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Abstract

In this paper, we take a step towards a deeper un-
derstanding of learning from human preferences
by systematically comparing the paradigm of rein-
forcement learning from human feedback (RLHF)
with the recently proposed paradigm of direct pref-
erence optimization (DPO). We focus our atten-
tion on the class of loglinear policy parametriza-
tion and linear reward functions. In order to com-
pare the two paradigms, we first derive minimax
statistical bounds on the suboptimality gap in-
duced by both RLHF and DPO, assuming access
to an oracle that exactly solves the optimization
problems. We provide a detailed discussion on the
relative comparison between the two paradigms,
simultaneously taking into account the sample
size, policy and reward class dimensions, and the
regularization temperature. Moreover, we extend
our analysis to the approximate optimization set-
ting and derive exponentially decaying conver-
gence rates for both RLHF and DPO. Next, we
analyze the setting where the ground-truth reward
is not realizable and find that, while RLHF in-
curs a constant additional error, DPO retains its
asymptotically decaying gap by just tuning the
temperature accordingly. Finally, we extend our
comparison to the Markov decision process set-
ting, where we generalize our results with exact
optimization. To the best of our knowledge, we
are the first to provide such a comparative analysis
for RLHF and DPO.
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1. Introduction
Learning from human preferences has grown more
prominent as we move closer to artificial general intel-
ligence. One of the most effective ways to learn from
preferences is through reinforcement learning from human
feedback (RLHF), which involves a two-step process of
reward learning and regularized policy optimization. The
attractiveness of this paradigm lies in its ability to model
the reward function based solely on preference data. This
makes it highly applicable in numerous practical situations
where rewards are not given a priori or are challenging
to define accurately. Once the reward is modeled, RLHF
solves a regularized value function maximization problem
to obtain a fine-tuned policy. This paradigm has enjoyed
a lot of applications varying from game-playing (Christiano
et al., 2017; Warnell et al., 2018; Knox & Stone, 2008;
MacGlashan et al., 2017), robotics (Shin et al., 2023;
Brown et al., 2019), and training large language models
(LLMs) (Ziegler et al., 2019; Nakano et al., 2021; Wu et al.,
2021; Ouyang et al., 2022; Stiennon et al., 2020; Glaese
et al., 2022; Ramamurthy et al., 2023; Menick et al., 2022;
Ganguli et al., 2022; Bai et al., 2022; Gao et al., 2023).

As an alternative to RLHF, Rafailov et al. (2023) have re-
cently proposed direct preference optimization (DPO), an
RL-free paradigm to learning from preferences. DPO cir-
cumvents the reward modeling phase and directly optimizes
the policy parameters based on the preference data. In cer-
tain LLM instances, DPO seems to be empirically superior
to RLHF, due to its simple optimization framework.

That said, a statistical analysis of the differences between
these paradigms is lacking. The sample complexity of
RLHF in various settings has already been studied (Zhu
et al., 2023; Zhan et al., 2023; Xiong et al., 2023), and there
have been some initial attempts at theoretically understand-
ing DPO and its variants (Azar et al., 2023). However, it is
unclear when one of the paradigms is better and when these
two paradigms are statistically comparable. Motivated by
this observation, we initiate a thorough discussion of the
theoretical comparison between RLHF and DPO. Specifi-
cally, the purpose of this paper is to address the following
research questions:
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Table 1: A presentation of the bounds on the suboptimality gap for RLHF and DPO. The first two rows present bounds under
the realizable reward assumption in the exact and approximate optimization frameworks; the last row presents the bounds
when the ground-truth reward function is not realizable. Here, πopt

r∗ denotes an optimal policy with respect to the ground-truth
reward function r∗, π∗

r∗ denotes an optimal regularized policy, and πθ∗ denotes an optimal loglinear regularized policy.
Moreover, β denotes the regularization temperature, DKL denotes the KL divergence, dR denotes the reward dimension, and
dP denotes the policy dimension. Finally, n denotes the sample size, t denotes the optimization steps for the approximate
setting, ϵapp denotes the reward mismatch coefficient and Θ̃ hides any log factors.

What are the statistical guarantees of RLHF relative to
those of DPO? What conditions benefit one as opposed to
the other?

As DPO does not learn a reward model, but directly opti-
mizes over the policy space, a dependence on the policy
dimensionality dP is expected. On the other hand, RLHF’s
performance evidently implies some dependence on reward
dimensionality dR due to its reward learning phase. Does
this imply a discrepancy in the statistical bounds of these
paradigms when the reward and policy dimensions are dif-
ferent? Moreover, what can be said about the dependency
of the bounds on the sample size n or the regularization
temperature β?

We address these questions in the following setting: finite
spaces, Bradley-Terry preference model, linear rewards and
loglinear policies. We first study the exact optimization
setting and derive bounds on both RLHF and DPO. Then,
we proceed to derive fast convergence rates for a modified
version of the policy gradient for RLHF, and gradient de-
scent for DPO. Next, we discuss some implications of our
bounds when the reward function is not fully realizable. We
close our paper by extending our comparative analysis to
deterministic Markov decision processes. Our contributions
are summarized below; see Table 1 for explicit bounds.

• First, we derive minimax bounds on the suboptimal-
ity gap induced by RLHF and DPO in the exact opti-
mization setting by leveraging smoothness and strong
convexity properties. We show that when the optimal
regularized policy is loglinear and the reward func-
tion is linear, RLHF is Θ̃(

√
dR/n)-close to its objec-

tive, while DPO is Θ̃(dP /(βn))-close. These results
emphasize the comparison of the two paradigms in
terms of the reward and policy dimensions when set-
ting β = Θ(

√
dP /n) for DPO.

• Furthermore, we study the convergence rates of a ver-
sion of the natural policy gradient for RLHF and gradi-
ent descent for DPO. Motivated by recent fast conver-
gence results for entropy regularized RL with tabular
softmax policies, we derive O (e−t/β) convergence
rates in t iterations for a version of the natural policy
gradient for RLHF. Moreover, for gradient descent we
are able to show O ((1/β)(1− β/n)t) convergence
rates by using the fact that the DPO loss function sat-
isfies the PL condition (Karimi et al., 2016). These
results replicate the implications from the exact opti-
mization setting on the difference in terms of reward
and policy dimensions.

• We also consider the case where the ground-truth
reward function is not realizable and its best linear fit
is ϵapp-close to it. We show that, while RLHF incurs
an additional constant term on the suboptimality gap,
DPO’s dependence on the additional term can be
controlled by setting the regularization temperature
accordingly.

• Finally, we extend our comparison to deterministic
Markov decision processes by proposing a new
formulation of the DPO objective for this setting and
then generalizing our results. The main motivation
for this extension is that, arguably, the difference in
reward and policy dimensions in this setting is higher.

2. Related Work
Learning from pairwise comparisons. In the context of
RL, the problem of learning from pairwise comparisons has
been studied thoroughly in the bandit setting, where the
problem is known as the dueling bandit problem (Yue et al.,
2009; Faury et al., 2020; Ailon et al., 2014; Gajane et al.,
2015; Komiyama et al., 2015; Zoghi et al., 2014; Saha &
Gopalan, 2019; Saha & Krishnamurthy, 2022). For the case
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of dueling RL for linear MDPs, Saha et al. (2023) propose an
algorithm that satisfies tight regret guarantees, while Chen
et al. (2022) extend this formulation to the MDPs with gen-
eral function approximation. Finally, Chatterji et al. (2021)
consider a more general setting in which the trajectory-based
feedback is generated from a generalized linear model, and
they propose variants of optimistic algorithms for online RL.

In this paper, we consider the offline setting, where Zhu
et al. (2023) and Zhan et al. (2023) have already provided
statistical bounds on pessimistic RLHF for direct value max-
imization. Our focus, however, is on the regularized value
maximization problem. While pessimism mitigates poor
coverage for the setting considered by Zhu et al. (2023) and
Zhan et al. (2023), for regularized RLHF and, as a conse-
quence, for DPO, this issue remains and is captured by the
coverage coefficients which we define with respect to both
reward and policy features. The aim of this paper, however,
is not to mitigate these issues, but to thoroughly analyse the
statistical guarantees of the existing prominent paradigms
of learning from human preferences and derive insightful
results that shed light on their relative performances.

Direct preference optimization. In recent works, the RL-
free fine-tuning paradigm of direct preference optimization
(DPO) has gained popularity (Rafailov et al., 2023; An et al.,
2023; Azar et al., 2023; Wang et al., 2023). Its original
formulation was proposed for the contextual bandit setting.
Hejna et al. (2023) propose an extension of DPO to MDPs
under the assumption that the preferences depend on the
advantage function of the optimal policy. While we also
provide an extension of the DPO formulation for MDPs in
Section 7, our primary focus is on a comparative analysis
between the two paradigms in the contextual bandit setting.

Offline RL. In recent years, there has been a significant
surge in interest towards offline RL, with an extensive litera-
ture both in the empirical front (Jaques et al., 2019; Laroche
et al., 2019; Fujimoto et al., 2019; Kumar et al., 2020; Agar-
wal et al., 2020; Kidambi et al., 2020) and the theoretical
one (Jin et al., 2021; Xie et al., 2021; Rashidinejad et al.,
2021; Uehara & Sun, 2021; Zanette et al., 2021). While the
focus of this line of work is on the traditional reward-based
offline RL, our problem is derived from a combination of
reward-learning from pairwise feedback and KL-regularized
offline RL based on it.

3. Formal Setting
This section presents the background material that will be
used throughout the paper. We will use a notation similar to
(Rafailov et al., 2023) and (Azar et al., 2023).

Notation. Let ⟨u, v⟩ = u⊤v denote the inner product
between vectors u and v. The trace of a matrix A is denoted
by tr(A) and its pseudo-inverse by A†. Moreover, ∆(X )
denotes the set of distributions over the finite set X and
∥v∥M =

√
v⊤Mv denotes the seminorm of vector v with

respect to M . Finally, projA(v) denotes the projection of
vector v onto set A and Θ̃(·) hides any log factors.

3.1. Preliminaries

Let X be a finite set of contexts with cardinality X and Y
be a finite set of actions with cardinality Y . Fix ρ ∈ ∆(X )
as an initial distribution over contexts and let r : X × Y →
[0, 1] be a reward function. We consider a class of linear
reward functions defined below.

Definition 3.1 (Linear reward function class). Let
ϕ be a dR-dimensional feature mapping with
maxx,y ∥ϕ(x, y)∥2 ≤ 1 and let F > 0. We consider
the following class of linear reward functions:

F =
{
rω ∈ [0, 1]XY : rω(x, y) = ω⊤ϕ(x, y),

∀(x, y) ∈ X × Y where ω ∈ RdR and ∥ω∥2 ≤ F
}
.

Given x ∈ X , a policy π(·|x) ∈ ∆(Y) is a distribution
over actions. Throughout the paper, we will consider the
loglinear class of policies, defined as follows.

Definition 3.2 (Loglinear policy class). Let ψ be a dP -
dimensional feature mapping with maxx,y ∥ψ(x, y)∥2 ≤ 1
and let B > 0. We consider the following class of loglinear
policies:

Π =
{
πθ : πθ(y|x) =

exp(θ⊤ψ(x, y))∑
y′∈Y exp(θ⊤ψ(x, y′))

,

∀(x, y) ∈ X × Y where θ ∈ RdP and ∥θ∥2 ≤ B
}
.

Given policy π, the value function of π with respect to
reward function r and context distribution ρ is defined as

V π
r (ρ) =

∑
x

ρ(x)
∑
y

π(y|x)r(x, y).

3.2. Offline Learning from Human Preferences

Let µ be a reference policy fixed throughout the paper, and
β > 0 be a regularization parameter. Let us define the
KL-regularized objective as

Vπ
r (ρ) = V π

r (ρ)− βDKL (π||µ) ,

where DKL (π||µ) =
∑

x ρ(x)
∑

y π(y|x) log
π(y|x)
µ(y|x) .

We assume access to the dataset Dn = {(xi, ywi , yli)}ni=1,
where ywi denotes the preferred action over yli. In this paper,
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we will assume that the distribution of human preferences
follows the Bradley-Terry (BT) model (Bradley & Terry,
1952), which we formally state below.
Definition 3.3 (Bradley-Terry preference model). There
exists a latent reward function r∗ and a probability law P ∗

such that, for every tuple (x, yw, yl), we have

P ∗(yw ≻ yl|x) = exp (r∗(x, yw))

exp (r∗(x, yw)) + exp (r∗(x, yl))
,

where yw ≻ yl denotes yw being preferred over yl.

The latent reward function r∗ will be fixed throughout the
paper as the ground-truth reward function.

3.3. Reinforcement Learning from Human Feedback

We consider the reinforcement learning from human feed-
back (RLHF) paradigm as formulated in (Ziegler et al.,
2019). Having access to preference dataset Dn and a fixed
reference policy µ, RLHF proceeds in two phases: the re-
ward learning phase and the final KL-regularized reinforce-
ment learning phase.

For the reward learning phase, RLHF estimates r∗ by apply-
ing maximum likelihood estimation (MLE) to the dataset
Dn. The MLE optimization problem can be written as

min
r

Lr
RLHF(Dn) := −E(x,yw,yl)∼Dn[

log
(
σ
(
r(xw, yw)− r(xl, yl)

))]
, (P1.1)

where σ(z) = 1/(1 + exp(−z)) denotes the sigmoid func-
tion. Let r̂ denote the solution of Problem (P1.1).

The final phase of RLHF consists of maximizing the KL-
regularized objective with respect to r̂ by solving

max
π

Vπ
r̂ (Dn) := E x∼Dn

y∼π(·|x)

[
r̂(x, y)− β log

π(y|x)
µ(y|x)

]
.

(P1.2)

3.4. Direct Preference Optimization

Recently, alternative paradigms to RLHF have been studied.
In particular, Rafailov et al. (2023) introduced direct prefer-
ence optimization (DPO), a new fine-tuning paradigm that
directly optimizes the policy parameters instead of going
through the reward modeling phase. Their key observation is
that the latent reward can be expressed in terms of its optimal
policy and the reference policy. This yields a loss function
that is directly defined in terms of the preference data.

Formally, Rafailov et al. (2023) show that there exists a
policy π that maximizes the KL-regularized objective, for
which we have

r∗(x, y) = β log
π(y|x)
µ(y|x)

+ β logZ(x) (1)

for every (x, y), where Z(x) denotes the partition func-
tion

∑
y µ(y|x) exp(r∗(x, y)/β). A new objective is then

derived, which directly depends on the policy. Given pref-
erence dataset Dn, this objective leads to the following
optimization problem:

min
π

Lπ
DPO(Dn) := −E(x,yw,yl)∼Dn[

log

(
σ
(
β log

π(yw|x)
µ(yw|x))

− β log
π(yl|x)
µ(yl|x))

))]
. (P2)

As it turns out, this elegant approach yields practical ben-
efits. However, it is unclear whether these benefits can
be theoretically justified. In this paper, we will provide a
comparative analysis of both RLHF and DPO in different
settings. Next, we define a unified metric of performance to
compare these paradigms.

3.5. Performance Metric

Given a reward function r, let πopt
r ∈ argmaxπ V

π
r (ρ) de-

note an optimal policy for V π
r (ρ) and V opt

r (ρ) the optimal
value. For a given policy π, we define the suboptimality gap
of π as

G(π) = V opt
r∗ (ρ)− V π

r∗(ρ) .

G(π) captures how well a policy is performing w.r.t. the
ground-truth reward function r∗. In this paper, we will use
the suboptimality gap G as our unified measure of perfor-
mance when comparing the two paradigms.

We note that RLHF and DPO are designed to minimize reg-
ularlized objectives V instead of optimizing the value func-
tion V (see Sections 3.3 and 3.4). In order to rigorously ana-
lyze the differences between RLHF and DPO, we need to es-
tablish some additional notation. Let π∗

r ∈ argmaxπ Vπ
r (ρ)

denote a regularized optimal policy with respect to r and
V∗
r (ρ) denote the optimal regularized value. Analogous to
G, we define the regularized suboptimality gap of π as

G(π) = V∗
r∗(ρ)− Vπ

r∗(ρ) =

(V
π∗
r∗

r∗ (ρ)− V π
r∗(ρ))− β(DKL(π

∗
r∗ ||µ)−DKL(π||µ)) .

As RLHF and DPO are designed to minimize G(π), both
will incur an additional term on their bounds when compar-
ing their bounds w.r.t. G(π). For this reason, we will for-
mally define this discrepancy term as D(π) = G(π)−G(π)
and discuss it further in Section 4. Next, we proceed to
provide a comparative analysis for these paradigms, starting
with the exact optimization setting when the ground-truth
reward is realizable. We note that any log terms are omitted
for clarity of presentation. All proofs and related discussions
can be found in the Appendix.
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4. Realizable Rewards: Exact Optimization
In this section, we analyze the statistical differences in per-
formance between RLHF and DPO in the exact optimization
setting. We assume throughout the section that the ground-
truth reward function is linear and realizable, i.e. r∗ ∈ F .
Moreover, we assume a loglinear regularized optimal policy
exists, i.e. π∗

r∗ ∈ Π. Note that, for linear reward function,
Lr

RLHF(Dn) can be equivalently written as

−E(x,yw,yl)∼Dn

[
log σ

(
ω⊤ (ϕ(x, yw)− ϕ(x, yl)

)) ]
.

(2)

Moreover, for loglinear policies, Lπ
DPO(Dn) can be equiva-

lently written as

−E(x,yw,yl)∼Dn
(3)[

log
(
σ
(
βθ⊤

(
ψ(x, yw)− ψ(x, yl)

)
− J(x, yw, yl)

)) ]
,

where J(x, yw, yl) = log(µ(yw|x)/µ(yl|x)).

We will denote the losses for the RLHF reward learning
phase and DPO as Lω

RLHF(Dn) and Lθ
DPO(Dn), respectively.

Let rω̂ denote the reward estimate and let πθ̂ denote the
policy learned by RLHF. Moreover, let πθ̃ denote the pol-
icy learned by DPO. Formally, we assume that RLHF
has access to an oracle that exactly solves both optimiza-
tion problems and returns rω̂ ∈ argminLω

RLHF (Dn) and
πθ̂ ∈ argmaxθ Vπθ

rω̂
(Dn). Similarly, for DPO we assume

that the oracle returns πθ̃ ∈ argminθ Lθ
DPO(Dn).

4.1. Theoretical Results

Before stating our main results of this section, we will need
to define the covering numbers with respect to Dn. Let
the sample covariance matrix with respect to the reward
features be defined as

ΣDn,R =
1

n

∑
(x,yw,yl)∈Dn

ϕ(x, yw, yl)ϕ(x, yw, yl)⊤ ,

where ϕ(x, yw, yl) =
(
ϕ(x, yw)− ϕ(x, yl)

)
, for ev-

ery (x, yw, yl) ∈ Dn. Fix λ > 0 and let ΛR =∥∥(ΣDn,R + λI)−1/2
∥∥
2

be the reward covering number.

Similarly, let the sample covariance matrix of the policy
features be defined as

ΣDn,P =
1

n

∑
(x,yw,yl)∈Dn

ψ(x, yw, yl)ψ(x, yw, yl)⊤ ,

where ψ(x, yw, yl) =
(
ψ (x, yw)− ψ

(
x, yl

))
, for every

(x, yw, yl) ∈ Dn. The policy covering number of Dn is
ΛP =

∥∥∥(ΣDn,P + λI)
−1/2

∥∥∥
2
. Our bounds will depend on

these quantities. We will start with minimax bounds on the
suboptimality for RLHF in the above-mentioned setting.

Theorem 4.1. Let δ > 0. Assume that r∗ ∈ F . Then, with
probability at least 1− δ, the suboptimality gap incurred by
RLHF is

G
(
πθ̂
)
= Θ

(
ΛR

√
dR + log(6/δ)

S2
Rn

+ λF 2

)
+D

(
πθ̂
)
,

where SR = 1/ (2 + exp (−2F ) + exp (2F )).

Proof sketch. The proof follows from splitting the gap into
sub-gaps which we can bound directly, and results from
(Zhu et al., 2023).

Next, we will consider the suboptimality gap induced by
DPO. First, note that Equation (3) for loglinear policies es-
sentially becomes a logistic regression problem in dP + 1
dimensions, by adding a dummy variable to θ that corre-
sponds to J(x, yw, yl). Our goal is to use loglinearity to de-
rive smoothness properties for logistic regression so that we
can obtain minimax bounds – without this assumption on the
policy class, Lθ

DPO(Dn) may not satisfy these properties.1

Moreover, note that Equation (1) relates r∗ to one of the
regularized optimal policies π∗

r∗ . Obviously, this does
imply that π∗

r∗ is loglinear. Nevertheless, the following
lemma states that that is the case for linear rewards. Let
Φ ∈ RdR×XY = [ϕ(x, y)](x,y)∈X×Y and Ψ ∈ RdP×XY =
[ψ(x, y)](x,y)∈X×Y denote the reward feature and policy
feature matrices, respectively.

Lemma 4.1. Assume that r∗ ∈ F and µ ∈ Π. Fur-
thermore, assume that the column space of Φ is a sub-
space of the column space of Ψ. Then, there exists
θ∗ ∈ Θ, such that πθ∗ ∈ argmaxπ Vπ

r∗(ρ) and r∗(x, y) =
β log(πθ∗(y|x)/µ(y|x)) + β logZ(x).

With these observations in place, we are now ready to state
the minimax bounds on the suboptimality for DPO.

Theorem 4.2. Let δ > 0 and β > 0. Assume that r∗ ∈ F ,
µ ∈ Π, and that the condition of Lemma 4.1 is satisfied.
Let n ≥ O

(
tr(Σ†

Dn,P
)/(βB2)

)
. Then, with probability at

least 1− δ, the suboptimality gap of DPO is

G
(
πθ̃
)
= D

(
πθ̃
)
+Θ

(
ΛP (dP + 1)

βn
+ βλΛPB

2

)
.

Proof sketch. We start by splitting the suboptimality gap and
focus on the G(πθ̃) term. Here, we utilize the expression
for the ground-truth reward as r∗(x, y) = β log πθ∗(y|x)−
β logµ(y|x) + Zθ̃(x), where Zθ̃(x) denotes the partition
function with respect to πθ̃. Then, using the fact that the poli-
cies are loglinear we further expand and reduce the whole

1Lemma J.6 shows this loss is not smooth for tabular settings.
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gap in terms of the log differences. Next, we utilize the
smoothness and Lipschitzness of the log-sum-exp function
to finally obtain the upper bounds. For the lower bound, we
construct an example where the policy feature matrix Ψ is
full rank, and show that the log-sum-exp function becomes
strongly convex. This finally leads to the stated bounds.

Before discussing the implications of our results, let us say
a few words on the regularization gap D(π) for RLHF and
DPO. Let πθ∗ denote an optimal loglinear regularized policy.
A characterization of D(π) is given as follows.

Lemma 4.2. For any θ, we have that βDKL (πθ∗ ||µ) −
βDKL (πθ||µ) ≤ D(πθ) and D(πθ) ≤ βDKL

(
πopt
r∗ ||µ

)
−

βDKL (πθ||µ).

Furthermore, for DPO, this quantity can be upper bounded
in terms of πopt

r∗ and πθ∗ as follows.

Lemma 4.3. Given δ > 0, with probability at least 1 −
δ, we have D(πθ̃) ≤ βDKL

(
πopt
r∗ ||µ

)
− βDKL (πθ∗ ||µ) +

Õ
(
dP /n

3/2
)

.

In general, it is known that the KL divergence may not be
upper-bounded. However, assuming that optimal policy
πopt
r∗ , optimal regularized policy πθ∗ , and sampling policy
µ are not far away from each other, then these DKL(·)
quantities would not be too large.

4.2. Comparative Analysis

In this section, we will provide some insights into the impli-
cations of our theoretical results. For the purpose of this sec-
tion, we will focus our attention on the problem-dependent
parameters and ignore the quantity D(π).

The role of dimensionality. Note that RLHF has Θ̃(
√
dR)

dependence on the reward dimension, while DPO has Θ(dP )
dependence on the policy dimension. When dR = dP and
the sample size is small, RLHF seems to statistically outper-
form DPO. Any setting where dR ≪ dP makes this differ-
ence more apparent. In Section 7, we will discuss an exten-
sion of our analysis to a setting where the reward dimension
can be much smaller than the policy dimension in practice.

The role of sample size. Next, we take into consideration
the sample size. Note that DPO’s bounds depend on n being
large enough (cf. Theorem 4.2). Assume everything else
constant and d = dR = dP . If the D(π) terms are simi-
lar for both paradigms, then, for large sample sizes such
that n ≫ d, DPO seems to outperform RLHF asymptoti-
cally. Whenever n < d (which is usually the case for large
language models), RLHF has a smaller suboptimality gap.

The role of β. Finally, we discuss the role of the tempera-
ture β on the bounds. First, note that RLHF can effectively
set β = 0 to annihilate the effect that D(π) has on its
bounds. On the other hand, DPO cannot set β to 0 due to a

disproportional dependence of its bounds on it. Thus, the
optimal choice of β for DPO is β = Θ(

√
dP /n), yield-

ing Θ(
√
dP /n) bounds and matching the order of n in the

bounds of RLHF. For such a value of β, the same implica-
tions hold – the main difference between both settings is
in terms of the differences between the reward and policy
parameter dimensions.

5. Realizable Rewards: Approximate
Optimization

In this section, we shift our focus to the approximate setting,
where access to oracles is not given. Here, both paradigms
have to approximately solve their estimation problems based
on the given data. Similar to the previous section, we as-
sume throughout this section that the ground-truth reward
function r∗ is linear and realizable in F , and that there ex-
ists a loglinear regularized policy π∗

r∗ ∈ Π. Moreover, we
assume that, for every data tuple (x, yw, yl) ∈ Dn, we have
ϕ(x, yw) ̸= ϕ(x, yl) and ψ(x, yw) ̸= ψ(x, yl).

5.1. Theoretical Results

Let us start with the reward learning phase. Recall the
definition of the loss Lω

RLHF(Dn) for MLE, as defined in
Section 4. Let ω0 be initialized randomly, and let

ωt+1 = proj
ω:∥ω∥2≤F

(ωt − η∇ωLω
RLHF(Dn)) , (4)

for any iterate t ≥ 0, where η denotes the learning rate. Let
ω∗
Dn

∈ argmaxLω
RLHF(Dn). The first result of this section

provides fast convergence rates of gradient descent for the
reward learning phase of RLHF.

Theorem 5.1. For every t ≥ 0, the gradient descent proce-
dure (4) with learning rate η = 1/ exp(2F ) satisfies

∥∥ωt − ω∗
Dn

∥∥2
ΣDn,R

≤ O

(
1− 1

n

)t

.

Proof sketch. We begin by showing Lipschitzness and
smoothness of Lω

RLHF(Dn) with respect to ω. Then, we
show that the PL condition (Karimi et al., 2016) is enough
to guarantee fast convergence of projected gradient descent
by showing that such a condition implies that Lω

RLHF(Dn)
also satisfies the proximal PL condition (Karimi et al., 2016)
when its domain is restricted to a ball. The result follows by
applying the convexity of Lω

RLHF(Dn).

Next, we discuss the policy optimization phase of RLHF.
Let rω̂ denote the reward estimated from the previous phase.
Initialize θ0 ∈ RdP with ∥θ0∥2 ≤ B. For any t ≥ 0, let

θt+1 = θt + η′
(
ΨnΨ

⊤
n

)† ∇θVπθ
rω̂

(Dn) , (5)
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where η′ > 0 is the learning rate and Ψn =
[ψ(x, y)]x∈Dn,y∈Y denotes the sample feature matrix.2

Then, the following result holds.
Theorem 5.2. Let δ > 0. Assume that Ψn has full column
rank. Then, with probability at least 1− δ, for every t ≥ 1,
update rule (5) with learning rate η′ ≤ n/β satisfies

V∗
rω̂

(Dn)− Vπθt
rω̂ (Dn) ≤ O

(
1

β
exp (−(t− 1))

)
.

Proof sketch. After deriving a naive gradient update rule in
matrix notation, we examine the conditions needed to obtain
fast convergence rates for our setting. As a consequence,
we design our gradient update which resembles natural
policy gradient for loglinear policies – the matrix (ΨnΨ

⊤
n )

†

captures the gradient information for this case. Then, we
use similar techniques to those in (Mei et al., 2020) and
use the fact that Ψn is full rank, to finally obtain the desired
bounds.
Remark 5.1. It is important to emphasize that the assump-
tion on Ψn is not restrictive. Indeed, given a preference
dataset, it is always possible to construct alternative feature
representations that satisfy the assumption with respect to
the given data (e.g. different LLMs use different encoding
methods while being fine-tuned using the same data).
Remark 5.2. Before going to our next result, it is important
to clarify the double usage of Dn for both the reward
learning and policy optimization phases. Our theoretical
guarantees are based on the data being independently
generated in these phases. Thus, the standard approach is to
split the data into two batches for both purposes. Note that
both batches would still be O(n) in size and the dependence
of the results on n would not change. We use the same Dn

for both phases for simplicity of presentation.

Next, we provide convergence results of gradient descent
for DPO with loglinear policies. Let θ0 be initialized
randomly, and let

θt+1 = proj
θ:∥θ∥≤B

(
θt − η′′∇θLθ

DPO(Dn)
)
, (6)

for any iterate t ≥ 0, where η′′ denotes the learning
rate. Let θ∗Dn

∈ argmaxLθ
DPO(Dn). Then, we have the

following result.
Theorem 5.3. For every t ≥ 0, the gradient descent proce-
dure (6) with learning rate η′′ = O

(
1/β2

)
satisfies

∥∥θt − θ∗Dn

∥∥2
ΣDn,P

≤ O

(
1

β

(
1− β

n

)t
)
.

We have omitted the dependence on the absolute constants
that are irrelevant to our discussion – see Appendix F for
a detailed expression of the hidden constants.

2We only need ∥θ0∥2 ≤ B for RLHF, since its bounds do not
depend on ∥θt∥, for t ≥ 1. Thus, we do not need projection.

5.2. Comparative Analysis

The regularized suboptimality gap for RLHF is

G(πθ̂) ≤ Θ

(√
dR
n

)
+O

((
1− 1

n

)t

+
exp(−t)

β

)
and the regularized suboptimality gap for DPO is

G
(
πθ̃
)
≤ Θ

(
dP
βn

)
+O

(
1

β

(
1− β

n

)t
)
.

Both of these paradigms satisfy exponential convergence
rates, thus, the main implications of the discussion of Sec-
tion 4.2 hold in this setting as well if β is to be set as constant.
If β is to be tuned for DPO, it cannot be made arbitrarily
small or large as observed in Section 4.2 – DPO’s overall
bounds disproportionately depend on the parameter β. Even
so, setting β to its optimal value of Θ(1/

√
n) for the exact

optimization setting would not affect the convergence rate
of gradient descent for DPO.

6. Non-realizable Rewards: Exact
Optimization

In this section, we consider the case when the ground-truth
reward function r∗ does not belong to the linear class F
(see Definition 3.1). We again assume that there exists an
optimal π∗

r∗ regularized policy that belongs to the loglinear
class Π (see Definition 3.2) for some θ∗. We will capture
the mismatch between the reward function and its best linear
approximation in F by the following condition.
Assumption 6.1 (Non-realizability of the ground-truth re-
ward). There exists rω∗ ∈ F with parameter ω∗ such that
∥r∗ − rω∗∥∞ ≤ ϵapp, where ϵapp > 0 denotes the mismatch
coefficient.

As we will see, the mismatch coefficient will appear linearly
in the RLHF bounds on the gap as an additional constant
that cannot be improved by increasing the data size.

6.1. Theoretical Results

We begin with the RLHF result, which can be derived from
Theorem 4.1.
Theorem 6.1. Let δ > 0. Suppose that Assumption 6.1
holds. Then, with probability at least 1 − δ, we have
G
(
πθ̂
)
≤ D

(
πθ̂
)
+ Θ̃

(
ΛR

√
dR/n

)
+ 2ϵapp.

We can directly obtain a similar dependence on ϵapp for DPO.
In addition to that, we can also obtain alternative bounds
that can be controlled by β as follows.
Theorem 6.2. Let δ > 0. Suppose that Assumption 6.1 and
the condition of Lemma 4.1 hold. Then, with probability at
least 1−δ, we haveG

(
πθ̃
)
≤ D

(
πθ̃
)
+Θ(ΛP dP /(βn))+

min{2ϵapp, O (βDKL (πθ∗ ||π∗))} .
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6.2. Comparative Analysis

The key observation to be made in this section is the
discrepancy of the bounds in terms of the reward mismatch
coefficient. RLHF does not use MLE for the policy
parameter estimation, but first learns a reward model.
Thus, it cannot bypass the error coming from the reward
unrealizability. For DPO, note that, if we set β = O(1/

√
n),

its bounds improves asymptotically with n, assuming that
DKL(πθ∗ ||π∗

r∗) is bounded (recall that π∗
r∗ denotes the

optimal regularized policy and πθ∗ denotes its best loglinear
fit). This setting benefits DPO as it is designed to bypass the
reward function and directly optimize over the policy space.

7. Realizable Rewards: Exact Optimization –
An Extension to Deterministic MDPs

Up to this point, our discussion was concentrated on the con-
textual bandit setting, which has been used in the DPO liter-
ature for the KL-regularized problem (Rafailov et al., 2023).
Now, we focus on a generalization of our comparative anal-
ysis to Markov decision processes (MDPs), where contexts
are related to each other through transition dynamics.

As mentioned previously, the discrepancy between reward
and policy dimensions plays a crucial role in the relative
performances of RLHF and DPO. While these dimensions
could arguably be similar (or have a small gap) for the con-
textual bandit setting, that is not necessarily the case in
general when extending to MDPs, where the reward dimen-
sion can be smaller than the policy dimension. For this
section, we assume that the ground-truth reward function r∗

is linear and realizable in F .

7.1. Preliminaries for Deterministic MDPs

For an MDP, X is the set of states and Y the set of actions.
In particular, we consider deterministic MDPs, with a
transition function T : X × Y → X that provides the next
state, given the current state-action.

The value function in infinite-horizon MDPs is given
as V π

r (x) = E[
∑

t≥0 γ
tr(xt, yt)|ρ, π], where ρ denotes

the initial state distribution. Given policy π, the oc-
cupancy measure of π is given by dπρ (x, y) = (1 −
γ)
∑

t≥0 γ
tP (xt = x, yt = y|ρ, π). We will consider the

class of loglinear occupancy measures, as defined next.

Definition 7.1 (Loglinear occupancy measures class). Let
ψ′(x, y) ∈ RdM denote the feature vector of the pair (x, y)
with maxx,y ∥ψ′(x, y)∥2 ≤ 1, and B′ > 0. We consider
the following class of loglinear occupancy measures:

Π′ =
{
dθρ : dθρ(x, y) =

exp(θ⊤ψ′(x, y))∑
x′,y′ exp(θ⊤ψ′(x′, y′))

,

∀(x, y) ∈ X × Y where θ ∈ RdM and ∥θ∥2 ≤ B′
}
.

In this section, we use the Vdρ
r (ρ) notation, instead of Vπ

r (ρ).
Similarly, we use G(dρ) to denote the gap in terms of occu-
pancy measure dρ, and D(dρ) for the difference of the gaps.
For a complete discussion, see Appendix H.

In this setting, we are given a dataset Dn =
{(x0,i, τwi , τ li )}ni=1, where x0,i denotes the initial state
of the ith sample and τwi denotes the preferred trajectory
(x0,i, y

w
0,i, x

w
1,i, . . .) over τ li . Analogous to Section 3, we de-

fine the Bradley-Terry preference model for two trajectories
τw and τ l as P ∗(τw ≻ τ l|x0) = σ(R∗(τw) − R∗(τ l)),
where R∗(τ) =

∑
t≥0 γ

tr∗(xt, yt) is the discounted return,
and τw ≻ τ l denotes τw being preferred over τ l.

7.2. RLHF and DPO for MDPs

Similar to the contextual bandit setting, the objective for
the reward learning phase of RLHF in MDPs with linear
rewards can be written as follows:

min
ω

Lω
RLHF(Dn) := −E(x0,τw,τ l)∼Dn

(P3.1)log σ
ω⊤

∑
t≥0

γt
(
ϕ(xwt , y

w
t )− ϕ(xlt, y

l
t)
) .

Once we have the estimated reward function rω̂, the ob-
jective is to solve the KL-regularized problem. Following
previous literature on KL-regularized RL (Nachum et al.,
2019; Lee et al., 2021), we formulate the objective in this
setting as

max
π

V π
rω̂
(ρ)− βDKL

(
dπρ ||dµρ

)
. (P3.2)

We will assume throughout this section that we are given ac-
cess to oracles that exactly solve Problem (P3.1) and (P3.2).
Remark 7.2. Note that the objective in Problem (P3.2) de-
pends on ρ, while the objective in Problem (P1.2) depends
on Dn. This is due to considering occupancy measures in-
stead of policies. We keep our current formulation for ease
of presentation and leave its extension to a sample objective
formulation for future work.

For the purposes of our comparative analysis, we also need
an extension of DPO to MDPs, based on the preference
model of Section 7.1. The key difficulty of extending DPO
to the MDP setting is that the gradient has a non-linear de-
pendence on the policy. To bypass this issue, we leverage the
fact that transitions are deterministic to simplify cumulative
differences of the optimal Lagrange multipliers for Problem
(P3.2), and obtain the following loss function for DPO:

Ldρ

DPO(Dn) = −E(x0,τw,τ l)∼Dn

[

log σ

(
β

∞∑
t=0

γt
(
log

dρ(x
w
t , y

w
t )

dµρ (xwt , y
w
t )

− log
dρ(x

l
t, y

l
t)

dµρ (xlt, y
l
t)

))]
.
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All derivations are in Appendix H. Next, we generalize the
bounds from Section 4 for the above formulations.

7.3. Theoretical Results

Analogous to the previous sections, let us define

Σ′
Dn,R =

1

n

∑
(x0,τw,τ l)∈Dn

ϕ
′
(x0, τ

w, τ l)ϕ
′
(x0, τ

w, τ l)⊤ ,

where ϕ
′
(x0, τ

w, τ l) =
∑

t≥0 γ
t(ϕ(xt, y

w
t ) − ϕ(xt, y

l
t)).

For λ > 0, define Λ′
R =

∥∥(Σ′
Dn,R

+ λI)−1/2
∥∥
2
. Similarly,

let the sample covariance matrix with respect to occupancy
measure features be defined as

Σ′
Dn,M =

1

n

∑
(x0,τw,τ l)∈Dn

ψ
′
(x0, τ

w, τ l)ψ
′
(x0, τ

w, τ l)⊤ ,

where ψ
′
(x0, τ

w, τ l) =
∑

t≥0 γ
t((ψ′(xt, y

w
t )−ψ′(xt, y

l
t)).

Let Λ′
M =

∥∥(Σ′
Dn,M

+ λI)−1/2
∥∥
2
. For RLHF with exact

optimization, it is straightforward to extend our previous
bounds as follows.

Theorem 7.1. Let δ > 0. Assume that the policy learn-

ing phase yields θ̂ ∈ argmaxθ V
dθ
ρ

rω̂ (ρ), where rω̂ is the
estimated reward. Then, with probability at least 1 − δ,
the suboptimality gap incurred by RLHF is G(dθ̂ρ) =

D(dθ̂ρ) + Θ̃(Λ′
R

√
dR/n) .

Now that we have a formulation for DPO, we can also ex-
tend the previous bounds for the MDP setting. Similar to
Lemma 4.1, we now state an analogous result for this setting
that guarantees the expression of the ground-truth reward in
terms of optimal loglinear occupancy measures. Recall that
Φ and Ψ denote the reward and policy feature matrices, re-
spectively. Let π∗

r∗ ∈ argmaxπ Vπ
r∗(ρ). Define Φπ∗

r∗
to be

the dR ×XY -dimensional matrix with columns defined as
γE[
∑

t γ
tϕ(xt, yt)|x0 = x, π∗

r∗ ]−E[
∑

t γ
tϕ(xt, yt)|x0 =

x, y0 = y, π∗
r∗ ]. We have the following result.

Lemma 7.3. Assume that r∗ ∈ F , dµρ ∈ Π′ and dπ
∗
r∗

ρ ∈ Π′,

for some optimal dπ
∗
r∗

ρ . Furthermore, assume that the col-
umn space of Φ + Φπ∗

r∗
is contained in the column space

of Ψ. Then, for finite MDPs with deterministic transi-
tions, there exists θ∗ such that dθ

∗

ρ ∈ argmaxd Vd
r∗(ρ)

and dθ
∗

ρ (x, y) ∝ dµρ (x, y) exp(A
π∗
r∗

r∗ (x, y)/β), where

A
π∗
r∗

r∗ (x, y) = Q
π∗
r∗

r∗ (x, y)− V
π∗
r∗

r∗ (x).

Now we are ready to state the DPO result for this section.

Theorem 7.2. Let δ > 0. Let dθ̃ρ denote the occupancy
measure returned by DPO and assume that dπ

∗

ρ ∈ Π′,

for some dπ
∗

ρ ∈ argmaxdρ
Vdρ

r∗ (ρ), and that the con-
dition of Lemma 7.3 is satisfied. Then, for any n ≥
O
(
tr((Σ′

Dn,M
)†)/(β(B′)2)

)
, with probability at least 1−

δ, we have G(dθ̃ρ) = D(dθ̃ρ) + Θ(Λ′
M (dM + 1)/(βn) +

βΛMλ(B
′)2) .

Proof sketch. We start by expressing the optimal discounted
reward in terms of an optimal occupancy measure, which is
also loginear, by using Lemma 7.3. Then, we equivalently
express the value function in terms of occupancy measures.
This allows us to cancel out some terms and express the
whole gap in terms of the DKL(d

θ̃
ρ||dθ

∗

ρ ). Finally, similar to
the proof of Theorem 4.2, using loglinearity and properties
of the log-sum-exp function, we obtain the desired bounds.

7.4. Comparative Analysis

The main implication of the above results is that the obser-
vations made in Section 4 extend to deterministic MDPs,
using our proposed formulation of RLHF and DPO. For
the optimal value of β for DPO as discussed in Section 4.2,
the RLHF and DPO bounds become directly comparable in
terms of the dimension differences for deterministic MDPs.
In MDPs with simple reward models (e.g., low-dimensional
linear reward models), typically there is still a necessity for
high-dimensional policy parameters to represent the value
function effectively. This suggests that the complexity of
the policy class exceeds that of the reward class and that
RLHF outperforms DPO in such instances.

8. Concluding Discussion
In this paper, we provided a comparative analysis between
reinforcement learning from human feedback (RLHF) and
direct preference optimization (DPO). We performed a thor-
ough analysis under different settings, where we derived
sample complexity bounds for both paradigms and drew
conclusions on their statistical comparison, based on sample
size, regularization temperature, and the dimensionality of
their respective parametrizations. We believe these results
will initiate a larger discussion on the differences between
these two paradigms.

There are many interesting future directions to pursue. The
first natural extension of this work is to relax the assump-
tions made on policy and reward classes and provide a com-
parative analysis of RLHF and DPO on more realistic set-
tings (eg. general function approximation). Next, a system-
atic large-scale empirical investigation that would validate
the theoretical insights of this paper would be of great impor-
tance. Finally, as our current extension of DPO for MDPs
is limited to deterministic MDPs using a loglinear occu-
pancy measure regularization, it would be interesting to see
whether DPO can be extended to more general formulations.
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Impact Statement
This paper focuses on the theoretical aspects of machine
learning, providing a comparative analysis of different
paradigms of learning from human preferences. We do
not foresee any direct negative outcomes from the findings
of this paper. On the contrary, we believe that our results
might initiate a larger discussion on the statistical properties
of learning from human preferences.
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A. Statistical Bounds for RLHF (Section 4 and 7)
In this section, we prove the main RLHF result, Theorem 4.1. We state the detailed version of it together with the necessary
constants.

Theorem A.1. Let δ > 0. Assume that the preference data satisfies the BT model, and r∗ ∈ F . Denote by ω̂ and θ̂ the
reward and policy parameters learned via RLHF, respectively. Furthermore, assume that

ω̂ ∈ argmin
ω

Lω
RLHF(Dn)

and
θ̂ ∈ argmax

θ
Vπθ
rω̂

(Dn) .

Then, with probability at least 1− δ, for any λ > 0, the suboptimality gap incurred by RLHF is

G
(
πθ̂
)
= Θ

(∥∥∥(ΣDn,R + λI)
−1/2

∥∥∥
2
·

√
dR + log(6/δ)

S2
Rn

+ λF 2

)
+D

(
πθ̂
)
,

where SR = 1/ (2 + exp (−2F ) + exp (2F )).

Proof. Let Φ ∈ RdR×XY be the reward feature matrix. Then, for any λ > 0, with probability at least 1− δ, we have

G(πθ̂) = V opt
r∗ (ρ)− V

π
θ̂

r∗ (ρ)

= D(πθ̂) +
(
Vπ∗

r∗
r∗ (ρ)− Vπ

θ̂
r∗ (ρ)

)
= D(πθ̂) +

(
Vπ∗

r∗
r∗ (ρ)− Vπ∗

r∗
rω̂ (ρ)

)
+
(
Vπ∗

r∗
rω̂ (ρ)− Vπ

θ̂
rω̂ (ρ)

)
+
(
Vπ

θ̂
rω̂ (ρ)− Vπ

θ̂
r∗ (ρ)

)
(a)

≤ D(πθ̂) +
(
Vπ∗

r∗
r∗ (ρ)− Vπ∗

r∗
rω̂ (ρ)

)
+

(
V
π∗
rω̂

rω̂ (ρ)− Vπ
θ̂

rω̂ (ρ)

)
+
(
Vπ

θ̂
rω̂ (ρ)− Vπ

θ̂
r∗ (ρ)

)
13



Reward Model Learning vs. Direct Policy Optimization

(b)

≤ D(πθ̂) +
(
Vπ∗

r∗
r∗ (ρ)− Vπ∗

r∗
rω̂ (ρ)

)
+

(
V
π∗
rω̂

rω̂ (Dn)− Vπ
θ̂

rω̂ (Dn)

)
+O

(√
log(6/δ)

n

)
+
(
Vπ

θ̂
rω̂ (ρ)− Vπ

θ̂
r∗ (ρ)

)
(c)

≤ D(πθ̂) +
(
Vπ∗

r∗
r∗ (ρ)− Vπ∗

r∗
rω̂ (ρ)

)
+
(
Vπ

θ̂
rω̂ (Dn)− Vπ

θ̂
rω̂ (Dn)

)
+O

(√
log(6/δ)

n

)
+
(
Vπ

θ̂
rω̂ (ρ)− Vπ

θ̂
r∗ (ρ)

)
= D(πθ̂) +

∑
x,y

ρ(x) · (π∗
r∗(y|x)− πθ̂(y|x)) · (r

∗(x, y)− rω̂(x, y)) +O

(√
log(6/δ)

n

)
(d)
= D(πθ̂) +

(
d∗ρ − d

π
θ̂

ρ

)⊤
(ω∗ − ω̂)Φ +O

(√
log(6/δ)

n

)
(e)

≤ D(πθ̂) +
∥∥Φ (d∗ρ − d

π
θ̂

ρ

)∥∥
(ΣDn,R+λI)−1 ∥ω∗ − ω̂∥ΣDn,R+λI +O

(√
log(6/δ)

n

)
(f)

≤ D(πθ̂) +O

(∥∥∥(ΣDn,R + λI)
−1/2

∥∥∥
2
·

√
dR + log(6/δ)

S2
Rn

+ λF 2

)
,

where (a) is due to the fact that π∗
rω̂

∈ argmaxπ Vπ
rω̂
(ρ); (b) follows from Lemma A.2 and the union bound – if we have

P(Ec
i ) ≤ δi, for i = 1, 2, 3, where Ec denotes the complement of event E , letting δi = δ/3, for all i, we have

P (E1 ∪ E2 ∪ E3) = 1− P (Ec
1 ∪ Ec

2 ∪ Ec
3)

≥ 1− (P(E1) + P(E2) + P(E3))
≥ 1− (δ1 + δ2 + δ3)

= 1− δ .

Next, (c) is due to the fact that πθ̂ ∈ argmaxπ∈Π Vπ
rω̂
(Dn) and π∗

rω̂
∈ Π (as per Lemma 4.1); (d) is due to d∗ρ(x, y) =

ρ(x, y)π∗
r∗(y|x) and dπθ̂

ρ (x, y) = ρ(x)πθ̂(y|x); (e) is an application of the Cauchy-Schwarz inequality with respect to the
semi-norm induced by matrix ΣDn,R + λI; and (f) is a direct application of Lemma 3.1 of (Zhu et al., 2023) for the
discounted infinite-horizon setting.

The lower bound is an immediate application of Theorem 3.10 of (Zhu et al., 2023). Note that we are under the same
conditions; our reward function is assumed to be linear, and we also assume a bounded covering number. For the lower
bound construction, let µ = πopt

r∗ , i.e., the reference policy is the actually optimal one. Let CB(Λ) denote the set of bandit
instances coupled with datasets with a covering number no more than Λ. Let Q denote such an instance. Under these
assumptions, Theorem 3.10 of (Zhu et al., 2023) implies an information-theoretic lower bound of

inf
π

sup
Q∈CB(ΛR)

(
V opt
Q (ρ)− V π

Q(ρ)
)
≥ O

(
ΛR

√
dR
n

)
.

Theorem 7.1. Let δ > 0. Assume that the policy learning phase yields θ̂ ∈ argmaxθ V
dθ
ρ

rω̂ (ρ), where rω̂ is the estimated
reward. Then, with probability at least 1−δ, the suboptimality gap incurred by RLHF isG(dθ̂ρ) = D(dθ̂ρ)+Θ̃(Λ′

R

√
dR/n) .

Proof. The proof of this result is an immediate application of the previous result with instead an application of Lemma 5.1
of (Zhu et al., 2023) with

SR = 1/ (2 + exp (−2F (1− γ)) + exp (2F (1− γ))) .

Next, we connect the difference between the sample regularized gap and the expected regularized gap with respect to the
context distribution, and obtain the following result.

14
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Lemma A.2. Let δ > 0 and assume that the conditions of Theorem A.1 are satisfied. Then, we have that∣∣∣∣∣Ex∼ρ

[
V
π∗
rω̂

rω̂ (x)

]
− 1

n

∑
x∈Dn

V
π∗
rω̂

rω̂ (x)

∣∣∣∣∣ ≤
√

log(4/δ)

n
,

and ∣∣∣∣∣ 1n ∑
x∈Dn

Vπ
θ̂

rω̂ (x)− Ex∼ρ

[
Vπ

θ̂
rω̂ (x)

]∣∣∣∣∣ ≤
√

(1 + β(2B + log Y )) log(4/δ)

n
.

with probability at least 1− δ.

Proof. Using the reward-to-policy mapping of Equation (1), we have that, for every (x, y),

µ(y|x) = π∗
rω̂
(y|x) exp

(
− 1

β
rω̂(x, y)

)
.

Thus, note that, for every x ∈ X ,∣∣∣∣Vπ∗
rω̂

rω̂ (x)

∣∣∣∣ =
∣∣∣∣∣∑

y

π∗
rω̂
(y|x)rω̂(x, y)− βπ∗

rω̂
(y|x) log

π∗
rω̂
(y|x)

µ(y|x)

∣∣∣∣∣
≤ 1 + β

∣∣∣∣∣∑
y

π∗
rω̂
(y|x) log

π∗
rω̂
(y|x)

µ(y|x)

∣∣∣∣∣
= 1 + β

∣∣∣∣∣∑
y

π∗
rω̂
(y|x) 1

β
rω̂(x, y)

∣∣∣∣∣
≤ 2 ,

where we have used that the reward lies in [0, 1]. On the other hand, we have

∣∣Vπ
θ̂

rω̂ (x)
∣∣ = ∣∣∣∣∣∑

y

πθ̂(y|x)rω̂(x, y)− βπθ̂(y|x) log
πθ̂(y|x)
µ(y|x)

∣∣∣∣∣
≤ 1 + β

∣∣∣∣∣∑
y

πθ̂(y|x)
(
log

πθ̂(y|x)
π∗
rω̂
(y|x)

+
1

β
rω̂(x, y)

)∣∣∣∣∣
≤ 2 + βmax

y

∣∣∣∣log πθ̂(y|x)
πθ∗(y|x)

∣∣∣∣
≤ 2 + βmax

x,y

(∣∣∣∣∣log exp(ψ(x, y)⊤θ̂)∑
y′ exp(ψ(x, y′)⊤θ̂)

∣∣∣∣∣+
∣∣∣∣log exp(ψ(x, y)⊤θ∗)∑

y′ exp(ψ(x, y′)⊤θ∗)

∣∣∣∣
)

≤ 2 + βmax
x,y

∣∣∣log exp(ψ(x, y)⊤θ̂)∣∣∣+
∣∣∣∣∣∣log

∑
y′

exp(ψ(x, y′)⊤θ̂)

∣∣∣∣∣∣
+
∣∣log exp(ψ(x, y)⊤θ∗)∣∣+

∣∣∣∣∣∣log
∑
y′

exp(ψ(x, y′)⊤θ∗)

∣∣∣∣∣∣


≤ 2 + β (2B + 2 log (Y exp(B)))

≤ 2 + 2β(2B + log Y ) ,

where we have used Lemma J.1 and the fact that

−B ≤ ⟨ψ(x, y), θ⟩ ≤ B .

The result then follows from Hoeffding’s inequality.
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B. Statistical Bounds for DPO (Section 4)
In this section, we prove the main DPO result for Section 4.

Theorem 4.2. Let δ > 0 and β > 0. Assume that r∗ ∈ F , µ ∈ Π, and that the condition of Lemma 4.1 is satisfied. Let
n ≥ O

(
tr(Σ†

Dn,P
)/(βB2)

)
. Then, with probability at least 1− δ, the suboptimality gap of DPO is

G
(
πθ̃
)
= D

(
πθ̃
)
+Θ

(
ΛP (dP + 1)

βn
+ βλΛPB

2

)
.

Proof. Lemma 4.1 implies that there exists θ∗ ∈ Rd, such that, for every (x, y),

r∗(x, y) = β log
πθ∗(y|x))
µ(y|x)

+ βZ(x)

and V∗
r∗(ρ) = Vπθ∗

r∗ (ρ). Now, observe that

G
(
πθ̃
)
= V opt

r∗ (ρ)− V
π
θ̃

r∗ (ρ)

= D(πθ̃) +
(
Vπθ∗
r∗ (ρ)− Vπ

θ̃
r∗ (ρ)

)
= D(πθ̃) + E x∼ρ

y∼πθ∗ (·|x)

[
r∗(x, y)− β log

πθ∗(y|x)
µ(y|x)

]
− E x∼ρ

y∼π
θ̃
(·|x)

[
r∗(x, y)− β log

πθ̃(y|x)
µ(y|x)

]
= D(πθ̃) + E x∼ρ

y∼πθ∗ (·|x)

[
β log

πθ∗(y|x)
µ(y|x)

+ β logZ(x)− β log
πθ∗(y|x)
µ(y|x)

]
− E x∼ρ

y∼π
θ̃
(·|x)

[
β log

πθ∗(y|x)
µ(y|x)

+ β logZ(x)− β log
πθ̃(y|x))
µ(y|x)

]
= D(πθ̃) + E x∼ρ

y∼π
θ̃
(·|x)

[
β log πθ̃(y|x)− β log πθ∗(y|x)

]
= D(πθ̃) + E x∼ρ

y∼π
θ̃

[
β
〈
ψ(x, y), θ̃ − θ∗

〉
+ β log

∑
y′ exp(ψ(x, y′)⊤θ∗)∑
y′ exp(ψ(x, y′)⊤θ̃)

]
= D(πθ̃) + βE x∼ρ

y∼π
θ̃

[〈
ψ(x, y), θ̃ − θ∗

〉]
+ β(A(θ∗)−A(θ̃)) ,

where we have denoted by A(θ) the log-sum-exp function

A(θ) =
∑
x

ρ(x) log
∑
y′

exp
(
ψ(x, y′)⊤θ

)
,

At this point, some properties of the log-exp-sum function will be useful. The proof of the following result can be found in
Appendix J.

Lemma B.1. The function A(θ) is 1-Lipschitz and 2-smooth. Moreover, if the features are sampled from a 0-mean
distribution and span RdP , then there exists κ > 0, such that A(θ) is κ-strongly convex.

Since A(θ) is 2-smooth, we have

A(θ∗)−A(θ̃) ≤
〈
∇θA(θ̃), θ

∗ − θ̃
〉
+
∥∥∥θ∗ − θ̃

∥∥∥2
2

= Ex∼ρ,y∼π
θ̃
(·|x)

[〈
ψ(x, y), θ∗ − θ̃

〉]
+
∥∥∥θ∗ − θ̃

∥∥∥2
2
.

Substituting to the suboptimality gap equalities, we obtain

G
(
πθ̃
)
≤ D(πθ̃) +

∥∥∥θ∗ − θ̃
∥∥∥2
2

(a)

≤ D(πθ̃) + β
∥∥(ΣDn,P + λI)−1

∥∥
2

∥∥∥θ∗ − θ̃
∥∥∥2
ΣDn,P+λI
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(b)

≤ D(πθ̃) + β
∥∥(ΣDn,P + λI)−1

∥∥
2

∥∥∥θ∗ − θ̃
∥∥∥2
ΣDn,P

+ 4βλΛPB
2

(c)

≤ D(πθ̃) +O

(
ΛP (dP + 1)

βn

)
+ 4βλΛPB

2 ,

where for (a) we have used that ⟨x,Ax⟩ ≤ ∥A∥2 ∥x∥
2
2; (b) is due to the fact that ∥θ∥2 ≤ B; (c) follows from Theorem J.7

and the assumption that θ̃ ∈ argminθ Lθ
DPO(Dn). The value of λ can be tuned accordingly. Note that, for fixed β, letting

λ = Θ(1/n) yields the desired bound. If β = Θ(1/
√
n), then any small value of λ works.

On the other hand, consider the following feature construction. Let Ψ be full rank with zero-mean columns. Then, there
exists κ > 0 such that A(θ) is κ-strongly convex. This, in turn, implies that

A(θ∗)−A(θ̃) ≥
〈
∇θA(θ̃), θ

∗ − θ̃
〉
+
κ

2

∥∥∥θ̃ − θ∗
∥∥∥2
2

= −Ex∼ρ,y∼π
θ̃
(·|x)

[〈
ψ(x, y), θ̃ − θ∗

〉]
+
κ

2

∥∥∥θ̃ − θ∗
∥∥∥2
2
.

Thus, substituting in the original gap expression, we obtain

G
(
πθ̃
)
≥ D(πθ̃) +

βκ

2

∥∥∥θ̃ − θ∗
∥∥∥2
2

≥ D(πθ̃) +
βκ

2

∥∥∥θ̃ − θ∗
∥∥∥2
2
∥ΣDn,P ∥2

≥ D(πθ̃) +
βκ

2

〈
θ̃ − θ∗,ΣDn,P (θ̃ − θ∗)

〉
≥ D(πθ̃) +

βκ

2

∥∥∥θ̃ − θ∗
∥∥∥
ΣDn,P

≥ D(πθ̃) +
βκ

2

∥∥∥θ̃ − θ∗
∥∥∥
ΣDn,P

≥ D(πθ̃) + Ω

(
(dP + 1)

βn

)
,

for any n ≥ O
(
tr(Σ†

Dn,P
)/(βB2)

)
, where the second inequality uses the fact that ∥ΣDn,P ∥2 ≤ 1; the third inequality

follows from Cauchy-Schwarz; the last inequality follows by Theorem J.7.

C. Statistical Bounds for DPO for MDPs (Section 7)
In this section, we will prove Corollary 7.2, the statistical convergence rate of the DPO method in the MDP setting. We
restate the result with all the quantities appearing in the bounds.

Theorem C.1. Assume that r∗ ∈ F , the data D satisfies the BT preference model for trajectories, and that the feature
matrix is full rank. Furthermore, assume that d∗ρ ∈ Π′ and assume that we have 0 optimization error from gradient descent
on the MLE loss. Let β > 0, and

SM = (exp(−B′) + exp(B′) + 2)−1 ,

U ′ = exp(−2B′) + exp(2B′) + 2 ,

ΛM =
∥∥∥(Σ′

Dn,M + λI)−1/2
∥∥∥
2
.

Then, DPO incurs the following minimax bounds on the suboptimality gap:

G
(
dθ̃ρ

)
= D

(
dθ̃ρ

)
+Θ

(
ΛMU

′(dM + 1)

βSPn

)
.

Proof. First, note that, under some assumptions on the feature space, Lemma J.2 implies that there exists θ∗ for which we
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can have V∗
r∗(ρ) = Vdθ∗

ρ

r∗ (ρ), with respect to some policy π∗
r∗ and that

∑
t≥0

γtr∗(xt, yt) =
∑
t≥0

γtβ log
dθ

∗

ρ (xt, yt)

dµρ (xt, yt)
+ β + α∗(x0) , (7)

for any trajectory τ , where α∗ is the optimal dual variable of Problem (P3.2’), and we have used Equation (15) to express
the ground-truth reward in terms of an optimal regularized policy. Now, let us denote by π̃ the policy corresponding to dθ̃ρ.
Observe that

G
(
dθ̃ρ

)
= V opt

r∗ (ρ)− V
dθ̃
ρ

r∗ (ρ)

= D
(
dθ̃ρ

)
+

(
Vdθ∗

ρ

r∗ (ρ)− Vdθ̃
ρ

r∗ (ρ)

)

= D
(
dθ̃ρ

)
+ Ex0∼ρ,yt∼π∗

r∗ (·|xt)

∑
t≥0

γtr∗(xt, yt)

− βE(x,y)∼dθ∗
ρ

[
log

dθ
∗

ρ (x, y)

dµρ (x, y)

]
− Vdθ̃

ρ

r∗ (ρ)

= D
(
dθ̃ρ

)
+ Ex0∼ρ,yt∼π∗

r∗ (·|xt)

∑
t≥0

γtβ log
dθ

∗

ρ (xt, yt)

dµρ (xt, yt)
+ β + α∗(x0)

− βE(x,y)∼dθ∗
ρ

[
log

dθ
∗

ρ (x, y)

dµρ (x, y)

]
− Vdθ̃

ρ

r∗ (ρ)

(8)

= D
(
dθ̃ρ

)
+ E(x,y)∼dθ∗

µ

[
β log

dθ
∗

ρ (x, y)

dµρ (x, y)

]
+

β

1− γ
+
∑
x

ρ(x)α∗(x)− βE(x,y)∼dθ∗
ρ

[
log

dθ
∗

ρ (x, y)

dµρ (x, y)

]
− Vdθ̃

ρ

r∗ (ρ) (9)

= D
(
dθ̃ρ

)
+

β

1− γ

+
∑
x

ρ(x)α∗(x)− Ex0∼ρ,yt∼π̃(·|xt)

∑
t≥0

γtβ log
dθ

∗

ρ (xt, yt)

dµρ (xt, yt)
+ β + α∗(x0)

+ βE(x,y)∼dθ̃
ρ

[
log

dθ̃ρ(x, y)

dµρ (x, y)

]

= D
(
dθ̃ρ

)
+ βE(x,y)∼dθ̃

ρ

[
log

dθ̃ρ(x, y)

dµρ (x, y)
− log

dθ
∗

ρ (x, y)

dµρ (x, y)

]
= D

(
dθ̃ρ

)
+ E(x,y)∼dθ̃

ρ

[
β log dθ̃ρ(x, y)− β log dθ

∗

ρ (x, y)
]

= D
(
dθ̃ρ

)
+ E(x,y)∼dθ̃

ρ

[
β
〈
ψ′(x, y), θ̃ − θ∗

〉
+ β log

∑
x′,y′ exp(ψ′(x′, y′)⊤θ∗)∑
x′,y′ exp(ψ′(x′, y′)⊤θ̃)

]
(10)

= D
(
dθ̃ρ

)
+ βE(x,y)∼dθ̃

ρ

[〈
ψ′(x, y), θ̃ − θ∗

〉
+A(θ∗)−A(θ̃)

]
,

where we have denoted by
A(θ) = log

∑
x′,y′

exp(ψ′(x′, y′)⊤θ)

the log-sum-exp function. Above, in Equation (8) we have applied Equation (7); Equation (9) uses the fact that, for any
policy π and function f : X × Y → R, we have

Ex∼ρ,yt∼π(·|xt)

∑
t≥0

γtf(xt, yt)

 = E(x,y)∼dπ [f(x, y)] .

Finally, for Equation (10) we have used loglinearity. Now, given θ ∈ RdP , note that

∇θA(θ) =

∑
x,y exp(ψ

′(x, y)⊤θ) · ψ′(x, y)∑
x′,y′ exp(ψ′(x′, y′)⊤θ)

=
∑
x,y

dθρ(x, y)ψ
′(x, y) .
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On the other hand, the Hessian of A(θ) is

∇2
θA(θ) =

∑
x,y

∇θd
θ
ρ(x, y)ψ

′(x, y)

=
∑
x,y

dθρ(x, y)
(
ψ′(x, y)− E(x′,y′)∼dθ

ρ
[ψ′(x′, y′)]

)
ψ′(x, y)⊤

= E(x,y)∼dθ
ρ

[
ψ′(x, y)ψ′(x, y)⊤

]
− E(x,y)∼dθ

ρ
[ψ′(x, y)]E(x,y)∼dθ

[ψ′(x, y)]⊤

= E(x,y)∼dθ
ρ

[
(ψ′(x, y)− Eθ [ψ

′(x, y)]) (ψ′(x, y)− Eθ [ψ
′(x, y)])

⊤
]
.

By assumption on the feature mapping, we have that∥∥∇2
θA(θ)

∥∥
2
≤ max

x,y

∥∥∥(ψ′(x, y)− Eθ [ψ
′(x, y)]) (ψ′(x, y)− Eθ [ψ

′(x, y)])
⊤
∥∥∥
2

≤ max
x,y

∥ψ′(x, y)− Eθ[ψ
′(x, y)]∥2

≤ 2max
x,y

∥ψ′(x, y)∥2 = 2 .

Therefore, the function A(θ) is 2-smooth in θ, which implies that

A(θ∗)−A(θ̃) ≤
〈
∇θA(θ̃), θ

∗ − θ̃
〉
+
∥∥∥θ∗ − θ̃

∥∥∥2
2

= E(x,y)∼dθ̃
ρ

[〈
ψ′(x, y), θ∗ − θ̃

〉]
+
∥∥∥θ∗ − θ̃

∥∥∥2
2
.

Substituting to the suboptimality gap equalities, we obtain

G
(
dθ̃ρ

)
≤ D

(
dθ̃ρ

)
+
∥∥∥θ∗ − θ̃

∥∥∥2
2

≤ D
(
dθ̃ρ

)
+ β

∥∥(Σ′
Dn,M + λI)−1

∥∥
2

∥∥∥θ∗ − θ̃
∥∥∥2
Σ′

Dn,M+λI

≤ D
(
dθ̃ρ

)
+

ΛMU
′dM

SMβn
+ 4βΛMλ(B

′)2 ,

where the last inequality follows from Theorem J.7 and the assumption on exact optimization.

For the lower bound, let ψ′ be sampled from a 0-mean bounded distribution. Note that, for any non-zero vector in RdM , we
have

z⊤∇2
θA(θ)z = E(x,y)∼dθ

ρ

[
z⊤ψ′(x, y)ψ′(x, y)⊤z

]
≥ min

θ,x,y
dθρ(x, y)

∑
x,y

(ψ′(x, y)⊤z)2

≥ C3

∑
x,y

(ψ′(x, y)⊤z)2 ,

for a positive C3, since dθρ is in the loglinear class, for every θ. Now, note that, if z can be expressed as a linear combination
of {ψ′(x, y)}x,y , the summation cannot be zero for non-zero z. Thus, if {ψ′(x, y)}x,y spans RdM , that is, the feature matrix
is full rank, then there exists an absolute positive constant κ, such that we have∥∥∇2

θA(θ)
∥∥
2
≥ κ > 0 .

Thus, the function A(θ) is κ-strongly convex. This, in turn, implies that

A(θ∗)−A(θ̃) ≥
〈
∇θA(θ̃), θ

∗ − θ̃
〉
+
κ

2

∥∥∥θ̃ − θ∗
∥∥∥2
2

≥
〈
∇θA(θ̃), θ

∗ − θ̃
〉
+
κ

2

∥∥∥θ̃ − θ∗
∥∥∥2
Σ′

Dn,M
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= −E(x,y)∼dθ̃
ρ

[〈
ψ′(x, y), θ̃ − θ∗

〉]
+
κ

2

∥∥∥θ̃ − θ∗
∥∥∥2
Σ′

Dn,M

,

using a similar argument as in the proof of Theorem 4.2. Thus, substituting in the original gap expression, we obtain

G
(
dθ̃ρ

)
≥ D

(
dθ̃ρ

)
+
βκ

2

∥∥∥θ̃ − θ∗
∥∥∥2
2

≥ D
(
dθ̃ρ

)
+Ω

(
dM + 1

βn

)
,

for any n ≥ O
(
tr((Σ′

D)
†)/(SM (B′)2)

)
, by Theorem J.7.

D. Convergence of Gradient Descent for RLHF Reward Learning (Section 5)
In this section, we will prove convergence bounds for projected gradient descent for the RLHF reward learning phase. Recall
that, the projected gradient update rule for the reward learning phase is given as

ωt+1 = proj
ω:∥ω∥2≤F

(ωt − η∇ωLω
RLHF(Dn)) .

First, we show Lipschitzness and smoothness of the loss function.

Lemma D.1. The RLHF reward learning objective Lω
RLHF(Dn) is 2 exp(2F )-Lipschitz and 2 exp(2F )-smooth.

Proof. Note that the gradient of Lω
RLHF(Dn) satisfies

∥∇ωLω
RLHF(Dn)∥2 =

∥∥∥∥∥∥ 1n
∑

(x,yw,yl)∼Dn

∇ω log
(
1 + exp

(
ω⊤ (ϕ(x, yw)− ϕ(x, yl)

)))∥∥∥∥∥∥
2

≤ 1

n

∑
(x,yw,yl)∼Dn

exp
(
ω⊤ (ϕ(x, yw)− ϕ(x, yl)

))
1 + exp (ω⊤ (ϕ(x, yw)− ϕ(x, yl)))

∥∥(ϕ(x, yw)− ϕ(x, yl)
)∥∥

2

≤ exp(2F )
∥∥ϕ(x, yw)− ϕ(x, yl)

∥∥
2

≤ 2 exp(2F ) .

Moreover, the Hessian of Lω
RLHF(Dn) satisfies

∥∥∇2
ωLω

RLHF(Dn)
∥∥
2
=

∥∥∥∥∥∥ 1n
∑

(x,yw,yl)∼Dn

∇ω

exp
(
ω⊤ (ϕ(x, yw)− ϕ(x, yl)

))
1 + exp (ω⊤ (ϕ(x, yw)− ϕ(x, yl)))

(
ϕ(x, yw)− ϕ(x, yl)

)∥∥∥∥∥∥
2

≤ 1

n

∑
(x,yw,yl)∼Dn

exp
(
ω⊤ (ϕ(x, yw)− ϕ(x, yl)

))
(1 + exp (ω⊤ (ϕ(x, yw)− ϕ(x, yl))))

2

∥∥∥(ϕ(x, yw)− ϕ(x, yl)
) (
ϕ(x, yw)− ϕ(x, yl)

)⊤∥∥∥
2

≤ exp(2F )
∥∥(ϕ(x, yw)− ϕ(x, yl)

)∥∥
2

≤ 2 exp(2F ) .

The result follows.

Next, we show that Lω
RLHF(Dn) satisfies the PL condition (Karimi et al., 2016) defined below.

Definition D.2. A function L is said to satisfy the PL condition with coefficient CPL > 0 if, for every ω in the domain of L,
we have

∥∇ωL(ω)∥22 ≥ CPL (L(ω)− L∗) ,

where L∗ is the minimum value of L in its domain.
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Lemma D.3. Let L2 = 2 exp(2F ) and

CPL =
exp(−2F )ξ(1 + exp(−2F ))

n(1 + exp(2F )2
,

where

0 < ξ = min
(x,yw,yl)∼Dn

∥∥ϕ(x, yw)− ϕ(x, yl)
∥∥2
2
.

Then, we have

1

2
∥∇ωLω

RLHF(Dn)∥2 ≥ CPL (Lω
RLHF(Dn)− L∗

RLHF(Dn)) .

Proof. Due to the assumption on the features and parameter vectors, we have

1

2
∥∇ωLω

RLHF(Dn)∥2 ≥ 1

2n2

∑
(x,yw,yl)∼Dn

exp(−2F )

1 + exp(2F )
min

(x,yw,yl)∼Dn

∥∥ϕ(x, yw)− ϕ(x, yl)
∥∥2
2

≥ exp(−2F )ξ

n(1 + exp(2F ))
.

On the other hand, note that, for some ω∗ such that ∥ω∗∥2 ≤ F , we have

Lω
RLHF(Dn)− L∗

RLHF(Dn) = E(x,yw,yl)∼Dn

[
log
(
1 + exp

(
ω⊤ (ϕ(x, yw)− ϕ(x, yl)

)))
− log

(
1 + exp

(
(ω∗)⊤

(
ϕ(x, yw)− ϕ(x, yl)

))) ]
=

1

n

∑
(x,yw,yl)∼Dn

log
1 + exp

(
ω⊤ (ϕ(x, yw)− ϕ(x, yl)

))
1 + exp ((ω∗)⊤ (ϕ(x, yw)− ϕ(x, yl)))

≤ 1

n

∑
(x,yw,yl)∼Dn

(
1 + exp

(
ω⊤ (ϕ(x, yw)− ϕ(x, yl)

))
1 + exp ((ω∗)⊤ (ϕ(x, yw)− ϕ(x, yl)))

− 1

)

≤ 1

n

∑
(x,yw,yl)∼Dn

1 + exp(2F )

1 + exp(−2F )

≤ 1 + exp(2F )

1 + exp(−2F )
,

where the third inequality follows from log x ≤ x− 1, for x > 0. Solving for CPL the equation

CPL
1 + exp(2F )

1 + exp(−2F )
=

exp(−2F )ξ

n(1 + exp(2F )
,

we obtain

CPL =
exp(−2F )ξ(1 + exp(−2F ))

n(1 + exp(2F )2
.

Now, we are ready to state the convergence result for gradient descent.

Theorem 5.1. For every t ≥ 0, the gradient descent procedure (4) with learning rate η = 1/ exp(2F ) satisfies

∥∥ωt − ω∗
Dn

∥∥2
ΣDn,R

≤ O

(
1− 1

n

)t

.
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Proof. The projected gradient descent rule is equivalent to the proximal gradient update (Karimi et al., 2016), given as

ωt+1 = argmin
ω

(
⟨∇ωLωt

RLHF(Dn), ω − ωt⟩+
L2

2
∥ω − ωt∥22 + g(ω)− g(ωt)

)
,

where g(ω) = 0, if ∥ω∥2 ≤ F and ∞ otherwise. To see that, note that we can equivalently write the above as

ωt+1 = argmin
ω

∥∥∥∥ω −
(
ωt −

1

L2
∇ωLωt

RLHF(Dn)

)∥∥∥∥
2

, s.t. ∥ω∥2 ≤ F

= projω:∥ω∥2≤F

(
ωt −

1

L2
∇ωLωt

RLHF(Dn)

)
.

Theorem 5 of (Karimi et al., 2016) gives us linear rates of convergence for projected gradient descent under the proximal PL
condition. This condition is shown in Appendix G of (Karimi et al., 2016) to be equivalent to the following condition.

Definition D.4. A function F is said to satisfy the Kurdyka-Lojasiewicz condition with exponent 1/2 if there exists C > 0
such that

min
s∈∂F (ω)

∥s∥22 ≥ C(F (ω)− F∗) ,

where ∂F (ω) is the Frechet subdifferential of F at ω and F∗ denotes the minimum value of F .

Note that, in our case we have F (ω) = Lω
RLHF(Dn)− g(ω) and the Frechet subdifferential of this function in the domain

{ω : ∥ω∥2 ≤ F} only contains ∇ωLω
RLHF(Dn). Thus, the above condition is equivalent to the PL condition. As a

consequence Theorem 5 of (Karimi et al., 2016) implies that

Lωt

RLHF(Dn)− L∗
RLHF(Dn) ≤

(
1− CPL

L2

)t

(Lω0

RLHF(Dn)− L∗
RLHF(Dn)) .

Now, recalling the Hessian of our loss, note that for any non-zero vector v ∈ RdP , we have

v⊤∇2
ωLω

RLHF(Dn)v

= v⊤

 1

n

∑
(x,yw,yl)∼Dn

exp
(
ω⊤ (ϕ(x, yw)− ϕ(x, yl)

))
(1 + exp (ω⊤ (ϕ(x, yw)− ϕ(x, yl))))2

(
ϕ(x, yw)− ϕ(x, yl)

) (
ϕ(x, yw)− ϕ(x, yl)

)⊤ v

≥ exp(−F )
(1 + exp(2F ))2

∥v∥2ΣDn,R
.

Thus, Lω
RLHF(Dn) is exp(−F )

(1+exp(2F ))2 -strongly convex with respect to the semi-norm ∥·∥ΣDn,R
around ω∗. Therefore, for any ω

we have

Lω
RLHF(Dn)− L∗

RLHF(Dn) ≥ ⟨∇ωL∗
RLHF(Dn), ω − ω∗⟩+ exp(−2F )

(1 + exp(2F ))2
∥ω − ω∗∥2ΣDn,R

≥ exp(−2F )

(1 + exp(2F ))2
∥ω − ω∗∥2ΣDn,R

.

Putting everything together, we obtain

∥ω − ω∗∥2ΣDn,R
≤ O

((
1− 1

n

)t
)
.
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E. Convergence of Natural Policy Gradient for RLHF (Section 5)
In this section, we prove fast convergence rates for the a version of the natural policy gradient algorithm with loglinear
policy class. We begin by deriving the gradient of the KL-regularized objective. Throughout, let us fix reward function r
and dataset Dn.

Lemma E.1. Given reward r and policy πθ, the gradient of Vπθ
r (Dn), for the softmax policy class can be written as

∇θVπθ
r (Dn) =

1

n

∑
x∈Dn

∑
y∈Y

πθ(y|x)
(
r(x, y)− β log

(
πθ(y|x)
µ(y|x)

))
ψθ(x, y) ,

where

ψθ(x, y) = ψ(x, y)−
∑
y′∈Y

πθ(y
′|x)ψ(x, y′) .

Proof. First, note that, for softmax policies with linear action preferences, we have, for any given (x, y),

∇θπθ(y|x) = ∇θ
exp(θ⊤ψ(x, y))∑

y′∈Y exp(θ⊤ψ(x, y′))

=
exp(θ⊤ψ(x, y))

∑
y′∈Y exp(θ⊤ψ(x, y′))

(
∑

y′∈Y exp(θ⊤ψ(x, y′)))2
ψ(x, y)−

exp(θ⊤ψ(x, y))
∑

y′∈Y exp(θ⊤ψ(x, y′))ψ(x, y′)

(
∑

y′∈Y exp(θ⊤ψ(x, y′)))2
ψ(x, y)

= πθ(y|x)
(
ψ(x, y)− Ey′∼πθ(·|x)[ψ(x, y

′)]
)
.

On the other hand, for the regularizer, we have

∇θ log

(
πθ(y|x)
µ(y|x)

)
= ∇θ

(
θ⊤ψ(x, y)− logZθ(x)− logµ(y|x)

)
= ψ(x, y)− 1

Zθ(x)

∑
y′∈Y

exp(θ⊤ψ(x, y))ψ(x, y)

= ψ(x, y)− Ey′∼πθ(·|x)[ψ(x, y
′)] ,

where

Zθ(x) =
∑
y∈Y

exp(θ⊤ψ(x, y)) .

Using the definition of Vπθ
r (Dn) and the above derivations, we have

∇θVπθ
r (Dn) =

1

n

∑
x∈Dn

∇θ

∑
y∈Y

πθ(y|x)
(
r(x, y)− β log

(
πθ(y|x)
µ(y|x)

))
=

1

n

∑
x∈Dn

∑
y∈Y

πθ(y|x)
(
r(x, y)− β log

(
πθ(y|x)
µ(y|x)

))ψ(x, y)− ∑
y′∈Y

πθ(y
′|x)ψ(x, y′)


− 1

n

∑
x∈Dn

∑
y∈Y

πθ(y|x)

ψ(x, y)− ∑
y′∈Y

πθ(y
′, x)ψ(x, y′)


=

1

n

∑
x∈Dn

∑
y∈Y

πθ(y|x)
(
r(x, y)− β log

(
πθ(y|x)
µ(y|x)

))ψ(x, y)− ∑
y′∈Y

πθ(y
′|x)ψ(x, y′)


− 1

n

∑
x∈Dn

∑
y∈Y

πθ(y|x)ψ(x, y) +
1

n

∑
x∈Dn

∑
y′∈Y

πθ(y
′|x)ψ(x, y′)

∑
y∈Y

πθ(y|x)
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=
1

n

∑
x∈Dn

∑
y∈Y

πθ(y|x)
(
r(x, y)− β log

(
πθ(y|x)
µ(y|x)

))ψ(x, y)− ∑
y′∈Y

πθ(y
′|x)ψ(x, y′)


=

1

n

∑
x∈Dn

∑
y∈Y

πθ(y|x)
(
r(x, y)− β log

(
πθ(y|x)
µ(y|x)

))
ψθ(x, y) .

Now we consider the following gradient update rule. Let Ψn ∈ RdP×nY denote the feature matrix corresponding to Dn

with columns ψ(x, y), for every (x, y) ∈ Dn × Y . We will assume that Ψn is full column rank. For every t ≥ 0, let

θt+1 = θt + η′
(
ΨnΨ

⊤
n

)† ∇θVπθ
r (Dn) . (11)

First, we will expand this gradient expression in the following lemma.

Lemma E.2. For every t ≥ 0, the gradient update can be written as

θt+1 = θt +
η′

n

(
ΨnΨ

⊤
n

)†
ΨnH(πθt)αt ,

where RnY×nY ∋ H(π) = diag(π)−M(π), for any policy π, with M(π) being a blog-diagonal matrix composed of n
blocks π(x)π(x)⊤ ∈ RY×Y , with π(x) = [π(y|x)]y∈Y , for every x ∈ Dn, and

αt = βΨ⊤
n θt − r − β logµ−

(
βΨ⊤

n θt − r − β logµ
)⊤

1

Y
· 1 .

Here, r = [r(x, y)](x,y)∈Dn×Y denotes the reward vector, and logµ = [logµ(y|x)](x,y)∈Dn×Y denotes the vector of log
values for te reference policy.

Proof. Using the gradient update and Lemma E.1, we have

θt+1 = θt + η′
(
ΨnΨ

⊤
n

)† ∇θVπθ
r (Dn)

= θt + η′
(
ΨnΨ

⊤
n

)† 1

n

∑
x∈Dn

∑
y∈Y

πθt(y|x)
(
r(x, y)− β log

(
πθt(y|x)
µ(y|x)

))
ψθt(x, y)

= θt +
η′

n

(
ΨnΨ

⊤
n

)† ∑
x∈Dn

∑
y∈Y

πθt(y|x)
(
r(x, y)− βθ⊤t ψ(x, y) + β logZθt(x) + β logµ(y|x)

)
ψθt(x, y)

= θt +
η′

n

(
ΨnΨ

⊤
n

)† ∑
x∈Dn

∑
y∈Y

πθt(y|x)
(
r(x, y)− βθ⊤t ψ(x, y) + β logµ(y|x)

)
ψθt(x, y)

= θt +
η′

n

(
ΨnΨ

⊤
n

)†
ΨnH(πθt)

(
r − βΨ⊤

n θt + β logµ
)

= θt −
η′

n

(
ΨnΨ

⊤
n

)†
ΨnH(πθt)

(
βΨ⊤

n θt − r − β logµ−
(
βΨ⊤

n θt − r − β logµ
)⊤

1

Y
· 1

)
,

where the fourth equality follows from the observation that

β
∑
y

πθ(y|x) logZθ(x)ψθ(x, y) = β logZθ(x)
∑
y

πθ(x, y)
(
ψ(x, y)− Ey′∼πθ(·|x)[ψ(x, y

′)]
)
= 0 ,

while the last equality follows from the fact that H(πθ)c1 = 0, for any constant c.

Now we will express αt+1 in a different way using the above derivation.

Lemma E.3. For every t ≥ 0, we have

αt+1 = (I − (η′β/n)H(πθt))αt
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Proof. Observe that

αt+1 = βΨ⊤
n θt+1 − r − β logµ−

(
βΨ⊤

n θt+1 − r − β logµ
)⊤

1

Y
· 1

= βΨ⊤
n θt − r − β logµ−

(
βΨ⊤

n θt − r − β logµ
)⊤

1

Y
· 1+ βΨ⊤

n (θt+1 − θt)−
β(Ψ⊤

n (θt − θt+1))
⊤1

Y
· 1

= βΨ⊤
n θt − r − β logµ−

(
βΨ⊤

n θt − r − β logµ
)⊤

1

Y
· 1− β(Ψ⊤

n (θt − θt+1))
⊤1

Y
· 1

− βΨ⊤
n

(
η′

n

(
ΨnΨ

⊤
n

)†
ΨnH(πθt)

(
βΨ⊤

n θt − r − β logµ−
(
βΨ⊤

n θt − r − β logµ
)⊤

1

Y
· 1

))

=
(
I − (βη′/n)Ψ⊤

n

(
ΨnΨ

⊤
n

)†
ΨnH(πθt)

)(
βΨ⊤

n θt − r − β logµ−
(
βΨ⊤

n θt − r − β logµ
)⊤

1

Y
· 1

)

− β(Ψ⊤
n (θt − θt+1))

⊤1

Y
· 1

= (I − (βη′/n)H(πθt))

(
βΨ⊤

n θt − r − β logµ−
(
βΨ⊤

n θt − r − β logµ
)⊤

1

Y
· 1

)

− β(Ψ⊤
n (θt − θt+1))

⊤1

Y
· 1 ,

where the third equality uses Lemma E.2 and the last equality follows from the fact that

Ψ⊤
n

(
ΨnΨ

⊤
n

)†
Ψn = Ψ⊤

n (Ψ
†
n)

⊤Ψ†
nΨn = (Ψ†

nΨn)
⊤Ψ†

nΨn = I ,

since we assume Ψn to be full column rank. For the last term in the derivation above, we have

β(Ψ⊤
n (θt − θt+1))

⊤1

Y
· 1

=
βη′

nY

(
Ψ⊤

n

(
ΨnΨ

⊤
n

)†
ΨnH(πθt)

(
βΨ⊤

n θt − r − β logµ−
(
βΨ⊤

n θt − r − β logµ
)⊤

1

Y
· 1

))⊤

1 · 1

=
βη′

nY

(
H(πθt)

(
βΨ⊤

n θt − r − β logµ−
(
βΨ⊤

n θt − r − β logµ
)⊤

1

Y
· 1

))⊤

1 · 1

=
βη′

nY

(
βΨ⊤

n θt − r − β logµ−
(
βΨ⊤

n θt − r − β logµ
)⊤

1

Y
· 1

)⊤

H(πθt)
⊤1 · 1

= 0 ,

where we have used the fact that H(πθ)
⊤1 = 0. The result follows.

Next, we will decompose the matrix H(πθ) into simpler pieces and explore its structure.
Lemma E.4. The eigenvalues of H(πθ) satisfy the following. The lowest eigenvalue is λ1 = 0 with multiplicity n with
corresponding eigenvectors ei, for each i ∈ [n], where ei are the vectors of ones in indices Y (i − 1) to Y i and zeros
everywhere else. Furthermore, we have that minx∈Dn,y∈Y π(y|x) ≤ λ2 and λmax ≤ maxx∈Dn,y∈Y π(y|x).

Proof. Again, given x ∈ Dn, let us denote by π(x) the vector [π(y|x)]y∈Y . Note that, for any policy π, we can write H(π)
as

H(π) =


diag(π(x1)) 0 . . . 0

0 diag(π(x2)) . . . 0
...

...
. . .

...
0 . . . 0 diag(π(xn))
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−


π(x1)π(x1)

⊤ 0 . . . 0
0 π(x2)π(x2)

⊤ . . . 0
...

...
. . .

...
0 . . . 0 π(xn)π(xn)

⊤



=


H(π(x1)) 0 . . . 0

0 H(π(x2)) . . . 0
...

...
. . .

...
0 . . . 0 H(π(xn))


Now, given x ∈ Dn, Lemma 22 of (Mei et al., 2020) states that the spectrum ofH(π(x)) satisfies λ1 = 0 with corresponding
eigenvector 1 ∈ RY , and

π(yi−1|x) ≤ λi ≤ π(yi|x) ,

for each 2 ≤ i ≤ Y , where λ1 ≤ . . . ≤ λY and π(y1|x) ≤ . . . ≤ π(yY |x). Furthermore, it is known that the spectrum of a
block diagonal matrix is composed of the eigenvalues of each block, counting multiplicities. Thus, we have that 0 is the
lowest eigenvalue of H(π) occurring with multiplicity n. The rest follows.

Lemma E.5. Let v ∈ RnY be any given vector. Then, we have that∥∥∥∥(I −H(π))

(
v − v⊤1

Y
1

)∥∥∥∥
2

≤
(
1− min

x∈Dn,y∈Y
π(y|x)

)∥∥∥∥v − v⊤1

Y
1

∥∥∥∥
2

Proof. First, for every i ∈ [n], let ei ∈ RnY denote a vector with entries 1 at the indices Y (i− 1) to Y i and 0 everywhere
else. Note that ∑

i≤n

ei = 1 ∈ RnY .

Next, let v(j) denote an nY -dimensional vector with entries vk for each Y (j− 1) ≤ k ≤ Y j. Since H(π) is diagonalizable,
as a symmetric matrix, any vector can be represented as a linear combination of its eigenvectors. Since H(π) is symmetric,
this representation is unique. Now, by Lemma E.4, note that

v =
∑
j≤nY

ajuj =
∑
j≤n

ajej +

nY∑
k=n+1

akuk =
∑
j≤n

v(j)⊤1Y

Y
ej +

nY∑
k=n+1

akuk =
v⊤1

Y
1+

nY∑
k=n+1

akuk ,

where (ui,j)i≤n,j≤Y is the eigenvector basis, with the first n eigenvectors being ei, for i ≤ n. Thus, we have that

v′ = v − v⊤1

Y
1 =

nY∑
k=n+1

akuk ,

with an+1 > 0, and that

∥v′∥2 =

nY∑
j=n+1

a2j .

From the above, we obtain

(I −H(π)) v′ =

nY∑
j=n+1

aj(1− λj)uj ,

and thus, by Lemma E.4,

∥(I −H(π)) v′∥2 =

√√√√ nY∑
j=n+1

a2j (1− λj)2
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≤

√√√√√(1− λn+1)

 nY∑
j=n+1

a2j


= (1− λn+1) ∥v′∥2

≤
(
1− min

x∈Dn,y∈Y
π(y|x)

)
∥v′∥2 .

Lemma E.6. Suppose η′ and β are such that η′β/n ≤ 1. For the loglinear policy class, for every t ≥ 1,

∥αt∥2 ≤ 2 (βB + 1)
√
Y

exp
(
η′β

∑t−1
s=1 minx∈Dn,y∈Y πθ(y|x)

) .
Proof. By Lemma E.3 and Lemma E.5, for all t ≥ 1,∥∥(I − (η′β/n)H(πθt+1)

)
αt+1

∥∥
2
≤
(
1− (η′β/n) min

x∈Dn,y∈Y
πθt(y|x)

)
∥αt∥2

≤ 1

exp ((η′β/n)minx∈Dn,y∈Y πθt(y|x))
∥αt∥2

≤ 1

exp ((η′β/n)minx∈Dn,y∈Y πθt(y|x))

(
1− min

x∈Dn,y∈Y
πθt−1(y|x)

)
∥αt−1∥2

≤ 1

exp
(
(η′β/n)

∑t
s=t−1 minx∈Dn,y∈Y πθs(y|x)

) ∥αt−1∥2

≤ 1

exp
(
(η′β/n)

∑t
s=1 minx∈Dn,y∈Y πθs(y|x)

) ∥α1∥2 .

For the first iteration, observe that

∥α1∥2 =

∥∥∥∥∥βΨ⊤
n θ0 − r − β logµ−

(
βΨ⊤

n θ0 − r − β logµ
)⊤

1

Y
1

∥∥∥∥∥
2

≤
∥∥βΨ⊤

n θ0 − r − β logµ
∥∥
2
+

1√
Y

∥∥βΨ⊤
n θ0 − r − β logµ

∥∥
2
∥1∥2

= 2
∥∥βΨ⊤

n θ0 − r − β logµ
∥∥
2

≤ 2
(
β
∥∥Ψ⊤

n θ0
∥∥
∞ + 1

)√
Y

≤ 2 (βB + 1)
√
Y ,

where the second inequality follows from the triangle inequality, the Cauchy-Schwarz inequality and the fact that rewards lie
in the unit ball, while the last follows from the fact that the features lie in a unit subspace of RdP , while ∥θ0∥∞ ≤ B. The
result follows.

Lemma E.7. There exists a constant C = C(β, Y,B) > 0, such that, for all t ≥ 1, we have minx∈Dn,y∈Y πθt(y|x) ≥ C.

Proof. First, by Lemma E.5, note that, for any t ≥ 1,

∥αt+1∥2 ≤
(
1− (η′β/n) min

x∈Dn,y∈Y
πθt(y|x)

)
∥αt∥2 ≤ ∥αt∥2 ≤ . . . ≤ ∥α1∥2 ≤ 2 (βB + 1)

√
Y ,

where the second inequality follows from the fact that policies are probability distributions, and the last inequality follows
from Lemma E.6. Next, observe that, for any (x, y) ∈ Dn × Y ,∣∣∣∣∣ψ(x, y)⊤θt − 1

β
r(x, y)− logµ(y|x)−

(
Ψ⊤

n θt − r/β − logµ
)⊤

1

Y

∣∣∣∣∣
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≤ 1

β

∣∣∣∣∣βψ(x, y)⊤θt − r(x, y)− β logµ(y|x)−
β
(
Ψ⊤

n θt − r − β logµ
)⊤

1

Y

∣∣∣∣∣
≤ 1

β

∥∥∥∥∥βΨ⊤
n θt − r − β logµ−

(
βΨ⊤

n θt − r − β logµ
)⊤

1

Y
1

∥∥∥∥∥
2

≤ 1

β
∥αt∥2

≤ 2(B + 1/β)
√
Y .

Now, define (x1, y1) = argminx∈Dn,y∈Y ψ(x, y)
⊤θt and (x2, y2) = argmaxx∈Dn,y∈Y ψ(x, y)

⊤θt. By the above, we
have

Ψn(x1, y1)
⊤θt ≥

1

β
r(x1, y1) + log µ(y1|x1) +

(
Ψ⊤

n θt − r/β − logµ
)⊤

1

Y
− 2(B + 1/β)

√
Y ,

−Ψn(x2, y2)
⊤θt ≥ − 1

β
r(x2, y2)− logµ(y2|x2)−

(
Ψ⊤

n θt − r/β − logµ
)⊤

1

Y
− 2(B + 1/β)

√
Y ,

which imply

min
x∈Dn,y∈Y

πθt(y|x) ≥ min
x∈Dn,y∈Y

exp(ψ(x, y)⊤θt)∑
y′∈Y exp(ψ(x, y)⊤θt)

≥ 1

Y
exp

(
(Ψn(x1, y1)−Ψn(x2, y2))

⊤
θt

)
≥ 1

Y
exp

(
1

β
(r(x1, y1)− r(x2, y2)) + log

µ(y1|x1)
µ(y2|x2)

− 4 (B + 1/β)
√
Y

)
≥ 1

Y
exp

(
− 1

β
− 4 (B + 1/β)

√
Y

)
= C .

Let us denote by softmax(Ψ⊤
n v) the policy exp(ψ(x, y)⊤v)/

∑
y′ exp(ψ(x, y′)⊤v), for any parameter vector v and pair

(x, y) ∈ Dn × Y . Now, we are ready to prove the main result of this section.

Theorem E.8. Let πθt = softmax(Ψ⊤
n θt). Using update rule (11) with η′ ≤ n/β, for all t ≥ 1,

Vπθ∗
r (Dn)− Vπθt

r (Dn) ≤
2
√
Y (B + 1/β)

exp((βη′/n) · C · (t− 1))
,

where

C =
1

Y
exp

(
− 1

β
− 4 (B + 1/β)

√
Y

)
.

Proof. Observe that, since πθ∗ ∝ µ(y|x) exp(r(x, y)/β), we have

Vπθ∗
r (Dn)− Vπθt

r (Dn) =
1

n

∑
x∈Dn

∑
y∈Y

(
πθ∗

n
(y|x)r(x, y)− βDKL(πθ∗ ||µ)− πθt(y|x)r(x, y) + βDKL(πθt ||µ)

)
≤ 1

n

∑
x∈Dn

∥πθ∗(·|x)− πθt(·|x)∥1

+
1

n

∑
x∈Dn

−βDKL(πθ∗ ||πθ∗) + πθ∗(y|x)r(x, y) + βDKL(πθt ||πθ∗)− πθt(y|x)r(x, y)

≤ 2

n

∑
x∈Dn

∥πθ∗(·|x)− πθt(·|x)∥1 + βDKL(πθt ||πθ∗)

≤ (2Y + β)DKL(πθt ||πθ∗)
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≤ (2Y + β)

∥∥∥∥Ψ⊤
n θ

∗ −Ψnθt +
(Ψ⊤

n (θt − θ∗))⊤1

Y
1

∥∥∥∥2
∞
,

where the third inequality uses Pinsker’s inequality and the last one follows from Lemma J.8. Now, note that the optimal
softmax policy parameter θ∗ satisfies, for each (x, y) ∈ Dn,

ψ(x, y)⊤θ∗ =
1

β
(r(x, y) + log µ(y|x)) ,

by setting the gradient at (x, y) to 0. Its existence is guaranteed by the assumption that r∗ ∈ F and Lemma J.1. Thus, we
have

Vπθ∗
r (Dn)− Vπθt

r (Dn) ≤ (2Y + β)

∥∥∥∥Ψ⊤
n θ

∗ −Ψnθt +
(Ψ⊤

n (θt − θ∗))⊤1

Y
1

∥∥∥∥2
∞

= (2Y + β)

∥∥∥∥ 1β (r + logµ)−Ψ⊤
n θt +

(βΨ⊤θt − r − β logµ)⊤1

βY
1

∥∥∥∥2
∞

=
(2Y + β)

β

∥∥∥∥βΨ⊤
n θt − r − β logµ− (βΨ⊤θt − r − β logµ)⊤1

Y
1

∥∥∥∥2
∞

≤ 2

β

(2Y + β)2
√
Y (βB + 1)

exp((η′β/n)C(t− 1))
,

where the last inequality follows from Lemma E.6 and Lemma E.7.

F. Convergence of Gradient Descent for DPO (Section 5)
In this section, we will prove convergence bounds for the projected gradient descent procedure for DPO. Recall that the
projected gradient descent is defined as

θt+1 = proj
θ:∥θ∥2≤B

(
θt − η′′∇θLθ

DPO(Dn)
)
,

We begin by showing that the DPO objective satisfies the PL condition (Karimi et al., 2016) stated in Definition D.2. We
will show that the DPO objective satisfies this condition for the loglinear parametrization. First, we need to show that such
an objective has Lipschitz gradients, which holds under the assumption that the parameter vectors θ have a length of no
more than B.

Lemma F.1. The DPO objective Lθ
DPO(Dn) is Lipschitz continuous with parameter L′

1 = β exp(2β(B + J)) and has
Lipschitz gradients with parameter L′

2 = β2 exp (2β(B + J)), where

J = max
(x,yw,yl)∈Dn

β

∣∣∣∣log µ(yw|x)µ(yl|x)

∣∣∣∣ .
Proof. Note that, in order to show L-Lipschitzness, it suffices to prove that the Hessian of Lθ

DPO(Dn) has bounded
eigenvalues. Let us first compute the Hessian. Before doing that, we first simplify the gradient expression, when instantiated
for the softmax parametrization. First, given parameter vector θ, corresponding to πθ, we have

Lθ
DPO(Dn) = −E(yw,yl,x)∼Dn

[
log σ

(
β log

πθ(y
w|x)

µ(yw|x)
− β log

πθ(y
l|x)

µ(yl|x)

)]
= −E(yw,yl,x)∼Dn

[
log σ

(
β log

exp(θ⊤ψ(x, yw))∑
y∈Y exp(θ⊤ψ(x, y))

− β log
exp(θ⊤ψ(x, yl))∑
y∈Y exp(θ⊤ψ(x, y))

− β log
µ(yw|x)
µ(yl|x)

)]

= −E(yw,yl,x)∼Dn

[
log σ

(
βθ⊤(ψ(x, yw)− ψ(x, yl))− β log

µ(yw|x)
µ(yl|x)

)]
= E(yw,yl,x)∼Dn

[
log
(
1 + exp

(
βθ⊤

(
ψ(x, yw)− ψ(x, yl)

)
− J(x, yw, yl)

))]
,
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where we let

J(x, yw, yl) = β log
µ(yw|x)
µ(yl|x)

.

Based on the above, we have

∇θLθ
DPO(Dn) = ∇θE(yw,yl,x)∼Dn

[
log
(
1 + exp

(
βθ⊤

(
ψ(x, yw)− ψ(x, yl)

)
− J(x, yw, yl)

))]
=

1

n

∑
(x,yw,yl)∈Dn

β exp
(
βθ⊤(ψ(x, yw)− ψ(x, yl))− J(x, yw, yl)

)
(1 + exp (βθ⊤(ψ(x, yw)− ψ(x, yl))− J(x, yw, yl)))

(
ψ(x, yw)− ψ(x, yl)

)
,

and

∇2
θLθ

DPO(Dn) =
1

n

∑
(x,yw,yl)∈Dn

∇θ

β exp
(
βθ⊤(ψ(x, yw)− ψ(x, yl))− J(x, yw, yl)

)
(1 + exp (βθ⊤(ψ(x, yw)− ψ(x, yl))− J(x, yw, yl)))

(
ψ(x, yw)− ψ(x, yl)

)
=

1

n

∑
(x,yw,yl)∈Dn

β2 exp
(
βθ⊤(ψ(x, yw)− ψ(x, yl))− J(x, yw, yl)

)
(1 + exp (βθ⊤(ψ(x, yw)− ψ(x, yl))− J(x, yw, yl)))

2

(
ψ(x, yw)− ψ(x, yl)

) (
ψ(x, yw)− ψ(x, yl)

)⊤
.

Now, define

E(θ, x, y) = exp
(
βθ⊤(ψ(x, yw)− ψ(x, yl))− J(x, yw, yl)

)
.

Note that we have∥∥∇Lθ
DPO(Dn)

∥∥
2
≤ β exp(2β(B + J))

∥∥ψ(x, yw)− ψ(x, yl)
∥∥
2
≤ β exp(2β(B + J)) ,

and

∇2
θLθ

DPO(Dn) = β2
∑

(x,yw,yl)∈Dn

E(θ, x, y)

n (1 + E(θ, x, y))
2ψ(x)ψ(x)

⊤

⪯ β2 exp (2β(B + J))

n

∑
(x,yw,yl)∈Dn

ψ(x)ψ(x)⊤

⪯ β2 exp (2β(B + J)) Id ,

where the last inequality follows from the fact that the feature norms are bounded by 1, and thus the maximum eigenvalue of
the sample covariance matrix is no more than 1.

Next, we show that the DPO objective satisfies the PL condition under some mild assumption on the data.

Lemma F.2. Assume that, for each triple (x, yw, yl) ∈ Dn, we have that ψ(x, yw) ̸= ψ(x, yl). Then, if we let

C ′
PL =

β exp(−2β(B + J))3 (1 + exp(−2β(B + J)))

n (1 + exp(2β(B + J)))
2 min

(x,yw,yl)∈Dn

∥∥ψ(x, yw)− ψ(x, yl)
∥∥2 ,

we have

1

2

∥∥∇Lθ
DPO(Dn)

∥∥2 ≥ C ′
PL

(
Lθ

DPO(Dn)− L∗
DPO(Dn)

)
where L∗

DPO(Dn) = minθ Lθ
DPO(Dn) denotes the optimal loss value.
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Proof. Using the notation E(θ, x, y) = exp
(
βθ⊤(ψ(x, yw)− ψ(x, yl))− E(x)

)
, and noting that every quantity in the

expression below is non-negative, we have

1

2

∥∥∇θLθ
DPO(Dn)

∥∥2 ≥ β2

2n2

∑
(x,y)∈Dn

E(θ, x, y)2

(1 + E(θ, x, y))
2

∥∥ψ(x, yw)− ψ(x, yl)
∥∥2

≥ β2 exp(−2β(B + J))2

n (1 + exp(2β(B + J)))
2 min

(x,y)∈Dn

∥∥ψ(x, yw)− ψ(x, yl)
∥∥2

since −J ≤ E(x) ≤ J , and thus, exp(−2β(B + J)) ≤ E(θ, x, y) ≤ exp(2β(B + J)). On the other hand, observe that

Lθ
DPO(Dn)− L∗

DPO(Dn) = E(x,y)∼Dn

[
log (1 + E (θ, x, y))− log (1 + E(θ∗, x, y))

]
=

1

n

n∑
i=1

log
1 + E(θ, xi, yi)

1 + E(θ∗, xi, yi)

≤ 1

n

n∑
i=1

(
1 + E(θ, xi, yi)

1 + E(θ∗, xi, yi)
− 1

)

=
1

n

n∑
i=1

E(θ, xi, yi)− E(θ∗, xi, yi)

1 + E(θ∗, xi, yi)

≤ 1

n

n∑
i=1

E(θ, xi, yi)

1 + E(θ∗, xi, yi)

≤ exp(2β(B + J))

1 + exp(−2β(B + J))
.

Now, the assumption on the data implies that, there exists ξ such that

0 < ξ′ = min
(x,yw,yl)∈Dn

∥∥ψ(x, yw)− ψ(x, yl)
∥∥2 .

Using ξ′ and solving the equation

C ′
PL · exp(2β(B + J))

1 + exp(−2β(B + J))
=

β exp (−2β(B + J))
2

n (1 + exp (2β(B + J)))
2 ξ

′

for C ′
PL, we obtain

C ′
PL =

β exp(−2β(B + J))3 (1 + exp(−2β(B + J)))

n (1 + exp(2β(B + J)))
2 ξ′ . (12)

These two conditions are enough to obtain the following result.

Theorem 5.3. For every t ≥ 0, the gradient descent procedure (6) with learning rate η′′ = O
(
1/β2

)
satisfies

∥∥θt − θ∗Dn

∥∥2
ΣDn,P

≤ O

(
1

β

(
1− β

n

)t
)
.

Proof. A similar argument as the one in the proof of Theorem 5.1 implies that, for every t ≥ 1 we have:

Lθt
DPO(Dn)− L∗

DPO(Dn) ≤
(
1− C ′

PL

L′
2

)t (
Lθ0

DPO(Dn)− L∗
DPO(Dn)

)
,
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where L′
1 = β exp(2β(B+ J)) is the Lipschitz constant and C ′

LPL = BCPL. Using the expression for the Hessian derived
in the proof of Lemma F.1 we have, for any non-zero vector v, that

v⊤∇2
θLθ

DPO(Dn)v ≥ β2 exp (−β (B + J))

1 + exp(β(B + J))
∥v∥2ΣDn,P

.

Thus, L∗
DPO(Dn) is β2 exp(−β(B+J))

1+exp(β(B+J)) -strongly convex with respect to the semi-norm ∥·∥ΣD
around θ∗Dn

, where θ∗Dn
is a

parameter vector that achieves L∗
DPO(Dn). for any θ, we have

Lθ
DPO(Dn)− L∗

Dn
≥
〈
∇θL∗

DPO(Dn), θ − θ∗Dn

〉
+ β2 exp (−β (B + J))

2(1 + exp(β(B + J)))
∥θ − θ∗∥2ΣDn,P

≥ β2 exp (−β (B + J))

2(1 + exp(β(B + J)))
∥θ − θ∗∥2ΣDn,P

Therefore, using the upper bound on the loss, we finally obtain, for any iterate θt of GD,

∥∥θt − θ∗Dn

∥∥2
ΣDn,P

≤ O

(
Lθ0

DPO(Dn)− L∗
Dn

β2

(
1− β

n

)t
)

≤ O

(
1

β

(
1− β

n

)t
)

G. Non-realizable Rewards (Section 6)
In this section, we will derive the proofs of the two results from Section 6. We restate them for convenience.

Theorem 6.1. Let δ > 0. Suppose that Assumption 6.1 holds. Then, with probability at least 1 − δ, we have G
(
πθ̂
)
≤

D
(
πθ̂
)
+ Θ̃

(
ΛR

√
dR/n

)
+ 2ϵapp.

Proof. From Theorem 4.1, we have

G(πθ̂) = D
(
πθ̂
)
+
〈
d∗ρ − d

π
θ̂

ρ , r∗ − rω̂
〉

= D
(
πθ̂
)
+
〈
d∗ρ − d

π
θ̂

ρ , r∗ − rω∗
〉
+
〈
d∗ρ − d

π
θ̂

ρ , rω∗ − rω̂
〉

≤ D
(
πθ̂
)
+ 2max

x,y
|r∗(x, y)− rω∗(x, y)|+O

(
ΛR

√
dR
n

)

≤ D
(
πθ̂
)
+O

(
ΛR

√
dR
n

)
+ 2ϵapp ,

where for the first inequality we have used Cauchy-Schwarz, while for the last inequality we have used Theorem 4.1 and
Condition 6.1.

Next, we prove the analogous result for DPO.

Theorem 6.2. Let δ > 0. Suppose that Assumption 6.1 and the condition of Lemma 4.1 hold. Then, with probability at least
1− δ, we have G

(
πθ̃
)
≤ D

(
πθ̃
)
+Θ(ΛP dP /(βn)) + min{2ϵapp, O (βDKL (πθ∗ ||π∗))} .

Proof. Since the ground-truth reward function is not linear, we are not guaranteed that the optimal policy representable in
terms of the reward is loglinear. Let π∗ denote the optimal policy for the KL-regularized problem with respect to r∗, and let
πθ∗ be the loglinear approximation of π∗.

G
(
πθ̃
)
= V opt

r∗ (ρ)− V
π
θ̃

r∗ (ρ)
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= D
(
πθ̃
)
+
(
Vπ∗

r∗ (ρ)− Vπ
θ̃

r∗ (ρ)
)

= D
(
πθ̃
)
+ Ex∼ρ,y∼π∗(·|x)

[
r∗(x, y)− β log

π∗(y|x)
µ(y|x)

]
− Ex∼ρ,y∼π

θ̃
(·|x)

[
r∗(x, y)− β log

πθ̃(y|x)
µ(y|x)

]
= D

(
πθ̃
)
+ Ex∼ρ,y∼π∗(·|x)

[
β log

π∗(y|x)
µ(y|x)

+ β logZ(x)− β log
π∗(y|x)
µ(y|x)

]
− Ex∼ρ,y∼π

θ̃
(·|x)

[
β log

π∗(y|x)
µ(y|x)

+ β logZ(x)− β log
πθ̃(y|x)
µ(y|x)

]
= D

(
πθ̃
)
+ Ex∼ρ,y∼π

θ̃
(·|x)

[
β log

πθ̃(y|x)
µ(y|x)

− β log
π∗(y|x)
µ(y|x)

]
= D

(
πθ̃
)
+ Ex∼ρ,y∼π

θ̃
(·|x)

[
β log

πθ̃(y|x)
µ(y|x)

− β log
πθ∗(y|x)
µ(y|x)

]
+ Ex∼ρ,y∼π

θ̃
(·|x)

[
β log

πθ∗(y|x)
µ(y|x)

− β log
π∗(y|x)
µ(y|x)

]
= D

(
πθ̃
)
+Θ

(
Λ(dP + 1)

βn

)
+ Ex∼ρ,y∼π

θ̃
(·|x) [β log πθ∗(y|x)− β log π∗(y|x)]

= D
(
πθ̃
)
+Θ

(
Λ(dP + 1)

βn

)
+ β

∑
x

ρ(x)
∑
y

πθ̃(y|x)
πθ∗(y|x)

log
πθ∗(y|x)
π∗(y|x)

≤ D
(
πθ̃
)
+Θ

(
Λ(dP + 1)

βn

)
+ βY exp(2B)DKL (πθ∗ ||π∗) .

On the other hand, using the same idea as in the proof of Theorem 4.2, we have

G
(
πθ̃
)
= V opt

r∗ (ρ)− V
π
θ̃

r∗ (ρ)

= D
(
πθ̃
)
+
(
Vπθ∗
r∗ (ρ)− Vπ

θ̃
r∗ (ρ)

)
= D

(
πθ̃
)
+
(
Vπθ∗
r∗ (ρ)− Vπθ∗

rω∗ (ρ)
)
+
(
Vπθ∗
rω∗ (ρ)− Vπ

θ̃
rω∗ (ρ)

)
+
(
Vπ

θ̃
rω∗ (ρ)− Vπ

θ̃
r∗ (ρ)

)
= D

(
πθ̃
)
+Θ

(
Λ(dP + 1)

βn

)
+ E(x,y)∼dθ∗

ρ
[r∗(x, y)− rω∗(x, y)] + E(x,y)∼dθ̃

ρ
[rω∗(x, y)− r∗(x, y)]

≤ D
(
πθ̃
)
+Θ

(
Λ(dP + 1)

βn

)
+ E(x,y)∼dθ∗

ρ
[r∗(x, y)− rω∗(x, y)] + 2max

x,y
|r∗(x, y)− rω∗(x, y)|

≤ D
(
πθ̃
)
+Θ

(
Λ(dP + 1)

βn

)
+ 2ϵapp ,

where the fourth equality follows from Theorem 4.2 and the last inequality from Condition 6.1.

H. The DPO Extension to MDPs (Section 7)
First, we start with MDP setting preliminaries.

H.1. Deterministic Markov Decision Processes

An infinite-horizon discounted deterministic Markov decision process (MDP) is a mathematical object M =
(X ,Y, T, r∗, γ, ρ), where X denotes the state space, Y denotes the action space, both of which are assumed to be fi-
nite with cardinalities X and Y , respectively. T : X × Y → X denotes the deterministic transition function, where T (x, y)
denotes the next state after taking action y in state x. The reward function is denoted by r∗ : X × Y → [0, 1]. Finally,
γ ∈ [0, 1) denotes the discount factor, while ρ ∈ ∆(X ) denotes the initial state distribution.

Policies π are mappings from states to distributions over actions, that is, π : X → ∆(Y). Given policy π, the state occupancy
measure of state x with respect to initial state x0 is given as

dπx0
(x) = (1− γ)

∑
t≥0

γtP (xt = x|x0, π) ,
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while the state-action occupancy measure is given as dπx0
(x, y) = dπx0

(x)π(y|x). We also write dπρ (x, y) = Ex0∼ρ[dx0
(x, y)].

Furthermore, given policy π and an arbitrary reward function r, the value function of policy π with respect to reward r is
defined as

V π
r (x) = E

[ ∞∑
t=0

γtr(xt, yt)
∣∣∣x0 = x, π

]
,

and the action-value function is defined as

Qπ
r (x, y) = E

[ ∞∑
t=0

γtr(xt, yt)
∣∣∣x0 = x, y0 = y, π

]
,

for every state-action pair (x, y). We denote by V π
r (ρ) = Ex∼ρ[V

π
r (x)] the expected value function over the initial

distribution.

H.2. DPO for MDPs

A direct extension of DPO to the MDP setting is not straightforward. To understand this, it is enough to see that the optimal
policy-to-reward mapping in this case is not linear. Fix a reward function r. The gradient of the KL-regularized objective
with respect to r is given as

∇θVθ
r (ρ) =

1

1− γ

∑
x

dπθ
ρ (x)

∑
y

πθ(y|x)
(
r(x, y) + γVπθ (T (x, y))− β log

πθ(y|x)
µ(y|x)

)
ψθ(x, y) ,

where ψθ(x, y) = ψ(x, y)−Ey′∼πθ(·|x)[ψ(x, y
′)]. See Appendix I for derivations. What complicates things is the occupancy

measure dπρ , which is non-linearly dependent on policy π, and the gradient of the occupancy measure. To allow for the
change of variables to carry through in this case, we utilize the dual formulation of Problem (P3.2):

max
dρ

∑
x,y

dρ(x, y)r(x, y)− β
∑
x,y

dρ(x, y) log
dρ(x, y)

dµρ (x, y)
(P3.2’)

s.t.
∑
y

dρ(x, y) = (1− γ)ρ(x) + γ
∑
x′,y′

1 (x = T (x′, y′)) dρ(x
′, y′),∀x ∈ X ,

where we have used that

V π
r (ρ) =

∑
x,y

dπρ (x, y)r(x, y) ,

and also taken the KL-divergence of the occupancy measures, instead of the actual policies. This is a convex program and
thus any stationary points are optimal. The Lagrangian of the above problem can be written as

L(dρ, α) =
∑
x,y

dρ(x, y)

(
r∗(x, y)− β log

dρ(x, y)

dµρ (x, y)

)

+
∑
x

α(x)

∑
y

dρ(x, y)− (1− γ)ρ(x)− γ
∑
x′,y′

1(x = T (x′, y′))dρ(x
′, y′)


= −β

∑
x,y

dρ(x, y) log
dρ(x, y)

dµρ (x, y)
− (1− γ)

∑
x

ρ(x)α(x)

+
∑
x,y

dρ(x, y)

r∗(x, y)− γ
∑
x′

1(x = T (x′, y′))α(x′) + α(x)︸ ︷︷ ︸
eα(x,y)

 ,
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Then, given (x, y), the gradient of the Lagrangian with respect to dρ(x, y) is

∇dρ(x,y)L(dρ, α) = −β
(
log

dρ(x, y)

dµρ (x, y)
− 1

)
+ eα(x, y) ,

which, when set to zero, yields

dρ(x, y) = dµρ (x, y) exp

(
1

β
eα(x, y)

)
exp(−1) .

Primal feasibility implies that
∑

x,y dρ(x, y) = 1, thus, our choice of α should satisfy such condition. Letting Z = exp(1),
and α∗ be the optimal Lagrange multiplier, we have

d∗ρ(x, y) =
1

Z
dµρ (x, y) exp

(
1

β
eα∗(x, y)

)
. (13)

Writing the expression for the reward function, we get

r∗(x, y) = β log
d∗ρ(x, y)

dµρ (x, y)
+ β + γ

∑
x′

1(x = T (x′, y′))α∗(x′)− α∗(x) .

Now, observe that, given a trajectory τ = (x0, y0, x1, . . .), we can write the discounted return using the above expression
and obtain

∞∑
t=0

γtr∗(xt, yt) =

∞∑
t=0

γt

(
β log

d∗ρ(xt, yt)

dµρ (xt, yt)
+ β + γ

∑
x

1(x = T (x′, y′))α∗(x)− α∗(xt)

)

=

∞∑
t=0

γt
(
β log

d∗ρ(xt, yt)

dµρ (xt, yt)
+ β + γα∗(xt+1)− α∗(xt)

)
(14)

=

∞∑
t=0

γt
(
β log

d∗ρ(xt, yt)

dµρ (xt, yt)
+ β − α∗(x0)

)
, (15)

where for Equation (14) we have used the fact that the transitions are deterministic, and for Equation (15) note that the terms
α∗(x) cancel each other out.

Now, let us get back to the BT preference model for MDPs. Given a dataset Dn of pairs of trajectories, each pair of which
starts from the same initial state, we can express the MLE loss directly in terms of the occupancy measures using the above
derivation as follows:

LDPO(dρ) = −E(τw,τ l)∼Dn

[
log σ

( ∞∑
t=0

γtβ log
dρ(x

w
t , y

w
t )

dµρ (xwt , y
w
t )

−
∞∑
t=0

γtβ log
dρ(x

l
t, y

l
t)

dµρ (xlt, y
l
t)

)]
,

where we have used the fact that the terms β and α∗(x0) cancel out.

Now, note that the minimizer to the above loss may not satisfy the Bellman flow constraints of Problem (P3.2’). Thus, we
need to restrict the domain of the problem to the following set

B =

{
d ∈ ∆(X × Y) :

∑
y

d(x, y) = (1− γ)ρ(x) + γ
∑
x′,y′

1 (x = T (x′, y′)) d(x′, y′),∀x ∈ X
}

H.3. DPO for MDPs with Loglinear Occupancy Measures

Similar to the contextual bandit setting, we want to write the DPO loss such that it resembles logistic regression. For
loglinear occupancy measures, as defined in Definition 7.1, with parameter set restricted to

Θ′ := {θ ∈ RdM : dπθ
ρ ∈ B} ,
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we can write the loss so that it resembles logistic regression. Note that the domain of θ is restricted only to those parameters
which imply that dπθ

ρ is an occupancy measure with respect to the underlying MDP. For this case, the DPO loss becomes

LDn
(θ) = −E(τw,τ l)∼Dn

[
log σ

(
βθ⊤

( ∞∑
t=0

γt
(
ψ(xwt , y

w
t )− ψ(xlt, y

l
t)
))

+K(τw, τ l)

)]

where

K(τw, τ l) =

∞∑
t=0

γt log
dµρ (x

l
t, y

l
t)

dµρ (xwt , y
w
t )

.

Given the learned occupancy measure dπθ
ρ , one can finally compute an optimal policy, for each state-action pair, as

πθ(y|x) =
dπθ
ρ (x, y)∑
y d

πθ
ρ (x, y)

.

Note that, in general, the quantity K(τw, τ l) is not easy to compute as it requires access to the occupancy measure with
respect to µ. However, in practice, K(τw, τ l) can be treated as a hyperparameter of the problem and tuned accordingly.

I. Gradient Expression for KL-regularized Objective in MDPs
In this section, we derive the gradient for the loglinear policy class. We rewrite the problem below for convenience.

max
θ

Ex∼ρ

[ ∞∑
t=0

γt (r(xt, yt)− βDKL (πθ(·|xt)||µ(·|xt)))
∣∣∣yt ∼ πθ(·|xt)

]

Lemma I.1. Let

Vπθ
r (x) = Ex∼ρ,yt∼πθ(·|xt)

∑
t≥0

γt
(
r(xt, yt)− β log

πθ(yt|xt)
µ(yt|xt)

)
and

Qπθ
r (x, y) = r(x, y) + γVπθ

r (T (x, y)) .

The gradient expression for Vπθ (ρ) is given by

∇θVθ
r (ρ) =

1

1− γ

∑
x

dπθ
ρ (x)

∑
y

πθ(y|x)
(
Qπθ

r (x, y)− β log
πθ(y|x)
µ(y|x)

)
ψθ(x, y) .

Proof. Note that we have

Vπθ
r (ρ) = Ex∼ρ

[∑
y

πθ(y|x)
(
Qπθ

r (x, y)− β log
πθ(y|x)
µ(y|x)

)]
.

Thus, we can write

∇θVπθ
r (ρ) =

∑
x,y

ρ(x)

(
∇θπθ(y|x)

(
Qπθ

r (x, y)− β log
πθ(y|x)
µ(y|x)

)

+ πθ(y|x)
(
∇θQπθ

r (x, y)− µ(y|x)
πθ(y|x)

∇θπθ(y|x)
))

=
∑
x,y

ρ(x)

(
πθ(y|x)

(
Qπθ

r (x, y)− β log
πθ(y|x)
µ(y|x)

− 1

)
ψθ(x, y) + πθ(y|x)∇θQπθ

r (x, y)

)
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=
∑
x,y

ρ(x)

(
πθ(y|x)

(
Qπθ

r (x, y)− β log
πθ(y|x)
µ(y|x)

)
ψθ(x, y)

)
+ γ

∑
x,y

ρ(x)πθ(y|x)∇θVπθ
r (T (x, y))

=
1

1− γ

∑
x

dπθ
ρ (x)

∑
y

πθ(y|x)
(
Qπθ

r (x, y)− β log
πθ(y|x)
µ(y|x)

)
ψθ(x, y) ,

where the second equality follows from the derivation of the gradient of loglinear policies (see the proof of Lemma E.1,
while the third equality follows from the fact that Ey∼πθ(·|x)[ψθ(x, y)] = 0, for each x ∈ X .

J. Technical Lemmas
The purpose of this section is to present various technical results that are useful for our paper. Let us denote by Φ ∈ RdR×XY

and Ψ ∈ RdP×XY the reward and policy feature matrices with columns ϕ(x, y) and ψ(x, y), respectively.

Lemma J.1. Assume that r∗ ∈ F , π∗ ∈ Π and µ ∈ Π, for some π∗
r∗ ∈ argmaxπ Vπ(ρ). Furthermore, assume that the

columns space of Φ is a subspace of the column space of Ψ. Then, there exists θ∗ ∈ Θ, for which πθ∗ maximizes the
objective of (P1.2) and that can be represented in terms of the ground-truth reward function, i.e. π∗

r∗(y|x) = πθ∗(y|x) ∝
µ(y|x) exp(r∗(x, y)/β), for all (x, y).

Proof. Let x ∈ X . From Equation (1) we have that

π∗
r∗(x, y) ∝ µ(y|x) exp

(
1

β
r∗(x, y)

)
∝ exp

(
θ⊤µ ψ(x, y) + ϕ(x, y)⊤ω∗) ,

for some π∗
r∗ ∈ argmaxπ Vπ

r∗(ρ), where the second relation holds due to the assumptions on the policy class and reward
class. Thus, if we can find a θ∗ ∈ RdP such that, for all (x, y), we have

exp
(
ψ(x, y)⊤θ∗

)
= exp

(
θ⊤µ ψ(x, y) + ϕ(x, y)⊤ω∗) ,

then we have shown that the optimal regularized policy belongs to the loglinear class. For the above to hold, we equivalently
need

Ψ⊤ (θ∗ − θµ)− Φ⊤ω∗ = 0 .

The above equation has a solution for θ∗ whenever the column space of Φ is contained in the column space of Ψ.

Lemma J.2. Assume that r∗ ∈ F , dµρ ∈ Π′ and dπ
∗
r∗

ρ ∈ Π′, for some optimal dπ
∗
r∗

ρ . Furthermore, assume that the column
space of Φ+ Φπ∗

r∗
is contained in the column space of Ψ, where Φπ∗

r∗
∈ RdR×XY has columns

γE

∑
t≥0

γtϕ(xt, yt)
∣∣∣x0 = x, π∗

r∗

− E

∑
t≥0

γtϕ(xt, yt)
∣∣∣x0 = x, y0 = T (x, y), π∗

r∗

 .

Then, for finite MDPs with deterministic transitions, there exists θ∗ such that dπ
∗
r∗

ρ (x, y).

Proof. From Equation (13) we have

d∗ρ(x, y) =
1

Z
dµρ (x, y) exp

(
1

β
eα∗(x, y)

)
,

where

eα(x, y) = r∗(x, y) + γα∗(T (x, y))− α∗(x) ,
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is the advantage function when using α∗ and α∗ denote the optimal dual variables for Problem (P3.2’). As shown in (Lee
et al., 2021), these variables correspond to the optimal value function with respect to r∗. Thus, we have

eα∗(x, y) = r∗(x, y) + γα∗(T (x, y))− α∗(x)

= ϕ(x, y)⊤ω∗ + γE

∑
t≥0

γtr∗(x, y)
∣∣∣x0 = x, π∗

r∗

− E

∑
t≥0

γtr∗(x, y)
∣∣∣x0 = x, y0 = T (x, y), π∗

r∗


= ϕ(x, y)⊤ω∗ + γE

∑
t≥0

γtϕ(x, y)⊤ω∗
∣∣∣x0 = x, π∗

r∗

− E

∑
t≥0

γtϕ(x, y)⊤ω∗
∣∣∣x0 = x, y0 = T (x, y), π∗

r∗


=

ϕ(x, y)− γE

∑
t≥0

γtϕ(x, y)
∣∣∣x0 = x, π∗

r∗

− E

∑
t≥0

γtϕ(x, y)
∣∣∣x0 = x, y0 = T (x, y), π∗

r∗

⊤

ω∗ .

Thus, we have

d∗ρ(x, y) =
1

Z
dµρ (x, y) exp

(
1

β
eα∗(x, y)

)
∝ exp

(
θ⊤µ ψ(x, y)

+ (ω∗)⊤

ϕ(x, y) + γE

∑
t≥0

γtϕ(x, y)
∣∣∣x0 = x, π∗

r∗

− E

∑
t≥0

γtϕ(x, y)
∣∣∣x0 = x, y0 = T (x, y), π∗

r∗

 .

For the above to hold, we equivalently need

Ψ⊤ (θ∗ − θµ)−
(
Φ+ Φπ∗

r∗

)⊤
ω∗ = 0 .

The above has a solution whenever the column space of Φ+ Φπ∗
r∗

is contained in the column space of Ψ .

Next, we will prove a result that connects the suboptimality gap with the gap in terms of the KL-regularized objectives.

Lemma J.3. For any θ, we have

βDKL (πθ∗ ||µ)− βDKL (πθ||µ) ≤ D(πθ) ≤ βDKL
(
πopt
r∗ ||µ

)
− βDKL (πθ||µ) ,

Proof. Note that, by definition,

G (πθ) = V opt
r∗ (ρ)− V πθ

r∗ (ρ)

=
(
V opt
r∗ (ρ)− Vπθ∗

r∗ (ρ)
)
+ (Vπθ∗

r∗ (ρ)− Vπθ
r∗ (ρ)) + (Vπθ

r∗ (ρ)− V πθ
r∗ (ρ))

≤
(
V opt
r∗ (ρ)− Vπopt

r∗
r∗ (ρ)

)
+ (Vπθ∗

r∗ (ρ)− Vπθ
r∗ (ρ)) + (Vπθ

r∗ (ρ)− V πθ
r∗ (ρ))

≤ βDKL
(
πopt
r∗ ||µ

)
− βDKL (πθ||µ) + (Vπθ∗

r∗ (ρ)− Vπθ
r∗ (ρ)) .

Similarly,

G (πθ) = V opt
r∗ (ρ)− V πθ

r∗ (ρ)

=
(
V opt
r∗ (ρ)− Vπθ∗

r∗ (ρ)
)
+ (Vπθ∗

r∗ (ρ)− Vπθ
r∗ (ρ)) + (Vπθ

r∗ (ρ)− V πθ
r∗ (ρ))

≥ (V πθ∗
r∗ (ρ)− Vπθ∗

r∗ (ρ)) + (Vπθ∗
r∗ (ρ)− Vπθ

r∗ (ρ)) + (Vπθ
r∗ (ρ)− V πθ

r∗ (ρ))

≥ βDKL (πθ∗ ||µ)− βDKL (πθ||µ) + (Vπθ∗
r∗ (ρ)− Vπθ

r∗ (ρ)) .

The result follows.

Next, we will control the quantity D(πθ) for the DPO setting.
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Lemma J.4. With probability at least 1− δ, we have

D(πθ̃) ≤ βDKL(π
opt
r∗ , πθ∗) +

ΛPUdP
SPn

√
log(4/δ)

2n

= β
(
DKL

(
πopt
r∗ ||µ

)
−DKL (πθ∗ ||µ)

)
+O

(
dP
n3/2

)
.

Proof. Recall that, for any θ, we have defined

DKL (πθ||µ) =
∑
x

ρ(x)
∑
x,y

πθ(y|x) log
πθ(y|x)
µ(y|x)

.

First, note that

DKL (πθ∗ ||µ)−DKL (πθ||µ) =

(
DKL (πθ∗ ||µ)− 1

n

∑
x∈D

DKL

(
πθ∗

Dn
||µ
))

+

(
1

n

∑
x∈D

DKL

(
πθ∗

Dn
||µ
)

− 1

n

∑
x∈D

DKL
(
πθ̃||µ

))
+

(
1

n

∑
x∈D

DKL
(
πθ̃||µ

)
−DKL (πθ||µ)

)

=

(
DKL (πθ∗ ||µ)− 1

n

∑
x∈D

DKL

(
πθ∗

Dn
||µ
))

+

(
1

n

∑
x∈D

DKL
(
πθ̃||µ

)
−DKL (πθ||µ)

)
,

where the second equality follows from the exact optimization assumption. Note that the two summands above are deviations
from means. If we can show that each individual quantity is bounded, then we can apply Hoeffding bounds. To that end,
first, note that

DKL (πθ∗ ||µ) =
∑
x

ρ(x)
∑
y

πθ∗(y|x) log πθ
∗(y|x)
µ(y|x)

=
∑
x

ρ(x)
∑
y

πθ∗(y|x) log
µ(y|x) exp

(
1
β r

∗(x, y)
)

µ(y|x)

=
1

β

∑
x

ρ(x)
∑
y

πθ∗(y|x)r∗(x, y) ≤ 1

β
,

since the reward cannot be more than 1. Similarly, for every x ∈ D, we have

DKL
(
πθ̃||µ

)
= DKL

(
πθ∗

Dn
||µ
)
=
∑
x

ρ(x)
∑
y

πθ∗
Dn

(y|x) log
µ(y|x) exp

(
1
β r

∗(x, y)
)

µ(y|x)

=
1

β

∑
x

ρ(x)
∑
y

πθ∗(y|x)r∗(x, y) ≤ 1

β
.

For other contexts x ̸∈ D, such a relation does not hold. Thus, we take another approach. We show that, for such points, the
KL divergence between the learned policy and the sampling policy cannot be too far away from that between the optimal
policy and the sampling policy.∣∣∣DKL (πθ∗ ||µ)−DKL

(
πθ∗

Dn
||µ
)∣∣∣ = ∣∣∣∣∣∑

x

ρ(x)
∑
y

πθ∗(y|x) log πθ
∗(y|x)
µ(y|x)

−
∑
x,y

πθ∗
Dn

(y|x) log
πθ∗

Dn
(y|x)

µ(y|x)

∣∣∣∣∣
=

∣∣∣∣∣∑
x

ρ(x)
∑
y

πθ∗(y|x)
(
log

πθ∗(y|x)
πθ∗(y|x)

+ log exp

(
1

β
r∗(x, y)

))

−
∑
x,y

πθ∗
Dn

(y|x)

(
log

πθ∗
Dn

(y|x)
πθ∗(y|x)

+ log exp

(
1

β
r∗(x, y)

)) ∣∣∣∣∣
≤ 1

β

∣∣∣(V πθ∗
r∗ (ρ)− V

πθ∗Dn (ρ)
)
−DKL

(
πθ∗ ||πθ∗

Dn

)∣∣∣
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≤ 1

β
+DKL

(
πθ∗ ||πθ∗

Dn

)
.

Now, for the last term of the right-hand side, we have

DKL

(
πθ∗ ||πθ∗

Dn

)
=
∑
x

ρ(x)
∑
y

πθ∗(y|x)
(
log πθ∗(y|x)− log πθ∗

Dn
(y|x)

)
=
∑
x

ρ(x)
∑
y

πθ∗(y|x)

(〈
ψ(x, y), θ∗ − θ∗Dn

〉
+ log

∑
x′,y′ exp

(
ψ(x′, y′)⊤θ∗Dn

)∑
x′,y′ exp (ψ(x′, y′)⊤θ∗)

)

≤ ΛPUdP
SPβn

,

where the last inequality follows from the same arguments as in the proof of Theorem 4.2. Going back to the original
expression, note that, for any given x ∈ X , we have

0 ≤ DKL (πθ∗ ||µ) ≤ 1

β
, and 0 ≤ DKL

(
πθ∗

Dn
||µ
)
≤ 1

β
+

ΛPUdP
SPβn

.

Thus, by Hoeffding’s inequality, for any δ ≥ 0, with probability at least 1− δ, we have∣∣∣∣∣DKL (πθ∗ ||µ)− 1

n

∑
x∈D

DKL

(
πθ∗

Dn
||µ
)∣∣∣∣∣ ≤ 1

β

√
log(4/δ)

2n
,

and ∣∣∣∣∣ 1n ∑
x∈D

DKL
(
πθ̃||µ

)
−DKL (πθ||µ)

∣∣∣∣∣ ≤
(
1

β
+

ΛPUdP
SPβn

)√
log(4/δ)

2n
,

which implies that

−
(
2

β
+

ΛPUdP
SPβn

)√
log(4/δ)

2n
≤ DKL (πθ∗ ||µ)−DKL (πθ||µ) ≤

(
2

β
+

ΛPUdP
SPβn

)√
log(4/δ)

2n
.

On the other hand, note that

DKL
(
πopt
r∗ ||µ

)
−DKL

(
πθ̃||µ

)
=
(
DKL

(
πopt
r∗ ||µ

)
−DKL (πθ∗ ||µ)

)
+
(
DKL (πθ∗ ||µ)−DKL

(
πθ̃||µ

))
≤
(
DKL

(
πopt
r∗ ||µ

)
−DKL (πθ∗ ||µ)

)
+

(
2

β
+

ΛPUdP
SPβn

)√
log(4/δ)

2n
.

Next, we prove some useful properties of the log-exp-sum function.

Lemma J.5. The function defined as

A(θ) =
∑
x

ρ(x) log
∑
x,y

exp
(
θ⊤ψ(x, y)

)
.

is 1-Lipschitz and 2-smooth. Moreover, if the features are sampled from a 0-mean distribution and span RdP , then there
exists κ > 0, such that A(θ) is κ-strongly convex.

Proof. Let θ ∈ RdP . Note that

∇θA(θ) =
∑
x

ρ(x)

∑
y exp(ψ(x, y)

⊤θ)∑
y′ exp(ψ(x, y′)⊤θ)

ψ(x, y′)
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=
∑
x

ρ(x)
∑
y

πθ(y|x)ψ(x, y)

≤ max
x,y

∥ψ(x, y)∥2

≤ 1 .

On the other hand, the Hessian of A(θ) is

∇2
θA(θ) =

∑
x

ρ(x)
∑
y

∇θπθ(y|x)ψ(x, y)

=
∑
x

ρ(x)
∑
y

πθ(y|x)
(
ψ(x, y)− Ey′∼πθ(·|x)[ψ(x, y

′)]
)
ψ(x, y)⊤

= Ex∼ρ,y∼πθ(·|x)
[
ψ(x, y)ψ(x, y)⊤

]
− Ex∼,ρ,y∼πθ(·|x)[ψ(x, y)]Ex∼ρ,y∼πθ(·|x)[ψ(x, y)]

⊤

= Ex∼ρ,y∼πθ(y|x)

[
(ψ(x, y)− Eθ [ψ(x, y)]) (ψ(x, y)− Eθ [ψ(x, y)])

⊤
]
.

By assumption on the feature mapping, we have that∥∥∇2
θA(θ)

∥∥
2
≤ max

x,y

∥∥∥(ψ(x, y)− Eθ [ψ(x, y)]) (ψ(x, y)− Eθ [ψ(x, y)])
⊤
∥∥∥
2

≤ max
x,y

∥ψ(x, y)− Eθ[ψ(x, y)]∥2

≤ 2max
x,y

∥ψ(x, y)∥2 = 2 .

Therefore, the function A(θ) is 2-smooth in θ. For strong convexity, let ψ be sampled from a 0-mean bounded distribution.
Note that, for any non-zero vector in RdP , we have

z⊤∇2
θA(θ)z = Ex∼ρ,y∼πθ(·|x)

[
z⊤ψ(x, y)ψ(x, y)⊤z

]
≥ min

θ,x,y
πθ(·|x)

∑
x,y

(ψ(x, y)⊤z)2

≥ C3

∑
x,y

(ψ(x, y)⊤z)2 ,

for a positive C3, since πθ is in the loglinear class, for every θ, and using Lemma E.7. Now, note that, if z can be expressed
as a linear combination of {ψ(x, y)}x,y, the summation cannot be zero for non-zero z. Thus, if {ψ(x, y)}x,y spans RdP ,
that is, the feature matrix is full rank, then there exists an absolute positive constant κ, such that we have∥∥∇2

θA(θ)
∥∥
2
≥ κ > 0 .

Thus, the function A(θ) is κ-strongly convex.

Lemma J.6. In general, the norms of the gradient and Hessian for the loss of tabular DPO are unbounded from above.

Proof. Observe that, given policy π and (x, yw) ∈ D, we have

∇π(yw|x)LD(π) =
β

n

(
1− σ

(
β log

π(yw|x)
µ(yw|x)

− β log
π(yl|x)
µ(yl|x)

))
1

π(yw|x)
.

On the other hand, for the second derivative with respect to π(yw|x), we have the following. First, let

f(π(yw|x)) = β log
π(yw|x)
µ(yw|x)

− β log
π(yl|x)
µ(yl|x)

.

We have that ∇π(yw|x)f(π(y
w|x)) = β/π(yw|x). Now, observe that

∇2
π(yw|x)LD(π) =

β

n
∇π(yw|x)

exp(f(π(yw|x)))
π(yw|x)(1 + exp(f(π(yw|x))))
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=
β

n

(
β

π(yw|x) exp (f(π(y
w|x)))π(yw|x)(1 + exp(f(π(yw|x))))

(π(yw|x)(1 + exp(f(π(yw|x)))))2

)

− β

n

exp (f(π(yw|x)))
(
(1 + exp(f(π(yw|x)))) + π(yw|x) β

π(yw|x) exp (f(π(y
w|x)))

)
(π(yw|x)(1 + exp(f(π(yw|x)))))2


=
β
(
(β − 1) exp(f(π(yw|x)))(1 + exp(f(π(yw|x))))− β exp(f(π(yw|x)))2

)
n (π(yw|x)(1 + exp(f(π(yw|x)))))2

.

The above numerator is not always non-negative, as solving for exp(f(π(yw|x))) will show. Moreover, neither the norm of
the gradient nor the operator norm of the Hessian can be upper-bounded in general, due to the presence of π(yw|x) in the
denominator.

Theorem J.7 (Theorem 1.(c) of (Shah et al., 2016)). For the BT preference model, B-bounded weight vector and sample
size n ≥ O

(
tr(Σ†)/β2B2

)
, where Σ denotes the Laplacian with respect to features, the maximum likelihood estimator

satisfies the minimax bounds

Ω

(
d

βn

)
≤
∥∥∥θ̃ − θ∗

∥∥∥2
Σ
≤ O

(
d

βn

)
.

Lemma J.8 (Lemma 27 of (Mei et al., 2020)). Let πθ = softmax(Ψθ) and πθ′ = softmax(Ψθ′). Then, for any constant
c, we have

DKL(πθ||πθ′) ≤ 1

2

∥∥Ψθ −Ψθ′ − c⊤1
∥∥2 .

42


