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Abstract

We investigate parameter-efficient fine-tuning
(PEFT) methods that can provide good accuracy
under limited computational and memory budgets
in the context of large language models (LLMs).
We present a new PEFT method called Robust
Adaptation (RoSA) inspired by robust principal
component analysis that jointly trains low-rank
and highly-sparse components on top of a set of
fixed pretrained weights to efficiently approxi-
mate the performance of a full-fine-tuning (FFT)
solution. Across a series of challenging gener-
ative tasks such as grade-school math and SQL
query generation, which require fine-tuning for
good performance, we show that RoSA outper-
forms LoRA, pure sparse fine-tuning, and alterna-
tive hybrid methods at the same parameter bud-
get, and can even recover the performance of
FFT on some tasks. We provide system sup-
port for RoSA to complement the training algo-
rithm, specifically in the form of sparse GPU ker-
nels which enable memory- and computationally-
efficient training, and show that it is also compati-
ble with low-precision base weights, resulting in
the first joint representation combining quantiza-
tion, low-rank and sparse approximations. Our
code is available at https://github.com/
IST-DASLab/RoSA.

1. Introduction
The advances brought about by large language models
(LLMs) come with very large computational and memory
costs, especially for training such models from scratch. In
this context, fine-tuning LLMs using limited data has be-
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<elvir.crncevic@ista.ac.at>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

come an effective and popular approach to improve perfor-
mance on specific tasks, e.g. (Wei et al., 2021; Ouyang et al.,
2022; Wang et al., 2022a; Liu et al., 2022), or adapt LLMs
to better fit expected user behavior (Askell et al., 2021; Bai
et al., 2022). Yet, full fine-tuning of all LLM parameters
(FFT), can be extremely expensive, especially in terms of
memory cost, rendering this process prohibitive.

Parameter-Efficient Fine-Tuning (PEFT) methods address
this issue by allowing users to optimize only over a restricted
set of parameters, relative to the original model. On the one
hand, this allows partial accuracy recovery relative to FFT,
at a fraction of its computational and memory cost. An
extremely popular recent instance of PEFT in the context
of LLMs is given by the Low-Rank Adaptation (LoRA)
family of methods (Hu et al., 2021), which train low-rank
“adapter” layers for a selection of the model layers. LoRA
methods are based on the intuition that the fine-tuning up-
dates of pre-trained LLMs have low “intrinsic rank” during
specialization to a sub-task, which allow these updates to
be well-approximated by adapters. Besides memory and
computational cost reductions, low-rank adaptation also has
the advantage of implicit regularization, which can lead to
more stable training, and simplify hyper-parameter search.

One key weakness of LoRA-type methods is the fact that
they can fail to recover accuracy for “harder” fine-tuning
tasks, relative to FFT. This accuracy gap, illustrated in Fig-
ure 2, appears more likely to occur when the target tasks is
more complex, such as the case for mathematical reasoning
or coding tasks. It is therefore still an open question whether
there exist PEFT methods which combine the good practical
performance and ease-of-use of LoRA-type methods with
the high accuracy of FFT.

Contribution. In this paper, we take a step towards address-
ing this question, by proposing a new PEFT method called
RobuSt Adaptation (RoSA). RoSA has similar computa-
tional and memory cost relative to LoRA-type methods, but
is significantly more accurate at similar parameter and com-
putational budgets, while being easy to use and tune. Specif-
ically, in practical experiments RoSA essentially matches
the accuracy of full fine-tuning, while offering stable con-
vergence and relatively simple hyper-parameter tuning. We
complement these algorithmic observations with a practical
implementation, showing that RoSA preserves the memory
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Figure 1: Illustration of Robust Adaptation (RoSA) applied
to a single FC layer: In this instance, the weight matrix is
of dimensions 5× 4 and the batch size is 1. The low-rank
adapter has a rank of 2, and the sparse adapter has a density
of 20%. Trainable parameters are depicted in green, while
red indicates parameters that remain frozen.

advantage of LoRA-type methods.

The motivation behind RoSA comes by revisiting the low
“intrinsic rank” assumption that is the basis for the LoRA
family of methods. Specifically, our investigation across
several tasks shows that, while the FFT update can indeed
be well approximated by a low-rank matrix, one can obtain
a significantly better fit via a low-rank plus sparse matrix,
especially in the case of more complex tasks. Intuitively,
the latter representation is better suited to matching out-
lier components which can cause a significant fraction of
the compression error in the context of LLMs (Dettmers
et al., 2022; 2023b). This observation provides a connection
to the area of robust principal component analysis (robust
PCA) (Candès et al., 2011), which postulates that matrices
arising from a noisy series of measurements can often be
approximated as a sum between a low-rank component and
a sparse one, and investigates algorithms for recovering such
matrices. Starting from the hypothesis that the sum of gradi-
ent updates corresponding to FFT can be seen as an instance
of robust PCA, we investigate methods for recovering such
a sparse plus low-rank representation during training.

Concretely, our proposed scheme trains two adapters: a stan-
dard low-rank adapter, complemented by a sparse adapter,
which are trained “in parallel” relative to the original pre-
trained weights. The challenge is threefold, since we have
to: 1) identify a highly-performant sparsity mask; 2) find
a co-training mechanism which yields stable convergence;
and, 3) provide system support, specifically for an efficient
sparse backward pass.

Building on prior work in the area (Sung et al., 2021; Chen
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Figure 2: Comparison of the highest achieved accuracy by a
single-epoch adaptation using various methods across three
datasets on LLaMA2-7B, taken from our main experiments
in Table 1. (While LoRA and RoSA store parameters in
bfloat16 (Dean et al., 2012) we use float32 for FFT
since they are more stable). Each bar shows the percentage
of accuracy relative to the accuracy achieved by FFT, and the
numbers on top of the bars indicate the absolute accuracy.

et al., 2021), we resolve all three challenges and show that
RoSA adapters can lead to considerably higher accuracy of
the resulting model, at a comparable parameter, memory,
and computational budget relative to standard adapters that
are either low-rank or sparse. We complement our algorith-
mic contribution with an efficient system implementation
of RoSA in Pytorch, that is fast on NVIDIA GPUs. Specif-
ically, supporting sparse adapters with low memory and
computational overhead is non-trivial, as we must leverage
sparse representations that are notoriously hard to support
efficiently on GPUs (Gale et al., 2020).

In addition, we extend our approach to support quantization
of the base weights via QLoRA (Dettmers et al., 2023a),
further improving efficiency at little or no accuracy cost.
This results in a joint representation which recovers accu-
racy by combining all three common forms of compression:
quantization, low-rank projections, and sparsity.

In summary, we present promising evidence that the accu-
racy gap between adaptation methods and full fine-tuning
of LLMs can be significantly reduced or even eliminated
in some cases, without sacrificing practical accessibility.
Therefore, RoSA can be an additional technique in the tool-
box of machine learning practitioners working with LLMs
in resource-constrained settings.

2. Related Work
Parameter-Efficient Fine-Tuning. Recent open
LLMs (Touvron et al., 2023a;b; Zhang et al., 2022;
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MosaicML, 2023b) have demonstrated strong performance
across various NLP tasks, but present challenges during
training and inference due to high memory and computation
cost. The common practice is to fine-tune these models on
smaller downstream tasks rather than training from scratch
(Min et al., 2021; Wei et al., 2021; Ouyang et al., 2022;
Wang et al., 2022b;a; Liu et al., 2022). While this approach
partially addresses the computation demands, memory
requirements are still a major concern. Parameter-Efficient
Fine-Tuning (PEFT) methods have emerged as a solution
(Hu et al., 2021; Zhang et al., 2023; Li & Liang, 2021; Liu
et al., 2021; 2023; Lester et al., 2021; Liu et al., 2022; Sanh
et al., 2021; Hyeon-Woo et al., 2021; Edalati et al., 2022;
Li et al., 2023; Qiu et al., 2023; Sung et al., 2021): Instead
of fine-tuning all parameters, they selectively fine-tune
smaller sets of parameters, potentially including a subset
of the original ones. Notably, LoRA-type methods (Hu
et al., 2021; Zhang et al., 2023), which train a low-rank
perturbation to the original weights, have gained popularity
for their efficiency and ease of use (Dettmers et al., 2023a).
However, it is known that they often fail to recover the
accuracy of FFT (Edalati et al., 2022; Zhang et al., 2023).

Earlier work focused on smaller-scale BERT-type models
and sparse and/or low-rank updates. Specifically, FISH
Mask (Sung et al., 2021) updates only a sparse subset of
weights in the BERT-base model (Devlin et al., 2018). Its
reliance on the Fisher Information Matrix (FIM) for gener-
ating sparsity masks renders it impractical for LLMs, unless
heavy approximations are employed. FISH Mask uses the
empirical diagonal estimation of the FIM. We examine its
validity in Section 5, and find it to be less effective in the
case of LLMs. Relatedly, DSEE (Chen et al., 2021) trains
a combination of low-rank and sparse adapters. However,
despite promising results on BERT models, we find DSEE
faces two main challenges in our setting. First, the DSEE
sparsity masks perform a task-independent decomposition
of pre-trained weights. As we demonstrate in Section 5, this
mask generation method does not effectively outperform
random masks in the context of LLMs, and significantly un-
derperforms RoSA masks, even when applied to gradients
instead of weights. Second, DSEE lacks system support for
reducing costs by using a sparse adapter. In contrast, RoSA
comes with efficient GPU support, and is also compatible
with weight quantization, as we show in QRoSA.

Sparse Training / Fine-Tuning. Sparsity in language mod-
els has emerged as a popular strategy to address their signif-
icant computational and memory demands (Hoefler et al.,
2021), both for inference (Gale et al., 2019; Singh & Alis-
tarh, 2020; Sanh et al., 2020; Frantar & Alistarh, 2022) and
training (Evci et al., 2020; Peste et al., 2021; Hubara et al.,
2021; Jiang et al., 2022; Nikdan et al., 2023). A related
research direction is sparse fine-tuning, where a network,
pre-trained and sparsified on an upstream dataset, under-

goes fine-tuning on a downstream task while keeping the
sparsity mask fixed (Nikdan et al., 2023; Kurtic et al., 2022;
2023). Despite both sparse fine-tuning and sparse adapta-
tion optimizing over a fixed subset of parameters, in sparse
fine-tuning, the weights not involved are pruned (set to zero),
whereas in sparse adaptation, they are merely frozen. This
distinction allows us to achieve extremely high sparsity lev-
els in sparse adaptation masks (over 99%, see Section 5),
whereas sparse training / fine-tuning typically struggles to
90-95% without significant accuracy loss.

Robust Principal Component Analysis (RPCA). RPCA
is a well-explored domain, focusing on techniques that can
effectively handle data corrupted by outliers or gross errors.
While classical Principal Component Analysis (PCA) as-
sumes that the data is clean, RPCA methods extract robust
principal components even in the presence of significant out-
liers (Gnanadesikan & Kettenring, 1972; Fischler & Bolles,
1981; Wright et al., 2009; Candès et al., 2011; De La Torre
& Black, 2003; Huber, 2004; Ke & Kanade, 2005). Specifi-
cally, given noisy measurements expressed as A = L+ S,
where L is low-rank and S is sparsely supported with ele-
ments of arbitrary large magnitude, the goal is to recover
L and S. While early approaches did not achieve this in
polynomial time (De La Torre & Black, 2003; Huber, 2004;
Ke & Kanade, 2005; Gnanadesikan & Kettenring, 1972;
Fischler & Bolles, 1981), recent papers show that it is pos-
sible to relax this by substituting the low-rank constraint
on L with a constraint on its nuclear norm (Wright et al.,
2009; Candès et al., 2011). By contrast, we perform Robust
PCA-type optimization over a series of adapter matrices
that are being learned jointly in an LLM. As such, existing
theoretical mechanisms do not apply, although extending
them would be an interesting question for future work.

System Support for Sparsity. While PyTorch (Paszke
et al., 2019) and STen (Ivanov et al., 2022) have recently
incorporated partial sparsity support for inference, obtaining
benefits from unstructured sparse representations–as needed
in our work–is notoriously challenging, especially on GPU
hardware. So far, Sputnik (Gale et al., 2020) is the only
library to provide speedups in this context, although struc-
tured representations are known to be more amenable to
speedups (Gray et al., 2017; Castro et al., 2023; Li et al.,
2022). In this context, our kernels provide significant im-
provements upon Sputnik in the unstructured sparsity case
by using a better indexing scheme and introducing a sparsity-
adaptive SDDMM kernel for the backward pass.

3. Adaptation of Large Language Models
3.1. Notation

Let N represent a pre-trained Large Language Model
(LLM), and let W = {W 1,W 2, ...,W k} denote a se-
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quence of layers containing all fully connected weights
of N , including sub-attention layers, with W i ∈ Rmi×ni

for all 1 ≤ i ≤ k. Let the vector w̄ ∈ Rd̄ indicate the rest
of N ’s parameters (biases, normalization parameters, etc.)
concatenated into a single vector. Given a dataset D and a
loss function L(D;W, w̄), full fine-tuning (FFT) of N on
D can be formulated as solving the optimization problem:

min
W,w̄

L(D;W, w̄) (1)

Given that LLMs typically contain billions of parameters,
performing FFT can be slow and computationally expensive.
This often renders it challenging or even impossible to exe-
cute on standard GPUs. A solution to this involves the appli-
cation of adapters, which we will now formulate. Let ∆ =
{∆1,∆2, ...,∆k} include perturbations to the original fully
connected weights, where ∆i ∈ Rmi×ni for all 1 ≤ i ≤ k.
Define W +∆ = {W 1 +∆1,W 2 +∆2, ...,W k +∆k}.
Additionally, let vector δ̄ ∈ Rd̄ denote a perturbation to
w̄. The adapted parameters are then found by solving the
following optimization problem:

min
∆,δ̄

L(D;W +∆, w̄ + δ̄), s.t. C(∆, δ̄) (2)

where C(∆, δ̄) is a set of constraints on the perturbations,
such as low-rank or sparse, aiming to reduce the memory
requirements or computational complexity of the optimiza-
tion problem. Note that an adaptation with no constraints is
equivalent to FFT.

In this context, our exclusive focus is on adaptations where
δ̄ = 0, as it aligns with standard practice. Nevertheless,
given that w̄ typically contains significantly fewer parame-
ters than W , there is room for fine-tuning w̄ as well. Also,
we are specifically focusing on cases where all fully con-
nected weights undergo adaptation, but our arguments ex-
tend trivially to the case where only a subset of these weights
is being adapted. We now discuss a few special cases.

LoRA: Low-Rank Adaptation. The well-known Low-
Rank Adaptation (LoRA) (Hu et al., 2021) constrains the
perturbations in ∆ to exhibit a low rank, specifically the
optimization objective will be the following:

min
∆

L(D;W +∆, w̄),

s.t. ∀ 1 ≤ i ≤ k : rank(∆i) ≤ r
(3)

with r being a fixed small number. This approach reduces
the number of trainable weights for layer i from mini to
r(mi + ni), resulting in more memory-efficient fine-tuning.

SpA: Sparse Adaptation. Sparse Adaptation (SpA), e.g.
(Sung et al., 2021), imposes high sparsity constraints on
perturbations, i.e., the optimization objective will be:

min
∆

L(D;W +∆, w̄),

s.t. ∀ 1 ≤ i ≤ k : ||∆i||0 ≤ dmini

(4)

Algorithm 1 Mask Generation
Require: W, w̄ ← the fully connected weights and the rest of the

LLM parameters, respectively
Require: DM ← the mask generation dataset, typically a small

subset of the actual dataset
Require: L(.)← the loss function
Require: d← mask density
Require: α← gradient accumulation exponent
G ← {0,0, ...,0}
[iterate through samples of DM]
for s ∈ DM do
[calculate the gradients for this sample]
Gs, ḡs ← ∇L(s;W, w̄)
[accumulate the gradients]
G ← G + (Gs)α

end for
for Gi ∈ G do
[top-k elements of the accumulated grads]
Mi ← TopK-Mask(Gi, d× numel(Gi))

end for
returnM = {M1,M2, ...,Mk}

where d < 1 represents the perturbation density and ||.||0
denotes the ℓ0 norm. It is common (Sung et al. (2021); Chen
et al. (2021)) to consider the case where each perturbation
has a fixed support throughout training. This way, SpA
reduces the number of trainable parameters by a factor of d.
At the same time, as discussed in Section 2, it encounters the
primary challenges of 1) finding a good sparse support and
2) leveraging unstructured sparsity for speed and memory
gains. Next, we discuss how our method approaches both
challenges.

3.2. RoSA: Robust Adaptation

We now describe our main adaptation method.

Motivation. One key drawback of existing LoRA-type
methods is that, when faced with more complex downstream
tasks, they often fail to match full fine-tuning accuracy (see
Figure 2.) Intuitively, this occurs because the low-rank prior
may not be able to capture the structure of more complex
updates in this case, filtering important directions. This fil-
tering issue becomes particularly evident when conducting
Singular Value Decomposition (SVD) on the FFT updates
∆∗ (defined as ∆∗ = W FFT − W BASE) of LLM layers,
as detailed in the Appendix D. These analyses reveal that
while ∆∗ is rank-deficient (see Figure 7), it is not strictly
low-rank. This distinction is characterized by the presence
of a substantial fraction of singular values with relatively
small, yet non-zero, magnitudes.

Robust Principal Component Analysis (RPCA) suggests an
alternative in extracting robust principal components via a
low-rank matrix L and a sparse matrix S. This decomposi-
tion offers a more nuanced approximation of the fine-tuning
updates compared to solely low-rank methods.
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Figure 3: Illustration of the Frobenius norm error (Fig-
ure 3a) of a Robust PCA approximation to the full-fine-
tuning update, for an arbitrary layer (l:20, v_proj of
LLaMA2-7B, while varying rank and sparsity independently.
Figure 3b depicts slices of Figure 3a with similar parameter
counts, showcasing the trade-off between sparsity and low-
rank under different parameter budgets.

To demonstrate the potential of using a combination of
sparse and low-rank matrices to approximate a ∆∗ fine-
tuning perturbation in the context of LLMs, we apply
an RPCA solver to extract robust principal components
∆̃

∗
= ∆̃

S
+ ∆̃

L
of a randomly selected layer of LLaMA2-

7B for a given sparsity and rank. In Figure 3a, we have
analyzed a randomly selected module from LLaMA2-7B,
computed its ∆∗ when fine-tuned on the GSM8k dataset,
and then applied GreBsmo RPCA solver (Zhou & Tao,
2013), with varying ranks and densities for the low-rank
and sparse components. The results in Figure 3b clearly
demonstrate that, given a parameter budget to approximate
∆∗, employing a combination of low-rank and sparse ap-
proximations yields a more accurate representation than
using either approach in isolation.

This analysis motivates our joint use of low-rank and sparse
fine-tuning. The link between RPCA and RoSA lies in
the former’s introduction of the low-rank and sparse de-
composition, a concept we leverage in RoSA to enhance
the efficiency and accuracy of fine-tuning LLMs. In prac-
tice, our approach will do this in a task-adaptive fashion
by “warming up” a LoRA instance for a short training in-
terval and then identifying the largest sparse directions for
improvement.

Formulation. We formulate the optimization objective of
Robust Adaptation (RoSA) as follows:

min
∆L,∆S

L(D;W +∆L +∆S , w̄),

s.t. ∀ 1 ≤ i ≤ k :

 rank(∆L
i ) ≤ r

||∆S
i ||0 ≤ dmini

(5)

where ∆L and ∆S represent the low-rank and sparse
adapters, respectively. In practice, we generate the sparsity
masks using Algorithm 1, and then optimize the low-rank

and sparse adapters jointly. Refer to Figure 1 and Appendix
Algorithm 2 for a detailed description of RoSA.

4. System Implementation
In this section, we briefly describe our efficient implementa-
tion of RoSA, detailed in full in Appendix A.

Low-Rank Format. Similar to Hu et al. (2021), we store
an m×n low-rank adapter with rank r as the multiplication
of two matrices BA, where B and A are m× r and r × n,
respectively.

Sparse Format. Sparse adapters are stored in Compressed
Sparse Row (CSR) format, which utilizes three lists to rep-
resent an m × n sparse matrix with nnz non-zero values:
a values list with size nnz, storing the non-zero values;
a row-offsets list with size m + 1, indicating the po-
sition of the first non-zero element in each row within the
values list; and a column-indices list with size nnz,
containing the column index of each corresponding element
in the values list. Additionally, in line with Sputnik (Gale
et al., 2020), an extra row-indices list with size m is in-
cluded, sorting rows based on their non-zero element count.
In our case, this row-indices list is employed for load-
balancing and kernel launch configuration purposes.

Forward Pass. Consider a single fully connected layer with
an adapted weight matrix W +∆L +∆S of size m× n.
For simplicity, assume there is no bias vector. Given a batch
of inputs X of size b×m, the layer output is expressed as:

O = X(W +∆L +∆S)

= X(W +∆S) + (XBL)AL
(6)

Calculating the term W + ∆S requires the addition of
sparse and dense matrices, for which we provide an efficient
kernel detailed in Appendix A. It is worth noting that the
multiplication in the second term is decomposed into two
multiplications with low-rank, making it extremely fast.

Backward Pass. Given the gradients of the output ∂L
∂O ,

the backward pass through a layer involves calculating the
gradients of the parameters and inputs, as follows:

∂L
∂X

=
∂L
∂O

(W +∆L +∆S)T

=
∂L
∂O

(W +∆S)T +
( ∂L
∂O

(AL)T
)
(BL)T

(7)

∂L
∂BL

=
∂L

∂(BLAL)
(AL)T = XT

( ∂L
∂O

(AL)T
)

(8)

∂L
∂AL

= (BL)T
∂L

∂(BLAL)
=

(
(BL)TXT

) ∂L
∂O

(9)

∂L
∂∆S

= XT ∂L
∂O

(10)
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Similarly to formula 6, Equations 7, 8, and 9 can also be
computed efficiently. However, the implementation of equa-
tion 10 has a specific structure called a Sampled Dense-
Dense Matrix Multiplication (SDDMM) (Nikdan et al., 2023),
i.e. multiplying two dense matrices where only specific
elements of the output are needed.

Leveraging Mask Structure. While general SDDMM is
efficiently supported in e.g., sputnik, one special feature
of our setting is that non-zero values in RoSA masks tend
to cluster in a small subset of rows/columns, as illustrated
in Appendix A. We suspect that this is correlated to the
low-rank structure of the complementary adapter. To exploit
this, we provide a new specialized SDDMM implementation
which leverages this observation to maximize efficiency,
specifically by dynamically skipping fully-zero rows and
columns when present, depending on the specific sub-matrix
structure. Compared to the SOTA sputnik kernels, our
RoSA kernel achieves a geometric mean speedup of 1.36x
and a peak speedup of 3x on LLM matrices. We provide a
full discussion of matrix structure, kernel descriptions and
layer-wise speedups in Appendix A.

Gradient Accumulation. As explained in Algorithm 1,
creating the masks involves accumulating full gradients,
which can be challenging in terms of memory. To address
this, we adopt a simple solution by transferring the gradients
of each weight matrix to CPU as soon as it is computed.
This ensures that, at most, one weight matrix’s gradient
is stored on GPU at any given time. We note that this
approach does not affect the runtime significantly, as the
mask generation dataset is typically very small (32 samples
in our experiments).

5. Experiments
We now provide experimental support for the effectiveness
of RoSA, and of QRoSA, its variant with quantized base
weights. The following subsection outlines the experiment
settings, including details on the network and datasets. To
ensure a fair comparison, we conducted thorough and care-
ful tuning for each adaptation method, details of which are
described next. We then present the results, along with ab-
lation studies, showcasing the improvements achieved by
RoSA. Finally, we also assess RoSA’s memory utilization,
highlighting that it requires the same resources as LoRA and
SpA in a fixed parameter budget while offering significantly
improved accuracy.

5.1. Settings

Setup, Model and Datasets. We integrated RoSA into
a fork of the standard PEFT library (Mangrulkar et al.,
2022) and performed all the experiments using the Mo-
saicML llm-foundry codebase (MosaicML, 2023a). We
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Figure 4: Illustration of row and column sparsity structure
for the RoSA masks. Specifically, a subset of masks in the
LLaMA2-7B model is visualized with a max-pool kernel of
size 4 and stride 4, showing that a fraction of around 50%
of the parameter rows and columns are completely zero.

perform fine-tuning of the LLaMA2-7B model (Touvron
et al., 2023b) on three standard datasets: ViGGO (Juraska
et al., 2019), GSM8k (Cobbe et al., 2021), and SQL genera-
tion (Zhong et al., 2017; Yu et al., 2018), containing 5.1k,
7.47k, and 30k training samples and 1.08k, 1.32k, and 1k
test samples, respectively. Refer to Appendix F for examples
of the GSM8k dataset. In the case of SQL, we follow the
dataset formation strategy described in (Niederfahrenhorst
et al., 2023). On GSM8k, we only consider the accuracy
of the final answer. Notably, these datasets are chosen such
that they are highly specialized and, therefore, require fine-
tuning for good performance: for example, on GSM8k, the
pre-trained LLaMA-2 model has 0% one-shot accuracy, and
the multi-shot accuracy is also very poor (around 6%).

Hyperparameters. In all experiments, we use a standard
batch size of 32 (micro-batch size 1 + gradient accumula-
tion) and a maximum context length of 512, which matches
the dataset sample structure. We employ the AdamW
optimizer (Loshchilov & Hutter, 2017) with parameters
β1 = 0.9, β2 = 0.999, ϵ = 10−8, and a linear learning rate
scheduler with 20 batches warmup. Notably, all floating-
point values are stored in bfloat16 (Dean et al., 2012),
popular due to low memory usage and good accuracy. Our
main experiments run for a single epoch, but we demon-
strate in ablation studies that extended training can further
improve adaptation results. Following (Hu et al., 2021), we
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Table 1: Comparison of fine-tuning LLaMA2-7B using FFT, LoRA, SpA, and RoSA in terms of memory usage and accuracy
on three datasets. For RoSA, we examine different splits of the parameter budget into low-rank and sparse adapters. (†)
Our experiments show that the single-epoch FFT results on ViGGO are suboptimal when the parameters are stored in
bfloat16. Single-epoch float32 FFT results on GSM8k, ViGGO, and SQL are 31.8, 94.0, and 89.4, respectively.

GSM8k ViGGO SQL
#Params Memory 1 Epoch Extended 1 Epoch Extended 1 Epoch

FFT 6.7 B > 60 GB 32.3 38.8 82.1 95.0 89.0

LoRA r = 16 41.1 M 20.6 GB 28.4 37.8 90.5 95.8 88.7
RoSA r = 12, d = 0.15% 41.0 M 20.3 GB 31.2 36.0 95.0 96.5 88.3
RoSA r = 8, d = 0.3% 40.8 M 20.3 GB 29.2 37.5 94.5 97.1 77.6
RoSA r = 4, d = 0.45% 40.6 M 20.3 GB 30.6 35.5 93.4 96.6 89.7

SpA d = 0.6% 40.4 M 20.3 GB 26.2 29.5 72.6 89.8 83.2

LoRA r = 32 82.3 M 20.9 GB 29.6 36.2 87.0 96.8 89.1
RoSA r = 24, d = 0.3% 81.9 M 20.6 GB 30.5 37.8 94.4 95.8 88.9
RoSA r = 16, d = 0.6% 81.6 M 20.7 GB 32.2 38.6 95.2 97.1 88.3
RoSA r = 8, d = 0.9% 81.2 M 20.7 GB 30.3 37.2 94.5 96.9 88.9

SpA d = 1.2% 80.9 M 20.7 GB 21.9 29.9 45.8 95.7 74.2

LoRA r = 64 164.5 M 21.7 GB 27.4 35.5 76.9 95.0 88.7
RoSA r = 48, d = 0.6% 163.8 M 21.3 GB 30.5 38.2 93.0 96.6 88.1
RoSA r = 32, d = 1.2% 163.1 M 21.4 GB 32.2 36.2 93.4 97.3 89.2
RoSA r = 16, d = 1.8% 162.4 M 21.5 GB 32.8 38.4 95.1 96.5 84.6

SpA d = 2.4% 161.7 M 21.8 GB 29.6 37.2 92.3 95.7 87.8

use α = 16 and a dropout of 0.05 for the low-rank adapter,
while experimenting with various r values ranging from 4
to 64. Additionally, we set the size of the mask generation
dataset to 32 samples in all experiments while tuning the
gradient accumulation exponent (α in Algorithm 1) as a
binary hyperparameter (1 for averaging gradients and 2 for
diagonal Fisher).

The sparse adapter’s density ranges from 0.15% to 2.4%.
While it is possible to adapt only a subset of the linear layers
in the model, we specifically consider the case where every
fully connected layer undergoes adaptation. This choice is
motivated by the significantly lower memory usage of adap-
tation parameters compared to storing the original parame-
ters (see Tables 1 and 2). The best learning rates for single-
epoch FFT are 4× 10−5, 2× 10−5, and 1× 10−4 on SQL,
ViGGO, and GSM8k, respectively, while for extended FFT
it is 4×10−5 on ViGGO and 5×10−5 on GSM8k. For LoRA
and SpA parameters, the best-performing learning rates are
selected in the range [10−4, 10−3] and [10−4, 8 × 10−4],
respectively. In RoSA experiments, we find it beneficial to
initially fine-tune solely with LoRA for 64 batches, gener-
ate and fix the sparse masks, and restart training with both
LoRA and sparse adaptation (SpA) activated. All experi-
ments, except for FFT, comfortably run on a single NVIDIA
GeForce RTX 3090 GPU 24.3 GB memory (see Table 1).

5.2. Results

Main Experiment. In Table 1, we summarize our main
experiments, which examine the accuracy of various fine-
tuning approaches at various budgets across all the tasks
considered. We consider three parameter budgets: 40 mil-
lion, 80 million, and 160 million. For each budget, we ex-
plore five different ways of distributing parameters between
LoRA and SpA, ranging from pure LoRA/SpA to interme-
diate sparse + low-rank budgets. The main experiments are
conducted for a standard single pass over the dataset (epoch).
However, for the smaller ViGGO and GSM8k datasets, we
observe that extended training improves adaptation results.
Hence, we also present the best results for each method
from 2 and 3 epochs on these two datasets under the ‘Ex-
tended‘ label. (We did not run extended training on SQL
due to its much larger size.) Additionally, for QRoSA, we
follow Dettmers et al. (2023a) and report the accuracy of
the single-epoch adaptations when the pre-trained weights
are 4-bit double-quantized.

Single-Pass Runs. The results in Table 1 show that, across
all tasks and budgets, RoSA outperforms both LoRA and
SpA. The only exception is the 80M budget trained on
SQL, where LoRA marginally outperforms RoSA (89.1 vs
88.9). However, on the same task, RoSA 40M achieves a
remarkable 89.7 accuracy. Surprisingly, in the single-epoch
regime, RoSA even surpasses FFT significantly on all three
datasets, highlighting the fast convergence of the hybrid
adapter approach. This shows that this approach can be
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particularly effective in the context of short, single-pass
training, across tasks and parameter budgets.

Extended Training Experiments. The above conclusion
still holds in extended experiments, where we find that
RoSA can, in fact, match or even outperform FFT on both
GSM8k (38.6% vs 38.8%) and ViGGO (97.3% vs 95.0%).
Additionally, except for the 40M GSM8k, RoSA outper-
forms both LoRA and SpA. These results complement our
single-pass experiments, indicating the superiority of RoSA
in longer multiple-pass regimes. The fact that some of
the best results for extended training are obtained on the
medium-sized parameter budget suggests that the computa-
tional budget should be balanced against the active parame-
ters for the run: the largest budget tends to yield the highest
performance on the larger SQL dataset.

Overall, these results clearly highlight the effectiveness of
RoSA; specifically, we find it remarkable that we are able to
fully recover FFT accuracy while using parameter budgets
that are 40-100x smaller. Finally, the memory overheads
of maintaining sparse and low-rank components are indeed
low: all our experiments fit inside a single 24GB GPU.

QRoSA: Quantizing Pre-trained Weights. Following
QLoRA (Dettmers et al., 2023a), we repeat the single-
pass experiments while double-quantizing the pre-trained
weights to total memory. We observe that QRoSA slightly
lags behind QLoRA in the larger budgets on the SQL dataset.
However, it outperforms every other method (including FFT)
on GSM8k by achieving 33.1 accuracy. Remarkably, in this
setting, we need less than 12 GB of memory to match or
exceed the accuracy of FFT on LLaMa2-7B!

Table 2: Comparison of fine-tuning LLaMA2-7B using
different adaptation methods in terms of memory usage and
accuracy on three datasets, while the pre-trained weights are
4-bit double-quantized following Dettmers et al. (2023a).

Memory GSM8k ViGGO SQL

FFT > 60 GB 32.3 82.1 89.0

QLoRA r = 16 12.6 GB 29.8 88.0 88.2
QRoSA r = 12, d = 0.15% 10.7 GB 31.8 93.8 88.5
QRoSA r = 8, d = 0.3% 10.7 GB 30.9 95.0 88.6
QRoSA r = 4, d = 0.45% 10.7 GB 30.3 92.4 86.7

QSpA d = 0.6% 10.8 GB 22.8 89.5 79.2

QLoRA r = 32 13.0 GB 25.6 74.7 89.0
QRoSA r = 24, d = 0.3% 11.0 GB 30.4 93.3 88.3
QRoSA r = 16, d = 0.6% 11.1 GB 33.1 93.8 86.6
QRoSA r = 8, d = 0.9% 11.1 GB 32.8 95.4 83.7

QSpA d = 1.2% 11.3 GB 28.0 93.0 85.0

QLoRA r = 64 13.8 GB 30.6 88.1 89.4
QRoSA r = 48, d = 0.6% 11.9 GB 30.5 93.6 81.6
QRoSA r = 32, d = 1.2% 11.9 GB 32.3 94.3 88.2
QRoSA r = 16, d = 1.8% 12.0 GB 30.8 95.0 88.5

QSpA d = 2.4% 12.2 GB 28.9 90.8 42.9

Hyper-parameter Selection. Given a parameter budget,

RoSA introduces a new hyper-parameter: the ratio by which
we distribute the budget between the sparse and low-rank
components. Our results in Table 1 show that in many cases
there is a threshold for the LoRA rank above which the
results do not improve further. The existence of this rank
threshold was already known before, e.g., Section 7.2 in the
original LoRA paper (Hu et al., 2021). In our experiments,
this is more nuanced on the GSM8k and ViGGO datasets,
where the optimal rank across different budgets is around
12-16, and the rest of the budget should be assigned to
the sparse component to achieve the best results. This is
justified by the fact that the difference between FFT and pre-
trained weights has only a few large singular values (Figure
7). On the other hand, while hyper-parameter tuning is
required to achieve the best results, we found that in almost
all cases simply distributing the budget equally between the
low-rank and sparse adapters is enough to outperform other
adaptation methods. Hence distributing the budget half-half
can serve as a solid default choice.

Mask Choice Ablation. We investigate the impact of dif-
ferent mask generation methods of RoSA for the GSM8k
dataset in Table 3. Let τd(·) be the TopK magnitude mask
with density d. Then the methods we consider are:

1. GradMag-LW (ours): M = τd(∇W+L̃)
A TopK magnitude mask on the accumulated square of
gradients as described in Algorithm 1 following warm-
up of the low-rank instance, where W+L̃ := W +∆̃L

and ∆̃L is the partially-trained low-rank instance.

2. GradMag/GradFish: M = τd(∇W )
A TopK magnitude mask on gradients accumulated
at initialization (in ℓ1 or ℓ2 norm squared), following
FISH Mask (Sung et al., 2021).

3. WeightRPCA: M = τd(W S)
The sparse component resulting from RPCA on the
weights W , W S , with a target density of d, following
DSEE (Chen et al., 2021).

4. GradRPCA: M = τd(∇W S)
The sparse component resulting from RPCA on the
weight gradient ∇W , ∇W S , with a target density
of d, which we see as a natural combination of FISH
Mask and DSEE.

5. Lottery Ticket Update Masking (LTM): M = τd(∆
∗
S)

For this, we try to identify a good set of coordinates to
optimize over “in hindsight”, by computing the sparse
component of RPCA over the FFT update ∆∗, denoted
by ∆∗

S , with a target density of d.

6. RND(d): A random mask with density d.

First, we observe that the “Lottery Ticket” Mask (LTM),
which has hindsight knowledge of the best optimization di-
rections from the perspective of the FFT update, predictably
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Table 3: Comparison of various masking methods: Training
of LLaMa2-7B Model on GSM8k for 1 epoch using 80M
trainable parameters.

GSM8k
Method Accuracy
LTM 33.66
GradMag-LW (ours) 32.16
GradMag (FISH Mask) 30.10
GradRPCA 29.87
WeightRPCA (DSEE) 30.71
RND 30.25

performs very well, being in fact competitive with FFT ac-
curacy on GSM8k. The second best-performing method, by
a significant margin, is given by the RoSA masks, coming
within ∼ 1% of the ideal mask. The remaining methods
essentially perform within the variance of choosing random
initial masks. The fact that gradient RPCA at initialization
significantly under-performs our version suggests that the
“warm-up” period is key to good accuracy. Overall, this
suggests that choosing masks in a task-aware fashion is key
to good performance in the context of LLM fine-tuning.

In summary, the experiments establish the fact that RoSA
and QRoSA can indeed be competitive with the much more
expensive FFT process in terms of top accuracy, while hav-
ing a much lighter memory and computational footprint.
This is enabled by our specific mask choice process, as well
as by the efficient system support.

Runtime. Performing measurements on an NVIDIA RTX
A6000 GPU, we find our current implementatio of RoSA
to be approximately 1.7-2x slower than LoRA on the 80M
parameter budget (see Appendix B). This is due to overheads
in the sputnik implementation, which we plan to mitigate in
future work. Furthermore, we note that fine-tuning on the
down-stream tasks is usually a short process. Hence one can
afford 1.7-2x slowdown compared to LoRA, considering
that we are essentially able to recover FFT accuracy, and
that FFT is usually either slower or not even executable in
the memory-constrained setups we consider.

6. Discussion
In this paper, we took a step forward to address the problem
of efficient fine-tuning of Large Language Models (LLMs).
We proposed a method called Robust Adaptation (RoSA),
which is inspired by the Robust PCA approach, and showed
that RoSA significantly outperforms both low-rank adap-
tation (LoRA) (Hu et al., 2021) and prior sparse or hybrid
approaches (Sung et al., 2021; Chen et al., 2021) at the
same parameter budgets. Additionally, we came across the
surprising observation that the best-performing RoSA can

match or even outperform FFT in many settings. To com-
plement our contributions, we provide an efficient PyTorch
implementation of our method, aiming to make RoSA an
accessible tool for researchers in the field.
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Mask Visualization

Figure 5: Here we see a visualization of a subset of masks taken from LLaMa2-7B Model trained on GSM8k (r = 16, d =
0.6%). We can see that most masks visualized here have either a significant number of empty rows or columns. For the
purposes of visualization, each mask is max-pooled with a kernel size and stride of 4.

A. System Details
We integrated RoSA into a fork of the standard peft library (Mangrulkar et al., 2022), and performed all the experiments
using the the llm-foundry codebase (MosaicML, 2023a). Next, we will elaborate on the efficient implementation of
RoSA.

Mask Structure. As noted in Section 4, our findings show that a significant number of either mask rows or columns are
completely empty. Figure 5 shows a visualization of this phenomenon, and Table 4 outlines the empty rows across a wider
range of models over a subset of our models. It shows, for each model, the mean of the maximum percentage of empty rows
or columns. Finally, we report that a mean of 46.74% (rounded to two decimals) of the maximum between the percentage of
empty rows or columns is present across all of our trained models. The prevalence of empty rows and columns emphasizes
the motivation to use a kernel that does not launch threads for outputs where no work is needed.

A.1. SDDMM Kernel

Our SDDMM kernel is based on the sputnik kernel (Gale et al., 2020). Their original SDDMM implementation was
extended in two ways. First, the original SDDMM kernel, as noted in the referenced publication, launches the maximum
number of threads over the entire output matrix and then simply terminates those threads that have no work to do. In order
to accommodate the fact that a significant portion of either the rows or columns of each individual mask is empty, we
limit the number of threads launched to the number of rows and columns that have a non-zero value. At first glance, this
seems to contradict the original paper’s claim that the extra threads don’t induce significant overhead. However, the original
publication did not focus on benchmarking the low sparsity and structures present in this paper. Furthermore, as row sorting
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Table 4: This table shows the row and column statistics for a subset of the models with across a wide range of datasets and
densities. Note that the masks depend on the learning rate because they were generated after a LoRA warmup period.

LLaMA 7B Maximal Empty Row Maximal Empty Column Mean Maximal Empty Row or Column

GSM8K
d = 0.0015, r = 12, lr = 0.0002 98.18% 98.97% 73.49%
d = 0.003, r = 8, lr = 0.0002 97.85% 96.72% 58.30%
d = 0.006, r = 48, lr = 0.0002 97.5% 94.03% 40.94%
d = 0.012, r = 32, lr = 0.0002 96.46% 85.01% 27.12%
d = 0.018, r = 16, lr = 0.0004 94.79% 79.94% 19.60%

SQL
d = 0.0015, r = 12, lr = 0.0004 99.14% 97.92% 79.34%
d = 0.003, r = 8, lr = 0.0004 98.61% 96.72% 65.94%
d = 0.0045, r = 4, lr = 0.0004 97.96% 95.70% 56.36%
d = 0.006, r = 48, lr = 0.0004 96.56% 94.10% 48.84%
d = 0.009, r = 8, lr = 0.0001 95.32% 87.28% 41.25%
d = 0.012, r = 32, lr = 0.0004 91.13% 85.15% 34.46%
d = 0.018, r = 16, lr = 0.0004 86.87% 80.06% 29.74%

ViGGO
d = 0.0015, r = 12, lr = 0.0002 99.53% 98.90% 75.29%
d = 0.003, r = 8, lr = 0.0002 99.04% 97.50% 61.68%
d = 0.0045, r = 4, lr = 0.0002 96.19% 91.43% 55.22%
d = 0.006, r = 48, lr = 0.0002 91.38% 90.91% 46.14%
d = 0.009, r = 8, lr = 0.0002 95.27% 92.19% 37.95%
d = 0.012, r = 32, lr = 0.0002 94.28% 87.32% 30.88%
d = 0.018, r = 16, lr = 0.0002 92.11% 82.88% 24.11%

according to the number of non-zero values is part of the original implementation’s pipeline, the additional necessary kernel
launch information can be calculated without significant overhead. Second, the SDDMM implementation was extended to
support 16-bit indices.

We present the benchmark results of these two changes in Figure 6. We extract masks from LLaMA2-7B d = 0.6% and
r = 16. For each mask M and construct two randomly generated float32 matrices A and B with dimensions (M,K)
and (N,K) and compute the SDDMM. We have a fixed K = 512 in this synthetic benchmark. The durations are rounded
to two decimal places.

A.2. CSR-ADD Kernel

A CUDA kernel calculating the A = A+B operation where A is dense and B is sparse (stored in the CSR format), was
implemented with support for float32, float16 and bfloat16 input data types. It distributes thread blocks over
rows of B with each warp, then goes over the nonzero values and adds them to the dense matrix.

A.3. Other Details

RoSA Pseudocode. We include a straight-forward pseudocode that describes our adaptation method (Algorithm 2).

Gradient Collection for QRoSA. Since automatic differentiation is not supported for quantized tensors in PyTorch, in the
QRoSA experiments, we manually multiply the output gradients and inputs during training to calculate the weight gradients
required for mask collection.

B. Runtime
In Table 5 we compare the runtime of RoSA and LoRA on an NVIDIA RTX A6000. We observe a slow-down relative to
LoRA of around 2x. This is because of overheads due to sparsity, but also because the sparse operators we use work with
FP32 precision, which is slower than LoRA operations, which employ FP16.
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SDDMM Benchmark

Figure 6: This figure shows the result of benchmarking SDDMM kernels with masks extracted from LLaMA2-7B d = 0.6%
and r = 16. Compared to sputnik we achieve a geometric mean speedup of 1.36x and a peak speedup of 3x.

C. Comparison with IA3
In this section, we compare our proposed method, RoSA, with IA3 (Liu et al., 2022), another parameter-efficient fine-tuning
technique. IA3 involves introducing scaling parameters for the activations within a neural network.

Table 6 shows that IA3 performs poorly compared to RoSA and LoRA in terms of accuracy on the three GSM8k, ViGGO,
and SQL datasets. One explanation for this underperformance is that IA3 clearly underfits due to its small parameter count.
Unlike RoSA and LoRA, which introduce additional parameters through low-rank and sparse adaptations, IA3’s scaling
parameters are insufficient to capture the complexity of the tasks, leading to suboptimal performance.

However, it is important to note that IA3 is designed to excel in few-shot learning scenarios. For example, on the
RAFT dataset (Alex et al., 2021), which is specifically curated for few-shot learning tasks, IA3 demonstrates competitive
performance. This is in contrast to RoSA and LoRA, which generally require a larger dataset to achieve optimal results.
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Algorithm 2 Robust Adaptation (RoSA)
Require: W, w̄ ← the fully connected weights and the rest of the LLM parameters, respectively
Require: D ← the downstream dataset
Require: L(.)← the loss function
Require: r ← LoRA rank
Require: d← SpA density
Require: m← number of samples to use for mask generation
[m random samples for mask generation]
DM ← random-subset(D,m)
[run Algorithm 1 to generate the masks]
M← generate-masks(W, w̄,DM,L, d)
k ← length(W)
for i ∈ {1, 2, ..., k} do

mi, ni ← shape(W i)
[init LoRA ((Hu et al., 2021))]
∆L

i ← initialize-lora-params(mi, ni, r)
[init SpA with zero]
∆S

i ← initialize-spa-params(Mi)
end for
∆L ← {∆L

1 ,∆
L
2 , ...,∆

L
k }

∆S ← {∆S
1 ,∆

S
2 , ...,∆

S
k }

[train the adapters]
∆L

∗ ,∆
S
∗ ← argmin

∆L,∆S

L(D;W +∆L +∆S , w̄)

return ∆L
∗ ,∆

S
∗

Table 5: Runtime comparison between (Q)LoRA and (Q)RoSA in the 80M parameter budget. The measurements are done
using an NVIDIA RTX A6000 GPU.

Method batch/second
LoRA r = 32 0.1149

RoSA r = 24, d = 0.3% 0.0602
RoSA r = 16, d = 0.6% 0.0595
RoSA r = 8, d = 0.9% 0.0575

SpA d = 1.2% 0.0622
QLoRA r = 32 0.0911

QRoSA r = 24, d = 0.3% 0.0531
QRoSA r = 16, d = 0.6% 0.0521
QRoSA r = 8, d = 0.9% 0.0515

QSpA d = 1.2% 0.0546

D. Singular Value Analysis on Full Fine-Tuning
We present a straightforward analysis of the singular values obtained from ∆∗ of the LLaMA2-7B model (Touvron et al.,
2023b) fine-tuned on the GSM8k dataset. The focus is on a set of plots representing singular values from several randomly
selected layers of the LLaMA2-7B model. The plots in Figure 7 reveal a notable pattern: a few singular values are
significantly larger compared to the rest, which is relatively small yet not zero.

This pattern in the singular values suggests that the updates made during full fine-tuning of LLaMA2 exhibit a tendency
towards a low-rank structure. However, they cannot be considered purely low-rank due to the presence of these small,
non-zero singular values.

E. Instruction-tuning Results
In this section, we present our findings from training the LLaMA2-7B model on the OpenPlatypus and Alpaca datasets.
The OpenPlatypus dataset (Lee et al., 2023), and the Alpaca dataset (Taori et al., 2023), are both designed to enhance
instruction-following capabilities in language models. To evaluate the performance of our method, we report the accuracy
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Table 6: Comparison of fine-tuning LLaMA2-7B using FFT, RoSA and IA3 (Liu et al., 2022). For RoSA, we consider
40M, 80M, and 160M parameter budgets and we assume the budget is distributed equally between the sparse and low-rank
adapters.

GSM8k ViGGO SQL
#Params 1 Epoch Extended 1 Epoch Extended 1 Epoch

FFT 6.7 B 32.3 38.8 82.1 95.0 89.0

RoSA r = 8, d = 0.3% 40.8 M 29.2 37.5 94.5 97.1 77.6
RoSA r = 16, d = 0.6% 81.6 M 32.2 38.6 95.2 97.1 88.3
RoSA r = 32, d = 1.2% 163.1 M 32.2 36.2 93.4 97.3 89.2

IA3 1.6 M 13.12 16.07 38.24 40.06 84.5

on the Massive Multitask Language Understanding (MMLU) benchmark (Hendrycks et al., 2020), a comprehensive suite
designed to test models across a wide range of academic and professional subjects.

Results. Table 7 summarizes our results. Our experiments reveal that RoSA does not consistently outperform LoRA on
instruction-tuning, particularly when tuning on datasets such as OpenPlatypus and Alpaca, which contain data relatively
similar to the pre-training data.

As discussed earlier in the paper (refer to Section 3.2), the advantage of RoSA is more pronounced when the training
data is rather complex, i.e. in settings where full fine-tuning significantly outperforms LoRA. This observation aligns
with our current results, suggesting that for simpler instruction tuning tasks, LoRA performs adequately, matching or even
outperforming FFT, and therefore RoSA is not necessary.

Analysis. The primary reason for RoSA’s underperformance in these scenarios might be that, as mentioned earlier in the
paper, when the tasks are not complex enough, RoSA’s performance is on par with LoRA’s. Another reason is based on the
findings from He et al. (2022), which indicate that added parameters are better utilized in the feed-forward network (FFN)
layers rather than the attention layers. Since RoSA is more robust at capturing complex information, it is more effective
when the added parameters are used in the MLP modules. Therefore, exploring different choices of target fine-tuning
modules might be better to yield better performance; however, we leave this for further research.

Table 7: MMLU 5-shot accuracy comparison on LLaMA2-7B. We observe that RoSA does not outperform LoRA on these
simpler tasks.

Dataset Model/Fine-tuning MMLU (5-shot)
LLaMa2-7B 45.75

OpenPlatypus LoRA r = 16 49.92
RoSA r = 16, d = 0.6% 46.54

Alpaca LoRA r = 16 45.8
RoSA r = 16, d = 0.6% 46.52

F. Qualitative Results
Here we showcase some examples of the generated outputs on the GSM8k task, which includes mathematical reasoning. We
consider the FFT model, as well as LoRA, SpA, and best RoSA models in the 40M budget (single epoch).

Question:
John rents his car out 10 times a month for 3 hours each time. He
gets paid $25 an hour. If his car payment is $500, how much profit
does he make on his car?

Answer (Ground Truth):
He rents his car 10*3=«10*3=30»30 hour a month
So he makes 25*30=$«25*30=750»750 a month
That means he has a profit of 750-500=$«750-500=250»250 a month
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#### 250

Answer (FFT):
He rents his car out 10*3=«10*3=30»30 hours a month
So he makes 30*25=$«30*25=750»750 a month
So his profit is 750-500=$«750-500=250»250
#### 250

Answer (LoRA):
He makes 3*10=$«3*10=30»30 per month
So he makes 30*12=$«30*12=360»360 per year
So he makes 360-500=$«360-500=140»140 profit
#### 140

Answer (SpA):
He makes 3*10=$«3*10=30»30 per month
So he makes 30*12=$«30*12=360»360 per year
So he makes a profit of 360-500=$«360-500=140»140
#### 140

Answer (RoSA):
He makes 3*10=$«3*10=30»30 per month
So he makes 30*25=$«30*25=750»750 per month
So he makes 750-500=$«750-500=250»250 per month
#### 250

In the above example, while both LoRA and SpA decide to calculate yearly profit, RoSA successfully solves the problem
correctly.

Question:
Mary is two years younger than Joan, who is five years older than
Jessa. If Jessa is 20 years old, what is the sum of the ages of the
three girls?

Answer (Ground Truth):
Joan is 20 + 5 = «20+5=25»25 years old.
Mary is 25 - 2 = «25-2=23»23 years old.
Therefore, the sum of their ages is 20 + 25 + 23 = «20+25+23=68»68.
#### 68

Answer (FFT):
Joan is 20 + 5 = «20+5=25»25 years old.
Mary is 25 - 2 = «25-2=23»23 years old.
The sum of the ages of the three girls is 23 + 20 + 25 =
«23+20+25=68»68 years old.
#### 68

Answer (LoRA):
The sum of the ages of the three girls is 20 + 5 + 2 = «20+5+2=27»27
years.
#### 27

Answer (SpA):
Mary is 20 - 5 = «20-5=15»15 years old.
The sum of the ages of the three girls is 20 + 15 + 15 =
«20+15+15=50»50 years.
#### 50

Answer (RoSA):
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Joan is 20 + 5 = «20+5=25»25 years old.
Mary is 25 - 2 = «25-2=23»23 years old.
The sum of the ages of the three girls is 23 + 20 + 20 =
«23+20+20=63»63 years.
#### 63

While all adaptation methods (including RoSA) fail to answer the question correctly, we see that LoRA and SpA completely
fail to even process it. In contrast, RoSA calculates the ages correctly and only fails to sum them up at the end.
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Figure 7: Sorted singular values of ∆∗ for various layers of a LLaMA2-7B fully fine-tuned on GSM8k. Thresholds for
ranks 8 and 32 are marked with dotted and dashed lines, respectively. The top 256 singular values are selected.
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