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Abstract

We propose a distributional framework for bench-
marking socio-technical risks of foundation mod-
els with quantified statistical significance. Our ap-
proach hinges on a new statistical relative testing
based on first and second order stochastic dom-
inance of real random variables. We show that
the second order statistics in this test are linked
to mean-risk models commonly used in econo-
metrics and mathematical finance to balance risk
and utility when choosing between alternatives.
Using this framework, we formally develop a risk-
aware approach for foundation model selection
given guardrails quantified by specified metrics.
Inspired by portfolio optimization and selection
theory in mathematical finance, we define a met-
rics portfolio for each model as a means to aggre-
gate a collection of metrics, and perform model
selection based on the stochastic dominance of
these portfolios. The statistical significance of
our tests is backed theoretically by an asymptotic
analysis via central limit theorems instantiated in
practice via a bootstrap variance estimate. We use
our framework to compare various large language
models regarding risks related to drifting from
instructions and outputting toxic content.

1. Introduction
Foundation models such as large language models (LLMs)
have shown remarkable capabilities redefining the field of ar-
tificial intelligence. At the same time, they present pressing
and challenging socio-technical risks regarding the trustwor-
thiness of their outputs and their alignment with human val-
ues and ethics (Bommasani et al., 2021). Evaluating LLMs
is therefore a multi-dimensional problem, where those risks
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are benchmarked across diverse tasks and domains (Chang
et al., 2023).

In order to quantify these risks, (Liang et al., 2022; Wang
et al., 2023; Huang et al., 2023; Sun et al., 2024) proposed
benchmarks of automatic metrics for probing the trustwor-
thiness of LLMs. These metrics include accuracy, robust-
ness, fairness, toxicity of the outputs, etc. Human evaluation
benchmarks can be even more nuanced, and are often em-
ployed when tasks surpass the scope of standard metrics.
Notable benchmarks based on human and automatic evalua-
tions include, among others, Chatbot Arena (Zheng et al.,
2023), HELM (Bommasani et al., 2023), MosaicML’s Eval,
Open LLM Leaderboard (Wolf, 2023), and BIG-bench (Sri-
vastava et al., 2022), each catering to specific evaluation
areas such as chatbot performance, knowledge assessment,
and domain-specific challenges. Traditional metrics, how-
ever, sometimes do not correlate well with human judg-
ments. Aiming for a better alignment with human judg-
ments, some approaches utilize ChatGPT/GPT-4 for natural
language generation evaluations (Liu et al., 2023; Zhang
et al., 2023; Hada et al., 2023).

A comprehensive evaluation of LLMs requires addressing
the following critical considerations:

1. Interpretability. Evaluation of foundation models
is multi-dimensional in nature and multiple metrics
benchmark the models on different socio-technical di-
mensions that probe the trustworthiness of their outputs
and their adherence to shared values and ethics. It is
critical to establish an aggregate-level measure to fa-
cilitate the interpretation and effective communication
of the evaluation results.

2. Risk Aware Benchmarking. In natural language
(and other) applications, metrics quantify important
guardrails such as model’s toxicity, safety, or robust-
ness. Therefore, a comprehensive evaluation frame-
work must incorporate a risk aware benchmarking.
This entails ranking models based on the assessment of
failure modes and tail statistics1, providing a nuanced
understanding of potential pitfalls.

1I.e. understanding and quantifying low-probability high-risk
events.
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(a)

Figure 1: (a) Quantiles, (b) Tail Value at Risk (TVAR), of Metrics portfolio of an LLM, showing that TVAR (second-order
stochastic dominance) more clearly ranks the models than the quantiles alone (first-order stochastic dominance). (c) Ranking
of models using Relative First and Second Stochastic Dominance of Portfolios (R-FSD, R-SSD @P) versus ranking of
models using Relative First and Second Stochastic Dominance of chatGPT evaluation scores and ranking by Mean Win Rate
(MWR) on the metrics portfolio. The portfolio in this plot uses an independent copula aggregation. Note that (1) the metrics
portfolio successfully approximates the chatGPT evaluation, since the @P rankings largely agree with the @chatGPT
rankings; (2) the R-SSD rankings outperform MWR baseline.

3. Statistical Significance. Evaluating machine learning
models is intimately connected to statistical signifi-
cance testing (SST), although this framework is still
underutilized: (Dror et al., 2018) reports almost 50%
of ACL papers miss SST indicators. With the ever in-
creasing parametric complexity of LLMs, obtaining a
reliable SST in evaluating foundation models becomes
ever more urgent.

We propose in this paper an evaluation framework that offers
a principled solution and an efficient implementation that
addresses each of these challenges. Our main contributions
are:

1. Interpretable Metrics-Portfolio (Section 4). Draw-
ing inspiration from econometrics and mathematical
finance, we define a metrics-portfolio for aggregating
metrics. This portfolio uses the notion of copula to
normalize and aggregate metrics, yielding a single in-
terpretable number assessing each output of a LLM. A
higher value of the portfolio is preferable. We illustrate
in Figure 1 panels (a) and (b) summary statistics of
the metrics portfolio aggregating a total of 8 automatic
metrics computed using 5K samples from the Mix-
instruct dataset (Jiang et al., 2023). In panel (c) we
show that model ranking based on our metrics-portfolio
aligns with human evaluation proxies such as chatGPT
(Please refer to Appendix B for details of how chatGPT
score is computed).

2. Risk Aware Benchmarking via Second Order Stochas-
tic Dominance (Section 2). Stochastic orders define
partial orders on random variables and play a vital role

in econometrics and mathematical finance for com-
paring and selecting portfolios. We propose using
stochastic order to select LLMs based on their metrics-
portfolios. A portfolio dominates in the First Order
Stochastic Dominance (FSD) if it has higher quan-
tiles for all percentiles. However, in Figure 1 (Panel
(a)), the quantiles of the metrics-portfolio of an LLM
don’t provide a clear ordering. Instead, we propose
the use of Second Stochastic Dominance (SSD), where
a portfolio dominates if it has higher Tail Values at
Risk (TVAR) for all percentiles (also known as Con-
ditional Value at Risk). TVAR, illustrated in Figure 1
(Panel (b)), represents normalized integrated quantiles,
assessing the risks of low values in the portfolio. Small
TVAR corresponds to fat left tails in the distribution of
the portfolio, identifying risky LLMs as those with the
lowest TVAR. For example, Flan-T5 emerges as the
riskiest model in our running example.

3. Statistical Significance via Dominance Tests. (Section
3) Armed with these notions of stochastic dominance,
we define statistics that benchmark the relative domi-
nance of a model’s portfolio on another (R-FSD and
R-SSD in Panel (c) in Figure 1). We subject these statis-
tics to an asymptotic analysis, proving central limit
theorems that provide the foundation for hypothesis
testing with false discovery rate control. We then per-
form stochastic dominance hypothesis testings between
all pairs of models. Having adjusted the confidence
level of these tests, we aggregate these pairwise rank-
ings to a single rank via rank aggregation techniques
such as the Borda Algorithm (de Borda, 1781). The
resulting ranks, depicted in Panel (c) of Figure 1, high-
light that the portfolio of automatic metrics (@P) leads
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to a similar ranking to chatGPT score (@chatGPT)
for both first and second stochastic order. To under-
score the importance of risk aware benchmarking, we
present the ranking of the metrics-portfolio produced
by the ubiquitous Min Win Rate (MWR) used in LLM
benchmarks (Liang et al., 2022)(last column in Panel
(c)). Flan-T5 ranks close to last with all other orders,
but ranks 6 with MWR. This highlights that the ubiq-
uituous MWR used in LLM benchmarks is risky for
ranking LLMs as it does not take into account failure
modes of the model, and we caution practitioners of its
pitfalls.

2. Stochastic Dominance
We first review notions of stochastic dominance and their
relation to downside risk measures and risk averse prefer-
ence modeling. We use the notation of the seminal paper
of (Ogryczak & Ruszczynski, 2002), and assume that the
random variables are standardized so that larger outcomes
are preferable. Throughout this Section, the reader can think
of the random variable X as a metric evaluating the perfor-
mance of model A on a specific test set. Likewise, Y rep-
resents the evaluation of model B. We defer the definition
of metrics portfolio to Section 4. In a multi-metric evalu-
ation, as explained in the introduction, X and Y represent
portfolios of evaluations of model A and B respectively.

2.1. First and Second order Dominance and Mean-Risk
Models

First Order Stochastic Dominance The First-order
Stochastic Dominance (FSD) between real-valued random
variables uses the right-continuous cumulative distribution
(CDF) as a performance function. Specifically, for a real
random variable X , define the first performance function
F

(1)
X : R→ [0, 1] as the CDF: F (1)

X (η) = P(X ≤ η),∀η ∈
R. The FSD of X on Y is defined as follows:

X ≽
FSD

Y ⇐⇒ F
(1)
X (η) ≤ F

(1)
Y (η),∀η ∈ R, (1)

this intuitively means that for all outcomes η, the probability
of observing smaller outcomes than η is lower for X than Y .
An equivalent definition can be expressed using the quantile
F

(−1)
X (See e.g (Ogryczak & Ruszczynski, 2002)):

X ≽
FSD

Y ⇐⇒ F
(−1)
X (p) ≥ F

(−1)
Y (p),∀p ∈ (0, 1],

(2)

where F
(−1)
X : [0, 1]→ R is the left-continuous inverse of

F
(1)
X : F (−1)

X (p) = inf{η : F
(1)
X (η) ≥ p} for p ∈ (0, 1]. We

focus on this definition as it is more computationally and

notationally friendly since the quantile function is always
supported on [0, 1].

Second Order Stochastic Dominance The Second-order
Stochastic Dominance (SSD) is defined via the second per-
formance function F

(2)
X : R→ [0, 1] that measures the area

under the CDF: F (2)
X (η) =

∫ η

−∞ F
(1)
X (x)dx, for x ∈ R,

yielding:

X ≽
SSD

Y ⇐⇒ F
(2)
X (η) ≤ F

(2)
Y (η),∀η ∈ R. (3)

Note that FSD implies SSD, hence SSD is a finer notion
of dominance. While FSD implies that X is preferred to
Y by any utility-maximizing agent preferring larger out-
comes2, (Ogryczak & Ruszczynski, 2002) showed that SSD
implies that X is preferred to Y by any risk-averse agent
preferring larger outcomes.3 Similarly to FSD, SSD can be
measured with quantile functions via introducing the sec-
ond quantile function also known as integrated quantiles
F

(−2)
X : (0, 1]→ R

F
(−2)
X (p) =

∫ p

0

F
(−1)
X (t)dt, for t ∈ (0, 1]. (4)

Similarly to the FSD case, an equivalent more computa-
tionally friendly definition can be expressed in terms of the
second quantile function (a proof of this equivalence can be
found in Theorem 3.2 in (Ogryczak & Ruszczynski, 2002)):

X ≽
SSD

Y ⇐⇒ F
(−2)
X (p) ≥ F

(−2)
Y (p),∀p ∈ (0, 1].

(5)

This equivalence is not straightforward and is due to Fenchel
duality between F (2) and F (−2). Using p = 1 we see that
SSD implies µX ≥ µY , where µX and µY are means of X
and Y .

Mean – Risk Models (MRM) As noted earlier SSD is
linked to risk aware benchmarking via the second perfor-
mance function F (2)(.) measuring expected shortfall, and
the negative second quantile function −F (−2)(p) that is an
assessment of expected losses given outcomes lower than
the p-quantile.

Definition 2.1 (Mean – Risk Models). A mean – risk model
of a random variable X consists of the pair (µX , rX), where
µX is the mean of X , and rX is a functional that measures
the risk of the random outcome X .

The consistency of a mean – risk model with SSD is defined
as follows:

2I.e. having an increasing utility function.
3I.e. having an increasing and concave utility function.
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Name Risk Measure α− consistency with SSD
Standard deviation σX =

√
E(X − µX)2 not consistent

Absolute semi deviation δX = E(µX −X)+ 1− consistent

Negative Tail Value at Risk −TVARX(p) = −F (−2)(p)
p 1− consistent for all p ∈ (0, 1]

Mean absolute deviation from a quantile hX(p) = µx −
F

(−2)
X (p)

p 1− consistent for all p ∈ (0, 1]

Gini Tail ΓX = 2
∫ 1

0
(µXp− F

(−2)
X (p))dp 1− consistent

Table 1: Risk models and their α−consistency with SSD.

Definition 2.2 (SSD consistency of Mean – Risk Models).
A mean – risk model (µX , rX) is α−consistent with SSD,
if for α > 0 the following is true:

X ≽
SSD

Y =⇒ µX − αrx ≥ µY − αrY . (6)

The ubiquitous mean – risk model in machine learning is
(µX , σX), where σX is the standard deviation. Unfortu-
nately this model is not consistent with the SSD and has
several limitations as it implies Gaussianity of the outcomes
or a quadratic utility function. We give in Table 1 risk mea-
surements and their α−consistency (proofs in (Ogryczak
& Ruszczynski, 2002)). Note that in contrast FSD is only
consistent with the Mean-VaR risk model (Mean-Value at
Risk) for all p ∈ [0, 1]. VaR does not provide a refined tail
assessment.

2.2. Relaxations of Stochastic Dominance
Recalling the definitions of FSD and SSD in Equations (2)
and (5), in the finite-sample regime it is hard to test for these
relations as one needs to show the infinite-sample quantile
or second quantile properties hold uniformly over all p ∈
(0, 1]. This difficulty motivated the relaxation of stochastic
dominance to an almost stochastic dominance pioneered by
(Leshno & Levy, 2002). These relaxations were revisited
for the first order by (Alvarez-Esteban et al., 2014) who
later proposed an optimal transportation approach to assess
almost first stochastic order (Del Barrio et al., 2018).

Almost FSD (ε-FSD) Following (Leshno & Levy, 2002),
(Del Barrio et al., 2018) relaxed FSD (Equation (2)) via the
violation ratio of FSD. X ≽

ε−FSD
Y if and only if:

εW2
(FX , FY ) =

∫ 1

0
(F

(−1)
Y (t)− F

(−1)
X (t))2+dt

W2
2(FX , FY )

≤ ε,

(7)

where W2 is the Wasserstein -2 distance between FX and
FY .This ratio corresponds to a measure of the “area” of
violation of the FSD dominance of X on Y . Note that
0 ≤ εW2

(FX , FY ) ≤ 1, with value 0 if X ≻
FSD

Y and 1

if Y ≻
FSD

X . For ε ∈ (0, 1
2 ], Figure 4a in Appendix G

illustrates ε-FSD, dashed areas represent the violation set.

Almost SSD (ε-SSD) We define ε-SSD, for ε ∈ (0, 1
2 ), by

relaxing Equation (5) as follows: X ≽
ε−SSD

Y if and only if

εIQ(FX , FY ) =

∫ 1

0
(F

(−2)
Y (t)− F

(−2)
X (t))2+dt

d2IQ(FX , FY )
≤ ε,

(8)

where dIQ is the L2 distance between the Integrated Quan-
tiles (F (−2)). This ratio corresponds to a measure of the
“area” of violation of the SSD dominance of X on Y . Fig-
ure 4b in Appendix G illustrates the second order, dashed
areas represent the violation set of SSD of X on Y . Ap-
pendix D gives a more detailed account on almost stochastic
dominance.

2.3. Relative Stochastic Dominance

In the remainder of the paper, we refer to the FSD violation
ratio as εW2

(FX , FY ) ≡ ε(1)(FX , FY ) and to the SSD vi-
olation ratio as εIQ(FX , FY ) ≡ ε(2)(FX , FY ). One of the
shortcomings of almost stochastic dominance is the need
to fix a threshold ε on the violation ratio. When compar-
ing two random variables, setting a threshold is a viable
option. Nevertheless, when one needs to rank multiple vari-
ables X1, . . . , Xk (considering all pairwise comparisons),
setting a single threshold that would lead to a consistent rel-
ative stochastic dominance among the k variables becomes
challenging. To alleviate this issue, we draw inspiration
from relative similarity and dependence tests (Bounliphone
et al., 2016a;b) that circumvent the need for a threshold via
relative pairwise testings.

For ℓ ∈ {1, 2} (i.e for FSD or SSD) we consider all pairs of
violations ratios:

ε
(ℓ)
ij = ε(ℓ)(FXi

, FXj
) for i, j ∈ {1 . . . k}, i ̸= j,

noting that ε(ℓ)ij + ε
(ℓ)
ji = 1. Let F = (FX1 , . . . FXk

). We
define the one-versus-all violation ratio of the dominance of
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Xi on all other variables Xj , j ̸= i :

ε
(ℓ)
i (F ) =

1

k − 1

∑
j ̸=i

ε
(ℓ)
ij .

We then define relative stochastic dominance for both orders,
R-FSD an R-SSD respectively:

Xi1 ≽
R−FSD

Xi2 . . . ≽
R−FSD

Xik

⇐⇒ ε
(1)
i1

(F ) ≤ · · · ≤ ε
(1)
ik

(F ) and,

Xi1 ≽
R−SSD

Xi2 . . . ≽
R−SSD

Xik

⇐⇒ ε
(2)
i1

(F ) ≤ · · · ≤ ε
(2)
ik

(F )

In this definition of relative stochastic dominance, the most
dominating model is the one with the lowest one-versus-all
violation ratio and to test for relative dominance of Xi on
Xj we can look at the following statistics:

∆ε
(ℓ)
ij (F ) = ε

(ℓ)
i (F )− ε

(ℓ)
j (F ), (9)

and we have the following threshold-free test for relative
order:4

Xi ≽
R−FSD

Xj ⇐⇒ ∆ε
(1)
ij (F ) ≤ 0 (10)

Xi ≽
R−SSD

Xj ⇐⇒ ∆ε
(2)
ij (F ) ≤ 0 (11)

3. Testing For Almost and Relative Stochastic
Dominance

Given empirical samples from FX and FY we perform statis-
tical testing of the almost and relative stochastic dominance
of X on Y given empirical estimates of the statistics given
in Sections 2.2 and 2.3. A key ingredient for quantifying
the statistical significance of such tests is a central limit
theorem that guarantees that the centered empirical statistics
is asymptotically Gaussian at the limit of infinite sample
size. Given n samples from FX (m from FY respectively),
we denote Fn

X and Fm
Y the corresponding empirical distri-

butions. For ε0− FSD, (Del Barrio et al., 2018) studied
the following hypothesis testing H0 : X �≽

ε0−SSD
Y versus

the alternative Ha : X ≽
ε0−SSD

Y . Using (2), this amounts to

the following null hypothesis : H0 : εW2
(Fn

X , Fm
Y ) > ε0.

(Del Barrio et al., 2018) showed the asymptotic normality
of the empirical statistics: (Del Barrio et al., 2018; Ulmer

4For comparing k = 2 random variables, these r-FSD and
r-SSD tests reduce to 0.5-FSD and 0.5-SSD absolute tests, respec-
tively.

et al., 2022) propose to reject H0 with a confidence level
1− α if:

εW2
(Fn

X , Fm
Y ) ≤ ε0 +

√
m+ n

mn
σ2(FX , FY )Φ

−1(α),

(12)
where Φ−1 is the quantile function of a standard normal.

For the tests we propose below, we assume the following
structure on the underlying CDFs to derive the correspond-
ing central limit theorems (CLTs).
Assumption 1 (Regularity). Let the CDF F be supported on
the interval [−M,M ] for some constant M , and have pdf
f such that f ′(p)

f3(p) is bounded for almost every p for which
f(p) > 0 (i.e. all p in the support of f ).

ε-SSD Testing Similar to ε-FSD, using the definition in (5)
we propose to test using the following null hypothesis for
testing for ε0-SSD:

H0 : εIQ(F
n
X , Fm

Y ) > ε0

Supposing Assumption 1 holds for FX , FY and assuming
n

n+m → λ for some λ, we state a Central Limit Theorem
for the second order statistics (Theorem 3.1, proved in Ap-
pendix J.1).
Theorem 3.1 (Central Limit Theorem for ε-SSD). Assume
that FX , FY are supported on intervals5 in [−M,M ],

and have pdfs fx, fy such that f ′
x(p)

f3
x(p)

,
f ′
y(p)

f3
y (p)

are bounded
almost everywhere on the support of fx and fy respectively.
Assume we have n samples from FX and m samples
from FY , with n,m → ∞ such that n

n+m → λ for some

λ. Then
√

mn
m+n (εIQ(F

n
X , Fm

Y )− εIQ(FX , FY )) →
N (0, σ2

λ(FX , FY )) where σ2
λ(FX , FY ) =

1
d8
IQ(FX ,FY )

[(1− λ)Var(vX(U)) + λVar(vY (U))] ,

for U ∼ Unif[0, 1], vY (t) =

2
(

1
fy(F

−1
Y (t))

)(∫ 1

t
(F

(−2)
X (p)− F

(−2)
Y (p))+dp

)
, and

vX(t) = 2
(

1
fx(F

−1
X (t))

)(∫ 1

t
(F

(−2)
X (p)− F

(−2)
Y (p))−dp

)
.

Similarly to (12), Theorem 3.1 suggests to reject H0 with a
confidence 1− α if :

εIQ(F
n
X , Fm

Y ) ≤ ε0+

√
m+ n

mn
σ2
λ(FX , FY )Φ

−1(α),

(13)

where (for the same reasons as the FSD case) σ2
λ is given by

the central limit theorem.

Relative Stochastic Dominance Testing We turn now to
relative stochastic dominance that we introduced in (10)

5The interval for FX and for FY need not coincide.
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and (11) for first and second orders. Given n samples from
k random variables (X1 . . . Xk), let F = (F1, . . . , Fk) be
the marginals of Xi and Fn = (F1n, . . . , Fkn) denote the
empirical marginals. To test for R-FSD (resp R-SSD) of Xi1

on Xi2 we propose to test the following null hypothesis:

H0 : ∆ε
(ℓ)
ij (Fn) > 0, ℓ = 1 or 2

Assuming that each Fi satisfies Assumption 1, we state in
Appendix H a central limit theorem for the relative second
order statistics (Theorem H.3 proved in in Appendix J.2).
A similar result holds for the relative first order statistics
that we omit for brevity. Theorem H.3 suggests to reject H0

with a confidence 1− α if:

∆ε
(2)
i1,i2

(Fn) ≤
√

1

n
σ2
relative(FX , FY )Φ

−1(α)

(14)

where σ2
relative(FX , FY ) is given by the central limit theo-

rem (similar test exists for R-FSD).

Bootstrapping Heuristic While the CLT above provides
an asymptotic value for the variance, in practice (as in the
ASO framework of (Ulmer et al., 2022)) we estimate the
variance with a bootstrapping heuristic (Efron & Tibshirani,
1993). This estimate is nonasymptotic and hence should
often be more accurate than the asymptotic value. Proving
the consistency of the bootstrap for functions of quantiles
is generally nontrivial (Shao & Tu, 2012), but recall that
the stochastic ordering can be defined in terms of either
quantiles or CDFs. In Appendix K we provide a bootstrap
consistency proof for the absolute statistics based on the
CDF, leaving the quantile based proof for future work.

Multi-Testing Algorithm Algorithm 1 given in Appendix
C summarizes the multi-testing setup for both relative and
almost (absolute) FSD and SSD. The main idea behind
Algorithm 1 is to turn multi-testing to pairwise testings i.e
testing for stochastic dominance between all pairs of models
using relative (or absolute) FSD or SSD. In order to ensure
that this multi-testing has a confidence level 1 − α, we
correct the individual test’s confidence level by dividing α
by the number of all pairs (Bonferroni, 1936). Then in order
to combine the pairwise rankings to a single rank, we use
a simple Borda count (de Borda, 1781) rank aggregation
algorithm.

4. Distributional Risk Aware Benchmarking of
Foundation Models

Setup In this section we consider the multi-metric eval-
uation setup of a foundation model A : X → O, using
N metrics mi : O → R, i = 1 . . . N , where mi are real

valued functions evaluated on a test set D.Without loss of
generality, assume that each of the metrics are standard-
ized such that higher values of mi correspond to more
desirable model performance. We model observed val-
ues for each metric mi as a continuous random variable
Mi with unknown CDF FMi

. For a model A : X → O
and a data sample X ∼ D, we describe the evaluation
of model A with mi with the following random variable
Mi: Mi|A,X := mi(A(X)), X ∼ D, i = 1 . . . N, where
the randomness arises from the data sampling procedure
X ∼ D, and (if applicable) the stochasticity of the model
A, for example if the model uses sampling.

Metrics Portfolio Aggregation and Selection using
Stochastic Dominance Let λ = (λ1, . . . , λN ) be a proba-
bility vector that represents the importance of the mi metrics
to the model’s end user. Inspired by the portfolio optimiza-
tion literature, we model the user return from a model as a
portfolio of metrics mi evaluated on a test set D. Following
(Ulan et al., 2021; Belgodere et al., 2023), we define this
portfolio as an Independent copula, which forms a weighted
geometric mean of the CDFs:

RA(X) = exp

(
N∑
i=1

λi logFMi (mi(A(X)))

)
(15)

Note that (15) normalizes the metrics using the CDF of
the metric Mi, eliminating the issue of differing dynamic
ranges. This CDF should be formed by pooling together the
evaluations on all samples and from all models being com-
pared, to ensure that the various RA are comparable. The
CDF normalization is monotonic and hence it preserves the
order of each metrics and allow us to aggregate in the prob-
ability space the metrics using a simple weighted geometric
mean. Computing RA(X) for all test samples X , we can
therefore characterize the distribution of the metric portfolio
of the model A. To compare two models it is enough to
compare their corresponding portfolios, specifically, Model
A is preferred to Model B using ε- or R-SSD:

RA(X) ≽
ε− or R−SSD

RB(X). (16)

Similar tests can be performed for FSD.

Note that the portfolio aggregation in (15) does not take into
account the dependencies and correlations between the met-
rics. To alleviate this, we explore using also the empirical
copula (Ruschendorf, 1976) as a means of aggregation of
the metrics as follows

Rc
A(X) = Ĉ (FM1

(m1(A(X))) , . . . FMN
(mN (A(X)))) ,

(17)
where Ĉ is the empirical copula . Given N samples Xℓ, ℓ =
1 . . . n, the empirical copula is given by Ĉ(u1, . . . un) =
1
n

∑n
j=1 Π

N
i=11FMi

(mi(A(Xj)))<ui
. The empirical copula
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can be understood as an average mean win rate (with an
“and” operation on all metrics), that is computed on the CDF
transformed scores of each evaluated sample. The main
advantage of the independent copula (IC) in (15) versus the
empirical copula (EC) in (17) is its computational efficiency
(O(nN) for IC versus O(n2N) for EC).

Multiple Models Comparison Given k models Aℓ, ℓ =
1 . . . k and their evaluations mi(Aℓ(X)), X ∼ D, i =
1 . . . N , we pool all model evaluations for a metric to esti-
mate the CDF of each metric FMi

and construct a portfolio
for each model RAℓ

(X). We use our Relative Stochastic
Dominance testing introduced in Section 3 and in Algorithm
1 to rank the models by their metrics portfolio in relative
SSD or FSD with a confidence level 1− α.

Per Metric Stochastic Dominance and Rank Aggrega-
tion We also explore another approach for multi-testing, by
considering the stochastic dominance of the models on per-
metric basis. This amounts to computing N relative stochas-
tic orders for eachMi = (mi(A1(X)), . . . ,mi(Aℓ(X))),
i = 1 . . . N . This amounts to producing via Algorithm 1 a
relative ranking πi of the models based onMi. A single
rank π is then obtained via rank aggregation with uniform
weighting on the per-metric rankings πi, i = 1 . . . N . We
use for rank aggregation the R package of (Pihur et al.,
2009). For more details on rank aggregation, the reader is
referred to Appendix F.3.

5. Experiments
5.1. Validation of Statistical Significance

We examine the statistical properties of our tests as a func-
tion of sample size. We purposely design synthetic score
distributions to represent challenging problems comprising
large overlap between the distributions and considerable
violation ratio, but where one would still like to have an
ordering among the variables. For this we consider the two
Gaussian variables X ∼ N (0, 1) and and Y ∼ N (0.5, 2).
Figure 5 in Appendix L.1 shows that our tests have desirable
statistical properties. We perform synthetic experiment on
fat tailed distribution such as log normal (Fig. 6 App. L.1).

5.2. LLM evaluation with Stochastic Dominance

We showcase LLM evaluation with stochastic dominance
to benchmark two risks: drifting from instructions and out-
putting toxic content. The following datasets correspond to
each risk we benchmark.

Mix-Instruct Evaluation Data We use the data from
(Jiang et al., 2023), that consists of an instruction, an
input sentence and an expected output from the user, as
well as the output of a set of different LLMs. The dataset
consists of a training set of 100K samples and a test set of

5K samples. (Jiang et al., 2023) used automatic metrics
such as BARTscore and BLEU score comparing the LLM
generation to the expected output in order to evaluate if
each LLM followed the instruction. (Jiang et al., 2023) used
also chatGPT to evaluate the generations (See Appendix
B for ChatGPT evaluation). The number of automatic
metrics N is 8, the total number of evaluated models k is
12. Metrics are unified so that larger values are preferred.

Toxicity Evaluation We use the real toxicity prompts
dataset of Gehman et al. (2020), and generate prompts com-
pletions from the Llama 2 7b , Llama 2 13b, Llama 2 70b ,
MosaicML MPT 30b and Tiiuae Falcon 40b models avail-
able in Opensource (k = 5 models). We select two sets of
prompts: toxic prompts (toxicity > 0.8, that gives ∼10K
prompts ) and non-toxic prompts (toxicity < 0.2, from
which we randomly sample 10K). We sample from each
model, 10 completions per prompt using nucleus sampling
(top-p sampling with p = 0.9 and a temperature of 1). This
procedure yields a dataset of ∼200K sentence completions
per model. We evaluate the toxicity of these generations
using the Perspective API, on the following toxicity metrics
(N = 6 metrics): Toxicity, Severe toxicity, Identity Attack,
Insult, Profanity and Threat. Following Liang et al. (2022),
we evaluate the toxicity of generated completions only and
refer to this as Gen Only evaluation. In order to also give the
context of the completion, we prepend the model generation
with the prompt and evaluate the full sentence using Per-
spective API. We refer to this as Prompt+Gen. The polarity
of all toxicity metrics is unified so that high values refer to
non toxic content (we use −log probabilities of Perspective
API outputs).

Evaluation Protocol and Baselines We evaluate each of
the use cases (instruction following and toxicity) using the
following absolute stochastic dominance tests: (1) ε-FSD
(corresponds to the ASO evaluation of (Ulmer et al., 2022))
for ε = 0.08, 0, 25, 0.4. (2) our proposed ε-SSD using the
same values for ε, (3) our relative stochastic dominance
R-FSD and R-SSD tests, (4) the Mean – Risk models de-
scribed in Table 3, and (5) the ranking produced by the
Mean Win Rate (MWR) used by LLM leaderboards such
as HELM (Liang et al., 2022). As noted in Section 4, we
either perform these tests on a metrics portfolio – we refer
to this as test @P(IC) when using the independent copula
given in Equation (15) and test @P(EC) when using the
empirical copula given in Equation (17) ; or on a per metric
basis leading to N rankings of the models that we reduce
to a single ranking via Rank Aggregation (RA) (Pihur et al.,
2009) – we refer to this as RA(test @ M). In this naming
convention, test takes values in {MWR, ε-FSD, ε-SSD,
R-FSD, R-SSD, Mean – Risk Model (µX − rX)} where rX
is a chosen risk from Table 3. We perform all our statisti-
cal tests with a significance level α = 0.05, and use 1000
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Figure 2: (a) On the Mix-instruct dataset, we compute the ranking resulting from each ranking method using varying
sample sizes from 100 to 5K. We repeat each experiment 5 times. We report for each method, the Kendall-Tau similarity
between resulting ranks at each sample to the corresponding asymptotic rank at 5K samples. We see that Relative SSD on
independent copula portfolio P(IC) is more stable in sample size than rank aggregation of all Mean Risk Models and more
stable than MWR on the portfolio. The empirical dependent copula portfolio P(EC) does not have favorable asymptotics
w.r.t to P(IC) since it suffers from the curse of dimension. (b) We use the same setup as in (a) but instead of Kendall-Tau
similarity to the asymptotic rank of each method, we plot the similarity to R-SSD @ChatGPT rank at 5K samples. We
see that MWR is inconsistent with chatGPT rank while both R-SSD @P(IC) and (EC) and RA(MRM @P(IC)) have a
Kendall-Tau similarity between 0.7 and 0.75. Interestingly, the dependent copula (EC) captures better chatGPT rank than
independent copula (IC), hinting at the favorable role of the metric dependencies.

bootstrap iterations.

Efficient Implementation We compare the computational
complexity of our implementation for computing all stochas-
tic orders to that of the Deep-Significance package
(deepsig, 2022) which implements ε-FSD in the ASO frame-
work (Ulmer et al., 2022), on the task of comparing models
on the Mix-Instruct dataset (sample size 5K, k = 12 mod-
els). Using the Deep-Significance implementation
of MULTI-ASO in (Ulmer et al., 2022) for ε = 0.25 with
just 3 bootstrap iterations6, the test completes in 15min50s
(averaged over 7 runs). Our code for relative and absolute
testing performs all tests at once and relies on caching vec-
torization and multi-threading of the operations. Our code
completes all tests in an average of just 17.7 s with 1000
bootstraps. Experiments were run on a CPU machine with
128 AMD cores, of which 2 were used.

Mix-Instruct Results and Analysis In Figure 2 we depict
the asymptotics of the ranks resulting from our tests as func-
tion of the sample size. In Figure 2 (a), we see that R-SSD
with the portfolio aggregation with Independent Copula
P(IC) has favorable asymptotics compared to R-SSD with
dependent Empirical Copula P(EC). Indeed the empirical
copula estimation suffers from the curse of dimension. On
the other hand, we see in Figure 2 (b) that R-SSD with
P(EC) captures better than P(IC) the ranks resulting from

6Limited to 3 for computational reasons.

R-SSD with ChatGPT score. In other words, the dependent
copula agrees more with the human evaluation proxy that
is chatGPT. Note that the EC is expensive to compute and
requires on average 1.5 hours on 5K samples, whereas IC
requires only 0.87 seconds.

When compared with Mean Win Rate (MWR) used in LLM
leaderboards such as HELM (Liang et al., 2022), we see
that it does not have good asymptotics nor agree with Chat-
GPT rankings, regardless of the aggregation technique used.
This is due to the fact that MWR only counts wins and does
not take into account how fat is the left tail of the distribu-
tion of the metric being benchmarked, possibly leading to
overevaluation of risky models.

Remarkably, the R-SSD ordering agrees with the rank ag-
gregation of all (consistent) mean – risk models, confirming
the theoretical link between second order dominance and
risk averse decision making. The dependent copula EC with
R-SSD leads to a better agreement with chatGPT R-SSD
ranking than MRM models. Finally Tables 4 and Table 5 in
Appendix L give additional results on R-FSD and the rank
aggregation of all metrics, and how it compares to ε− FSD
and SSD.

Toxicity Results and Analysis Table 2 shows the results of
our tests on the combined set of toxic and non toxic prompts.
Ablation studies on individual sets are given in Table 6 in
Appendix L.4. We make a few observations: First, overall
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Scenario Llama 2 7b Llama 2 13b Llama 2 70b MosaicML MPT 30b Tiiuae Falcon 40b

All Combined (Toxic + Non-Toxic Prompts)

RA(R-FSD @M) (Gen Only) 2 3 5 1 4
R-FSD @P(IC) (Gen Only) 2 3 5 1 4
RA(R-SSD @M) (Gen Only) 2 3 5 1 4
R-SSD @P(IC) (Gen Only) 2 3 5 1 4

RA(R-FSD @M) (Prompt + Gen) 3 4 5 1 2
RA(R-FSD @M) (Prompt + Gen) 3 4 5 1 2
R-SSD @P(IC) (Prompt + Gen) 3 4 5 1 2
R-SSD @P(IC) (Prompt + Gen) 3 4 5 1 2

Table 2: Toxicity Ranking using an Independent Copula portfolio aggregation of Perspective API metrics.

the portfolio with independent copula approach agrees well
with the rank aggregation of per-metric rankings. The port-
folio is more computationally efficient as it needs to run the
stochastic dominance test only on the portfolio, rather than
running N tests and aggregating them via rank aggregation.
An ablation study on empirical copula in Appendix L shows
that it leads to a similar ranking as the Independent Cop-
ula. Secondly, on this dataset the R-FSD and R-SSD agree,
with a few exceptions. Interestingly, when comparing mod-
els on model generation only, on toxic prompts MosaicML
MPT stands out, while on non toxic prompts Llama2 7B
stands out and on the combined set Mosaic ML MPT stands
out. On the combined set, we see for the llama family that
increased model size increases the toxicity of generations.
This is in line with findings in the recent TrustLLM bench-
mark (Sun et al., 2024).

6. Conclusion
In this paper we introduced a distributional framework for
risk aware benchmarking and comparison of foundation
models based on multi-metric evaluations. Our framework
has potential beyond the current applications presented here,
being applicable wherever statistical significance while rank-
ing assets for decision making is needed. We believe our
tools for training models to be risk averse can be of sig-
nificant use to practitioners and serve as a stepping stone
towards solving the AI alignment problem.

Impact Statement
This paper presents a risk aware framework for benchmark-
ing LLMs. In benchmarking LLM the stochastic nature of
their generation and in presence of multiple metrics to be
evaluated, our work offers a solution that gives raise to 1)
a sound aggregation of the metrics via the copula method
2) a risk aware evaluation that takes into account tail events
of misalignment and not only the average behaviors thanks
to the use of stochastic orders 3) quantifies the uncertainty

of the evaluation via statistical significance testings. The
potential societal consequences of our work falls under AI
governance as it allows a rigorous certification of compli-
ance of LLMs with multitude of safeguards and dimensions.
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Supplementary Material

A. Ablation Studies
Metrics Aggregation Versus Portfolio For portoflio, computing ranking using FSD and SSD including the portfolio
computation on 5K samples for 5 bootstrap samples , we have mean execution time of 32.01± 4.51 s. For FSd and SSD
ranking computation for all metrics, followed by rank using pearson distance the execution time is of 254.99± 16.76 s. On
the other hand, we observe on the mix-instruct dataset a consistency of ranks between these two approaches (FSD or SDD
on portfolio & FSD or SSD on all metrics followed by rank aggregation) as quantified by the kendall-tau similarity between
the ranks:

1. Kendall Tau(R-SSD@P(IC), RA(R-SSD@M)) = 0.848

2. Kendall Tau(R-FSD@P(IC), RA(R-FSD@M)) = 0.878

3. Kendall Tau(R-SSD@P(EC), RA(R-SSD@M)) = 0.848

4. Kendall Tau(R-FSD@P(EC), RA(R-SSD@M)) = 0.848

We see that these two approaches lead to similar ranks while portfolio approach leads to 7x speedups when using IC
portfolios.

B. Transforming Discrete Relative ChatGPT Scores to Absolute Real Valued Scores
We follow (Jiang et al., 2023) in mapping discrete chatGPT scores to real valued ones. Note that chatGPT scores for
comparing models A and B are discrete and are one of these 4 options: A is better, B is better, Both are equally good, Both
are equally bad.

Given m models we construct for each prompt sample ℓ = 1 . . . N a m×m comparison matrix with chatGPT:

Xℓ,ij = +1, Xℓ,ji = −1 if model i is better

Xℓ,ij = −1, Xℓ,ji = +1 if model j is better

Xℓ,ij = Xℓ,ji = +0.5 if model i and j equally good

Xℓ,ij = Xℓ,ji = −0.5 if model i and j equally bad

Then each model will define the following scalar score at each sample ℓ:

sℓ,i :=

m∑
j=1

(Xℓ,ij −Xℓ,ji).

hence we have a distribution of chatGPT score for each model :

pi =
1

N

N∑
i=1

δsℓ,i , i = 1 . . .m.

Note that the scores sℓ,i take on even integer values between −2m and 2m inclusive, we treat the support as continuous and
consider the following kernel density estimator with Gaussian kernel of width σ:

p̂
(σ)
i (t) =

1

N

N∑
i=1

φ

(
t− sℓ,i

σ

)
, t ∈ R, i = 1 . . .m,

where φ is the standard normal density. In Figure 3 below we plot chatGPT scores kernel density estimates for two models,
openassistant and flan-t5:

12
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Figure 3: ChatGPT density scores for two models, open-assistant has clearly higher scores than the Flan-t5 models.

C. Multi-Testing Algorithm for Relative and Almost Stochastic Dominance
Our multi-testing algorithm for relative and almost stochastic dominance is detailed in Algorithm 1.

In a nutshell our multi-testing consists of the following steps:

1. For evaluation of each model compute summary statistics , i.e quantiles and integrated quantiles.

2. For all pairs of models, compute statistics of absolute and relative tests by computing violation ratios.

3. Compute the variance of these statistics via bootstrapping.

4. Perform the hypothesis testing for all pairs models with a corrected confidence level taking into account the number of
all pairs

5. Aggregate pairwise rankings to a rank using the Borda algorithm, that ranks the model by their number of wins in the
stochastic dominance tests performed above.

D. Absolute or Almost Stochastic Dominance
Almost FSD (ε-FSD) Following (Leshno & Levy, 2002), (Del Barrio et al., 2018) relaxed FSD via the violation ratio of
FSD:

Definition D.1 (FSD Violation Ratio (Del Barrio et al., 2018) ). For FX ̸= FY define the violation ratio:

εW2
(FX , FY ) =

∫
A

(1)
0
(F

(−1)
X (t)− F

(−1)
Y (t))2dt∫ 1

0
(F

(−1)
X (t)− F

(−1)
Y (t))2dt

=

∫ 1

0
(F

(−1)
Y (t)− F

(−1)
X (t))2+dt

W2
2(FX , FY )

,

where A
(1)
0 =

{
t ∈ (0, 1) : F

(−1)
Y (t) > F

(−1)
X (t)

}
is the violation set the relation X ≽

FSD
Y , and W2 is the

Wasserstein−2 distance.

13
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Algorithm 1 Stochastic Order Multi-testing (relative and absolute)

1: Input: F1, ..., Fk, k models we want to rank corresponding to empirical measure p1 = 1
n

∑n
i=1 δx1

i
, . . .pk =

1
n

∑n
i=1 δxk

i
, Threshold: τ .

2: Input: Desired stochastic order ∈ {1, 2}, B number of bootstraps, m = K2 number of comparisons, significance level
α.

3: Cache the bootstraps samples and their statistics
4: for j = 1 to k do
5: p0j ← pj
6: Get Quantiles and Integrated Quantiles
7: Q0,j ← GETQUANTILES(pj)
8: IQ0,j ← GETINTEGRATEDQUANTILES(pj)
9: for b = 1 to B do

10: Get Quantiles and Integrated Quantiles
11: pbj ← RESAMPLEWITHREPLACEMENT(pj , n) {using quantiles and uniform}
12: Qb,j ← GETQUANTILES(pbj)

13: IQb,j ← GETINTEGRATEDQUANTILES(pbj)
14: end for
15: end for
16: Compute all violation ratios
17: εb,i,j ← COMPUTEVIOLATIONRATIOS(F b

i , F
b
j , order) for b = 0 . . . B, i, j = 1 . . . k, i ̸= j {ratio of Q or IQ of

j > i by total area}
18: εb,i,i = 0,∀ b, i
19: Compute the sum statistics
20: for b = 0 to B do
21: for i = 1 to k do
22: εib ← 1

k−1

∑
j εb,i,j

23: end for
24: end for
25: Compute the relative statistics
26: ∆εi,jb = εib − εjb,∀b, i, j
27: Compute the Bootstrap Variance
28: for i = 1 to k do
29: for j = 1 to k do
30: σij =

√
1

B−1

∑B
b=1(∆εi,jb −MEAN(∆εi,jb , b))2

31: σabs
ij =

√
1

B−1

∑B
b=1(εb,i,j −MEAN(εb,i,j , b))2

32: end for
33: end for
34: Compute the test
35: Winij = Winabsij = 0
36: for i = 1 to k do
37: for j = 1 to k do
38: if i ̸= j and ∆εi,j0 − 1√

n
σijΦ

−1(α/k2) ≤ 0 then
39: Winij = 1 {with confidence level 1− α/k2}
40: end if
41: if i ̸= j and ε0.i,j − 1√

n
σabs
ij Φ−1(α/k2) ≤ τ then

42: Winabsij = 1 {with confidence level 1− α/k2}
43: end if
44: end for
45: end for

rank = BORDA(Win) {with confidence level 1− α}
rankabs = BORDA(Winabs) {with confidence level 1− α}

46: Return rank, rankabs

14
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Algorithm 2 COMPUTEVIOLATIONRATIOS(Fa,Fb,order)

if order =1 then
Return εW2

(Fa, Fb) in Definition D.1
else if order=2 then

Return εIQ(Fa, Fb) in Definition D.2
end if

Note that 0 ≤ εW2(FX , FY ) ≤ 1, with value 0 if X ≻
FSD

Y and 1 if Y ≻
FSD

X . For ε ∈ (0, 1
2 ], the relaxed FSD can be

therefore defined as follows

X ≽
ε−FSD

Y ⇐⇒ εW2
(FX , FY ) ≤ ε. (18)

Figure 4a in Appendix G illustrates ε-FSD, dashed areas represent the violation set.

Almost SSD (ε-SSD) Note that the original definition of ε-FSD of X on Y in (Leshno & Levy, 2002) is an L1 definition
and uses the CDF rather than quantiles:

∫∞
−∞(FX(x) − FY (x))+dx ≤ ε

∫∞
∞ |FX(x) − FY (x)|dx. (Tzeng et al., 2013)

gave a similar L1 definition for ε-SSD using the second performance function F (2)(.). According to (Tzeng et al., 2013),
X dominates Y in the ε-SSD if

∫∞
−∞(F

(2)
X (x) − F

(2)
Y (x))+dt ≤ ε

∫ +∞
−∞ |F

(2)
X (x) − F

(2)
Y (x)|dx. Following (Del Barrio

et al., 2018), we redefine ε-SSD using second quantiles and with a L2 definition, this eases the analysis and practically the
integration is on (0, 1] rather than (−∞,∞).

We define the SSD violation ratio as follows:

Definition D.2 (SSD Violation Ratio ). For FX ̸= FY define the violation ratio:

εIQ(FX , FY ) =

∫
A

(2)
0
(F

(−2)
X (t)− F

(−2)
Y (t))2dt∫ 1

0
(F

(−2)
X (t)− F

(−2)
Y (t))2dt

=

∫ 1

0
(F

(−2)
Y (t)− F

(−2)
X (t))2+dt

d2IQ(FX , FY )
,

where A
(2)
0 =

{
t ∈ (0, 1) : F

(−2)
Y (t) > F

(−2)
X (t)

}
is the violation set the relation X ≽

SSD
Y , and dIQ is the L2

distance between the Integrated Quantiles (F (−2)).

We are now ready to define ε-SSD, for ε ∈ (0, 1
2 ):

X ≽
ε−SSD

Y ⇐⇒ εIQ(FX , FY ) ≤ ε (19)

Figure 4b in Appendix G illustrates the second order, dashed areas represent the violation set of SSD of X on Y . Integrated
quantiles fully characterize one dimensional distributions as can be seen from the Theorem I.1 stated and proved in Appendix
I:

E. Related Works on Stochastic Dominance
Stochastic Dominance In (Dror et al., 2018; 2019; Ulmer et al., 2022; Simpson, 2021) a distributional assessment of the
models based on stochastic dominance was proposed to overcome the limitations of the ubiquitous Mean-Variance Risk
model used in machine learning.

(Ulmer et al., 2022) used first order almost stochastic dominance and advocated for selecting a model A over B based on a
metric mi if: Mi|A,X ≽

ε−FSD
Mi|B,X. We expand this to the Relative-FSD. In natural language (and other) applications,

it is often crucial to mitigate the risk of outputs with low metrics, especially when those metrics quantify important
socio-technical guardrails such as model’s toxicity, safety, or robustness. Unfortunately, the first stochastic ordering does
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not capture an assessment of the left tail behavior of Mi|A,X and Mi|B,X and hence does not provide a risk-aware
benchmarking (Ogryczak & Ruszczynski, 2002). To alleviate this issue, we instead consider the second order stochastic
ordering and use our second order almost or relative stochastic dominance tests introduced in Section 3 for selecting a model
A if:Mi|A,X ≽

ε or R−SSD
Mi|B,X.

F. Supplement Discussions
F.1. Mean Risk Models

Name Risk Measure α− consistency with SSD
Standard deviation σX =

√
E(X − µX)2 not consistent

Absolute semi deviation δX = E(µX −X)+ 1− consistent

Negative Tail Value at Risk −TVARX(p) = −F (−2)(p)
p 1− consistent for all p ∈ (0, 1]

Mean absolute deviation from a quantile hX(p) = µx −
F

(−2)
X (p)

p 1− consistent for all p ∈ (0, 1]

Gini Tail ΓX = 2
∫ 1

0
(µXp− F

(−2)
X (p))dp 1− consistent

Table 3: Risk models and their α−consistency with SSD.

Note that several risks in Table 3 use the second quantile function as part of a benchmarking of the left tails of the outcomes.

F.2. δ− Consistency of Gini-Risk Models with ε-SSD

δ− Consistency of Gini-Risk Models with ε-SSD We relax the definition of α− consistency of mean-risk models with
SSD to (α, δ) consistency with ε-SSD as follows:

Definition F.1 ((α, δ) consistency of MRM with ε-SSD). A mean-risk model (µX , rX) is (α, δ) consistent with ε-SSD, if
there exists α, δ > 0 such that X ≽

ε-SSD
Y =⇒ µX − αrx + δ ≥ µY − αrY

It is easy to see that the Mean-Gini tail MRM of X and Y is consistent with their ε-SSD:

Proposition F.2. The Mean-Gini Tail MRM is (1, 2ε
1
2 dIQ(FX , FY )) consistent with ε-SSD.

Proof of Proposition F.2.

µX − ΓX = µX − 2

∫ 1

0

(µXp− F
(−2)
X (p))dp = 2

∫ 1

0

(F
(−2)
X (p)− F

(−2)
Y (p) + F

(−2)
Y (p))dp

= 2

∫ 1

0

F
(−2)
Y (p) + 2

∫
A

(2)
0

(F
(−2)
X (p)− F

(−2)
Y (p))dp+ 2

∫
[0,1]/A

(2)
0

(F
(−2)
X (p)− F

(−2)
Y (p))dp︸ ︷︷ ︸

≥0

≥ 2

∫ 1

0

F
(−2)
Y (p)− 2

∫
A

(2)
0

|F (−2)
X (p)− F

(−2)
Y (p))|dp

= µY − ΓY − 2

∫ 1

0

(F
(−2)
Y (p)− F

(−2)
X (p))+dp

≥ µY − ΓY − 2

(∫ 1

0

dp

) 1
2
(∫ 1

0

(F
(−2)
Y (p)− F

(−2)
X (p))2+dp

) 1
2

(Cauchy-Schwartz)

≥ µY − ΓY − 2ε
1
2 dIQ(FX , FY )(By assumption X ≽

ε−SSD
Y )
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F.3. Rank Aggregation

Given N ranks πi, i = 1 . . . N represented as permutations in Sk, the rank aggregation in (Pihur et al., 2009) solves the
following problem :

min
π∈Sk

N∑
i=1

αid(π, πi),

where αi ≥ 0,
∑N

i=1 αi = 1 represent importance of each ranking and d is a distance between permutations. (Pihur et al.,
2009) have multiple choices of distance such as Pearson or Kendall’s-Tau. We fixed through out our experiments the distance
to Pearson.

F.4. Mean Win Rate and CDF normalizers in portfolio

To unpack the notations in (15), consider a distribution A on models space. For a sample X ∼ Di and a model A ∼ A, the
metric mi() normalization through its CDF can be written as follows:

FMi
(mi(A(X)) = EB∼AEY∼Di

1mi(B(Y )≤mi(A(X)). (20)

Hence for a model A on each evaluated sample the CDF normalizer computes a soft ranking of the evaluation of the model
A with a metric mi on the sample X with respect to all models and all samples.
Remark F.3 (Mean Win Rate ). Note that in LLM leaderborads such as HELM and Hugging face, the performance of a
model A evaluated with a metric mi, is summarized via a Mean Win Rate (MWR) aggregated on models level looking on
expected metrics

MWRA,Mi
= EB∼A1EX∼Di

[mi(B(X))]≤EX∼Di
[mi(A(X))], (21)

or aggregated on sample level marginalizing on models with a max:

MWRA,Mi
= EX∼Di

1maxB ̸=A mi(B(X))≤mi(A(X)), (22)

Contrasting (20) , (21) and (22) we see that instead of looking at the MWR summary statistics that does not allow to consider
all order statistics and relative ordering as well the risks of tails events, we consider a full distributional benchmarking in the
metrics portfolio approach.

G. Figures
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Figure 4: (a) An Example of Almost First Order Stochastic Dominance: Plots of quantile functions of U and V . Dashed
areas is the violation set of first order stochastic dominance of U on V . (b) An Example of Almost Second Order
Stochastic Dominance: Plots of integrated quantile functions; dashed area is the violation set for the second order stochastic
dominance of X on Y .
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H. Central Limit Theorems
H.1. CLT for ε-SSD

Theorem H.1 (Central Limit Theorem for ε-SSD). Assume that FX , FY are supported on intervalsa in [−M,M ],

and have pdfs fx, fy such that f ′
x(p)

f3
x(p)

,
f ′
y(p)

f3
y (p)

are bounded almost everywhere on the support of fx and fy respectively.
Assume we have n samples from FX and m samples from FY , with n,m → ∞ such that n

n+m → λ for some λ.
Then √

mn

m+ n
(εIQ(F

n
X , Fm

Y )− εIQ(FX , FY ))→ N (0, σ2
λ(FX , FY ))

where
σ2
λ(FX , FY ) =

1

d8IQ(FX , FY )
[(1− λ)Var(vX(U)) + λVar(vY (U))] ,

for U ∼ Unif[0, 1], vY (t) = 2
(

1
fy(F

−1
Y (t))

)(∫ 1

t
(F

(−2)
X (p)− F

(−2)
Y (p))+dp

)
, and vX(t) =

2
(

1
fx(F

−1
X (t))

)(∫ 1

t
(F

(−2)
X (p)− F

(−2)
Y (p))−dp

)
.

aThe interval for FX and for FY need not coincide.

Remark H.2 (Non-independent samples). Theorem H.1 assumes that the n-sample from FX is independent of the m-sample
for FY . Consider instead the setting where there are n samples from FX and FY that are dependent (e.g. X , Y are
evaluations of different models applied to the same data). We can describe general dependence structure as the following.
Suppose (X,Y ) has marginals X ∼ FX , Y ∼ FY , with some unknown dependence structure (optionally described by the
copula CXY (ux, uy) = Pr(FX(X) ≤ ux, FY (Y ) ≤ uy)). Let

(Ux, Uy) = (FX(X), FY (Y )) ∼ CXY .

Note that Ux and Uy have marginals equal to Unif([0, 1]), but Ux and Uy may be dependent. Hence the variances in each
term of the decomposition (24) in the appendix cannot be added. Instead, one should modify the result of Theorem H.1 to
use

σ̄2
λ(FX , FY ) =

1

d8IQ(FX , FY )
Var [vX(Ux) + vY (Uy)] .

H.2. CLT for Relative Statistics

We focus here on presenting the Central Limit Theorem for SSD. The relative FSD has a similar form and we omit its
statement here.
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Theorem H.3 (Central limit Theorem for Relative SSD). Assume F1n, . . . , Fkn are available and independent, and
each Fi satisfies the conditions of Theorem H.1. Then

√
n
(
∆ε

(2)
i1,i2

(Fn)−∆ε
(2)
i1,i2

(F )
)
→w N

(
0,

1

(k − 1)2

k∑
i=1

σ2
i (i1, i2)

)
.

where

σ2
i (i1, i2) =



Var

(
2v

(1)−
i1i2

(Ui)

d4
IQ(Fi1

,Fi2
)
+
∑

j ̸=i1,i2

v
(1)−
i1j (Ui)

d4
IQ(Fi1

,Fj)

)
i = i1

Var

(
2v

(2)+
i1i2

(Ui)

d4
IQ(Fi1

,Fi2
)
−
∑

j ̸=i1,i2

v
(1)−
i2j (Ui)

d4
IQ(Fi2

,Fj)

)
i = i2

Var

(
v
(2)+
i1j (Ui)

d4
IQ(Fi1

,Fj)
−

v
(2)+
i2j (Ui)

d4
IQ(Fi2

,Fj)

)
i ̸= i1, i2

for Ui ∼ Unif([0, 1]) all independent, and v
(1),−
ij (t) = 2

(
dF−1

i (t)

dt

)(∫ 1

t
(F

(−2)
i (p)− F

(−2)
j (p))−dp

)
, v

(2),+
ij (t) =

2

(
dF−1

j (t)

dt

)(∫ 1

t
(F

(−2)
i (p)− F

(−2)
j (p))+dp

)
.

Remark H.4 (Dependent samples). If the Fin are dependent, a similar expression to that shown in Remark H.2 for the
absolute testing case also holds here. The statement is omitted.

I. Proof of Theorem I.1

Theorem I.1 (dIQ is a metric). dIQ is a metric on the space of univariate distributions with continuous CDF,
moreover, it metrizes the weak topology.

First, we show that dIQ(F,G) = 0 if and only if F = G. The forward direction is obvious. For the reverse direction,
if dIQ(F,G) = 0, then F (−2)(t) = G(−2)(t) a.e. By the continuity of integrated quantiles, this implies F (−2) = G(−2)

everywhere. Then, since F (−1)(t) is simply the derivative of F (−2)(t) with respect to t7, F (−1) = G(−1) everywhere by
differentiating both sides of F (−2)(t) = G(−2)(t). Hence F = G since distributions are uniquely determined by their
quantile functions.

The triangle inequality follows from the triangle inequality of the L2 norm, since
√∫ 1

0
(F (−2)(t)−G(−2)(t))2dt =

∥F (−2)(t) − G(−2)(t)∥L2([0,1]). Hence dIQ is a metric. By Theorem 10 in (Gushchin & Borzykh, 2017), we know that
random variable X(i) →w X (with cdf F(i)) if and only if F (−2)

(i) converges uniformly to F (−2). Hence dIQ must metrize
weak convergence.

J. Proofs of Central Limit Theorems
J.1. Absolute Testing: Proof of Theorem H.1

Note that for Ui and Vi an n-sample and an m-sample respectively from Unif([0, 1]), we can get Xi, Yi as Xi = F−1(Ui),
Yi = G−1(Vi). Let Hn,1 and Hm,2 be the empirical d.f.s of the Ui and Vi respectively. We have

F−1
n (t) = F−1(H−1

n,1(t)),

hence

F (−2)
n (t) =

∫ t

0

F−1
n (p)dp =

∫ t

0

F−1(H−1
n,1(p))dp.

7This follows because F−2 is the integral of the finite-valued quantile function F−1(t).
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We are interested in

εIQ(Fn, Gm) =

∫
A0

(F
(−2)
n (t)−G

(−2)
m (t))2dt

d2IQ(Fn, Gm)
,

where
A0 =

{
t ∈ (0, 1) : G(−2)

m (t) > F (−2)
n (t)

}
,

is the violation set.

It is shown in (Gushchin & Borzykh, 2017) (Theorem 10 therein) that integrated quantiles converge uniformly, i.e.
F

(−2)
n (t)→ F (−2)(t) pointwise. As an immediate consequence, we have

εIQ(Fn, Gm)→a.s. εIQ(F,G).

We apply the following decomposition and bound the two terms separately:

εIQ(Fn, Gm)− εIQ(F,G) = (εIQ(Fn, Gm)− εIQ(F,Gm)) + (εIQ(F,Gm)− εIQ(F,G)). (23)

We derive asymptotic normality of these terms for Gm, the proof for Fn is identical by symmetry.

We introduce the statistics

Sm =

∫ 1

0

(F (−2)(t)−G(−2)
m (t))2dt

S+
m =

∫ 1

0

(F (−2)(t)−G(−2)
m (t))2+dt

S−
m =

∫ 1

0

(F (−2)(t)−G(−2)
m (t))2−dt

The nonrandom S, S+, S− are defined similarly with G instead of Gm.

Next, set
Tm =

√
m(Sm − S)

T+
m =

√
m(S+

m − S+)

T−
m =

√
m(S−

m − S−).

Theorem J.1. Assume that G is supported on an interval that is a subset of [−M,M ], and has pdf g such that g′(p)
g3(p) is

bounded almost everywhere on the support of g. Then

Tm = αm,2(v) + oP (1)

T+
m = αm,2(v

+) + oP (1)

T−
m = αm,2(v

−) + oP (1)

where we define αm,2(t) =
√
m(t−H−1

m,1(t)) and αm,2(v) =
∫ 1

0
v(t)αm,2(t)dt, and

v(t) = 2

(
1

g(G−1(t))

)(∫ 1

t

F (−2)(p)−G(−2)(p)dp

)
.

v+(t) = 2

(
1

g(G−1(t))

)(∫ 1

t

(F (−2)(p)−G(−2)(p))+dp

)
,

v−(t) = 2

(
1

g(G−1(t))

)(∫ 1

t

(F (−2)(p)−G(−2)(p))−dp

)
.
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Proof. We begin with Tm. Note that8

Tm =
√
m(Sm − S)

=
√
m

∫ 1

0

(F (−2)(t)−G(−2)
m (t))2 − (F (−2)(t)−G(−2)(t))2dt

=
√
m

∫ 1

0

[
2F (−2)(t)−G(−2)

m (t)−G(−2)(t)
]
(G(−2)(t)−G(−2)

m (t))dt

→ 2
√
m

∫ 1

0

[
F (−2)(t)−G(−2)(t)

]
(G(−2)(t)−G(−2)

m (t))dt

= 2
√
m

∫ 1

0

[
F (−2)(t)−G(−2)(t)

] [∫ t

0

G(−1)(p)−G(−1)(H−1
m,1(p)))dp

]
dt

Let us do integration by parts:

2
√
m

∫ 1

0

[
F (−2)(t)−G(−2)(t)

] [∫ t

0

G(−1)(p)−G(−1)(H−1
m,1(p)))dp

]
dt =

= 2
√
m

[(∫ 1

0

F (−2)(t)−G(−2)(t)dt

)[∫ 1

0

G(−1)(t)−G(−1)(H−1
m,1(t)))dt

]
−
∫ 1

0

(∫ t

0

F (−2)(p)−G(−2)(p)dp

)[
G(−1)(t)−G(−1)(H−1

m,1(t)))
]
dt

]
= 2
√
m

∫ 1

0

(∫ 1

t

F (−2)(p)−G(−2)(p)dp

)[
G(−1)(t)−G(−1)(H−1

m,1(t)))
]
dt

= 2
√
m

∫ 1

0

(
dG−1(t)

dt

)(∫ 1

t

F (−2)(p)−G(−2)(p)dp

)
(t−H−1

m,1(t))dt

+O

(√
m

∫ 1

0

∫ 1

t

F (−2)(p)−G(−2)(p)dp)(t−H−1
m,1(t))

2dt

)
= 2
√
m

∫ 1

0

(
dG−1(t)

dt

)(∫ 1

t

F (−2)(p)−G(−2)(p)dp

)
(t−H−1

m,1(t))dt+ oP (1).

In the penultimate step we have used a first-order Taylor series on G−1(t) via the assumption that d2G−1(t)
dt2 = − g′(G−1(t))

g3(G−1(t))

is bounded almost everywhere, and in the final step we have noted that

√
m

∫ 1

0

(∫ 1

t

F (−2)(p)−G(−2)(p)dp

)
(t−H−1

m,1(t))
2dt ≤ 2

√
m

∫ 1

0

(t−H−1
m,1(t))

2dt

= oP (1),

since the support of F and G lie in [−M,M ] and
∫ 1

0
(t−H−1

m,1(t))
2dt = Op(1/m).

We then have
Tm = αm,2(v) + oP (1),

where αm,2(t) =
√
m(t−H−1

m,1(t)), and αm,2(v) =
∫ 1

0
v(t)αm,2(t)dt where

v(t) = 2

(
dG−1(t)

dt

)(∫ 1

t

F (−2)(p)−G(−2)(p)dp

)
.

Similarly,
T+
m = αm,2(v

+) + oP (1), T−
m = αm,2(v

−) + oP (1)

8Convergence here is uniform convergence of the integrated quantiles.
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where

v+(t) = 2

(
dG−1(t)

dt

)(∫ 1

t

(F (−2)(p)−G(−2)(p))+dp

)
,

v−(t) = 2

(
dG−1(t)

dt

)(∫ 1

t

(F (−2)(p)−G(−2)(p))−dp

)
.

Corollary J.2. Assume that G is supported on an interval in [−M,M ], and has pdf g such that g′(p)
g3(p) is bounded almost

everywhere on the support of g. Then as m→∞
√
m(ϵIQ(F,Gm)− ϵIQ(F,G))→w N (0, σ2)

and if additionally n→∞
√
m(ϵIQ(Fn, Gm)− ϵIQ(Fn, G))→w N (0, σ2),

if for U ∼ Unif([0, 1])

σ2 =
Var(v+(U))

d8IQ(F,G)

is finite.

Proof. Note that by Theorem J.1

√
m(ϵIQ(F,Gm)− ϵIQ(F,G)) =

√
m

(
S−
m

Sm
− S−

S

)
=

√
m

SSm
(T−

m − Tm)→ −αm,2(v
+)

S2

since Sm → S a.s. Recalling the definition of αm,2 yields asymptotic normality with zero mean as in (Del Barrio et al.,
2018), and variance as calculated in the corollary statement.

The case of
√
m(ϵIQ(Fn, Gm)−ϵIQ(Fn, G)) follows similarly since integrated quantiles weakly converge as Fn → F .

Continuing with the main proof, recalling (23) and using Corollary J.2 along with the asymptotic independence of the two
terms and the fact that n

n+m → λ, we have√
mn

m+ n
(εIQ(Fn, Gm)− εIQ(F,G))

=
√
(1− λ)n(εIQ(Fn, Gm)− εIQ(F,Gm)) +

√
λn(εIQ(F,Gm)− εIQ(F,G)) (24)

→ N (0, σ2
λ(F,G))

where

σ2
λ(F,G) =

1

d8IQ(F,G)
[(1− λ)Var(vF (U)) + λVar(vG(U))] .

Here, we have defined

vG(t) = 2

(
1

g(G−1(t))

)(∫ 1

t

(F (−2)(p)−G(−2)(p))+dp

)
,

and

vF (t) = 2

(
1

f(F−1(t))

)(∫ 1

t

(F (−2)(p)−G(−2)(p))−dp

)
.
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J.2. Relative Testing: Proof of Theorem H.3

Note that

∆εi1,i2IQ (F ) = ϵi1IQ(F )− ϵi2IQ(F )

=
1

k − 1

∑
j ̸=i1

ϵi1jIQ −
∑
j ̸=i2

ϵi2jIQ


=

1

k − 1

2ϵi1i2IQ − 1 +
∑

j ̸=i1,i2

(ϵi1jIQ − ϵi2jIQ)

 .

For compactness, let us introduce the differencing notation ϕ(·)|Fn

F = ϕ(Fn)− ϕ(F ). We seek a CLT on

√
n(∆ε̂i1,i2IQ (Fn)−∆εi1,i2IQ (F )) =

√
n

k − 1

2ϵIQ(·, Fi2,n) +
∑

j ̸=i1,i2

ϵIQ(·, Fj,n)

∣∣∣∣∣∣
Fi1,n

Fi1

+

√
n

k − 1

2ϵIQ(Fi1 , ·)−
∑

j ̸=i1,i2

ϵIQ(·, Fj,n)

∣∣∣∣∣∣
Fi2,n

Fi2

+

√
n

k − 1

∑
j ̸=i1,i2

(ϵIQ(Fi1 , ·)− ϵIQ(Fi2 , ·))|
Fj,n

Fj

→w

√
n

k − 1

2ϵIQ(·, Fi2) +
∑

j ̸=i1,i2

ϵIQ(·, Fj)

∣∣∣∣∣∣
Fi1,n

Fi1︸ ︷︷ ︸
I

+

√
n

k − 1

2ϵIQ(Fi1 , ·)−
∑

j ̸=i1,i2

ϵIQ(·, Fj)

∣∣∣∣∣∣
Fi2,n

Fi2︸ ︷︷ ︸
II

+

√
n

k − 1

∑
j ̸=i1,i2

(ϵIQ(Fi1 , ·)− ϵIQ(Fi2 , ·))|
Fj,n

Fj︸ ︷︷ ︸
III

where we have used the uniform convergence of integrated quantiles. Note that I , II , and each term in the sum in III are
all independent.

Define

v
(1)
ij (t) = 2

(
dF−1

i (t)

dt

)(∫ 1

t

F
(−2)
i (p)− F

(−2)
j (p)dp

)
,

v
(2)
ij (t) = 2

(
dF−1

j (t)

dt

)(∫ 1

t

F
(−2)
i (p)− F

(−2)
j (p)dp

)
,

and v
(1)+
ij , v(2)+ij similarly. Then by the proof of Corollary J.2, each term in III converges to

√
n

k − 1
(ϵIQ(Fi1 , ·)− ϵIQ(Fi2 , ·))|

Fj,n

Fj
→ −

αm,j(v
(2)+
i1j

)

(k − 1)d4IQ(Fi1 , Fj)
+

αm,j(v
(2)+
i2j

)

(k − 1)d4IQ(Fi2 , Fj)

=
1

k − 1
αm,j

(
−

v
(2)+
i1j

d4IQ(Fi1 , Fj)
+

v
(2)+
i2j

d4IQ(Fi2 , Fj)

)

→w N
(
0,

1

(k − 1)2
σ2
j (i1, i2)

)
, ∀j ̸= i1, i2.

where

σ2
j (i1, i2) =

1

(k − 1)2
Var

(
v
(2)+
i1j

(U)

d4IQ(Fi1 , Fj)
−

v
(2)+
i2j

(U)

d4IQ(Fi2 , Fj)

)
, ∀j ̸= i1, i2,
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and U ∼ Unif([0, 1]). Similarly for I and II ,

I →w N
(
0,

1

(k − 1)2
σ2
i1(i1, i2)

)
II →w N

(
0,

1

(k − 1)2
σ2
i2(i1, i2)

)

where9

σ2
i1(i1, i2) = Var

 2v
(1)−
i1i2

(U)

d4IQ(Fi1 , Fi2)
+
∑

j ̸=i1,i2

v
(1)−
i1j

(U)

d4IQ(Fi1 , Fj)

 ,

σ2
i2(i1, i2) = Var

 2v
(2)+
i1i2

(U)

d4IQ(Fi1 , Fi2)
−
∑

j ̸=i1,i2

v
(1)−
i2j

(U)

d4IQ(Fi2 , Fj)

 .

Putting everything together via independence,

√
n

(
∆ε̂i1,i2IQ (Fn)−∆εi1,i2IQ (F )

)
→w N

(
0,

1

(k − 1)2

k∑
i=1

σ2
i (i1, i2)

)
.

K. Consistency of Bootstrapping
In this section, we consider the relaxation measure using the CDFs10:

ϵ̃ℓ(FX , FY ) =

∫∞
−∞(F

(ℓ)
Y (t)− F

(ℓ)
X (t))2+dt∫∞

−∞(F
(ℓ)
Y (t)− F

(ℓ)
X (t))2dt

.

Note that we can relax FSD as follows:

Y ≽
ε−FSD

X ⇐⇒ ϵ̃1(FX , FY ) ≤ ε. (25)

Similarly we can relax SSD as follows:

Y ≽
ε−SSD

X ⇐⇒ ϵ̃2(FX , FY ) ≤ ε. (26)

We will prove bootstrap consistency for ℓ = 1 (approximate first order dominance), the proof for ℓ = 2 (approximate second
order dominance) is similar.

We seek to show that the bootstrapped variance Var(ϵ̃1(F
n∗
X , Fm∗

Y )) is an asymptotically consistent estimator of
Var(ϵ̃1(F

n
X , Fm

Y ), i.e. their ratio goes to 1:

Var(ϵ̃1(F
n∗
X , Fm∗

Y ))

Var(ϵ̃1(Fn
X , Fm

Y ))
→p 1.

Note we can write this as
Var(ϵ̃1(F

n∗
X , Fm∗

Y )

Var(ϵ̃1(Fn
X , Fm

Y ))
→p

Var(T (Fn∗
X , Fm∗

Y ))

Var(T (Fn
X , Fm

Y ))
,

where

T (FX , FY ) =

∫∞
−∞(FY (t)− FX(t))2+dt∫∞
−∞(FY (t)− FX(t))2dt

.

9This U ∼ Unif([0, 1]) is drawn simply for this variance calculation and is not dependent on anything outside of this equation.
10The result using quantiles as described in the main text is less straightforward and if left for future work.
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Consider the metric created by the sup norm

ρ∞(F,G) = ∥F −G∥∞ = sup
x
|F (x)−G(x)|.

Note that T is continuously ρ∞-Frechet differentiable in both arguments due to the differentiability of the function (·)2+ and
integration. Specifically,

D1,(FX ,FY )(GX) =
1

(
∫∞
−∞(FY (t)− FX(t))2dt)2

·

[(∫ ∞

−∞
(FY (t)− FX(t))2dt

)(∫ ∞

−∞
2(FY (t)− FX(t))+GXdt

)
−
(∫ ∞

−∞
(FY (t)− FX(t))2+dt

)(∫ ∞

−∞
2(FY (t)− FX(t))GXdt

)]
.

and similarly for D2,(FX ,FY )(GY ). Since T is continuously differentiable, by the definition of continuous Frechet differen-
tiability we can write (see Chapter 2 in (Shao & Tu, 2012)) the following:

T (Fn∗
X , Fm∗

Y )− T (Fn
X , Fm

Y )

= D1,(Fn
X ,Fm

Y )(F
n∗
X − Fn

X) +D2,(Fn
X ,Fm

Y )(F
m∗
Y − Fm

Y ) + (ρ∞(Fn∗
X , Fn

X) + ρ∞(Fm∗
Y , Fm

Y ))ϵ∗n,m

T (Fn∗
X , Fm

Y )− T (Fn
X , Fm

Y ) = D1,(Fn
X ,Fm

Y )(F
n∗
X − Fn

X) + (ρ∞(Fn∗
X , Fn

X))ϵ∗n

T (Fn
X , Fm∗

Y )− T (Fn
X , Fm

Y ) = D2,(Fn
X ,Fm

Y )(F
m∗
Y − Fm

Y ) + (ρ∞(Fm∗
Y , Fm

Y ))ϵ∗m

and

T (Fn
X , Fm

Y )− T (FX , FY )

= D1,(FX ,FY )(F
n
X − FX) +D2,(FX ,FY )(F

m
Y − FY ) + (ρ∞(Fn

X , FX) + ρ∞(Fm
Y , FY ))ϵn,m

T (Fn
X , FY )− T (FX , FY ) = D1,(FX ,FY )(F

n
X − FX) + (ρ∞(Fn

X , FX))ϵn

T (FX , Fm
Y )− T (FX , FY ) = D2,(FX ,FY )(F

m
Y − FY ) + (ρ∞(Fm

Y , FY ))ϵm

where ϵ∗n,m, ϵ∗n, ϵ
∗
m, ϵn,m, ϵn, ϵm → 0 as n,m→∞.

Hence, combining terms,

T (Fn∗
X , Fm∗

Y )− T (Fn
X , Fm

Y ) = (T (Fn∗
X , Fm

Y )− T (Fn
X , Fm

Y )) + (T (Fn
X , Fm∗

Y )− T (Fn
X , Fm

Y )) + op(n
−1/2 +m−1/2),

and

T (Fn
X , Fm

Y )− T (FX , FY ) = (T (Fn
X , FY )− T (FX , FY )) + (T (FX , Fm

Y )− T (FX , FY )) + op(n
−1/2 +m−1/2).

Hence, assuming independence of the n-sample and m-sample and respective bootstrap resamplings,

Var(T (Fn∗
X , Fm∗

Y ))

Var(T (Fn
X , Fm

Y ))
→a.s.

Var(T (Fn
X , Fm∗

Y )) + Var(T (Fn∗
X , Fm

Y ))

Var(T (FX , Fm
Y )) + Var(T (Fn

X , FY ))
,

i.e. we add the variances.

We have now divided the task to the one-sided setting where the bootstrap is only done in one argument of T . Hence we can
apply Theorem 3.10 of (Shao & Tu, 2012) which states that for ρ∞-Frechet differentiable functions of a CDF, the bootstrap
variance estimator is asymptotically consistent if the support is bounded (more general results can be stated but are omitted
for simplicity). Applying separately to each of the two variances we have the following.
Proposition K.1. Suppose FX , FY , have support contained in [−M,M ] for some M > 0, and Fn

X , Fm
Y arise from

independent samples. Then
Var(ϵ̃1(F

n∗
X , Fm∗

Y ))

Var(ϵ̃1(Fn
X , Fm

Y ))
→a.s. 1.
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L. Additional Experimental Results
L.1. Statistical Significance on Synthetic Data

We examine the statistical properties of our tests as a function of sample size. We purposely design synthetic score
distributions to represent challenging problems with large overlap between the distributions and a considerable violation
ratio, but where one would still like to have an ordering among the variables. For this we consider the two Gaussian
distributions with mean µ = 0 and standard deviation σ = 1, and with mean µ = 0.5 and standard deviation σ = 2,
respectively. In the top panels of Figure 5 we show the PDF, CDF and integrated quantile function of these two Gaussians,
illustrating the large violation ratio. The orange distribution can be calculated to be 0.2-FSD and 0.45-SSD over the
blue distribution. Note that these ε values are not comparable, due to the differences in definitions. In Figure 5, we
conduct experiments illustrating the power of our tests for the absolute tests of the hypotheses H0,FSD = 0.45-FSD and
H0,SSD = 0.45-SSD. We also use our relative tests, which in this 2-variable case (as noted in the main text) are equivalent
to testing H0,FSD = 0.5-FSD and H0,SSD = 0.5-SSD. The bottom left panel in Figure 5 show the True Positive Rate for
the different types of tests that we developed: relative test with quantile function, relative test with Integrated Quantile
Function, absolute test with quantile function, and absolute test with Integrated Quantile Function. As expected, all tests
quickly converge towards True Positive Rate of 1.0 for growing sample sizes.
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Figure 5: True Positive Rate vs sample size for Gaussian distributions. We compute the True Positive Rate of our stochastic
dominance methods on the test distributions in the top panels for different sample sizes. Decisions are made using a
confidence threshold of α = 0.05 and τ = 0.45 (for the absolute tests) and rates are computed over 1000 repetitions of the
tests. Note that the FSD and SSD curves should not be compared due to differences in the underlying hypotheses.
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Figure 6: True Positive Rate vs sample size for Lognormal distributions generated as X = eµ+σZ , where Z is a standard
Gaussian variable. We compute the True Positive Rate of our stochastic dominance as in Fig. 5, but in this case we examine
True Positive Rate for heavy-tailed distributions examplified by Lognormal distributions.

L.2. Mix-Instruct

Results for the Mix-Instruct data are shown in Figures 7 and 8, as well as Table 5.

L.3. Toxicity

Toxicity results are in Table 6.

L.4. Ablation Study on toxicity Independent Versus Empirical Copula Portfolio

When Comparing EC and IC portfolio aggregation using R-SSD to rank the LLM we see in Figures 9 and 10 that the two
aggregation approaches lead to same ranking. While IC computational complexity is linear in the number of points , EC is
quadratic. Given the correspondence in ranking IC is a more efficient aggregation technique.

L.5. Fat Left Tails of Metrics and Inconsistency of Mean-Variance with SSD

When metrics evaluated have fat tails, the Mean-Variance ranking can be inconsistent with the SSD. See Table 7.
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Open koala alpaca llama flan-t5 stablelm Vicuna Dolly Moss ChatGLM mpt-7b mpt-7b
assistant 7b (v2) 6b instruct

Mean Win Rates
RA(MWR @ M) 1 6 2 8 5 7 3 10 9 4 11 12

MWR @P(IC) 1 5 2 7 6 8 3 9 10 4 11 12

Relative FSD
RA(R-FSD @ M) 1 6 2 5 8 11 4 10 7 3 9 12

R-FSD @P(IC) 1 6 2 5 11 10 4 8 7 3 9 12

R-FSD @ChatGPT 1 7 3 4 12 11 2 8 5 6 9 10

Relative SSD
RA(R-SSD @ M) 1 7 2 5 12 10 4 9 6 3 8 11

R-SSD @P(IC) 1 6 3 5 12 11 4 7 8 2 9 10

R-SSD @ChatGPT 1 8 3 4 11 12 2 7 5 6 9 10

Mean-Risk Models
RA(µX − ΓX ) @ M 1 7 2 5 12 11 4 9 6 3 8 10
RA(µX − rX ) @P(IC) 1 6 3 5 12 11 4 7 8 2 9 10

Table 4: Rankings of models on following instructions according to all tests, with the top 3 ranks highlighted. We see that
SSD and Mean – Risk models are consistent. Note that RA(µX − rX ) @P(IC) denotes the aggregation of rankings produced
by (µX − rX ) @P(IC) for each rX in Table 3.

Figure 7: Radar plot of mean – risk models of the portfolio on Mix-Instruct data. Note that the outer models are indeed the
ones preferred by SSD in Table 5.
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Figure 8: Empirical CDF and TvaR for portfolio on Mix-Instruct data

IC Copula  Portfolio EC Copula  Portfolio
Prompt + gen Prompt + gen 

gen 
gen 

40 K 
samples

Figure 9: IC versus EC Portfolio Aggregation on Toxicity. Ranking of models using 40 K samples, with independent and
Empirical Copula portfolio with R-SSD. We see that the two aggregation methods lead to similar results.
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Open koala alpaca llama flan-t5 stablelm Vicuna Dolly Moss ChatGLM mpt-7b mpt-7b
assistant 7b (v2) 6b instruct

Mean Win Rates

RA(MWR @ M) 1 6 2 8 5 7 3 10 9 4 11 12

MWR @P(IC) 1 5 2 7 6 8 3 9 10 4 11 12

Relative FSD

RA(R-FSD @ M) 1 6 2 5 8 11 4 10 7 3 9 12

R-FSD @P(IC) 1 6 2 5 11 10 4 8 7 3 9 12

Relative SSD

RA(R-SSD @ M) 1 7 2 5 12 10 4 9 6 3 8 11

R-SSD @P(IC) 1 6 3 5 12 11 4 7 8 2 9 10

R-SSD @ChatGPT 1 8 3 4 11 12 2 7 5 6 9 10

Absolute FSD

ε-FSD @P(IC) ε=0.08 1 6 2 5 10 11 4 7 8 3 9 12

ε-FSD @P(IC) ε=0.25 1 6 2 5 12 10 4 7 8 3 9 11

ε-FSD @P(IC) ε=0.4 1 6 2 5 12 10 4 8 7 3 9 11

Absolute SSD

ε-SSD @P(IC) ε = 0.08 1 6 3 5 12 11 4 7 8 2 9 10

ε-SSD @P(IC) ε = 0.25 1 6 3 5 12 11 4 8 7 2 9 10

ε-SSD @P(IC) ε=0.4 1 6 3 5 12 11 4 7 8 2 9 10

Mean-Risk Models

RA(µX − rX ) @P(IC) 1 6 3 5 12 11 4 7 8 2 9 10

Table 5: Mix instruct Extended Results.
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Scenario Llama 2 7b Llama 2 13b Llama 2 70b MosaicML MPT 30b Tiiuae Falcon 40b

Toxic Prompts

RA(R-FSD @M ) (Gen Only) 3 2 4 1 5
R-FSD @P(IC)(IC)(Gen Only) 2 3 4 1 5
RA(R-SSD @M ) (Gen Only) 3 2 4 1 5
R-SSD@P(IC)(IC) (Gen Only) 3 2 4 1 5

RA(R-FSD @M) (Prompt + Gen) 2 3 1 4 5
R-FSD @P(IC)(IC)(Prompt + Gen) 2 3 1 4 5
RA(R-SSD @M) (Prompt + Gen) 2 3 1 4 5
R-SSD @P(IC)(IC) (Prompt + Gen) 2 3 1 4 5

Non-Toxic Prompts

RA(R-FSD @M) (Gen Only) 1 2 4 3 5
R-FSD @P(IC)(IC) (Gen Only) 1 2 3 4 5
RA(R-SSD @M) (Gen Only) 1 2 3 4 5
R-SSD @P(IC)(IC) (Gen Only) 1 2 3 4 5

RA( R-FSD @M) (Prompt + Gen) 3 2 4 1 5
R-FSD @P(IC) (Prompt + Gen) 1 2 4 3 5
RA(R-SSD @M) (Prompt + Gen) 1 2 3 4 5
R-SSD @P(IC) (Prompt + Gen) 1 2 4 3 5

All Combined (Toxic + Non-Toxic Prompts)

RA(R-FSD @M) (Gen Only) 2 3 5 1 4
R-FSD @P(IC) (Gen Only) 2 3 5 1 4
RA(R-SSD @M) (Gen Only) 2 3 5 1 4
R-SSD @P(IC) (Gen Only) 2 3 5 1 4

RA(R-FSD @M) (Prompt + Gen) 3 4 5 1 2
RA(R-FSD @M) (Prompt + Gen) 3 4 5 1 2
R-SSD @P(IC) (Prompt + Gen) 3 4 5 1 2
R-SSD @P(IC) (Prompt + Gen) 3 4 5 1 2

Table 6: Toxicity Ranking Extended Results
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IC Copula  Portfolio EC Copula  Portfolio
Prompt + gen Prompt + gen 

gen 
gen 

20 K 
samples

Figure 10: IC versus EC Portfolio Aggregation on Toxicity. Ranking of models using 20 K samples, with independent and
Empirical Copula portfolio with R-SSD. We see that the two aggregation methods lead to similar results.

Figure 11: Identity Attack Metric distribution computed on Prompt+Generation output of Highly Toxic Prompts
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Scenario Llama 2 7b Llama 2 13b Llama 2 70b MosaicML MPT 30b Tiiuae Falcon 40b

Non Toxic Prompts

Identity Attack Metric
Gen evaluation

Mean - Sigma 1 3 4 2 5
Mean - Gamma 2 3 4 1 5
Mean - nTvAR 2 3 4 1 5
SSD 2 3 4 1 5

Threat Metric
Prompt + Gen evaluation

Mean - Sigma 1 3 2 4 5
Mean - Gamma 1 2 3 5 4
Mean - nTvAR 1 2 3 5 4
SSD 1 2 3 5 4

Table 7: Inconsistency of Mean - Sigma on Toxicity Metrics with SSD and other mean-risk models. This is a due to the fact
the metric evaluated may a have a fat left tail see Figures 11 and 13.

Figure 12: Threat Metric distribution computed on Prompt+Generation output of Less Toxic Prompts
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Figure 13: Identity Attack Metric distribution computed on Generation output of Less Toxic Prompts
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