LSSR evaluate the difficulty of separating the samples from different classes linearly, we give four
different distributions of data in the figure above and their details in the table below.

Table I. Detailed data of Figure A1. In Figure 1(a), the random variance X takes values 0 and 1 with probabilities 1/2 each. In the other
figures, the sign N(·, ·) denotes the Gaussian distribution.

Figure Distribution of X1 Distribution of X2 SSR LSSR

Figure 1(a) X1 =

[
X
X

]
X2 =

[
X

1−X

]
0.9963 0.9929

Figure 1(b) X1 ∼ N
([

0
0

]
,

[
4 0
0 4

])
X2 ∼ N

([
0
0

]
,

[
9 0
0 9

])
0.9929 0.9859

Figure 1(c) X1 ∼ N
([
−3
−3

]
,

[
4 0
0 4

])
X2 ∼ N

([
3
3

]
,

[
1 0
0 1

])
0.2304 0.1312

Figure 1(d) X1 ∼ N
([
−2
0

]
,

[
1 0
0 9

])
X2 ∼ N

([
2
0

]
,

[
1 0
0 9

])
0.7536 0.2157

According to Figure A1 and Table I, we have several conclusions below. In Figure 1(a) and Figure 1(b), the classes are hard
to be linearly separated, whose SSR and LSSR are both near 1. In Figure 1(c), the classes are easy to be linearly separated,
whose SSR and LSSR are both near 0. However, in Figure 1(d), the classes are easy to be linearly separated, but harder to be
separated if focused on the Euclidean distance. As a result, its SSR is larger, but its LSSR is near 0. We hence conclude
that—LSSR is a better indicator than SSR in judging how two classes are linearly separable.

B. Proofs of Proposition 2

Proposition 2. Given X1,X2 ∈ Rd×m, we denote M =
2∑

c=1

m∑
i=1

(xci− x̄c)(xci− x̄c)
⊤, and N =

2∑
c=1

m∑
i=1

(xci− x̄)(xci−

x̄)⊤, where x̄ = (x̄1 + x̄2)/2. Supposing that N is reversible, we have

LSSR(X1,X2) = λ∗, (23)

and correspondingly,
LSSR(X1,X2) = SSR((u∗)⊤X1, (u

∗)⊤X2), (24)

where λ∗ and u∗ are the minimum eigenvalue and corresponding eigenvector of N−1M .

Since the definition of LSSR comes from a lower bound, we prove Proposition 2 from solving the optimization problem as
follows.

(PLSSR)

min
φ

LSSR(X1,X2) = SSR(φ(X1), φ(X2)),

s.t. φ(x) = Wx+ b,

W ∈ Rn×d, b ∈ Rn, n ∈ N∗,

SS(φ(X1), φ(X2)) ̸= 0.

(25)

To solve this, we first propose four lemmas, and then use them to prove Proposition 2. Furthermore, we give the optimal W
as a corollary.

12

On the Nonlinearity of Layer Normalization

B.1. Required Lemmas for the Proof

Lemma 2. The bias b ∈ Rn does not affect SSR, as well as LSSR.

Proof. By the definition of SS, we obtain

SS(φ(X1)) = SS(WX1 + b1⊤)

=

m∑
i=1

∥∥∥∥∥Wx1i + b− 1

m

m∑
i=1

(Wx1i + b)

∥∥∥∥∥
2

=

m∑
i=1

∥∥∥∥∥Wx1i −
1

m

m∑
i=1

Wx1i

∥∥∥∥∥
2

=

m∑
i=1

∥∥Wx1i −Wx1

∥∥2
= SS(WX1).

(26)

Similarly, we have
SS(φ(X2)) = SS(WX2), (27)

and
SS([φ(X1), φ(X2)]) = SS([WX1,WX2]). (28)

Since SSR is defined with SS, the conclusion also holds for SSR, namely

SSR(φ(X1), φ(X2)) = SSR(WX1,WX2), (29)

where the bias b is not included.

Lemma 3. Suppose the eigenvalue decomposition of W⊤W as

W⊤W = UΛU⊤ =

d∑
i=1

λiuiu
⊤
i , (30)

where U = [u1, · · · ,ud] is an orthogonal matrix, and Λ = diag{λ1, · · · , λd} is a positive semi-definite and diagonal
matrix. We consider to minimize SSR(WX1,WX2) over Λ with a fixed U , as:

min
Λ
SSR(WX1,WX2) = min

1≤j≤d
SSR(u⊤

j X1,u
⊤
j X2). (31)

The optimal solution is that

λj

≥ 0, j ∈ arg min
1≤j≤d

SSR(u⊤
j X1,u

⊤
j X2),

= 0, otherwise,
(32)

for j = 1, · · · , d, and λ1, · · · , λd are not all zeros.

Proof. By Lemma 2, we find that

LSSR(X1,X2) = min
W

SSR(WX1,WX2). (33)

Besides, we figure out that

SS(WXc) =

m∑
i=1

∥Wxci −W x̄c∥22 =

m∑
i=1

(xci − x̄c)
⊤W⊤W (xci − x̄c), (34)

where Xc = X1,X2, or even11 [X1,X2].

11In this case, we choose x̄ as x̄c in Eqn.34

13

On the Nonlinearity of Layer Normalization

Based on the eigenvalue decomposition, we obtain that

SS(WX1) =

m∑
i=1

(x1i − x̄1)
⊤W⊤W (x1i − x̄1)

=

m∑
i=1

d∑
j=1

λj(x1i − x̄1)
⊤uju

⊤
j (x1i − x̄1)

=

d∑
j=1

λj

m∑
i=1

(u⊤
j x1i − u⊤

j x̄1)
2

=

d∑
j=1

λjSS(u
⊤
j X1).

(35)

The term SS(u⊤
j X1) can be regarded as that we put a linear transformation u⊤

j on X1, and then calculate its SS.

Similarly, we have that

SS(WX2) =

d∑
j=1

λjSS(u
⊤
j X2), (36)

and

SS([WX1,WX2]) =

d∑
j=1

λjSS([u
⊤
j X1,u

⊤
j X2]). (37)

Therefore, we obtain

SSR(WX1,WX2) =

d∑
j=1

λj [SS(u
⊤
j X1) + SS(u⊤

j X2)]

d∑
j=1

λjSS([u⊤
j X1,u⊤

j X2])

. (38)

By the definition of M and N in Proposition 2, we obtain that

SS(u⊤
j X1) + SS(u⊤

j X2) =

m∑
i=1

[(u⊤
j x1i − u⊤

j x̄1)
2 + (u⊤

j x2i − u⊤
j x̄2)

2]

=

m∑
i=1

u⊤
j [(x1i − x̄1)(x1i − x̄1)

⊤ + (x2i − x̄2)(x2i − x̄2)
⊤]uj

= u⊤
j Muj ,

(39)

and similarly, we have

SS([u⊤
j X1,u

⊤
j X2]) = u⊤

j Nuj . (40)

By the hypothesis in Definition 2, we figure out that λj(j = 1, · · · , d) are not all zeros, otherwise SS([WX1,WX2]) = 0.
Besides, by the hypothesis in Proposition 2, N is reversible. We point out that N is also a positive semi-definite matrix.

Furthermore, N is a positive definite matrix. When uj ̸= 0, we find that

SS([u⊤
j X1,u

⊤
j X2]) = u⊤

j Nuj > 0. (41)

14

On the Nonlinearity of Layer Normalization

Let ηj = λjSS([u
⊤
j X1,u

⊤
j X2]), we thus have η1 + · · ·+ ηd > 0. We obtain

SSR(WX1,WX2) =
1

η1 + · · ·+ ηd

d∑
j=1

ηj [SS(u
⊤
j X1) + SS(u⊤

j X2)]

SS([u⊤
j X1,u⊤

j X2])

=

d∑
j=1

ηj
η1 + · · ·+ ηd

SSR(u⊤
j X1,u

⊤
j X2)

≥
d∑

j=1

ηj
η1 + · · ·+ ηd

min
1≤k≤d

SSR(u⊤
k X1,u

⊤
k X2)

= min
1≤k≤d

SSR(u⊤
k X1,u

⊤
k X2)

= min
1≤j≤d

SSR(u⊤
j X1,u

⊤
j X2).

(42)

We figure out that the equation holds, if and only if

ηj

≥ 0, j ∈ arg min
1≤j≤d

SSR(u⊤
j X1,u

⊤
j X2);

= 0, otherwise.
(43)

Here, j = 1, · · · , d, and η1, · · · , ηd are not all zeros.

Since λj = ηj/SS([u
⊤
j X1,u

⊤
j X2]) and SS([u⊤

j X1,u
⊤
j X2]) > 0, we thus have

λj

≥ 0, j ∈ arg min
1≤j≤d

SSR(u⊤
j X1,u

⊤
j X2),

= 0, otherwise,
(44)

holds for j = 1, · · · , d, and λ1, · · · , λd are not all zeros.

Lemma 4. Given Dv = {v : v⊤Nv = 1} and Du = {u : u⊤u = 1} and the map ψ : Dv → Du, where u = ψ(v) =

v/(v⊤v)
1
2 , we have that ψ is a bijection.

Proof. For N is a positive definite matrix , and v⊤Nv = 1, we have v ̸= 0. Given u = ψ(v), we obtain

u⊤u = v⊤v/(v⊤v) = 1, (45)

for each v in Dv .

Therefore, ψ is a reflection from Dv to Du. Besides, we find that

u⊤Nu = v⊤Nv/(v⊤v) = 1/(v⊤v). (46)

By the definition of ψ, we hence have

u/(u⊤Nu)
1
2 = ψ(v)(v⊤v)

1
2 = v. (47)

Therefore, for each u, we obtain that
v = ψ−1(u) = u/(u⊤Nu)

1
2 , (48)

namely we find ψ−1 as the inverse mapping of ψ.

As a result, ψ is a bijection.

Lemma 5. Let the optimization problem be

(Pv)

min
v

f(v) =
v⊤Mv

v⊤Nv
,

s.t. v⊤Nv = 1,
(49)

where M and N are defined in Proposition 2. We have that the optimal value is the minimal eigenvalue of N−1M , namely
λ∗. And the optimal solution is the eigenvector which belongs to λ∗.

15

On the Nonlinearity of Layer Normalization

Proof. To get the minimum, we use the Lagrange multiplier method:

L(v, α) = v⊤Mv − α(v⊤Nv − 1). (50)

We figure out that the KKT conditions are
∂L

∂v
= 2Mv − 2αNv = 0,

v⊤Nv − 1 = 0.
(51)

We hence have N−1Mv = αv, namely α is an eigenvalue of N−1M , and v is the corresponding eigenvector. Based
above, we find that

v⊤Mv = v⊤NN−1Mv = v⊤N(αv) = α. (52)

Furthermore, the minimum of L(v, α) is the minimum α, namely the minimum eigenvalue of N−1M .

We hence have
LSSR(X1,X2) = λmin(N

−1M) = λ∗, (53)

and the optimal solution is the eigenvector which belongs to λ∗.

B.2. Proof of Proposition 2

Based on the four lemmas above, now we give the proof of Proposition 2.

Proof. By Lemma 2 and Lemma 3, given W⊤W = UΛU⊤, we have

LSSR(X1,X2) = min
W

SSR(WX1,WX2)

= min
U ,Λ

SSR(WX1,WX2)

= min
U

min
Λ
SSR(WX1,WX2)

= min
U

min
1≤j≤d

SSR(u⊤
j X1,u

⊤
j X2).

(54)

According to Eqn.39 and Eqn.40, we define the function f(u) = SSR(u⊤X1,u
⊤X2), namely

f(u) =
u⊤Mu

u⊤Nu
. (55)

By Eqn.54, there is some U , and j∗ = arg min
1≤j≤d

SSR(u⊤
j X1,u

⊤
j X2), such that

LSSR(X1,X2) = min
1≤j≤d

SSR(u⊤
j X1,u

⊤
j X2) = f(uj∗). (56)

Consider the optimization problem

(Pu)

min
u

f(u) =
u⊤Mu

u⊤Nu
,

s.t. u⊤u = 1.
(57)

We denote one of the optimal solutions as ū. Obviously, uj∗ is one of the feasible solutions above, we thus have

LSSR(X1,X2) = f(uj∗) ≥ f(ū). (58)

We remind that λ∗ and u∗ are the minimum eigenvalue and corresponding eigenvector of N−1M . On one hand, let
u0 = u∗/∥u∗∥2 and v0 = ψ−1(u0) (ψ is defined the same as that in Lemma 4), namely v0 = u0/(u

⊤
0 Nu0)

1
2 . We first

16

On the Nonlinearity of Layer Normalization

point out that for k ̸= 0, we have

f(ku) =
(ku)⊤M(ku)

(ku)⊤N(ku)

=
u⊤Mu

u⊤Nu
= f(u).

(59)

Since 1/||u∗||2 ̸= 0 and 1/(u⊤
0 Nu0)

1
2 ̸= 0, we obtain

f(v0) = f(u0) = f(u∗)

=
(u∗)⊤M(u∗)

(u∗)⊤N(u∗)

=
(u∗)⊤NN−1M(u∗)

(u∗)⊤N(u∗)

=
(u∗)⊤N(λ∗u∗)

(u∗)⊤N(u∗)

= λ∗,

(60)

where λ∗ is the minimal eigenvalue of N−1M , as shown in Proposition 2.

Therefore, by Lemma 5, v0 is the optimal solution of (Pv). Furthermore, by Lemma 4, since ψ is a bijection between
Dv and Du and f(ψ(v)) = f(v), we have that u0 = ψ(v0) is also the optimal solution of (Pu). We hence have
f(u∗) = f(u0) = f(ū). By Eqn.58, we obtain

LSSR(X1,X2) ≥ f(ū) = f(u∗) = SSR((u∗)⊤X1, (u
∗)⊤X2). (61)

On the other hand, the definition of LSSR denotes the lower bound of SSR, we hence have

LSSR(X1,X2) ≤ SSR((u∗)⊤X1, (u
∗)⊤X2). (62)

By Eqn.60, Eqn.61 and Eqn.62, we obtain

LSSR(X1,X2) = SSR((u∗)⊤X1, (u
∗)⊤X2) = λ∗. (63)

B.3. Corollaries of Proposition 2

Suppose λ∗ is the minimal eigenvalue of N−1M , and u∗ is its unique linearly independent eigenvector, we give the result
in Corollary 4. If λ∗ has more than one linearly independent eigenvectors, we give the result in Corollary 5.

Corollary 4. Suppose λ∗ is the minimal eigenvalue of N−1M , and u∗ is its unique linearly independent eigenvector, we
have that the optimal W satisfies that

W⊤W = Cu∗(u∗)⊤, C > 0. (64)

Proof. By Lemma 2, we can only consider the eigenvalues and eigenvectors of W⊤W . By Eqn.30, uj will affect W⊤W
only when the corresponding eigenvalue λj ̸= 0. Furthermore, by Lemma 3, when λj ̸= 0, we figure out that

j ∈ arg min
1≤j≤d

SSR(u⊤
j X1,u

⊤
j X2). (65)

Since uj is a unit vector, it must be one of the optimal solutions of (Pu). We hence have f(uj) = λ∗. By Eqn.59 and
Lemma 4, we have

f(ψ−1(uj)) = f(uj) = λ∗, (66)

17

On the Nonlinearity of Layer Normalization

and ψ−1(uj) is one of the optimal solutions of (Pv). By Lemma 5, we have that ψ−1(uj) must satisfy the KKT conditions
in Eqn.51, namely

N−1Mψ−1(uj) = λ∗ψ−1(uj). (67)

Therefore, ψ−1(uj) is the minimal eigenvector of M−1N . For ψ−1(uj) = uj/(u
⊤
j Nuj)

1
2 , we obtain uj is also the

eigenvector of λ∗. For u∗ is the unique linearly independent eigenvector of λ∗, we figure out that

uj = αju
∗, αj ̸= 0. (68)

To be reminded, Eqn.68 only holds when λj ̸= 0. Therefore, we have

W⊤W =

d∑
j=1

λjuju
⊤
j

=
∑
λj ̸=0

λjα
2
ju

∗(u∗)⊤

= Cu∗(u∗)⊤,

(69)

where C =
∑

λj ̸=0

λjα
2
j .

By Lemma 3, we have λ1, · · · , λj ≥ 0 are not all zeros. Besides, we figure out that αj can be any non-zero real number.
We thus have C can be any non-zero real number, to demonstrate W⊤W .

Corollary 5. Suppose that the minimal eigenvalue of N−1M , namely λ∗, has k linearly independent eigenvectors
v1,v2, · · · ,vk. We denote V = [v1, · · · ,vk], then we have that the optimal W satisfies that

W⊤W = V CV ⊤, (70)

where C is a k-order semi-positive definite and non-zero matrix.

Proof. Suppose λj is an eigenvalue of W⊤W , and its eigenvector is uj . We can identify that j ∈
arg min

1≤j≤d
SSR(u⊤

j X1,u
⊤
j X2), if λj ̸= 0. Similarly to the proof of Corollary 4, uj must be an eigenvector of N−1M ,

and the corresponding eigenvalue is λ∗. Accordingly, uj is a linear combination of all the linearly independent eigenvectors
of λ∗, namely

uj = αj1v1 + αj2v2 + · · ·+ αjkvk = V αj (71)

where αj = [αj1, · · · , αjk]
⊤, and αj ̸= 0.

We remind that Eqn.71 only holds when λj ̸= 0. We thus have

W⊤W =

d∑
j=1

λjuju
⊤
j

=
∑
λj>0

λjuju
⊤
j

=
∑
λj>0

λj(V αj)(V αj)
⊤

= V

∑
λj>0

λjαjα
⊤
j

V ⊤

= V CV ⊤,

(72)

where C =
∑

λj>0

λjαjα
⊤
j .

By Lemma 3, we have λ1, · · · , λj ≥ 0 are not all zeros. Besides, we figure out that αj can be any non-zero vector. We thus
have C is any k-order semi-positive definite and non-zero matrix, to demonstrate W⊤W .

18

On the Nonlinearity of Layer Normalization

C. Proof Related to Breaking LSSR
In this section, we prove Theorem 1 from the perspective of Taylor’s expansion.

We have defined fSSR(t) as

fSSR(t) =

{
LSSR(X1,X2), t = 0,

SSR(ψ̄(t;X1), ψ̄(t;X2)), t ̸= 0,
(73)

where ψ̄(t;xci) = 1⊤φ̄(t;xci)/∥φ̄(t;xci)∥2, φ̄(t;xci) = [(u∗)⊤xcit, 1]
⊤ and t ∈ R. We remind Theorem 1 as below.

Theorem 1. Let ψ = φ1 ◦ LN(·) ◦ φ2, performing over the input X1,X2 ∈ Rd×m. If f ′SSR(0) ̸= 0 , we can always find
suitable linear functions φ1 and φ2, such that

SSR(ψ(X1), ψ(X2)) < LSSR(X1,X2). (74)

We prove Lemma 1 and show three extra lemmas before the formal proof of Theorem 1.

C.1. Proof of Lemma 1

Lemma 1. Denote LN(·) as the LN operation in Rd(d ≥ 3), and SP (·) as the SP operation12 in Rd−1. We can find some
linear transformations φ̂1 and φ̂2, such that

SP (·) = φ̂1 ◦ LN(·) ◦ φ̂2. (75)

We denote that SP (·) is defined on Rd−1, as

SP (x) = x/∥x∥2. (76)

While LN(·) is defined on Rd, where

LN(x) =
√
d (x− 1

d
11⊤x)/∥x− 1

d
11⊤x∥2. (77)

Before the proof of Lemma 1, we propose Lemma 6 as follows.

Lemma 6. There is some orthogonal matrix Q ∈ Rd×d, such that z = Q

[
x
0

]
∈ {z ∈ Rd : z(1) + · · ·+ z(d) = 0} (namely

z is centralized), for x ∈ Rd−1,

Proof. Suppose Q = {qij}d×d = [q1, q2, ..., qd]. We take qd = 1√
d
1 specially, and q1, · · · , qd−1 can be calculated by

Schmidt orthogonalization.

Given x = [x(1), · · · , x(d−1)]⊤ ∈ Rd−1, we have

z = Q

[
x
0

]
= [z(1), · · · , z(d)]⊤. (78)

Since Q is an orthogonal matrix, we have

q⊤
i qd =

1√
d

d∑
k=1

qki = 0, (79)

12If there are no special instructions, we denote SP projects the sample on to the unit circle, namely x 7→ x/∥x∥2.

19

On the Nonlinearity of Layer Normalization

for i = 1, · · · , d− 1. Furthermore, we obtain that

d∑
k=1

z(k) =

d∑
k=1

(
d∑

i=1

qkix
(i)

)

=

d∑
k=1

(
qkd · 0 +

d−1∑
i=1

qkix
(i)

)

=

d−1∑
i=1

(
d∑

k=1

qki

)
x(i)

= 0,

(80)

which shows that z ∈ {z ∈ Rd : z(1) + · · ·+ z(d) = 0}, namely z is centralized.

Now we can design φ̂1 and φ̂2 based on Q in Lemma 6, and then prove Lemma 1.

Proof. Based above, we obtain

∥z∥2 =

∥∥∥∥Q [x0
]∥∥∥∥

2

=

∥∥∥∥[x0
]∥∥∥∥

2

= ∥x∥2. (81)

By Lemma 6, we have 1⊤z = 0, and z = z − 1
d11

⊤z. We hence find that

LN(z) =
√
d(z − 1

d
11⊤z)/∥z − 1

d
11⊤z∥2 =

√
d z/∥z∥2. (82)

Let Id denotes the identity matrix in Rd×d. We thus have

1√
d

[
Id−1 0

]
Q⊤LN(Q

[
Id−1 0

]⊤
x) =

1√
d

[
Id−1 0

]
Q⊤LN(z)

=
1√
d

[
Id−1 0

]
Q⊤
√
d z/∥z∥2

=
√
d · 1√

d

[
Id−1 0

]
Q⊤Q

[
x
0

]
/∥x∥2

=x/∥x∥2
=SP (x).

(83)

Let φ̂1(x) = Q
[
Id−1 0

]⊤
x, and φ̂2(x) =

1√
d

[
Id−1 0

]
Q⊤x. We observe that

SP (·) = φ̂1 ◦ LN(·) ◦ φ̂2. (84)

C.2. Extra Lemmas for the Proof

Let xci = (u∗)⊤xci, (i = 1, · · · ,m; c = 1, 2). We define the mean x̄c, the variance σ2
c and the third-order central moment

(xc − x̄c)3 with the equations below:

x̄c =
1

m

m∑
i=1

xci,

σ2
c =

1

m

m∑
i=1

(xci − x̄c)2,

(xc − x̄c)3 =
1

m

m∑
i=1

(xci − x̄c)3.

(85)

20

On the Nonlinearity of Layer Normalization

Based on xci = (u∗)⊤xci, we design an linear transformation φ(t; ·) : R→ R2, where t ∈ R is a parameter:

φ(t;xci) = t ·
[
1
0

]
xci +

[
0
1

]
=

[
xcit
1

]
. (86)

Lemma 7. Let X̂ = SP (φ(t; (u∗)⊤X)), and v = [1, 1]⊤. Besides, we define three statistics about (u∗)⊤X:
T1 = (x̄1 − x̄2)2[(x1 − x̄1)3 + (x2 − x̄2)3],
T2 = (x̄1 − x̄2)(σ2

1 − σ2
2)[(x̄1 − x̄2)2 − (σ2

1 + σ2
2)],

T3 = [2σ2
1 + 2σ2

2 + (x̄1 − x̄2)2]2.
(87)

We figure out that when t→ 0, we have

SSR(v⊤X̂1,v
⊤X̂2) = LSSR(X1,X2)−

2(T1 + T2)

T3
t+ o(t). (88)

Proof. Denote x̂ci = SP (φ(t;xci)) = [x̂
(1)
ci , x̂

(2)
ci]⊤. By Newton’s binomial expansion, we obtain that

1

∥φ(t;xci)∥2
=

1√
1 + (xcit)2

=(1 + x2cit
2)−

1
2

=1− 1

2
(x2cit

2) +
3

8
(x2cit

2)2 + o((t2)2)

=1− 1

2
x2cit

2 + o(t3).

(89)

We thus have
x̂
(1)
ci =

xcit√
1 + (xcit)2

= xcit−
1

2
x3cit

3 + o(t3), (90)

and
x̂
(2)
ci =

1√
1 + (xcit)2

= 1− 1

2
x2cit

2 + o(t3). (91)

Let v = [1, 1]⊤. Then we have

v⊤x̂ci = 1 + xcit−
1

2
x2cit

2 − 1

2
x3cit

3 + o(t3). (92)

We denote that a0 = 1, a1 = 1, a2 = − 1
2 and a3 = − 1

2 , therefore

v⊤x̂ci =

3∑
s=0

asx
s
cit

s + o(t3). (93)

We hence obtain that

SS(v⊤X̂c) =

m∑
i=1

(v⊤x̂ci − v⊤x̂c)
2

=
1

m

m∑
i=1

m∑
j=1

v⊤x̂ci(v
⊤x̂ci − v⊤x̂cj)

=
1

m

m∑
i=1

m∑
j=1

[(
3∑

r=0

arx
r
cit

r + o(t3)

)
·

(
3∑

s=0

as(x
s
ci − xscj)ts + o(t3)

)]
.

(94)

For s+ r > 3, we put the multiplicative term into o(t3). Accordingly, we only consider the case s+ r ≤ 3.

21

On the Nonlinearity of Layer Normalization

For r = 0, 1, 2, 3; s = 0, we have
xrci(x

s
ci − xscj) = 0. (95)

For r = 0; s = 1, 2, 3, we have
m∑
i=1

m∑
j=1

xrcit
r · (xsci − xscj)ts =

m∑
i=1

m∑
j=1

(xsci − xscj)ts = 0. (96)

For r = 1, s = 1, we have
m∑
i=1

m∑
j=1

xci(xci − xcj) = m

m∑
i=1

(xci − x̄c) = mσ2
c . (97)

For r = 2, s = 1, we observe
m∑
i=1

m∑
j=1

x2ci(xci − xcj) = m

m∑
i=1

x2ci(xci − x̄c)

= m

m∑
i=1

[(x2ci − 2xcix̄c + x̄2c)(xci − x̄c) + 2xcix̄c(xci − x̄c)− x̄2c(xci − x̄c)]

= m2[(xc − x̄c)3 + 2x̄cσ
2
c].

(98)

And for r = 1, s = 2, we obtain
m∑
i=1

m∑
j=1

xci(x
2
ci − x2cj) =

m∑
i=1

m∑
j=1

x3ci − xcix2cj

=

m∑
i=1

m∑
j=1

x3ci − x2cixcj

=

m∑
i=1

m∑
j=1

x2ci(xci − xcj)

= m2[(xc − x̄c)3 + 2x̄cσ
2
c].

(99)

Therefore, we have that

SS(v⊤X̂c) =
1

m

m∑
i=1

m∑
j=1

[
a21xci(xci − xcj)t2 + a1a2x

2
ci(xci − xcj)t3 + a1a2xci(x

2
ci − x2cj)t3 + o(t3)

]
= ma21σ

2
c t

2 + 2ma1a2[(xc − x̄ci)3 + 2x̄cσ
2
c]t

3 + o(t3)

= mσ2
c t

2 −m[(xc − x̄ci)3 + 2x̄cσ
2
c]t

3 + o(t3)

= βc2t
2 + βc3t

3 + o(t3),

(100)

where βc2 = mσ2
c , and βc3 = −m[(xc − x̄ci)3 + 2x̄cσ

2
c].

To simplify the calculation, we define

SSD(X1,X2) = SS([X1,X2])− SS(X1)− SS(X2)

=

2∑
c=1

m∑
i=1

(xci − x̄)⊤(xci − x̄)−
2∑

c=1

m∑
i=1

(xci − x̄c)
⊤(xci − x̄c)

=

2∑
c=1

m∑
i=1

(x⊤
cixci − x̄⊤x̄)−

2∑
c=1

m∑
i=1

(x⊤
cixci − x̄⊤

c x̄c)

= mx̄⊤
1 x̄1 +mx̄⊤

2 x̄2 − 2mx̄⊤x̄

= mx̄⊤
1 x̄1 +mx̄⊤

2 x̄2 −
m

2
(x̄1 + x̄2)

⊤(x̄1 + x̄2)

=
m

2
∥x̄1 − x̄2∥22.

(101)

22

On the Nonlinearity of Layer Normalization

Similar to Eqn.100, we obtain

SSD(v⊤X̂1,v
⊤X̂2) =

m

2
(v⊤x̂1 − v⊤x̂2)

2

=
m

2
[a1(x̄1 − x̄2)t+ a2(x21 − x22)t2 + o(t2)]2

=
m

2
[a21(x̄1 − x̄2)2t2 + 2a1a2(x̄1 − x̄2)(x21 − x22)t3 + o(t3)]

=
m

2
(x̄1 − x̄2)2t2 −

m

2
(x̄1 − x̄2)(x21 − x22)t3 + o(t3)

=β2t
2 + β3t

3 + o(t3),

(102)

where β2 = m
2 (x̄1 − x̄2)

2, and β3 = −m
2 (x̄1 − x̄2)(x

2
1 − x22).

We thus have

SSR(v⊤X̂1,v
⊤X̂2) =

(β12 + β22)t
2 + (β13 + β23)t

3 + o(t3)

(β12 + β22 + β2)t2 + (β13 + β23 + β3)t3 + o(t3)

=
(β12 + β22)t

2 + (β13 + β23)t
3 + o(t3)

(β12 + β22 + β2)t2
[
1 + β13+β23+β3

β12+β22+β2
t+ o(t)

]
=

[
β12 + β22

β12 + β22 + β2
+

β13 + β23
β12 + β22 + β2

t+ o(t)

]
·
[
1− β13 + β23 + β3

β12 + β22 + β2
t+ o(t)

]
=

β12 + β22
β12 + β22 + β2

+
(β12 + β22 + β2)(β13 + β23)− (β12 + β22)(β13 + β23 + β3)

(β12 + β22 + β2)2
t+ o(t)

=
β12 + β22

β12 + β22 + β2
+
β2(β13 + β23)− β3(β12 + β22)

(β12 + β22 + β2)2
t+ o(t).

(103)
We find that

β12 + β22
β12 + β22 + β2

= SSR((u∗)⊤X1, (u
∗)⊤X2) = LSSR(X1,X2). (104)

On the other hand, we have

β2(β13 + β23)− β3(β12 + β22)

=− 1

2
m2(x̄1 − x̄2)2[(x1 − x̄1)3 + 2x̄1σ

2
1 + (x2 − x̄2)3 + 2x̄2σ

2
2] +

1

2
m2(x̄1 − x̄2)(x21 − x22)(σ2

1 + σ2
2)

=− 1

2
m2(x̄1 − x̄2)2[(x1 − x̄1)3 + (x2 − x̄2)3]

− 1

2
m2(x̄1 − x̄2)2(2x̄1σ2

1 + 2x̄2σ
2
2) +

1

2
m2(x̄1 − x̄2)(x21 − x22)(σ2

1 + σ2
2).

(105)

We figure out that

(x̄1 − x̄2)2(2x̄1σ2
1 + 2x̄2σ

2
2)− (x̄1 − x̄2)(x21 − x22)(σ2

1 + σ2
2)

=(x̄1 − x̄2)[(x̄1 − x̄2)(2x̄1σ2
1 + 2x̄2σ

2
2)− (x̄21 + σ2

1 − x̄22 − σ2
2)(σ

2
1 + σ2

2)]

=(x̄1 − x̄2)[2x̄1(x̄1 − x̄2)σ2
1 + 2x̄2(x̄1 − x̄2)σ2

2 − (x̄21 − x̄22)σ2
1 − (x̄21 − x̄22)σ2

2 − (σ2
1 − σ2

2)(σ
2
1 + σ2

2)]

=(x̄1 − x̄2)[(x̄1 − x̄2)2σ2
1 − (x̄1 − x̄2)2σ2

2 − (σ2
1 − σ2

2)(σ
2
1 + σ2

2)]

=(x̄1 − x̄2)(σ2
1 − σ2

2)[(x̄1 − x̄2)2 − (σ2
1 + σ2

2)].

(106)

By the definition of T1, T2 and T3, we thus obtain

β2(β13 + β23)− β3(β12 + β22)

=− 1

2
m2(x̄1 − x̄2)2[(x1 − x̄1)3 + (x2 − x̄2)3]−

1

2
m2(x̄1 − x̄2)(σ2

1 − σ2
2)[(x̄1 − x̄2)2 − (σ2

1 + σ2
2)]

=− 1

2
m2T1 −

1

2
m2T2.

(107)

23

On the Nonlinearity of Layer Normalization

Moreover, we have
(β12 + β22 + β2)

2 = [mσ2
1 +mσ2

2 +
m

2
(x̄1 − x̄2)2]2

=
1

4
m2[2σ2

1 + 2σ2
2 + (x̄1 − x̄2)2]2

=
1

4
m2T3.

(108)

As a result, we obtain that

SSR(v⊤X̂1,v
⊤X̂2) = LSSR(X1,X2)−

2(T1 + T2)

T3
t+ o(t). (109)

Lemma 8. For

fSSR(t) =

{
LSSR(X1,X2), t = 0,

SSR(ψ̄(t;X1), ψ̄(t;X2)), t ̸= 0,
(110)

where ψ̄(t;xci) = 1⊤φ̄(t;xci)/∥φ̄(t;xci)∥2, φ̄(t;xci) = [(u∗)⊤xcit, 1]
⊤ and t ∈ R, we have that fSSR(t) is derivable

around t = 0, and f ′SSR(0) is only decided by X1 and X2.

Proof. It is easy to identify that ψ̄(t;Xi) = v⊤X̂i. Therefore, by Lemma 7. We have

SSR(ψ̄(t;X1), ψ̄(t;X2)) = SSR(v⊤X̂1,v
⊤X̂2)

= LSSR(X1,X2)−
2(T1 + T2)

T3
t+ o(t).

(111)

We hence obtain

f ′SSR(0) = lim
t→0

fSSR(t)− fSSR(0)

t

= lim
t→0

SSR(ψ̄(t;X1), ψ̄(t;X2))− LSSR(X1,X2)

t

=
− 2(T1+T2)

T3
t+ o(t)

t

= −2(T1 + T2)

T3
.

(112)

Conclusively, we have that fSSR(t) is derivable at t = 0.

Lemma 9. Given a differentiable function f(x), with f ′(0) ̸= 0, we figure out that there is some x∗, such that f(x∗) < f(0).

Proof. Given that f(0) = A and f ′(0) = B ̸= 0, by the definition of derivative, we have lim
h→0

f(h)−A
h = B. That is to say,

∀ε > 0, there exists a positive δ > 0, whenever 0 < |x| < δ, we have∣∣∣∣f(x)−Ax
−B

∣∣∣∣ ≤ ε, (113)

then
−ε|x| ≤ f(x)−A−Bx ≤ ε|x|. (114)

Let x∗ = − |B|δ
2B , and ε = |B|

2 . We have

f(x∗) ≤ A+Bx+ ε|x| = A− |B|δ
4

< A, (115)

namely f(x∗) < f(0).

24

On the Nonlinearity of Layer Normalization

C.3. Proof of Theorem 1

Since f ′SSR(0) = −2(T1 + T2)/T3 ̸= 0, by Lemma 9, there is some t = t∗, such that

SSR(ψ̄(t∗;X1), ψ̄(t
∗;X2)) < LSSR(X1,X2). (116)

We denote φ̃1(x) = φ(t∗;u⊤x) and φ̃2(x) = v⊤x. By Lemma 1, we have SP (·) = φ̂1 ◦ LN(·) ◦ φ̂2. We hence have

v⊤X̂c = φ̃2(φ̂2(LN(φ̂1(φ̃1(Xc)))). (117)

Let ψ = φ1 ◦ LN(·) ◦ φ2, where φ1 = φ̃1 ◦ φ̂1 and φ2 = φ̂2 ◦ φ̃2. We thus have

SSR(ψ(X1), ψ(X2)) < LSSR(X1,X2). (118)

Obviously, φ1 and φ2 are linear functions. Consequently, we have proved Theorem 1.

C.4. A Generalized Proof of Theorem 1

To begin with, we also need to project Xc to u⊤Xc. This can reach LSSR(X1,X2), which is necessary in our discussion.
More generally, we design a n-dimensional linear transformation φn(t; ·) : R → Rn, instead of a 2-dimensional one in
Eqn.86. Specifically, we denote

φn(t;x) = t ·wx+ b =

w1xt+ b1
· · ·

wnxt+ bn

 . (119)

Considering SP on φn(t;x) with scaling=1, we denote

x̂ = SP (φn(t;x)) = φn(t;x)/∥φn(t;x)∥. (120)

Owing to the introduce of t, let t and w represent the direction and length of weight respectively. We thus add the constraint
∥w∥2 = 1 for convenience. As for the bias, if b = 0, x̂ = w/(∥w∥2) will result in SS(ψ(X̂1), ψ(X̂2)) = 0. Therefore,
we require that b ̸= 0. Now we are concerned about LSSR(X̂1, X̂2).

Factually, by Proposition 2, we need not consider all the linear functions on Rn to get LSSR. We figure out that there must
be some v ∈ Rn, such that

LSSR(X̂1, X̂2) = SSR(v⊤X̂,v⊤Ŷ). (121)

We give the Taylor’s expansion of x̂ on its each dimension.

Let ξ1 = w⊤b and ξ2 = b⊤b. We figure out that

1

∥wxt+ b∥2
=(1 + 2ξ1xt+ ξ2x

2t2)−
1
2

=1− 1

2
(2ξ1xt+ ξ2x

2t2) +
3

8
(2ξ1xt+ ξ2x

2t2)2 − 5

16
(2ξ1xt+ ξ2x

2t2)3 + o(t3)

=1− ξ1xt+ (
3

2
ξ21 −

1

2
ξ2)x

2t2 + (
3

2
ξ1ξ2 −

5

2
ξ31)x

3t3 + o(t3).

(122)

We further obtain

x̂(k) =
wkxt+ bk
∥wxt+ b∥2

=(bk + wkxt)[1− ξ1xt+ (
3

2
ξ21 −

1

2
ξ2)x

2t2 + (
3

2
ξ1ξ2 −

5

2
ξ31)x

3t3 + o(t3)]

=bk + (wk − ξ1bk)xt+ [(
3

2
ξ21 −

1

2
ξ2)bk − ξ1wk]x

2t2 + [(
3

2
ξ1ξ2 −

5

2
ξ31)bk + (

3

2
ξ21 −

1

2
ξ2)wk]x

3t3 + o(t3).

(123)
Similarly, to simplify our calculation, we denote

x̂
(k)
ci = a

(k)
0 + a

(k)
1 xcit+ a

(k)
2 x2cit

2 + a
(k)
3 x3cit

3 + o(t3) (124)

25

On the Nonlinearity of Layer Normalization

where a(k)0 = bk, a(k)1 = wk − ξ1bk, a(k)2 = (32ξ
2
1 − 1

2ξ2)bk − ξ1wk and a(k)3 = (32ξ1ξ2 −
5
2ξ

3
1)bk + (32ξ

2
1 − 1

2ξ2)wk.

Let v = [v1, · · · , vn]⊤. We have

SS(v⊤X̂c) =

m∑
i=1

(v⊤x̂ci − v⊤x̂c)
2

=
1

m

m∑
i=1

m∑
j=1

v⊤x̂ci(v
⊤x̂ci − v⊤x̂cj)

=
1

m

m∑
i=1

m∑
j=1

(
n∑

k=1

vkx̂
(k)
ci

)
·

(
n∑

l=1

vl[x̂
(l)
ci − x̂

(l)
cj]

)

=

n∑
k=1

n∑
l=1

vkvl

 1

m

m∑
i=1

m∑
j=1

x̂
(k)
ci [x̂

(l)
ci − x̂

(l)
cj]

 .

(125)

Similar to calculation when we discuss the 2-dimensional case, we have

1

m

m∑
i=1

m∑
j=1

x̂
(k)
ci [x̂

(l)
ci − x̂

(l)
cj]

=
1

m

m∑
i=1

m∑
j=1

[(
3∑

s=0

a(k)s xscit
s + o(t3)

)
·

(
3∑

s=0

a(l)s (xsci − xscj)ts + o(t3)

)]

=
1

m

m∑
i=1

m∑
j=1

[
a
(k)
1 a

(l)
1 xci(xci − xcj)t2 + a

(k)
2 a

(l)
1 x2ci(xci − xcj)t3 + a

(k)
1 a

(l)
2 xci(x

2
ci − x2cj)t3 + o(t3)

]
=ma

(k)
1 a

(l)
1 σ2

c t
2 +m[a

(k)
1 a

(l)
2 + a

(k)
2 a

(l)
1][(xc − x̄ci)3 + 2x̄cσ

2
c]t

3 + o(t3).

(126)

We define

θ1 =

n∑
k=1

n∑
l=1

vkvla
(k)
1 a

(l)
1 , (127)

and

θ2 =

n∑
k=1

n∑
l=1

vkvla
(k)
1 a

(l)
2 =

n∑
k=1

n∑
l=1

vkvla
(k)
2 a

(l)
1 . (128)

We thus have that

SS(v⊤X̂c) =

n∑
k=1

n∑
l=1

vkvl

 1

m

m∑
i=1

m∑
j=1

x̂
(k)
ci [x̂

(l)
ci − x̂

(l)
cj]

=

n∑
k=1

n∑
l=1

vkvl

(
ma

(k)
1 a

(l)
1 σ2

c t
2 +m[a

(k)
1 a

(l)
2 + a

(k)
2 a

(l)
1][(xc − x̄ci)3 + 2x̄cσ

2
c]t

3 + o(t3)
)

= mθ1σ
2
c t

2 + 2mθ2[(xc − x̄ci)3 + 2x̄cσ
2
c]t

3 + o(t3)

= βc2t
2 + βc3t

3 + o(t3),

(129)

where βc2 = mθ1σ
2
c and βc3 = 2mθ2[(xc − x̄ci)3 + 2x̄cσ

2
c].

26

On the Nonlinearity of Layer Normalization

On the other hand, we obtain

SSD(v⊤X̂1,v
⊤X̂2) =

m

2
(v⊤x̂1 − v⊤x̂2)

2

=
1

2m

(
m∑
i=1

[v⊤x̂1i − v⊤x̂2i]

)2

=
1

2m

(
m∑
i=1

n∑
k=1

vk(x̂
(k)
1i − x̂

(k)
2i)

)2

=
1

2m

(
m∑
i=1

n∑
k=1

vk[a
(k)
1 (x1i − x2i)t+ a

(k)
2 (x21i − x22i)t2 + o(t2)]

)2

=
m

2

(
n∑

k=1

vk[a
(k)
1 (x̄1 − x̄2)t+ a

(k)
2 (x21 − x22)t2 + o(t2)]

)2

=
m

2

n∑
k=1

n∑
l=1

vkvl[a
(k)
1 a

(l)
1 (x̄1 − x̄2)2t2 + [a

(k)
1 a

(l)
2 + a

(k)
2 a

(l)
1](x̄1 − x̄2)(x21 − x22)t3 + o(t3)]

=
m

2
θ1(x̄1 − x̄2)2t2 +mθ2(x̄1 − x̄2)(x21 − x22)t3 + o(t3)

=β2t
2 + β3t

3 + o(t3),
(130)

where β2 = m
2 θ1(x̄1 − x̄2)

2 and β3 = mθ2(x̄1 − x̄2)(x21 − x22). Therefore, we figure out that

β2(β13 + β23)− β3(β12 + β22)

=m2θ1θ2(x̄1 − x̄2)2[(x1 − x̄1)3 + 2x̄1σ
2
1 + (x2 − x̄2)3 + 2x̄2σ

2
2]−m2θ1θ2(x̄1 − x̄2)(x21 − x22)(σ2

1 + σ2
2)

=m2θ1θ2(x̄1 − x̄2)2[(x1 − x̄1)3 + (x2 − x̄2)3] +m2θ1θ2(x̄1 − x̄2)(σ2
1 − σ2

2)[(x̄1 − x̄2)2 − (σ2
1 + σ2

2)]

=m2θ1θ2T1 +m2θ1θ2T2,

(131)

and
(β12 + β22 + β2)

2 =
[
mθ1σ

2
1 +mθ1σ

2
2 +

m

2
θ1(x̄1 − x̄2)2

]2
=

1

4
m2θ21[2σ

2
1 + 2σ2

2 + (x̄1 − x̄2)2]2

=
1

4
m2θ21T3.

(132)

We hence obtain
SSR(v⊤X̂1,v

⊤X̂2) = LSSR(X1,X2) +
4θ2
θ1

T1 + T2
T3

t+ o(t). (133)

Similarly, f ′SSR(0) ̸= 0 means T1 + T2 ̸= 0, we can find some t and some w, b,v, such that θ2 ̸= 0, and
SSR(v⊤X̂1,v

⊤X̂2) < LSSR(X1,X2). We figure out that in the n-dimensional case, f ′SSR(0) ̸= 0 is also required in
our proof.

Hereafter, the remaining proof is nearly the same as the 2-dimensional version.

Take our 2-dimensional φ(t; ·) as an example, w = [1, 0]⊤, b = [0, 1]⊤,v = [1, 1]⊤. We thus have s1 = 0, s2 = 1.
Furthermore, we obtain a(1)1 = 1, a

(2)
1 = 0, a

(1)
2 = 0, a

(2)
2 = − 1

2 and then θ1 = 1, θ2 = − 1
2 . As a result, we have

4θ2/θ1 = −2, which is the same as Eqn.109.

D. Proofs Related to the Algorithms
D.1. Proof of Proposition 4

Proposition 4. For any input X(0), we can find some u, such that

φ
(1)
1 : x

(0)
k 7→ p

(1)
k = [u⊤x

(0)
k , 0]⊤, (134)

27

On the Nonlinearity of Layer Normalization

where p
(1)
i ̸= p

(1)
j if x(0)

i ̸= x
(0)
j .

Proof. In reverse, we consider to find all the u, such that some two different points are coincident after the projection.

Given two points x(0)
i ̸= x

(0)
j in X(0), if u project them into the same point, we have

u⊤x
(0)
i = u⊤x

(0)
j . (135)

We use S2(x(0)
i ,x

(0)
j) to denote the whole solution space of Eqn.135, namely

S2(x(0)
i ,x

(0)
j) = {u ∈ Rd : u⊤(x

(0)
i − x

(0)
j) = 0}. (136)

Considering all the pairs of different points, we define

Ŝ2(X(0)) =
⋃

x
(0)
i ̸=x

(0)
j

S2(x(0)
i ,x

(0)
j) (137)

Since x
(0)
i ̸= x

(0)
j , we find each solution space S2(x(0)

i ,x
(0)
j) is (d − 1) dimensional, and the number of such sets is no

more than m2. Therefore, the union of these solution spaces13 is still smaller than Rd, namely Ŝ2(X(0)) ⊂ Rd.

We obtain that ∃x(0)
i ̸= x

(0)
j ,u⊤x

(0)
i = u⊤x

(0)
j , if and only if u ∈ Ŝ2(X(0)). Since Ŝ2(X(0)) ⊂ Rd, we obtain

Rd/Ŝ2(X(0)) ̸= ∅. (138)

Therefore, we can always find a u ∈ Rd, such that we have p
(1)
i ̸= p

(1)
j , for any x

(0)
i ̸= x

(0)
j .

D.2. Proof of Proposition 5

Proposition 5. For each layer, φ(1)
l (2 ≤ l ≤ L) only merges points with the same label. Nevertheless, φ(1)

1 , SP (·) and
φ
(2)
l (1 ≤ l ≤ L− 1) do not merge any points.

Proof. 1) According to Proposition 4, we figure out that φ(1)
1 does not merge any points.

y

xO γ
(l)
2

h
(l)
1 h

(l)
4h

(l)
2 h

(l)
3 h

(l)
5

x
(l)
1

x
(l)
2 x

(l)
3

x
(l)
4
x
(l)
5

Figure A2. A copied figure from Figure 2(b).

2) Furthermore, we analyze SP (·). Focused on γ(l)k (there is an example of γ(l)2 copied from Figure 2(b)), we figure out that

γ
(l)
k = arctan

2p
(l)
k − p

(l)
i − p

(l)
j

p
(l)
j − p

(l)
i

, (139)

where p(l)i , p
(l)
j is defined in Algorithm 1. We can obtain that γ(l)k is monotonically decreasing with p(l)k .

13The union of finite subspaces of d− 1 dimensional can not cover the whole space Rd.

28

On the Nonlinearity of Layer Normalization

When h
(l)
ki
̸= h

(l)
kj

, we have γ(l)ki
̸= γ

(l)
kj

, namely x
(l)
ki
̸= x

(l)
kj

. In other words, SP (·) does not merge any points.

3) We then consider φ(2)
l (1 ≤ l ≤ L− 1). Obviously, φ(2)

l is a translation transformation, which does not merge any points.

4) Finally, we consider φ(1)
l (2 ≤ l ≤ L− 1). We first have

p
(l+1)
k =

[
0 1

]
φ
(1)
l (x

(l)
k) = sin γ

(l)
k . (140)

Accordingly, p(l+1)
k is also monotonically decreasing with p(l)k when γ(l)k ≤

π
2 .

Given two points from different classes denoted as p(l)k1
, p

(l)
k2

, we discuss them under three cases.

Case 1: If p(l)k1
, p

(l)
k2
> p

(l)
j , we have γ(l)k1

, γ
(l)
k2
< π

4 . Therefore, p(l+1)
k is monotonically decreasing with p(l)k . We have

p
(l)
k1
̸= p

(l)
k2
⇔ p

(l+1)
k1

̸= p
(l+1)
k2

. (141)

Case 2: If one of p(l)k1
, p

(l)
k2

is less than p(l)j and the other is not, then one of p(l+1)
k1

, p
(l+1)
k2

is lager than
√
2
2 , while the other is

not. We hence have p
(l+1)
k1

̸= p
(l+1)
k2

Case 3: If p(l)k1
, p

(l)
k2

are both less than p(l)j —this case will never happen, otherwise one of them belongs to the same class

with p
(l)
i , resulting p

(l)
j is not the leftmost point (with the same label as p(l)

i), which contradicts the definition of j.

Conclusively, we find the samples from different classes will not merge by φ(1)
l (1 ≤ l ≤ L− 1).

Based on all the discussions above, we have proved Proposition 5.

D.3. Proof of Proposition 6

Proposition 6. Confusion refers to merging two points with different labels. If confusion happens when we project X(l+1)

onto the y-axis, there must be a parallelogram14 consisting of four different points in P (l).

Proof. If confusion happens, we will merge some two points x(l)
s and x

(l)
t with different labels. According to Eqn.139,

we find that sin γ(l)s = sin γ
(l)
t . Since x

(l)
s and x

(l)
t are different points on the unit circle, we have γ(l)s = π − γ(l)t , namely

they are symmetric about y-axis. Furthermore, h(l)
s and h

(l)
t are symmetric about y-axis. Besides, h(l)

i and h
(l)
j are also

symmetric about y-axis. Since the four points are on the same line, we have h(l)
i +h

(l)
j = h

(l)
s +h

(l)
t . For H(l) is translated

from P (l), we have p
(l)
i + p

(l)
j = p

(l)
s + p

(l)
t . We hence find a parallelogram in P (l).

D.4. Proof of Proposition 7

Proposition 7. We can always find ul ∈ R2 for Algorithm 2, such that there is no parallelograms in P̂ (l), and no points
merged in the algorithm.

Proof. By Algorithm 2, we shift the points in P (l) up by 1, and then projects onto the unit circle x2 + y2 = 1, namely

p̃
(l)
i ← SP

(
p
(l)
i +

[
0 1

]⊤)
. (142)

We find all points in P̃ (l) are on the upper half circle. Obviously, any four different points in P̃ (l) can not form a
parallelogram, for the quadrilateral has two adjacent obtuse angles. In other words, give four different points p̃i, p̃j , p̃s, p̃t,
we have p̃i + p̃j ̸= p̃s + p̃t. Besides, if p(l)

i ̸= p
(l)
j , we have p̃

(l)
i ̸= p̃

(l)
j .

We can intuitively identify the two claims above in Figure 3.

14The parallelogram may be degenerate. Given four points x1,x2,x3,x4, if the sum of two points is the same with that of the other
two, we regard they form a parallelogram.

29

On the Nonlinearity of Layer Normalization

Similarly, consider to merge different points together by ul, we can find ul from the set

Ŝ2(P̃ (l)) =
⋃

p̃
(l)
i ̸=p̃

(l)
j

S2(p̃(l)
i , p̃

(l)
j), (143)

where S2(p̃(l)
i , p̃

(l)
j) = {ul ∈ R2 : u⊤

l (p̃
(l)
i − p̃

(l)
j) = 0}.

We then consider to form a parallelogram. We need some ul, and four different points p̃i, p̃j , p̃s, p̃t, such that u⊤
l p̃

(l)
i +

u⊤
l p̃

(l)
j = u⊤

l p̃
(l)
s + u⊤

l p̃
(l)
t . Obviously, we can find ul from the set

Ŝ4(P̃ (l)) =
⋃

(i,j,s,t)∈I4(P̃ (l))

S4(p̃(l)
i , p̃

(l)
j , p̃(l)

s , p̃
(l)
t), (144)

where
S4(p̃(l)

i , p̃
(l)
j , p̃(l)

s , p̃
(l)
t) = {ul ∈ R2 : u⊤

l (p̃
(l)
i + p̃

(l)
j − p̃(l)

s − p̃
(l)
t) = 0}, (145)

and the index set
I4(P̃ (l)) = {(i, j, s, t) : p̃(l)

i , p̃
(l)
j , p̃(l)

s , p̃
(l)
t are different with each other}. (146)

Similarly, we point out that Ŝ2(P̃ (l)) consists of15 no more than m2 spaces of 1-dimensional. On the other hand, since
p̃i + p̃j ̸= p̃s + p̃t holds for any four different points in P̃ (l), each S4(p̃i, p̃j , p̃s, p̃t) is a 1-dimensional space. Therefore,
Ŝ4(P̃ (l)) consists of no more than m4 spaces of 1-dimension. We hence obtain that Ŝ4(P̃ (l)) ∪ Ŝ2(P̃ (l)) consists of no
more than m2 +m4 spaces of 1-dimension, namely

[Ŝ4(P̃ (l)) ∪ Ŝ2(P̃ (l))] ⊂ R2. (147)

We thus have that—there exists p̃(l)
i ̸= p̃

(l)
j subjected to u⊤

l p̃
(l)
i = u⊤

l p̃
(l)
j , if and only if ul ∈ Ŝ2(P (l)). On the other hand,

we figure out that—there exists four different points p̃i, p̃j , p̃s, p̃t subjected to u⊤
l p̃

(l)
i + u⊤

l p̃
(l)
j = u⊤

l p̃
(l)
s + u⊤

l p̃
(l)
t , if

and only if ul ∈ Ŝ4(P (l)). Since [Ŝ4(P̃ (l)) ∪ Ŝ2(P̃ (l))] ⊂ R2, we obtain R2/[Ŝ4(P̃ (l)) ∪ Ŝ2(P̃ (l))] ̸= ∅. As a result, we
can always find a ul ∈ R2/[Ŝ4(P̃ (l)) ∪ Ŝ2(P̃ (l))] to ensure not to merge different points, and form no parallelograms in
P̂ (l) as well.

D.5. Discussion on a Wider LN-Net

We figure out that the algorithm here is suitable for both binary and multi-class classifications. Before giving the algorithm,
we propose two lemmas as follows.

Lemma 10. Given X(l) on the unit sphere, the necessary condition of x(l)
i x

(l)
j //x

(l)
s x

(l)
t is that ∠x(l)

j Ox
(l)
s = ∠x(l)

i Ox
(l)
t ,

where O is origin of coordinates.

Proof. For x(l)
i x

(l)
j //x

(l)
s x

(l)
t , we have

x
(l)
j − x

(l)
i = k (x

(l)
t − x(l)

s) (148)

where k ̸= 0.

Accordingly, we figure out that
x
(l)
j + k x(l)

s = x
(l)
i + k x

(l)
t , (149)

and furthermore,
(x

(l)
j)2 + 2k x

(l)
j · x

(l)
s + k2 (x(l)

s)2 = (x
(l)
i)2 + 2k x

(l)
i · x

(l)
t + k2 (x

(l)
t)2. (150)

Since x(l)
i ,x

(l)
j ,x

(l)
s ,x

(l)
t are all on the unit sphere, we have (x(l)

j)2 = (x
(l)
j)2 = (x

(l)
j)2 = (x

(l)
j)2 = 1. Therefore, we have

x
(l)
j · x

(l)
s = x

(l)
i · x

(l)
t

15Ŝ2(P̃
(l)) is a point set of finite lines, hence can not cover the whole R2.

30

On the Nonlinearity of Layer Normalization

According to the cosine theorem, we have |x(l)
j x

(l)
s | = |x(l)

i x
(l)
t |. Furthermore, according to the central angle theorem, we

have ∠x(l)
j Ox

(l)
s = ∠x(l)

i Ox
(l)
t .

Lemma 11. Given p
(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t which are different from each other, the solution space

B4(p
(l)
i ,p

(l)
j ,p(l)

s ,p
(l)
t) =

{
b ∈ Rn :

(p
(l)
i + b)⊤(p

(l)
s + b)

∥p(l)
i + b∥2∥p(l)

s + b∥2
=

(p
(l)
j + b)⊤(p

(l)
t + b)

∥p(l)
j + b∥2∥p(l)

t + b∥2

}
(151)

is contained in a hypersurface of n− 1 dimension.

Proof. We first loose the equation in B4(p
(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t) to a polynomial equation.

Ignoring the case b ∈ {−p(l)
i ,−p(l)

j ,−p(l)
s ,−p(l)

t }, we can loose the equation in B4(pi,pj ,ps,pt) as

(p
(l)
i + b)⊤(p(l)

s + b)∥p(l)
j + b∥2∥p(l)

t + b∥2 = (p
(l)
j + b)⊤(p

(l)
t + b)∥p(l)

i + b∥2∥p(l)
s + b∥2. (152)

Furthermore, we loose it again to

[(p
(l)
i + b)⊤(p(l)

s + b)]2∥p(l)
j + b∥22∥p

(l)
t + b∥22 = [(p

(l)
j + b)⊤(p

(l)
t + b)]2∥p(l)

i + b∥22∥p(l)
s + b∥22. (153)

We define
B′
4(p

(l)
i ,p

(l)
j ,p(l)

s ,p
(l)
t) = {b : b satisfies Eqn.153.}. (154)

We find that b ∈ B′
4(p

(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t), for each b ∈ B4(p

(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t). Since Eqn.153 is a polynomial equation

about b, its solution space B′
4(p

(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t) is a hypersurface.

From B4(p
(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t) to B′

4(p
(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t), we add the four singularities {−p(l)

i ,−p(l)
j ,−p(l)

s ,−p(l)
t }, and

we extend cos∠x(l)
j Ox

(l)
s = cos∠x(l)

i Ox
(l)
t to cos2 ∠x(l)

j Ox
(l)
s = cos2 ∠x(l)

i Ox
(l)
t .

We then prove B′
4(p

(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t) ⊂ Rn, to ensure it is a hypersurface of d− 1 dimension.

x

z

y

p
(l)
i

p
(l)
t

p
(l)
j

p
(l)
s

b

z

O

(a) Four points are not on the
same plane.

x

z

y

p
(l)
i

p
(l)
t

p
(l)
j

p
(l)
s

b

z

O

(b) Four points are on the
same plane, but not on the
same line.

x

z

y

p
(l)
i

p
(l)
t

p
(l)
j

p
(l)
s

b

z

O

(c) Four points are on the same
line.

Figure A3. Three cases of the four points. We figure out that b is the shift direction and distance, and becomes the new origin when we
translate P (l) to H(l).

Case 1: Suppose the four points p
(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t are not on the same plane, as shown in Figure A3(a). Choose

b = −(p(l)
i + p

(l)
t)/2, we thus have ∠h(l)

i Oh
(l)
t = π. However, ∠h(l)

j Oh
(l)
s ∈ (0, π), otherwise the four points will belong

to the same plane. Therefore, b /∈ B′
4(p

(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t).

31

On the Nonlinearity of Layer Normalization

Case 2: Suppose the four points p(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t are on the same plane, but not on the same line, as shown in Figure A3(b).

We can always find −b on the line segment p(l)
i p

(l)
t , and ensure −b is not on the line p

(l)
j p

(l)
s , otherwise the four points

will be on the same line. We thus have ∠h(l)
i Oh

(l)
t = π, but ∠h(l)

j Oh
(l)
s ∈ (0, π). Therefore, b /∈ B′

4(p
(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t).

Case 3: Suppose the four points p
(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t are on the same line, as shown in Figure A3(c). We can draw

circles with p
(l)
i p

(l)
t and p

(l)
j p

(l)
s , respectively. We can always find −b on the previous circle, but not on the later one,

otherwise they will be not different from each other. We thus have ∠h(l)
i Oh

(l)
t = π

2 , but ∠h(l)
j Oh

(l)
s ̸= π

2 . Therefore,

b /∈ B′
4(p

(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t).

Conclusively, we can always find some b /∈ B′
4(p

(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t), then we have B′

4(p
(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t) ⊂ Rn. Further,

B′
4(p

(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t) is a hypersurface of d− 1 dimension, and B4(p

(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t) ⊂ B′

4(p
(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t)

Here we propose the proposition of a wider LN-Net as follows.
Proposition 9. A wider LN-Net can classify m samples with any label assignment.

Proof. Similarly, we hope to merge two points from the same class, and do not merge other points meanwhile. Suppose
LN acts on Rn+1 by Lemma 1, we thus use SP on Rn for convenience. Given P (l) ∈ Rn×m on a n − 1 dimensional
hyperplane, we consider to shift the points by b ∈ Rn and get H(l). After that, we spherically project H(l) onto the unit
sphere ∥x∥2 = 1, represented by X(l+1). Hereafter, we linearly project X(l+1) onto another n− 1 dimensional hyperplane.

Different from our method on R2, we can not sort the points, it is hence much harder to design a suitable algorithm in a high
dimensional space. But we can consider to merge some p(l)

i and p
(l)
j only, without merging the other points. We analyze the

merging progress backward, and show how to find the projection direction and the bias b.

To get P (l+1) from X(l), without doubt the projection direction is along x
(l)
i x

(l)
j , and the target is some n− 1 dimensional

hyperplane. Now we need to ensure doing so will not merge other points. Obviously, its necessary and sufficient condition
is that there are no other different points x(l)

s ,x
(l)
t , such that

x
(l)
i x

(l)
j //x

(l)
s x

(l)
t , (155)

namely x
(l)
s x

(l)
t is parallel to the projection direction.

According to Lemma 10, for X(l) is on the unit sphere, the necessary condition of x(l)
i x

(l)
j //x

(l)
s x

(l)
t is that—∠x(l)

i Ox
(l)
s =

∠x(l)
j Ox

(l)
t , where O is the origin of coordinates.

Since X(l) = SP (H(l)), we have

∠x(l)
i Ox(l)

s = ∠x(l)
j Ox

(l)
t ⇔ ∠h(l)

i Oh(l)
s = ∠h(l)

j Oh
(l)
t . (156)

If we ensure any four different points in H(l) to satisfy ∠h(l)
i Oh

(l)
s ̸= ∠h(l)

j Oh
(l)
t , we will not merge other points when we

merge x(l+1)
i and x(l+1)

j . Since h(l)
k = p

(l)
k +b, according to the cosine theorem, we point out that ∠h(l)

i Oh
(l)
s = ∠h(l)

j Oh
(l)
t

is equivalent to
(p

(l)
i + b)⊤(p

(l)
s + b)

∥p(l)
i + b∥2∥p(l)

s + b∥2
=

(p
(l)
j + b)⊤(p

(l)
t + b)

∥p(l)
j + b∥2∥p(l)

t + b∥2
. (157)

We define

B4(p
(l)
i ,p

(l)
j ,p(l)

s ,p
(l)
t) =

{
b ∈ Rn :

(p
(l)
i + b)⊤(p

(l)
s + b)

∥p(l)
i + b∥2∥p(l)

s + b∥2
=

(p
(l)
j + b)⊤(p

(l)
t + b)

∥p(l)
j + b∥2∥p(l)

t + b∥2

}
. (158)

Since p
(l)
i ,p

(l)
j ,p

(l)
s ,p

(l)
t are different from each other, the solution space of Eqn.157 about b is contained in a hypersurface

of n− 1 dimension, by Lemma 11.

32

On the Nonlinearity of Layer Normalization

Again, we define
B̂4(P

(l)) =
⋃

(i,j,s,t)∈I4(P (l))

B4(p
(l)
i ,p

(l)
j ,p(l)

s ,p
(l)
t), (159)

where
I4(P (l)) = {(i, j, s, t) : p(l)

i ,p
(l)
j ,p(l)

s ,p
(l)
t are different with each other}. (160)

We figure out that B̂4(P
(l)) is contained in a union of no more than m4 hypersurfaces of n− 1 dimension.

Besides, from P (l) to X(l), we can not merge any two different points. Therefore, given p
(l)
i ̸= p

(l)
j , we need

(p
(l)
i + b)/∥p(l)

i + b∥2 ̸= (p
(l)
j + b)/∥p(l)

j + b∥2.

Given two different points pi,pj , we define

B2(p
(l)
i ,p

(l)
j) =

{
b ∈ Rn :

p
(l)
i + b

∥p(l)
i + b∥2

=
p
(l)
j + b

∥p(l)
j + b∥2

}
. (161)

Similarly, we can prove that B2(pi,pj) is contained in a hypersurface of n− 1 dimension. We find B̂2(P
(l)) is contained in

the union of no more than m2 hypersurfaces of n− 1 dimension, where

B̂2(P
(l)) =

⋃
p
(l)
i ̸=p

(l)
j

B2(p
(l)
i ,p

(l)
j). (162)

We figure out that B̂2(P
(l))∪ B̂4(P

(l)) is contained in a union of no more than m2 +m4 hypersurfaces of n− 1 dimension.

Therefore, we have
[B̂2(P

(l)) ∪ B̂4(P
(l))] ⊂ Rn (163)

Choose some b ∈ Rn/[B̂2(P
(l)) ∪ B̂4(P

(l))], then ∠h(l)
j Oh

(l)
s = ∠h(l)

i Oh
(l)
t will not holds. Furthermore, by Lemma 10,

x
(l)
i x

(l)
j //x

(l)
s x

(l)
t will not holds either. As a result, we can only merge p

(l)
i and p

(l)
j by projection.

In conclusion, we can choose to only merge two samples with the same label each step by the method above. Furthermore,
we can construct an LN-Net with depth O(m) to classify m samples with any label assignment. Note the width of LN-Net
here is wider than 3, and we do not require the widths of each layer are equal.

E. Proof of Proposition 8
Proposition 8. Given g ≤ d/3, we have

H(ψG(g; ·);x)
H(ψL(·);x)

≥ 1. (164)

Specifically, when g = d/4, we figure out that

H(ψG(g; ·);x)
H(ψL(·);x)

≥ d

8
. (165)

In the proof of Proposition 8, we consider a single sample only. We use xi as the i-th ordinate of x instead of x(i) in this
proof, we thus use x2i to denote the squares rather than [x(i)]2.

E.1. Required Lemmas for the Proof

Lemma 12. Given x ∈ Rd, µ = (x1 + · · · + xd)/d and σ2 = [(x1 − µ)2 + · · · + (xd − µ)2]/d, we denote LN(x) as
x̂ = (x− µ1)/σ. We point out that

H(ψL(·);x) =
3

σ4
− 6

dσ4
(166)

33

On the Nonlinearity of Layer Normalization

Proof. To begin with, we regard x̂i as ψi(x), and then give the gradient ∇xψi(x). Let s = 1
d

d∑
i=1

(xi − µ)2 and σ =
√
s.

We have

∂µ

∂xi
=

1

d
,∀i, (167)

∂s

∂xi
=

1

d

∂

∂xi

d∑
j=1

(xj − µ)2

=
1

d

∂

∂xi

d∑
j=1

x2j −
1

d

∂

∂xi
dµ2

=
2

d
(xi − µ),∀i,

(168)

and

∂σ

∂xi
=

1

2
√
s

∂s

∂xi

=
xi − µ
dσ

=
x̂i
d
,∀i.

(169)

We thus obtain

∂x̂i
∂xi

=
1

σ

∂

∂xi
(xi − µ) + (xi − µ)

∂

∂xi
(
1

σ
)

=
1

σ
(1− 1

d
)− x̂i

σ

∂σ

∂xi

=
1

dσ
(d− 1− x̂2i).

(170)

While for j ̸= i, we have

∂x̂i
∂xj

=
1

σ

∂

∂xj
(xi − µ) + (xi − µ)

∂

∂xj
(
1

σ
)

=
1

σ
(0− 1

d
)− x̂i

σ

∂σ

∂xj

=
1

dσ
(−1− x̂ix̂j).

(171)

Based above, we calculate the Hessian matrix. For each term
∂2x̂i
∂xj∂xk

, we figure out that there are four kinds of the second

order derivative.

Case 1, i = j = k:

∂2x̂i
∂x2i

= − 1

dσ2
(d− 1− x̂2i)

∂σ

∂xi
− 2x̂i
dσ

∂x̂i
∂xi

= − 1

d2σ2
(d− 1− x̂2i)x̂i −

2x̂i
d2σ2

(d− 1− x̂2i)

=
1

d2σ2
[3x̂3i − 3(d− 1)x̂i]

=
1

d2σ2
(3x̂3i + 3x̂i)−

3x̂i
dσ2

.

(172)

34

On the Nonlinearity of Layer Normalization

Case 2, only one of j, k equals to i, assume i = k:

∂2x̂i
∂xi∂xj

= − 1

dσ2
(d− 1− x̂2i)

∂σ

∂xj
− 2x̂i
dσ

∂x̂i
∂xj

= − 1

d2σ2
(d− 1− x̂2i)x̂j −

2x̂i
d2σ2

(−1− x̂ix̂j)

=
1

d2σ2
[3x̂2i x̂j + 2x̂i − (d− 1)x̂j]

=
1

d2σ2
(3x̂2i x̂j + 2x̂i + x̂j)−

x̂j
dσ2

.

(173)

We have that
∂2x̂i
∂xj∂xk

=
∂2x̂i
∂xk∂xj

, so the result of the other case i = j has the same form with that of i = k.

Case 3, j = k, but i ̸= j:

∂2x̂i
∂x2j

= − 1

dσ2
(−1− x̂ix̂j)

∂σ

∂xj
− x̂i
dσ

∂x̂j
∂xj
− x̂j
dσ

∂x̂i
∂xj

= − 1

d2σ2
(−1− x̂ix̂j)x̂j −

x̂i
d2σ2

(d− 1− x̂2j)−
x̂j
d2σ2

(−1− x̂ix̂j)

=
1

d2σ2
[3x̂ix̂

2
j + 2x̂j − (d− 1)x̂i]

=
1

d2σ2
(3x̂ix̂

2
j + 2x̂j + x̂i)−

x̂i
dσ2

.

(174)

Case 4, i, j, k are different from each other:

∂2x̂i
∂xj∂xk

= − 1

dσ2
(−1− x̂ix̂j)

∂σ

∂xk
− x̂i
dσ

∂x̂j
∂xk
− x̂j
dσ

∂x̂i
∂xk

= − 1

d2σ2
(−1− x̂ix̂j)x̂k −

x̂i
d2σ2

(−1− x̂j x̂k)−
x̂j
d2σ2

(−1− x̂ix̂k)

=
1

d2σ2
(3x̂ix̂j x̂k + x̂i + x̂j + x̂k).

(175)

It is hard to calculate the operator norm of the Hessian matrix is too difficult, so we calculate the Frobenius norm instead.∥∥∥∥∂2x̂i∂x2

∥∥∥∥2
F

=

d∑
j=1

d∑
k=1

(
∂2x̂i
∂xj∂xk

)2

=

d∑
j=1

d∑
k=1

1

d4σ4
(3x̂ix̂j x̂k + x̂i + x̂j + x̂k)

2 +
∑
j ̸=i

[
x̂2i
d2σ4

− 2
x̂i
d3σ4

(3x̂ix̂
2
j + 2x̂j + x̂i)

]

+ 2
∑
j ̸=i

[
x̂2j
d2σ4

− 2
x̂j
d3σ4

(3x̂2i x̂j + 2x̂i + x̂j)

]
+

9x̂2i
d2σ4

− 2
3x̂i
d3σ4

(3x̂3i + 3x̂i)

=

d∑
j=1

d∑
k=1

1

d4σ4
(3x̂ix̂j x̂k + x̂i + x̂j + x̂k)

2 +

d∑
j=1

[
x̂2i
d2σ4

− 2
x̂i
d3σ4

(3x̂ix̂
2
j + 2x̂j + x̂i)

]

+ 2

d∑
j=1

[
x̂2j
d2σ4

− 2
x̂j
d3σ4

(3x̂2i x̂j + 2x̂i + x̂j)

]
+

6x̂2i
d2σ4

(176)

We note that
d∑

j=1

x̂j = 0,

d∑
j=1

x̂2j = d. (177)

35

On the Nonlinearity of Layer Normalization

We thus have
d∑

j=1

d∑
k=1

1

d4σ4
(3x̂ix̂j x̂k + x̂i + x̂j + x̂k)

2

=

d∑
j=1

d∑
k=1

1

d4σ4
[9x̂2i x̂

2
j x̂

2
k + 6x̂ix̂j x̂k(x̂i + x̂j + x̂k) + (x̂i + x̂j + x̂k)

2]

=
9x̂2i
d2σ4

+ 0 +

d∑
j=1

d∑
k=1

1

d4σ4
(x̂i + x̂j + x̂k)

2

=
10x̂2i
d2σ4

+
2

d2σ4
,

(178)

d∑
j=1

[
x̂2i
d2σ4

− 2
x̂i
d3σ4

(3x̂ix̂
2
j + 2x̂j + x̂i)

]
=

x̂2i
dσ4
− 8x̂2i
d2σ4

, (179)

and

2

d∑
j=1

[
x̂2j
d2σ4

− 2
x̂j
d3σ4

(3x̂2i x̂j + 2x̂i + x̂j)

]
=

2

dσ4
− 12x̂2i
d2σ4

− 4

d2σ4
. (180)

Take Eqn.178, Eqn.179 and Eqn.180 into Eqn.176, we obtain∥∥∥∥∂2x̂i∂x2

∥∥∥∥2
F

=
x̂2i + 2

dσ4
− 4x̂2i + 2

d2σ4
(181)

Now we add up all the dimensions, as LN’s information of the second order

H(ψL(·);x) =
d∑

i=1

∥∥∥∥∂2x̂i∂x2

∥∥∥∥2
F

=
3

σ4
− 6

dσ4
=

3

dσ4
(d− 2). (182)

When d = 2, we have x̂2i = 1, andH(ψL(·);x)|d=2 = 0 naturally.

Lemma 13. Given x ∈ Rd, let the group number of GN be g. Suppose σ2
i is the variance of the i-th group, we have that

H(ψG(g; ·);x) =
g∑

i=1

(
3

σ4
i

− 6g

dσ4
i

)
(183)

Proof. We simplify ψG(g; ·) as ψ(·) in the proof here. As for Group Normalization, suppose the number of groups is g, and
d = g × c. Let x = [z⊤

1 , · · · , z⊤
g]⊤, where zi = [zi1, · · · , zic]⊤, (i = 1, · · · , g). Assume x = [x1, · · · , xd]⊤, we denote

that zij = x(i−1)×c+j .

Let x̂ = GN(x), whereGN(·) denotes the Group Normalization operation. GN can be calculated by µi = (zi1+· · ·+zic)/c,
σ2
i = [(zi1 − µi)

2 + · · · + (zic − µi)
2]/c, and then ẑij = (zij − µi)/σi. Accordingly, we denote x̂ = [ẑ⊤

1 , · · · , ẑ⊤
g]⊤,

where ẑi = LN(zi), (i = 1, · · · , g). To begin with ,we denote GN(x) as ψ(x) = [ψ11(x), ψ12(x), · · · , ψgc(x)]. We thus
have

∇xψij(x) =

∇z1ψij(x)
...

∇zg
ψij(x)

 , (i = 1, · · · , g; j = 1, · · · , c). (184)

36

On the Nonlinearity of Layer Normalization

We denote that zij = ψij(x). When k ̸= i, we have ∇zk
ψij(x) = 0. When k ̸= i, we have ∇zi

ψij(x) is a gradient of LN,
for [ψi1(x), · · · , ψic(x)]

⊤ = LN(zi). We can give the Hessian matrix of GN , denoted as

∇2
xψij(x) =

O · · · O
. . .

... ∇2
zi
ψij(x)

...
. . .

O · · · O

, (i = 1, · · · , g; j = 1, · · · , c) (185)

By the discussion about LN above, we obtain that

∥∇2
zi
ψij(x)∥2F =

ẑ2ij + 2

cσ4
i

−
4ẑ2ij + 2

c2σ4
i

. (186)

Obviously, we have ∥∇2
xψij(x)∥2F = ∥∇2

zi
ψij(x)∥2F . Although there are many zeros in ∇2

xψij(x), for
c∑

j=1

x̂2ij = c, we

obtain

H(ψG(g; ·);x) =
d∑

i=1

∥∥∥∥∂2x̂i∂x2

∥∥∥∥2
F

=

g∑
i=1

c∑
j=1

∥∇2
xψij(x)∥2F

=

g∑
i=1

c∑
j=1

(
x̂2ij + 2

cσ4
i

−
4x̂2ij + 2

c2σ4
i

)

=

g∑
i=1

(
3

σ4
i

− 6

cσ4
i

)
(187)

Lemma 14. In group normalization, we have

σ2 ≥ 1

g

g∑
i=1

σ2
i . (188)

Proof. According to the definition, we have

σ2 − 1

g

g∑
i=1

σ2
i =

1

cg

g∑
i=1

c∑
j=1

(zij − µ)2 −
1

cg

g∑
i=1

c∑
j=1

(zij − µi)
2

=
1

cg

g∑
i=1

c∑
j=1

(z2ij − µ2)− 1

cg

g∑
i=1

c∑
j=1

(z2ij − µ2
i)

=
1

g

g∑
i=1

µ2
i − µ2.

(189)

Since c(µ1 + · · ·+ µg) = cgµ, we have

σ2 − 1

g

g∑
i=1

σ2
i =

1

g

g∑
i=1

µ2
i − µ2 =

1

g

g∑
i=1

(µi − µ)2 ≥ 0. (190)

Lemma 15. f(x) = 1
x2 is a monotonically decreasing and convex function on x > 0.

37

On the Nonlinearity of Layer Normalization

Proof. For f(x) = 1
x2 , we have f ′(x) = − 2

x3 < 0, namely, f(x) is monotonically decreasing. Furthermore, we have
f ′′(x) = 6

x4 > 0, namely, f(x) is a convex function.

Lemma 16. Given that σ2
1 , · · · , σ2

g and σ2 are variances in LN-G and LN respectively, we have

g∑
i=1

1

σ4
i

≥ g

σ4
. (191)

Proof. According to Lemma 15, we have f(x) = 1
x2 is a convex function. By Jensen’s inequality, we obtain

g∑
i=1

1

g
f(σ2

k) ≥ f

(
1

g

g∑
i=1

σ2
i

)
(192)

According to Lemma 14 and Lemma 15, we have

g∑
i=1

1

g
f(σ2

i) ≥ f(σ2), (193)

namely
1

g

g∑
i=1

1

σ4
i

≥ 1

σ4
. (194)

E.2. Proof of Proposition 8

Proof. To prove
H(ψG(g; ·);x)
H(ψL(·);x)

≥ 1, (195)

we can prove Eqn.196 instead:
H(ψG(g; ·);x)−H(ψL(·);x) ≥ 0. (196)

According to Eqn.182, Eqn.187 and Lemma 16, we obtain

H(ψG(g; ·);x)−H(ψL(·);x) =
g∑

i=1

(
3

σ4
i

− 6

cσ4
i

)
− 3

dσ4
(d− 2)

= 3

(
1− 2

c

) g∑
i=1

1

σ4
i

− 3

σ4

(
1− 2

d

)
≥ 3

σ4

(
g − 2g

c
− 1 +

2

d

)
=

3

dσ4
(d− 2g − 2)(g − 1).

(197)

When g ≥ 2, we have d ≥ 6. Therefore, we obtain

d− 2g − 2 = d− 2d

c
− 2 ≥ 1

3
d− 2 ≥ 0 (198)

According to Eqn.197, we give the necessary condition for equality in Eqn.196. One of the cases is g = 1 obviously. The
other case is d = 2g+2 — but we note that g|d, we hence have g|2. Namely g = 2, d = 6 is the only other case for equality.

Therefore, we have proved
H(ψG(g; ·);x)
H(ψL(·);x)

≥ 1. (199)

38

On the Nonlinearity of Layer Normalization

As for the case g = d/4, we have that

H(ψG(g; ·);x) ≥
3

σ4

(
g − 2g

c

)
=

3

σ4

(
g − 2g2

d

)
=

6

dσ4

(
−g2 + d

2
g

)
=

6

dσ4

(
d2

16
− (g − d

4
)2
)
.

(200)

When g = d/4, the right term reaches its maximum, where we have

H(ψG(g; ·);x) ≥
3d

8σ4
. (201)

On the other hand, we have that

H(ψL(·);x) =
3

σ4
− 6

dσ4
≤ 3

σ4
. (202)

As a result, we obtain
H(ψG(g; ·);x)
H(ψL(·);x)

≥ d

8
. (203)

E.3.H about ReLU

We conduct additional analyses to compare the nonlinearity of ReLU and LN during the phase of rebuttal. ReLU is defined as
max(0, x), which is not differentiable strictly. To compare ReLU with LN, we consider to introduce the Dirac function δ(x)
as ReLU’s second-order derivative, namely∇2ReLU(x) = δ(x). We know that

´
I
δ(x)dx = 1 and

´
I
f(x)δ(x)dx = f(0).

To apply the integral, we introduce the expectation, and assume xxx ∼ N(0, III) is d-dimensional. Since we do not know how
to calculate

´
I
f(x)δ2(x)dx, we remove the square sign inH. Specifically, we define H̄(f ;xxx) as

H̄(f ;xxx) =
d∑

i=1

Exxx

∥∥∥∥∂2yi∂xxx2

∥∥∥∥
F

, (204)

like Eqn.20 in our paper, and yi is defined similarly.

Based on the assumptions above, we have that

H̄(relu(·);xxx) = d√
2π

= O(d), (205)

and

H̄(ψL(·);xxx) =
d∑

i=1

Exxx
1

dσ2

√
d(x̂2i + 2)− (4x̂2i + 2) = O(

√
d). (206)

Furthermore, we have

H̄(ψG(g; ·);xxx) = g ·O(
√
c) = O(

√
dg). (207)

Note that we removed the square sign inH, and there is a square root sign in H̄.

We hope the analysis above can help compare ReLU with LN, to some extent.

39

On the Nonlinearity of Layer Normalization

F. Experiments
F.1. Details of Experiments on Comparison of Representation Capacity by Fitting Random Labels.

In this section, we provide the details of experimental setup in comparing the representation capacity by fitting random
labels, as stated in Section 5.2.

F.1.1. DATASET WITH RANDOM LABELS

We conduct the random label datasets based on CIFAR-10 and MNIST, referred to as CIFAR-10-RL and MNIST-RL. In
particular, for each sample of these datasets, we randomly assign a class label to this sample and save all the samples as a
dataset. Even though the labels are random, the label assignment is certain once the dataset is conducted. Therefore, it is
meaningful to compare the results of different methods by fitting random labels.

MNIST-RL is more challenging. Here, we highlight that MNIST-RL is more challenging in training a classifier for fitting
the labels, compare to CIFAR-10-RL. Let Xc represents examples belong to class c. It is clear that the features in Xc are
very close for the normal MNIST dataset. For example, all the digits of "0" are very similar in representation, they all have
rounded curves. However, if we use the random label (the MNIST-RL dataset), the samples in Xc will have different labels.
In this case, the network will need to map Xc — which is very close in representation — to different labels. As a result, we
need more powerful model to fit MNIST-RL and is more difficult to train.

F.1.2. DETAILS ON VERIFYING NONLINEARITY OF LN

In this part, we use various configurations of hyper-parameters to train our models, aiming at reducing the effect from the
optimization. We first sufficiently train a linear classifier (Figure A4 (b)), as the baseline, which provides the (nearly) upper
bound accuracy of linear classifier. We then compare the results under linear neural network and LN-Net with residential
structure for better optimization as shown in Figure A4 (c). We vary the depths ranging in {2, 4, 6, 8, 10, 1214}, and each
hidden layer has a dimension of 256.

Training protocols. For the training of liner classifier, we apply both SGD optimizer with momentum (0.1) and
Adam optimizer with betas (0.9, 0.999). We train the model for 150 epochs and use a learning rate schedule with
a decay 0.5 per 20 epochs. We search the batch sizes ranging in {128, 256}, the initial learning rates ranging in
{0.001, 0.003, 0.005, 0.008, 0.05, 0.08, 0.1, 0.15} and 5 random seeds, and report the best accuracy from these con-
figurations of hyper-parameters. For the training of linear neural networks and LN-Nets, we follow the settings
in training linear classifier, except that: 1) we use a batch size of 128 and a fixed random seed; 2) we search
the initial learning rates ranging in {0.01, 0.03, 0.05, 0.08, 0.1} for SGD and the initial learning rates ranging in
{0.001, 0.003, 0.005, 0.008, 0.05, 0.08, 0.1, 0.15} for Adam.

Results. In Figure 4 of the main paper, we show the best result of linear classifier as black dashed line, which is 18.51%
on CIFAR-10-RL and 15.38% on MNIST-RL. We also provide the detailed results for linear neural network and LN-Net,
shown in Table II.

(a) (b) (c) (d)

Figure A4. Schematic representation of the networks used in the experiment. (a) Original LN-Net and Linear Neural Network (LNN). (b)
Linear classifier. (c) LN-Net and LNN using residual connections. (d) LN-Net using LN-G.

40

On the Nonlinearity of Layer Normalization

Table II. The result of linear neural network and LN-Net model on classification task on CIFAR-10-RL and MNIST-RL. The bold numbers
refer to those outperform linear classifier. We can see layer normalization breaks the bound of linearity.

dataset RL-CIFAR-10 RL-MNIST
depth Linear+Res LN+Res Linear+Res LN+Res
2 17.37% 20.45% 14.71% 14.45%
4 17.00% 27.97% 14.54% 15.26%
6 16.97% 39.24% 14.29% 15.28%
8 17.02% 39.39% 14.32% 15.76%
10 16.98% 31.12% 13.89% 18.26%
12 16.91% 50.48% 13.35% 18.47%
14 15.19% 55.58% 13.98% 19.44%
best 17.37% 55.58% 14.71% 19.44%

F.1.3. DETAILS ON AMPLIFYING THE NONLINEARITY USING GROUP

We use the origin LN-Net and replace LN with LN-G, as shown in Figure A4 (d). For the configuration of networks, we fix
the number of neurons as 256 and vary the depths ranging in {1, 2, 4, 6, 8, 10, 12, 14}. We vary the group numbers of LN-G
ranging in {2, 4, 8, 16, 32, 64, 128}.

Training protocols. We use the same training protocols as the experiment above, except that we only use SGD optimizer
with fixed momentum of 0.1 and search the initial learning rate ranging in {0.01, 0.03, 0.05, 0.1}.

Results. We provide the detailed results of CIFAR-10-RL in Table III and MNIST-RL in Table IV for linear neural network
and LN-Net.

Table III. The performance of LN-Net with LN-G on CIFAR-10-RL. The rows of the table represent the model depth and the columns
represent the group number of LN-G in the model. The percentage is the best accuracy of model under such setting. The bold number
refers to the best accuracy among all group numbers under such depth.

CIFAR 1 2 4 6 8 10 12 14
2 20.51% 29.09% 52.17% 60.70% 67.21% 71.45% 74.10% 68.53%
4 26.63% 45.19% 72.41% 84.08% 91.36% 94.02% 95.76% 96.76%
8 35.02% 60.65% 91.74% 98.57% 99.72% 99.94% 99.99% 99.96%
16 46.42% 79.71% 99.58% 99.99% 100.00% 100.00% 100.00% 100.00%
32 59.89% 93.67% 99.96% 100.00% 100.00% 100.00% 100.00% 100.00%
64 69.40% 91.62% 99.44% 99.66% 96.58% 88.20% 77.22% 44.48%
128 26.48% 14.66% 12.28% 10.38% 10.23% 10.26% 10.37% 10.22%
best 69.40% 93.67% 99.96% 100.00% 100.00% 100.00% 100.00% 100.00%

Table IV. The performance of LN-Net with LN-G on MNIST-RL. The rows of the table represent the model depth and the columns
represent the group number of LN-G in the model. The percentage is the best accuracy of model under such setting. The bold number
refers to the best accuracy among all group numbers under such depth.

MNIST 1 2 4 6 8 10 12 14
2 14.53% 18.25% 26.83% 27.76% 27.96% 27.56% 30.39% 30.81%
4 14.77% 20.98% 33.35% 40.67% 50.00% 53.52% 57.44% 58.78%
8 15.61% 25.38% 46.48% 64.51% 74.91% 81.34% 85.98% 89.97%
16 19.13% 32.43% 66.59% 86.20% 92.16% 94.03% 95.32% 95.25%
32 24.92% 47.08% 82.34% 92.40% 94.47% 95.56% 95.68% 95.96%
64 33.95% 54.00% 70.61% 68.63% 56.89% 42.89% 13.43% 10.21%
128 10.22% 10.17% 10.16% 10.22% 10.30% 10.25% 10.32% 10.31%
best 33.95% 54.00% 82.34% 92.40% 94.47% 95.56% 95.68% 95.96%

41

On the Nonlinearity of Layer Normalization

F.2. More Results of CNN without Activation Functions

As stated in Section 5.3.1, we conduct more experiments on different networks, including the results on VGGs, and the
20-layer ResNet with the original configuration of channel number.

Results on VGGs. Following the experimental setup shown in Section 5.3.1, we also conduct experiments on CIFAR-10
classification using different normalization methods in the VGG-style networks (the network architecture used is ResNet-20,
but with the residual connections removed.) with ReLU activation removed, where the group number g ranging in {2, 4, 8,
16, 32, 64}. The experimental results of different normalization methods are shown in the Table V. The results of different
groups of GN and LN-G-Position are shown in the Figure A5. We have the similar observations as in the ResNet-20 shown
in the main paper.

G2 G4 G8 G16 G32 G64
Group Number

10
30
50
70
90

Ac
cu

ra
cy

(%
)

62.05 67.12 67.89 71.52 73.80 79.16

99.76 99.78 99.47 99.33

81.00

9.64
GN
LN-G-Position

(a) Training.

G2 G4 G8 G16 G32 G64
Group Number

10

30

50

70

90

Ac
cu

ra
cy

(%
)

59.87 63.53 64.19 66.07 66.67 69.93
84.07 83.47 84.23 84.50

75.00

10.00GN
LN-G-Position

(b) Test.

Figure A5. Results of the variants of LN-G (GN and LN-G-
Position) when using different group number. The experi-
ments are conducted on CIFAR-10 dataset using a 20-layer
VGG-style network without ReLU activation. We show (a)
the training accuracy and (b) the test accuracy. In the x-axis,
G2 refers to a group number of 2.

G2 G4 G8 G16
Group Number

10

30

50

70

90

Ac
cu

ra
cy

(%
)

67.62 71.86 74.98 77.12

89.90 89.56

70.46

10.00GN
LN-G-Position

(a) Training.

G2 G4 G8 G16
Group Number

10

30

50

70

90

Ac
cu

ra
cy

(%
)

63.08 65.68 66.71 68.74

83.80 81.77
69.02

10.00GN
LN-G-Position

(b) Test.

Figure A6. Results of the variants of LN-G (GN and LN-G-
Position) when using different group number. The experi-
ments are conducted on CIFAR-10 dataset using ResNet-20-
Original without ReLU activation. We show (a) the training
accuracy and (b) the test accuracy.

Table V. Comparison of different normalization methods on CIFAR-10 using VGGs-NA (VGGs without ReLU activation).
Normalization methods Train Acc(%) Test Acc(%)

IN 9.76 10
BN 39.41 39.52
LN 51.51 51.06
GN 79.16 69.93

LN-G-Position 99.33 84.5

Results on original ResNet-20 Following the experimental setup shown in Section 5.3.1, We also conduct experiments
on the original ResNet-20-NA (with ReLU removed), where the group number g ranging in {2, 4, 8, 16}. The experimental
results of different normalization methods are shown in the Table VI. The results of different groups of GN and LN-G-
Position are shown in the Figure A6. We have also the similar observations as in the ResNet-20 shown in the main paper.

Table VI. Comparison of different normalization methods on CIFAR-10 using ResNet-20-original-NA (the ResNet-20 using original
configuration of channel numbers without ReLU activation).

Normalization methods Train Acc(%) Test Acc(%)
IN 10 10
BN 36.16 39.34
LN 61.12 58.69
GN 77.12 68.74

LN-G-Position 89.9 83.8

42

