
GFlowNet Training by Policy Gradients

Puhua Niu 1 Shili Wu 1 Mingzhou Fan 1 Xiaoning Qian 1 2 3

Abstract
Generative Flow Networks (GFlowNets) have
been shown effective to generate combinatorial
objects with desired properties. We here propose
a new GFlowNet training framework, with policy-
dependent rewards, that bridges keeping flow bal-
ance of GFlowNets to optimizing the expected
accumulated reward in traditional Reinforcement-
Learning (RL). This enables the derivation of
new policy-based GFlowNet training methods, in
contrast to existing ones resembling value-based
RL. It is known that the design of backward poli-
cies in GFlowNet training affects efficiency. We
further develop a coupled training strategy that
jointly solves GFlowNet forward policy training
and backward policy design. Performance analy-
sis is provided with a theoretical guarantee of our
policy-based GFlowNet training. Experiments
on both simulated and real-world datasets verify
that our policy-based strategies provide advanced
RL perspectives for robust gradient estimation
to improve GFlowNet performance. Our code is
available at: github.com/niupuhua1234/GFN-PG.

1. Introduction
Generative Flow Networks (GFlowNets) are a family of
generative models on the space of combinatorial objects X ,
e.g. graphs composed by organizing nodes and edges in a
particular manner, or strings composed of characters in a
particular ordering. GFlowNets aim to solve a challenging
task, sampling x ∈ X with a probability proportional to
some non-negative reward function R(x) that defines an un-
normalized distribution, where |X | can be enormous and the
distribution modes are highly isolated by its combinatorial

1Department of Electrical and Computer Engineering, Texas
A&M University, College Station, TX, USA 2Department of Com-
puter Science and Engineering, Texas A&M University, College
Station, TX, USA 3Computational Science Intiative, Brookhaven
National Laboratory, Upton, NY, USA. Correspondence to: Xiaon-
ing Qian <xqian@tamu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

nature. GFlowNets (Bengio et al., 2021; 2023) decompose
the process of generating or sampling x ∈ X by generat-
ing incremental trajectories that start from a null state, pass
through intermediate states, and end at x as the desired ter-
minating state. These trajectory instances are interpreted
as the paths along a Directed Acyclic Graph (DAG). Prob-
ability measures of trajectories are viewed as the amount
of ‘water’ flows along the DAG, with R(x) being the to-
tal flow of trajectories that end at x, so that following the
forward generating policy defined by the measure, sampled
trajectories will end at x with the probability proportional
to R(x).

GFlowNets bear a similar form of reinforcement learn-
ing (RL) in that they both operate over Markovian Decision
Processes (MDP) with a reward functionR(x), where nodes,
edges, and node transition distributions defined by Marko-
vian flows are considered as states, actions, and stochastic
policies in MDPs. They, however, differ in the following
aspects: the goal of RL problems is to learn optimal policies
that maximize the expected cumulative trajectory reward by
R. For value-based RL methods, the key to achieve this is
by reducing the Temporal Difference (TD) error of Bellman
equations for the estimated state value function V and state-
action value function Q (Sutton & Barto, 2018; Mnih et al.,
2013). GFlowNets amortize the sampling problem into find-
ing some Markovian flow that assigns the proper probability
flow to edges (actions) so that the total flow of trajectories
ending at x is R(x). When studying these in the lens of
RL, the existing GFlowNet training strategies are also value-
based in that they achieve the goal by keeping the balance
flow equation over states of the DAG, whose difference can
be measured in trajectory-wise and edge-wise ways (Bengio
et al., 2021; 2023; Malkin et al., 2022a; Madan et al., 2023).

Due to the similarity of GFlowNet training and RL, investi-
gating the relationships between them can not only deepen
understanding of GFlowNets but also help derive better
training methods from RL. In this work, we propose policy-
dependent rewards for GFlowNet training. This bridges
GFlowNets to RL in that keeping the flow balance over
DAGs can be reformulated as optimizing the expected ac-
cumulated rewards in RL problems. We then derive policy-
based training strategies, which optimize the accumulated
reward by its gradients with respect to (w.r.t.) the forward
policy directly (Sutton et al., 1999; Sutton & Barto, 2018).

1

https://github.com/niupuhua1234/GFN-PG

GFlowNet Training by Policy Gradients

In terms of RL, we acknowledge that the existing GFlowNet
training methods can be considered value-based and have
the advantage of allowing off-policy training over policy-
based methods (Malkin et al., 2022b). Value-based methods,
however, face the difficulty in designing a powerful sampler
that can balance the exploration and exploitation trade-off,
especially when the combinatorial space is enormous with
well-isolated modes. Besides, employing typical annealing
or random-mixing solutions may lead to the learned policy
trapped in local optima. Finally, designing strategies for
powerful samplers vary according to the structure and set-
ting of modeling environments. Policy-based methods, espe-
cially the on-policy ones, transform the design of a powerful
sampler into robust estimation of policy gradients, which
can be achieved by variance reduction techniques (Schul-
man et al., 2016) and improvement of gradient descent di-
rections, such as natural policy gradients (Kakade, 2001)
and mirror policy descent (Zhan et al., 2023). Conservation
policy updates such as Trust-Region Policy Optimization
(TRPO) (Schulman et al., 2015; Achiam et al., 2017) and
its first-order approximation, Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017b), have also been devel-
oped, for example as the backbone of ChatGPT (Ouyang
et al., 2022). Moreover, policy-based methods can be made
off-policy, for example, by importance sampling (Degris
et al., 2012). Our work provides alternative ways to improve
GFlowNet performance via policy-based training. Our con-
tributions can be summarized as follows:

• We reformulate the GFlowNet training as RL over a
special MDP where the reward is policy-dependent,
and the underlying Markovian chain is absorbing.
We further derive policy gradients for this special
MDP and propose policy-based training strategies for
GFlowNets, inspired by policy gradient and TRPO
methods for stationary reward.

• We further formulate the design of backward policies
in GFlowNets as an RL problem and propose a cou-
pled training strategy. While finding a desired forward
policy is the goal of GFlowNet training, well-designed
backward policies, as the components of training objec-
tives, are expected to improve training efficiency (Shen
et al., 2023).

• We provide performance analyses for theoretical guar-
antees of our method for GFlowNet training. Our the-
oretical results are also accompanied by performing
experiments in three application domains, hyper-grid
modeling, biological and molecular sequence design,
and Bayesian Network (BN) structure learning. The ob-
tained experimental results serve as empirical evidence
for the validity of our work and also help empirically
understand the relationship between GFlowNet train-
ing and RL.

2. Preliminaries
For notation compactness, we restrict DAGs of GFlowNets
to be graded1. In a DAG, G := (S,A), modeling a MDP of
GFlowNets: s ∈ S denotes a state, a ∈ A denotes a directed
edge/action (s→s′), andA ⊆ S×S . Assuming that there is
a topological ordering S0, . . . ,ST for T +1 disjoint subsets
of S, then S =

⋃T
t=0 St and an element of St is denoted

as st. We use {≺,≻,⪯,⪰} to define the partial orders
between states; for example, ∀t < t′ : st ≺ st′ . Further-
more, being acyclic means ∀(s→s′) ∈ A: s ≺ s′. Being
graded means A can be decomposed into

⋃T−1
t=0 At where

At
⋂
At′ ̸=t = ∅ and at ∈ At represents an edge (st→st+1)

connecting St and St+1. For any s ∈ S, we denote its par-
ent set by PaG(s) = {s′|(s′→s) ∈ A} and its child set
ChG(s) = {s′|(s→s′) ∈ A}. Correspondingly, We denote
the edge sets that start and end at s asA(s) = {(s→s′)|s′ ∈
ChG(s)} and Ȧ(s) = {(s′→s)|s′ ∈ PaG(s)} respectively.
The complete trajectory set is defined as T = {τ = (s0 →
· · · → sT)|∀(s→s′) ∈ τ : (s→s′) ∈ A}. We use τ⪰s to
denote the sub-trajectory that starts at s, and τ≥t the sub-
trajectory that starts at st. For the DAG G in GFlowNets, we
have two special states: the initial state s0 with Pa(s0) = ∅
and S0 = {s0}, and the final state sf with Ch(sf) = ∅ and
ST = {sf}. Furthermore, the terminal state set, ST−1 cov-
ers the object set X with a reward function R : X → R+.

2.1. GFlowNets

GFlowNets aim at efficient sampling from P ∗(x) := R(x)
Z∗ ,

where Z∗ =
∑
x∈X R(x) and directly computing Z∗ is

often challenging with typically large |X |. To achieve this,
GFlowNets define a measure F (τ) : T → R+, termed
as ‘flow’ (Bengio et al., 2023), so that for any event E,
F (E) =

∑
τ∈E F (τ) and the total flow Z = F (s0) =

F (sf). For any event E and E′, P (E) := F (E)/Z and
P (E|E′) := F (E∩E′)

F (E′) . Furthermore, F is restricted to be
Markovian, which means ∀τ ∈ T :

P (τ) =

T∏
t=1

P (st−1→st|st−1) =

T∏
t=1

F (st−1→st)
F (st−1)

, (1)

where F (s→s′) =
∑
τ∈{τ |(s→s′)∈τ} F (τ), F (s) =∑

τ∈{τ |s∈τ} F (τ) and PF (st|st−1) := P (st−1→st|st−1).
Similarly, PB(st−1|st) := P (st−1 → st|st) =
F (st−1→st)

F (st)
. A desired generative flow F is set to have the

terminal transition probability PT(x) := P (x→sf) equal
to P ∗(x). As shown in Bengio et al. (2023), the necessary

1Any DAG can be equivalently converted to be graded by
adding dummy non-terminating states. Please refer to Appendix A
of Malkin et al. (2022b) for more details.

2

GFlowNet Training by Policy Gradients

and sufficient condition is that ∀s′ ∈ S \ {s0, sf}:∑
s∈Pa(s′)

F (s→s′) =
∑

s′′∈Ch(s)

F (s′→s′′). (2)

where F (x→sf) := R(x) for any x ∈ X .

2.2. GFlowNet training

Directly estimating the transition flow F (s→s′) via the flow
matching objective (Bengio et al., 2021) can suffer from the
explosion of F values, of which the numerical issues may
lead to the failure of model training. In practice, the Trajec-
tory Balance (TB) objective has been shown to achieve the
state-of-the-art training performance (Malkin et al., 2022a).
With the TB objective, the desired flow is estimated by
the total flow Z and a pair of forward/backward policies,
PF (s

′|s) and PB(s|s′). The TB objective LTB(PD) of a
trajectory data sampler PD is defined as:

LTB(PD) := EPD(τ)[LTB(τ)],

LTB(τ) :=

(
log

PF (τ |s0)Z
PB(τ |x)R(x)

)2

. (3)

In the equation above, PF (τ |s0) =
∏T
t=1 PF (st|st−1)

with PF (τ) = PF (τ |s0), P⊤
F (x) := PF (x → sf), and

PF (τ |x) = PF (τ |x→ sf) = PF (τ)/P
⊤
F (x). Correspond-

ingly, PB(τ |x) = PB(τ |x → sf) =
∏T−1
t=1 PB(st−1|st),

P⊤
B (x) := PB(x → sf) equal to P ∗(x), PB(τ) =
P⊤
B (x)PB(τ |x), and PB(τ |s0) = PB(τ). Furthermore,

we define µ(s0 = s0) := Z/Ẑ as the 1-categorical dis-
tribution over S0 so that PF,µ(τ) := PF (τ |s0)µ(s0) =

PF (τ), where Ẑ is the normalizing constant whose value is
clamped2 to Z. We define PB,ρ(τ) := PB(τ |x)ρ(x) with
an arbitrary distribution ρ over X .

3. Policy gradients for GFlowNet training
Following Malkin et al. (2022b), we first extend the rela-
tionship between the GFlowNet training methods based on
the TB objective and KL divergence. With the extended
equivalence, we then introduce our policy-based and cou-
pled training strategies for GFlowNets. Finally, we present
theoretical analyses on our proposed strategies.

3.1. Gradient equivalence

When choosing trajectory sampler PD(τ) equal to PF (τ),
the gradient equivalence between using the KL divergence
and TB objective has been proven (Malkin et al., 2022b).
However, this forward gradient equivalence does not take the

2For any parametrized function f(·; θ) and f̂(·) clamped to f ,
f̂ is equal to f , but regarded as constant w.r.t. θ during gradient
computation.

total flow estimator Z into account. Moreover, the backward
gradient equivalence requires computing the expectation
over P ∗(x), which is not feasible. In this work, we extend
the proof of the gradient equivalence to take all gradients
into account and remove the dependency on P ∗(x), while
keeping feasible computation.
Proposition 3.1. Given a forward policy PF (·|·; θ), a back-
ward policy PB(·|·;ϕ), and a total flow estimator Z(θ), the
gradient of the TB objective3 can be written as:

∇θLTB(PF,µ; θ)
2

= ∇θDµ(·;θ)
KL (PF (τ |s0; θ), PB(τ |s0))

+
1

2
∇θ (logZ(θ)− logZ∗)

2

= ∇θDµ(·;θ)
KL (PF (τ |s0; θ), P̃B(τ |s0; θ));

∇ϕLTB(PB,ρ;ϕ)
2

= ∇ϕDρ
KL(PB(τ |x;ϕ), PF (τ |x))

= ∇ϕDρ
KL(PB(τ |x;ϕ), P̃F (τ |x)).

(4)

In the equations above, P̃F (τ |x) := PF (τ⪯x) =∏T−1
t=1 PF (st|st−1) and P̃B(τ |s0) := PB(τ |x)R(x)/Z, de-

noting two unnormalized distributions of PF (τ |x) and
PB(τ |s0). For arbitrary distributions p, q, and u,
Du
KL(p(·|s), q(·|s)) := Eu(s)[DKL(p(·|s), q(·|s))].

The proof is provided in Appendix A.1. As the TB objective
is a special case of the Sub-Trajectory Balance (Sub-TB) ob-
jective (Madan et al., 2023), we also provide the proof of the
gradient equivalence with respect to the Sub-TB objective
in Appendix A.3, where the initial distribution µ becomes
more flexible.

3.2. RL formulation of GFlowNet training

Inspired by the equivalence relationship in Proposition 3.1,
we propose new reward functions that allow us to formu-
late GFlowNet training as RL problems with corresponding
policy-based training strategies.
Definition 3.2 (Policy-dependent Rewards). For any action
a = (s→s′) ∈ A(s) (a ∈ Ȧ(s′)), we define two reward
functions as:

RF (s, a; θ) := log
πF (s, a; θ)

πB(s′, a; θ)
,

RB(s
′, a;ϕ) := log

πB(s
′, a;ϕ)

πF (s, a)
, (5)

where πF (s, a; θ) := PF (s
′|s; θ), πB(s′, a;ϕ) :=

PB(s|s′;ϕ), πB(s
f , a) is equal to R(x)/Z for a =

(x→sf). For any a /∈ A(s), RF (s, a) := 0. For any
a /∈ Ȧ(s′), RB(s′, a) := 0.

3Training via TB was intrinsically done in an off-policy setting,
so ∇LTB(PD) = EPD(τ)[∇LTB(τ)] for any choice of PD .

3

GFlowNet Training by Policy Gradients

Tuples (S,A,G, RF) and (S, Ȧ,G, RB) specify two MDPs
with policy-dependent rewards. In the MDPs, G spec-
ifies a deterministic transition environment such that
P (s′|s, a) = I[(s→ s′) = a] with the indicator function
I. (G, πF) and (G, πB) correspond to two absorbing Marko-
vian chains. Accordingly, the nature of DAGs requires
that each state has only one order index, allowing us to
define time-invariant expected value functions of states
and state-action pairs, which are defined as VF (s) :=

EPF (τ>t|st)[
∑T−1
l=t RF (sl, al)|st = s] and QF (s, a) :=

EPF (τ>t+1|st,at)[
∑T−1
l=t RF (sl, al)|st = s, at = a]. Then

we define JF := Eµ(s0)[VF (s0)], AF (s, a) := QF (s, a)−
VF (s), and dF,µ(s) := 1

T

∑T−1
t=0 PF (st = s). We

likewise denote the functions for the backward pol-
icy as {VB , QB , JB , AB , dB,ρ}. More details are pro-
vided in Appendix B.1. By definition, VF (s0) =

EP (τ |s0)[
∑T−1
t=0 RF (st, at)] = DKL(PF (τ |s0), P̃B(τ |s0))

, so JF = Dµ
KL(PF (τ |s0), P̃B(τ |s0)). Likewise, we can

obtain JB = Dρ
KL(PB(τ |x), P̃F (τ |x)). Thus, we can con-

clude that GFlowNet training can be converted into minimiz-
ing the expected value function JF and JB by Proposition
3.1. With the derived ∇JF and ∇JB provided in Appendix
B.3, we update πF , πB , and µ to minimize JF and JB based
on the correspondingly computed gradients of the following
two objectives:

Eµ(s0;θ)[VF (s0)] + T EdF,µ(s),πF (s,a;θ) [AF (s, a)] ,

(T − 1)EdB,ρ(s),πB(s,a;ϕ) [AB(s, a)] . (6)

Our policy-based method generalizes the TB-based train-
ing with πD equal to πF as follows: TB-based training
corresponds to approximating A(s, a) for (st = s, at =

a) empirically by Q̂F (st, at) − C, where Q̂F (st, at) =∑T−1
l=t RF (sl, al), and C is a constant baseline for vari-

ance reduction. For comparison, our policy-based method
can be considered approximating AF (s, a) functionally
by ÂλF (s, a) =

∑T−1
l=t λl−t(Q̂F (sl, al) − ṼF (sl)), where

λ ∈ [0, 1] controls the bias-variance trade-off for gra-
dient estimation (Schulman et al., 2016), Q̂F (sl, al) =

RF (sl, al) + ṼF (sl+1), and ṼF (sl) is a functional approx-
imation of exact VF (sl), serving as a functional baseline.
Specifically, our policy-based method with λ = 1 can pro-
vide unbiased gradient estimation of ∇JF as the TB-based
method. This supports the stability of our policy-based
method with the theoretical convergence guarantee by Theo-
rem 3.7 in Section 3.4. A formal discussion of their connec-
tion is provided in Appendix B.4 and B.6. Additionally, we
discuss the relationship between our method and traditional
Maximum Entropy (MaxEnt) RL in Appendix B.5.

To further exemplify that the proposed rewards bridge
policy-based RL techniques to GFlowNet training, we
specifically focus on the TRPO method, whose performance

R(x)/Z
*

PF(τ)

PB(τ)

PG(τ)

PF
T
(x)DKL

DKL

Figure 1. Dotted lines illustrate the spanning range of trajecto-
ries. PB and PG share the ground-truth terminating distribution
R(x)/Z∗. When pushing PF to match PB trajectory-wise, P⊤

F (x)
will also be pushed to match R(x)/Z∗.

is usually more stable than vanilla policy-based methods due
to conservative model updating rules (Schulman et al., 2015;
Achiam et al., 2017). Likewise, we propose a TRPO-based
objective for updating πF :

min
θ′

T EdF,µ(s;θ),πF (s,a;θ′) [AF (s, a; θ)]

s.t. DdF,µ(·;θ)
KL (πF (s, a; θ), πF (s, a; θ

′)) ≤ ζF . (7)

The objective for πB can be defined similarly and is omitted
here. This objective is motivated as the approximation of the
upper bound in Theorem 3.6, which generalizes the original
results for static rewards and absorbing MDPs. We defer
the discussion of their relationship in Section 3.4.

Moreover, the model parameter updating rule based on∇JF
can be written as θ′ ← θ − α∇θJF (θ) or equivalently
θ′ = argminθ′(∇JF)T θ′ + 1

2α ∥θ
′ − θ∥22. Here, ∥θ − θ′∥2

can be generalized to KL divergence or Bregman divergence
corresponding to natural or mirror policy gradients, which
we leave for future work.

Details of the model parameter updating rules for proposed
methods are provided in Appendix B.6.

3.3. RL formulation of guided backward policy design

During GFlowNet training, (PB , R) specifies the amount
of desired flow that (PF , Z) is optimized to match. While
PB(·|·) can be chosen freely in principle (Bengio et al.,
2023), a well-designed PB that assigns high probabilities
over sub-trajectories preceding the terminating state x with
a high reward value R(x), will improve training efficiency.
Following Shen et al. (2023), we formulate the design prob-
lem as minimizing the following objective:

LGTB(P
ρ
B) := EPρ

B(τ)[L
G
TB(τ)],

LGTB(τ ;ϕ) :=

(
log

PB(τ |x;ϕ)
PG(τ |x)

)2

, (8)

where PG(τ |x) =
∏T−1
t=1 PG(st−1|τ≥t) is called the condi-

tional guided trajectory distribution, which is usually non-

4

GFlowNet Training by Policy Gradients

Markovian4, and PG(τ) = PG(τ |x)P ∗(x). As required by
the training w.r.t. PF , the objective LGTB aims at finding the
backward policy whose Markovian flow best matches the
non-Markovian flow induced by PG.

Proposition 3.3. Given a conditional guided trajectory
distribution PG(τ |x) and a backward policy PB(·|·;ϕ), the
gradients of LGTB can be written as:

∇ϕLGTB(P
ρ
B ;ϕ)

2
= ∇ϕDρ

KL(PB(τ |x;ϕ), PG(τ |x)). (9)

The proof can be found in Appendix A.2. Based on the
proposition, we propose a new reward that allows us to
formulate the backward policy design problem as an RL
problem.

Definition 3.4. Given PG(τ |x), we define a reward function
for any action a := (s→s′) ∈ Ȧ(s′) as:

RGB(s
′, a;ϕ) := log

πB(s
′, a;ϕ)

πG(s′, a)
, (10)

where πG(s
′, a) := PG(s|τ⪰s′). For any a /∈ Ȧ(s′),

RGB(s
′, a) := 0.

Accordingly, we denote the associated function set as
{V GB , QGB , JGB , AGB , dGB,ρ}, which are defined in a simi-
lar way as RB but replacing PF by PG. By the defi-
nition of JGB and Proposition 3.3, we can conclude that
∇ϕJGB (ϕ) = 1

2∇ϕL
G
TB(P

ρ
B ;ϕ) and the design of backward

policy can be solved by minimizing JGB . The form of PG is
detailed in Appendix E for the corresponding experimental
tasks.

In principle, following the pipeline by Shen et al. (2023),
we need to solve the optimization of LGTB to find the desired
PB at first. Then, freezing PB , we can optimize LTB to
find the desired PF . This gives rise to training inconve-
nience in practice. To avoid doing two-phase training, the
authors mixed PB and PG by αPB + (1−α)PG within the
training objective w.r.t. PF . This operation, however, lacks
theoretical guarantees as the mixed distribution is still non-
Markovian. By comparison, the RL formulation allows us to
optimize JF and JGB jointly with a theoretical performance
guarantee, which we defer to the next section.

The workflow of our coupled training strategy is summa-
rized in Algorithm 1 and depicted by Fig. 1.

3.4. Performance Analysis

In the previous sections, we formulate two RL problems
with respect to RF and RGB . Now, we show below that the
two problems can be solved jointly.

4By non-Markovian assumption, PG(τ |x) can factorize in ar-
bitrary ways conditioning on x. Here it is assumed to factorize in
the backward direction for notation compactness.

Algorithm 1 GFlowNet Training Workflow
Require: PF (·|·; θ), Z(θ), PB(·|·;ϕ), PG(·|·)

for n = {1, . . . , N} do
D ← {τ̂ |τ̂ ∼ PF (τ ; θ)}
Update θ w.r.t. RF and D
if ϕ ̸= ∅ then
Ḋ ← {τ̂ |∀x ∈ D : τ̂ |x ∼ PB(τ |x)}
if PG(τ̂ |x) ̸= PB(τ̂ |x) then

Update ϕ w.r.t. RGB and Ḋ
else

Update ϕ w.r.t. RB and Ḋ
end if

end if
end for

Theorem 3.5. Denoting JGF as the corresponding function
of RGF obtained by replacing πB within RF with πG and
choosing ρ(x) = P⊤

F (x), then JGF , JF and JGB satisfy the
following inequality:

JGF ≤ JF+JGB+(T−1)RG,max
B

√
(JF + logZ∗ − logZ)

2
,

(11)
where RG,max

B = maxs,a
∣∣RGB(s, a)∣∣.

The proof is given in Appendix C.1. As shown in Propo-
sition 3.1, minimization of JF will incur the decrease of
Dµ
KL(PF (τ |s0), PB(τ |s0)) = JF + logZ∗ − logZ. Thus,

by minimizing JF and JGB jointly, the upper bound of JGF
decreases.

Moreover, the TRPO-based objective introduced in the pre-
vious section is motivated by the following upper bounds.

Theorem 3.6. For two forward policies (πF , π
′
F) with

D
d′F,µ

KL (π′
F (s, ·), πF (s, ·)) < ζF , and two backward policies

(πB , π
′
B) with D

d′B,ρ

KL (π′
B(s, ·), πB(s, ·)) < ζB , we have:

J ′
F − JF
T

≤ EdF,µ(s)π′
F (s,a)[AF (s, a)] + ζF + ϵF

√
2ζF ,

J ′
B − JB
T − 1

≤ EdB,ρ(s)π′
B(s,a)[AB(s, a)] + ζB + ϵB

√
2ζB ,

(12)

where ϵF = maxs
∣∣Eπ′

F (s,a)[AF (s, a)]
∣∣ and ϵB =

maxs
∣∣Eπ′

B(s,a)[AB(s, a)]
∣∣. Similar results also apply to

JGB and AGB for the backward policy πB .

The proof is given in Appendix C.2. The TRPO-based
objective can be derived following a similar logic in Schul-
man et al. (2015) and Achiam et al. (2017). Let’s denote
M(π) = EdF,µ(s),π(s,a)[AF (s, a)] + ζF + ϵF

√
2ζF and

set π′
F = argmaxπM(π). In the worst case, we choose

π′
F = πF and M(π′

F) = 0; then it can be expected that
there is a conservative solution. That is, π′

F ̸= πF and ζF

5

GFlowNet Training by Policy Gradients

is negligibly small, so that M(π′
F) < 0, thereby resulting

in J ′
F − JF < 0. This implies the monotonic performance

gain. TRPO method is an approximation to this update
and usually provides more stable performance gain than the
vanilla policy-based method.

Lastly, we provide a theoretical guarantee that policy-based
methods with policy-dependent rewards can asymptotically
converge to stationary points, which draws inspiration from
the results for static rewards by Agarwal et al. (2019).

Theorem 3.7. Suppose that: JF (θ) is β−smooth;
EP (·|θ)[∇̂θJF (θ)] = ∇θJF (θ); the estimation variance,

EP (·|θ)

[∥∥∇̂θJF (θ)−∇θJF (θ)∥∥22] ≤ σF ; | logZ(θ) −
logZ∗| ≤ σZ; we update θ for N (> β) iterations by
θn+1 ← θn − α∇̂JF (θn) with n ∈ {0, . . . , N − 1},
α =

√
1/(βN) and initial parameter θ0. Then we have:

min
n∈{0,...,N−1}

EP (θn)

[
∥∇θnJF (θn)∥

2
2

]
≤
σF + σZ + EP (θ0)[JF (θ0)]

(
√
(2N)/β − 1)

. (13)

Similar results also apply to JB and JGB .

The proof is provided in Appendix C.3. The assumption
EP (·|θ)[∇̂θJF (θ)] = ∇θJF (θ) means gradient estimation
is unbiased as explained in Appendix B.6.

3.5. Related Work

GFlowNet training GFlowNets were first proposed
by Bengio et al. (2021) and trained by a Flow Matching
(FM) objective, which aims at minimizing the mismatch
of equation (2) w.r.t. a parameterized edge flow estima-
tor F (s → s′) directly. Bengio et al. (2023) reformu-
lated equation (2) and proposed a Detailed Balance (DB)
objective, where edge flows F (s → s′) are represented
by F (s)PF (s′|s) or F (s′)PB(s|s′). Malkin et al. (2022a)
claimed that the FM and DB objectives are prone to ineffi-
cient credit propagation across long trajectories and showed
that the TB objective is the more efficient alternative. Madan
et al. (2023) proposed a Sub-TB objective that unified the
TB and DB objectives as special cases. They can be con-
sidered as Sub-TB objectives with sub-trajectories, which
are complete or of length 1 respectively. Zimmermann et al.
(2022) proposed KL-based training objectives and Malkin
et al. (2022b) first established the equivalence between the
KL and TB objectives. Shen et al. (2023) analyzed how the
TB objective helps to learn the desired flow under the se-
quence prepend/append MDP setting, and proposed a guided
TB objective. Forward-looking GFlowNets (Pan et al., 2023)
improved the formulation of the DB objective by a better
local credit assignment scheme, which was further gener-
alized by learning energy decomposition GFlowNets (Jang

et al., 2023). Finally, back-and-forth local search (Kim et al.,
2023b), Thompson Sampling (TS) (Rector-Brooks et al.,
2023), and temperature conditioning (Kim et al., 2023a)
were proposed for the explicit design of PD.

Hierarchical Variational inference Hierarchical Varia-
tional Inference (HVI) (Vahdat & Kautz, 2020; Zimmer-
mann et al., 2021) generalizes amortized VI (Zhang et al.,
2018) to better explore specific statistical dependency struc-
tures between observed variables and latent variables by
introducing the hierarchy of latent variables. Training HVI
models typically involves minimizing the selected diver-
gence measures between the target distribution and the varia-
tional distribution parametrized by neural networks (Kingma
& Welling, 2014; Burda et al., 2015). GFlowNets can be
considered as a special HVI model, where non-terminating
states are latent variables, the hierarchy corresponds to a
DAG, and the task of minimizing divergences is achieved
by keeping flow balance (Malkin et al., 2022b). Our work
provides another view of divergence minimization by inter-
preting the divergence as the expected accumulated reward.

Imitation learning Imitation learning in RL is to learn a
policy that mimics the expert demonstrations with limited
expert data, by minimizing the empirical gap between the
learned policy and expert policy. (Rajaraman et al., 2020;
Ho & Ermon, 2016). For GFlowNet training in this work,
we reduce the gap between the forward policy and the expert
forward policy at the trajectory level, as the expert trajectory
distribution is equal to PB(τ), implicitly encouraging the
learned policy to match the desired expert policy.

Policy-based RL Policy-based RL optimizes the expected
value function J directly based on policy gradients (Sutton
et al., 1999). The most relevant policy-based methods are
the Actor-Critic method (Sutton & Barto, 2018) and Trust
Region Policy Optimization (TRPO) (Schulman et al., 2015)
along with its extension – Constrained Policy Optimization
(CPO) (Achiam et al., 2017). Compared to our methods,
they work under the assumption that the reward functions
must be fixed w.r.t. policies. The underlying Markov chains
are further assumed to be ergodic by CPO and TRPO. We
note that Weber et al. (2015) proposed a VI method based
on policy gradient despite lacking experimental support.
Here, the objective can be interpreted as the KL divergence
between two forward trajectory distributions. Without the
help of A, the policy gradient is estimated in a vanilla man-
ner, corresponding to Â1 and Â0. Besides, Rengarajan et al.
(2022) proposed a TRPO method for imitation learning,
where the objective is the expected KL divergence between
two forward policies, and the underlying MDP is assumed
to be ergodic as the original method.

6

GFlowNet Training by Policy Gradients

MaxEnt RL Bengio et al. (2021) have shown that di-
rectly applying MaxEnt RL with fixed R(s, a) defined
based on the terminating state is problematic as it corre-
sponds to modeling p(x) ∝ n(x)R(x), where n(x) is the
number of trajectories that can pass through x. As dis-
cussed in Appendix B.5, our policy-based methods, when
fixing log πB(s

′, a) and logZ, can be connected to Soft-Q-
learning, a typical MaxEnt RL method.

Bi-level optimization Our proposed training strategy can
also be seen as a Stochastic Bi-level Optimization method
for GFlowNet training (Ji et al., 2021; Hong et al., 2023;
Ghadimi & Wang, 2018). The inner problem is the RL prob-
lem w.r.t. RB or RGB for designing backward policies. The
outer problem is the RL problem w.r.t. RF for forward poli-
cies. For gradient-based solutions to Bi-level optimization
in general, the learning rate of inner problems is carefully
selected to guarantee the overall convergence, which is not
required in our methods designed for GFlowNet training.

Additional discussion about policy-based and valued-based
methods in the context of RL is provided in Appendix D.

4. Experiments
To compare our policy-based training strategies for
GFlowNets with the existing value-based methods, we have
conducted three simulated experiments for hyper-grid mod-
eling, four real-world experiments for biological and molec-
ular sequence design, one on Bayesian Network structure
learning, and ablation study of λ. We compare the perfor-
mance of GFlowNets by the following training strategies:
(1) DB-U, (2) DB-B, (3) TB-U, (4) TB-B, (5) TB-Sub,
(6) TB-TS, (7) RL-U, (8) RL-B; (9) RL-T and (10) RL-G,
where notion ‘-U’ means that πB is a fixed uniform policy;
‘-B’ means that πB is a parameterized policy; ‘RL’ repre-
sent our policy-based method; ‘-T’ represent our TRPO-
based method with a uniform πB and ‘-G’ represent our
joint training strategy with guided policy;‘-Sub’ represent
the weighted Sub-TB objective with a parameterized πB
in Madan et al. (2023); ‘-TS’ represent the TS objective
with a parameterized πB in Rector-Brooks et al. (2023). By
default, PD is γ-decayed-noisy for valued-based methods.
Total variation DTV , Jensen–Shannon divergence DJSD,
and mode accuracyAcc are used to measure the gap between
P⊤
F (x) and P ∗(x). Detailed descriptions of experimental

settings, including metric definitions, guided policy design,
hyper-parameters, etc., can be found in Appendix E. Our
implementation is built upon the torchgfn package (Lahlou
et al., 2023).

4.1. Hyper-grid Modeling

In this set of experiments, we use the hyper-grid envi-
ronment following Malkin et al. (2022b). In terms of

GFlowNets, states are the coordinate tuples of an D-
dimensional hyper-cubic grid with heights equal to N . The
initial state s0 is (0, . . . , 0). Starting from s0, actions cor-
respond to increasing one of D coordinates by 1 for the
current state or stopping the process at the current state and
outputting it as the terminating state x. A manually designed
reward function R(·) assigns high reward values to some
grid points while assigning low values to others. We conduct
experiments on 256× 256, 128× 128, 64× 64× 64, and
32×32×32×32 grids. For performance evaluation, P⊤

F (x)
is computed exactly by dynamic programming (Malkin et al.,
2022b).

The training curves by DTV across five runs for 256× 256
and 128 × 128 grids are plotted in Fig. 2, and Table 1 in
Appendix E.5 reports the mean and standard deviation of
metric values at the last iteration. The graphical illustrations
of P⊤

F (x) are shown in Figs. 12 and 13 in Appendix E.6. In
the first setting, it can be observed that our policy-based
methods, in terms of convergence rate or converged DTV ,
perform much better than all the considered value-based
training methods. This shows that our policy-based training
strategies give a more robust gradient estimation. Besides,
RL-G achieves the smallestDTV and converges much faster
than all the other competing methods. In RL-G, the guided
distribution assigns small values to the probability of ter-
minating at coordinates with low rewards. This prevents
the forward policy from falling into the reward ‘desert’ be-
tween the isolated modes. Finally, RL-T outperforms RL-U
and behaves more stably than RL-U during training. This
confirms that with the help of trust regions, the gradient
estimator becomes less sensitive to estimation noises. Here
we use a fixed constant ζF for trust region control. It is
expected that using a proper scheduler of ζF during train-
ing may further improve the performance of RL-T. In the
second setting, the convergedDTV of policy-based and TB-
based methods are similar and significantly better than those
of DB-based methods. As expected, policy-based meth-
ods converge much faster than all the value-based methods.
Thus, the results further support the effectiveness of our
policy-based methods. Moreover, RL-G and RL-T achieve
the second-best and the best convergence, and RL-T shows
better stability than RL-U. This again shows the superior-
ity of coupled and TRPO-based strategies, confirming our
theoretical analysis conclusions.

More results and discussions for 64 × 64 × 64 and 32 ×
32× 32× 32 grids can be found in Appendix E.2.

4.2. Biological and Molecular Sequence Design

In this set of experiments, we use GFlowNets to generate
nucleotide strings of length D and molecular graphs com-
posed of D blocks according to given rewards. The initial
state s0 := (−1, . . . ,−1) denotes an empty sequence. The

7

GFlowNet Training by Policy Gradients

500 1000 1500 2000
Number of iterations

0.0

0.2

0.4

0.6

0.8

1.0
To

ta
l V

ar
ia

tio
n

DB-U
DB-B
TB-U
TB-B
TB-Sub
TB-TS
RL-U
RL-B
RL-T
RL-G

500 1000 1500 2000
Number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l V
ar

ia
tio

n

DB-U
DB-B
TB-U
TB-B
TB-Sub
TB-TS
RL-U
RL-B
RL-T
RL-G

Figure 2. Training curves by DTV between P⊤
F and P ∗ for 256× 256 (left) and 128× 128 hyper-grids (right). The curves are plotted

based on means and standard deviations of metric values across five runs and smoothed by a sliding window of length 10. Metric values
are computed every 10 iterations.

500 1000 1500 2000
Number of iterations

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

DB-U
DB-B
TB-U
TB-B
TB-Sub
TB-TS
RL-U
RL-B
RL-T
RL-G

500 1000 1500 2000
Number of iterations

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

DB-U
DB-B
TB-U
TB-B
TB-Sub
TB-TS
RL-U
RL-B
RL-T
RL-G

Figure 3. Training curves by Acc of P⊤
F w.r.t. P ∗ for SIX6 (left) and QM9 (right) datasets. The curves are plotted based on means and

standard deviations of metric values across five runs and smoothed by a sliding window of length 10. Metric values are computed every
10 iterations.

generative process runs as follows: starting from s0, an
action is taken to pick one of the empty slots and fill it
with one element until the sequence is completed. Then
the sequence is returned as the terminating state x. We use
nucleotide string datasets, SIX6 and PH04, and molecu-
lar graph datasets, QM9 and sEH, from Shen et al. (2023).
For metric DTV and DJSD, P⊤

F is computed exactly by
dynamic programming.

Following Shen et al. (2023), the training curves by the
mode accuracy Acc and the number of modes for SIX6
and QM9 datasets are shown in Fig. 3, and Fig. 7 in Ap-
pendix E.3. For evaluation consistency, we also provide
the curves by DTV in Fig. 6 in Appendix E.3, as well as
the metric values at the last iteration summarized in Ta-
bles 3 and 4 in Appendix E.5. The graphical illustrations
of P⊤

F (x) are shown in Figs. 16 and 17 in Appendix E.6.
In both experiments, TB-based and policy-based methods
achieve better performance than DB-based methods. While
the converged Acc values of TB-based methods and our
policy-based methods are similar, the latter converge much
faster than TB-based methods with only TB-U achieving a

comparable convergence rate. Besides, RL-T has the fastest
convergence rates in both experiments. The performances
of RL-G are similar to those of RL-B, which has a param-
eterized πB , but slightly better than RL-U with a uniform
πB . In summary, experimental results for QM9 and SIX6
datasets align with those of hyper-grid tasks, confirming
again the advantage offered by our policy-based methods
for robust gradient estimation.

More results and discussions for PHO4 and sEH datasets
can be found in Appendix E.3.

4.3. Ablation Study of λ

To investigate how the setting of λ, which controls the bias-
variance-trade-off, may help robust estimation of gradients,
we conduct experiments in the 256× 256 grid environment.
We compare the performance of RL-U methods with dif-
ferent λ values and TB-U methods with different γ values
The obtained training curves by DTV across five runs are
shown in Fig. 5 in Appendix E.2. Among the choices of
γ for TB-U, the values 0.99 and 0.95 yield the best and

8

GFlowNet Training by Policy Gradients

the worst performances. In contrast, RL-U under all setups
except λ = 1, demonstrates significantly faster convergence
than TB-U. It should be pointed out that when λ = 1, QF
is approximated empirically as TB-based methods, but VF
is approximated functionally. Additionally, the converged
DTV in all setups of RL-U are better than those in all se-
tups of TB-U. These results verify that by controlling λ,
our policy-based methods can provide more robust gradient
estimation than TB-based methods.

We have also conducted performance comparisons between
policy-based and value-based methods for Bayesian network
structure learning. The results and discussions can be found
in Appendix E.4.

5. Conclusion, Limitations and Future Work
This work bridges the flow-balance-based GFlowNet train-
ing to RL problems. We have developed policy-based train-
ing strategies, which provide alternative ways to improve
training performance compared to the existing value-based
strategies. The experimental results support our claims. Our
policy-based methods are not limited to the cases where G
must be a DAG as it intrinsically corresponds to minimizing
the KL divergence between two distributions, which does
not necessitate G to be a DAG. Future work will focus on
extending the proposed methods to general G with the ex-
istence of cycles for more flexible modeling of generative
processes of object x ∈ X . While our policy-based train-
ing strategies do not require an explicit design of a data
sampler and are shown to achieve better GFlowNet training
performance, they may still get trapped into local optima
due to the variance of gradient estimation when the state
space is very large. Thus, future research will also focus on
further improving policy-based methods by more robust gra-
dient estimation techniques, under the gradient equivalence
relationship.

Acknowledgements
This work was supported in part by the U.S. National
Science Foundation (NSF) grants SHF-2215573, and by
the U.S. Department of Engergy (DOE) Office of Science,
Advanced Scientific Computing Research (ASCR) under
Awards B&R# KJ0403010/FWP#CC132 and FWP#CC138.
Portions of this research were conducted with the advanced
computing resources provided by Texas A&M High Perfor-
mance Research Computing.

Impact Statement
The presented research aims to improve GFlowNet training
methods to address the training performance challenge. The
applications of our work encompass various societal realms,

ranging from medicine to materials design.

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained

policy optimization. In International conference on ma-
chine learning, pp. 22–31. PMLR, 2017.

Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. Rein-
forcement learning: Theory and algorithms. CS Dept.,
UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

Beck, A. First-order methods in optimization. SIAM, 2017.

Bengio, E., Jain, M., Korablyov, M., Precup, D., and Ben-
gio, Y. Flow network based generative models for non-
iterative diverse candidate generation. Advances in Neu-
ral Information Processing Systems, 34:27381–27394,
2021.

Bengio, Y., Lahlou, S., Deleu, T., Hu, E. J., Tiwari, M., and
Bengio, E. Gflownet foundations. Journal of Machine
Learning Research, 24(210):1–55, 2023.

Burda, Y., Grosse, R., and Salakhutdinov, R. Importance
weighted autoencoders. arXiv preprint arXiv:1509.00519,
2015.

Degris, T., White, M., and Sutton, R. S. Off-policy actor-
critic. In Proceedings of the 29th International Coference
on International Conference on Machine Learning, pp.
179–186, 2012.

Deleu, T., Góis, A., Emezue, C., Rankawat, M., Lacoste-
Julien, S., Bauer, S., and Bengio, Y. Bayesian structure
learning with generative flow networks. In Uncertainty
in Artificial Intelligence, pp. 518–528. PMLR, 2022.

Ghadimi, S. and Wang, M. Approximation methods for
bilevel programming. arXiv preprint arXiv:1802.02246,
2018.

Golpar Raboky, E. and Eftekhari, T. On nilpotent interval
matrices. Journal of Mathematical Modeling, 7(2):251–
261, 2019.

Grinstead, C. and Snell, L. J. Introduction to probability.
2006.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Hestenes, M. R., Stiefel, E., et al. Methods of conjugate gra-
dients for solving linear systems. Journal of research of
the National Bureau of Standards, 49(6):409–436, 1952.

9

GFlowNet Training by Policy Gradients

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. Advances in neural information processing systems,
29, 2016.

Hong, M., Wai, H.-T., Wang, Z., and Yang, Z. A two-
timescale stochastic algorithm framework for bilevel op-
timization: Complexity analysis and application to actor-
critic. SIAM Journal on Optimization, 33(1):147–180,
2023.

Jang, H., Kim, M., and Ahn, S. Learning energy decompo-
sitions for partial inference of gflownets. In The Twelfth
International Conference on Learning Representations,
2023.

Ji, K., Yang, J., and Liang, Y. Bilevel optimization: Con-
vergence analysis and enhanced design. In International
conference on machine learning, pp. 4882–4892. PMLR,
2021.

Kakade, S. M. A natural policy gradient. Advances in neural
information processing systems, 14, 2001.

Kim, M., Ko, J., Zhang, D., Pan, L., Yun, T., Kim, W. C.,
Park, J., and Bengio, Y. Learning to scale logits for
temperature-conditional gflownets. In NeurIPS 2023 AI
for Science Workshop, 2023a.

Kim, M., Yun, T., Bengio, E., Zhang, D., Bengio, Y., Ahn,
S., and Park, J. Local search gflownets. In The Twelfth
International Conference on Learning Representations,
2023b.

Kingma, D. P. and Welling, M. Auto-encoding varia-
tional bayes. In Bengio, Y. and LeCun, Y. (eds.), ICLR,
2014. URL http://dblp.uni-trier.de/db/
conf/iclr/iclr2014.html#KingmaW13.

Kuipers, J., Moffa, G., and Heckerman, D. Addendum on
the scoring of gaussian directed acyclic graphical models.
2014.

Lahlou, S., Viviano, J. D., and Schmidt, V. torchgfn: A py-
torch gflownet library. arXiv preprint arXiv:2305.14594,
2023.

Madan, K., Rector-Brooks, J., Korablyov, M., Bengio, E.,
Jain, M., Nica, A. C., Bosc, T., Bengio, Y., and Malkin, N.
Learning GFlowNets from partial episodes for improved
convergence and stability. In International Conference
on Machine Learning, pp. 23467–23483. PMLR, 2023.

Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio,
Y. Trajectory balance: Improved credit assignment in
gflownets. Advances in Neural Information Processing
Systems, 35:5955–5967, 2022a.

Malkin, N., Lahlou, S., Deleu, T., Ji, X., Hu, E. J., Ev-
erett, K. E., Zhang, D., and Bengio, Y. Gflownets and
variational inference. In The Eleventh International Con-
ference on Learning Representations, 2022b.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Pan, L., Malkin, N., Zhang, D., and Bengio, Y. Better
training of gflownets with local credit and incomplete
trajectories. In International Conference on Machine
Learning, pp. 26878–26890. PMLR, 2023.

Rajaraman, N., Yang, L., Jiao, J., and Ramchandran, K.
Toward the fundamental limits of imitation learning. Ad-
vances in Neural Information Processing Systems, 33:
2914–2924, 2020.

Rector-Brooks, J., Madan, K., Jain, M., Korablyov, M., Liu,
C.-H., Chandar, S., Malkin, N., and Bengio, Y. Thomp-
son sampling for improved exploration in gflownets. In
ICML 2023 Workshop on Structured Probabilistic Infer-
ence {\&} Generative Modeling, 2023.

Rengarajan, D., Vaidya, G., Sarvesh, A., Kalathil, D., and
Shakkottai, S. Reinforcement learning with sparse re-
wards using guidance from offline demonstration. arXiv
preprint arXiv:2202.04628, 2022.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897. PMLR,
2015.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. In Proceedings of the International
Conference on Learning Representations (ICLR), 2016.

Schulman, J., Chen, X., and Abbeel, P. Equivalence be-
tween policy gradients and soft q-learning. arXiv preprint
arXiv:1704.06440, 2017a.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017b.

Shen, M. W., Bengio, E., Hajiramezanali, E., Loukas, A.,
Cho, K., and Biancalani, T. Towards understanding and
improving gflownet training. In International Conference
on Machine Learning, pp. 30956–30975. PMLR, 2023.

10

http://dblp.uni-trier.de/db/conf/iclr/iclr2014.html#KingmaW13
http://dblp.uni-trier.de/db/conf/iclr/iclr2014.html#KingmaW13

GFlowNet Training by Policy Gradients

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Tsitsiklis, J. and Van Roy, B. Analysis of temporal-
diffference learning with function approximation. Ad-
vances in neural information processing systems, 9, 1996.

Vahdat, A. and Kautz, J. Nvae: A deep hierarchical vari-
ational autoencoder. Advances in neural information
processing systems, 33:19667–19679, 2020.

Weber, T., Heess, N., Eslami, A., Schulman, J., Wingate, D.,
and Silver, D. Reinforced variational inference. In Ad-
vances in Neural Information Processing Systems (NIPS)
Workshops, 2015.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

Zhan, W., Cen, S., Huang, B., Chen, Y., Lee, J. D., and Chi,
Y. Policy mirror descent for regularized reinforcement
learning: A generalized framework with linear conver-
gence. SIAM Journal on Optimization, 33(2):1061–1091,
2023.

Zhang, C., Bütepage, J., Kjellström, H., and Mandt, S. Ad-
vances in variational inference. IEEE transactions on
pattern analysis and machine intelligence, 41(8):2008–
2026, 2018.

Zimmermann, H., Wu, H., Esmaeili, B., and van de Meent,
J.-W. Nested variational inference. Advances in Neural
Information Processing Systems, 34:20423–20435, 2021.

Zimmermann, H., Lindsten, F., van de Meent, J.-W., and
Naesseth, C. A. A variational perspective on genera-
tive flow networks. Transactions on Machine Learning
Research, 2022.

11

GFlowNet Training by Policy Gradients

A. Gradient Equivalence
Lemma A.1. (REINFORCE trick (Williams, 1992)) Given a random variable u following a distribution p(·;ψ)
parameterized by ψ and a arbitrary function f , we have ∇ψEp(u;ψ)[f(u)] = Ep(u)[f(u)∇ψ log p(u;ψ)] =

Ep(u)[f(u)∇ψ log p̃(u;ψ)], where p(u;ϕ) = p̃(u;ϕ)/Ẑp, and Ẑp is the normalizing constant and clamped to
∑
u p̃(u).

A.1. Proof of Proposition 3.1

Proof. First of all, we split the parameters of the total flow estimator and forward transition probability and denote them as
Z(θZ) and PF (·|·; θF) respectively. We further define c(τ) =

(
log PF (τ |s0)

R(x)PB(τ |x)

)
.

For the gradients w.r.t. θF :

1

2
∇θFEPF (τ |s0)[LTB(τ ; θF)] =

1

2
EPF,µ(τ)

[
∇θF (c(τ ; θF) + logZ)

2
]

= EPF,µ(τ) [(c(τ) + logZ)∇θF logPF (τ |s0; θF)]
= EPF,µ(τ) [(c(τ) + logZ)∇θF logPF (τ |s0; θF)] + EPF,µ(τ) [∇θF (c(τ ; θF) + logZ)]︸ ︷︷ ︸

(a)

= Eµ(s0)
[
∇θFEPF (τ |s0;θF) [c(τ ; θF) + logZ]

]
= Eµ(s0)[∇θFDKL(PF (τ |s0; θF), P̃B(τ |s0))]

= ∇θFD
µ
KL(PF (τ |s0; θF), P̃B(τ |s0)), (14)

where (a) is equal to zero as EPF (τ |s0)[∇θF c(τ ; θF)] = EPF (τ |s0)[1 · ∇θF logPF (τ |s0; θF)] = ∇θFEPF (τ |s0;θF)[1] = 0 by
Lemma A.1. We also have:

∇θFD
µ
KL(PF (τ |s0; θF), P̃B(τ |s0)) =∇θFD

µ
KL(PF (τ |s0; θF), P̃B(τ |s0)) +∇θFEPF,µ(τ ;θF) [logZ

∗ − logZ]︸ ︷︷ ︸
=0

=∇θFD
µ
KL(PF (τ |s0; θF), PB(τ |s0)). (15)

It should be emphasized that PB(τ) is the ground-truth distribution with PB(x) := R(x)/Z∗, while P̃B(τ) is the approxi-
mated one with P̃B(x) := R(x)/Z. The gradients w.r.t. θZ can be written as:

1

2
∇θZEPF (τ |s0)[LTB(τ ; θZ)] =

1

2
EPF (τ |s0)

[
∇θZ (c(τ) + logZ(θZ))

2
]

= EPF (τ |s0) [(c(τ) + logZ)∇θZ logZ(θZ)]

= [DKL(PF (τ |s0), P̃B(τ |s0))] [∇θZ logZ(θZ)]

= ∇θZ
Z(θZ)

Ẑ
DKL(PF (τ |s0), P̃B(τ |s0))

= ∇θZD
µ(·;θZ)
KL (PF (τ |s0), P̃B(τ |s0)). (16)

Besides, we have:

∇θZD
µ(·;θZ)
KL (PF (τ |s0), P̃B(τ |s0)) =[∇θZ logZ(θZ)]

[
DKL(PF (τ |s0), P̃B(τ |s0)) + log

Z∗

Z∗

]
= [∇θZ logZ(θZ)]

[
DKL(PF (τ |s0), PB(τ |s0)) + log

Z

Z∗

]
=∇θZ

Z(θZ)

Ẑ
[DKL(PF (τ |s0), PB(τ |s0))] +

[
∇θZ log

Z(θZ)

Z∗

] [
log

Z

Z∗

]
=∇θZD

µ(·;θZ)
KL (PF (τ |s0), PB(τ |s0)) +

1

2
∇θZ (logZ(θZ)− logZ∗)

2
. (17)

Combining equations (14) and (16), we obtain:

1

2
∇θEPF,µ(τ)[LTB(τ ; θ)] = ∇θD

µ(·;θ)
KL (PF (τ |s0; θ), P̃B(τ |s0)). (18)

12

GFlowNet Training by Policy Gradients

Combining equations (15) and (17), we obtain:

1

2
∇θEPF,µ(τ)[LTB(τ ; θ)] = ∇θ

{
D
µ(·;θ)
KL (PF (τ |s0; θ), PB(τ |s0)) +

1

2
(logZ(θ)− logZ∗)

2

}
. (19)

Now let’s consider the backward gradients and denote c(τ) =
(
log PB(τ |x)

PF (τ⪯x)

)
. Then,

1

2
∇ϕEPB,ρ(τ)[LTB(τ ;ϕ)] =

1

2
EPB,ρ(τ)

[
∇ϕ
(
c(τ ;ϕ) + logR(x)− logZ − logPF (s

f |x)
)2]

= EPB,ρ(τ)

[(
c(τ) + logR(x)− logZ − logPF (s

f |x)
)
∇ϕ logPB(τ |x;ϕ)

]
= EPB,ρ(τ) [c(τ)∇ϕ logPB(τ |x;ϕ)] + Eρ(x)

[(
logR(x)− logZ − logPF (s

f |x)
)
EPB(τ |x)[∇ϕ logPB(τ |x;ϕ)]︸ ︷︷ ︸

=0 by Lemma A.1

]
= EPB,ρ(τ)[c(τ)∇ϕ logPB(τ |x;ϕ)] + EPB,ρ(τ)[∇ϕc(τ ;ϕ)]︸ ︷︷ ︸

=0 by Lemma A.1

= Eρ(x)
[
∇ϕDKL(PB(τ |x;ϕ), P̃F (τ |x))

]
= ∇ϕDρ

KL(PB(τ |x;ϕ), P̃F (τ |x)). (20)

Besides, we have

∇ϕDρ
KL(PB(τ |x;ϕ), P̃F (τ |x)) = ∇ϕD

ρ
KL(PB,ρ(τ |x;ϕ), P̃F (τ |x)) + Eρ(x)

[
∇ϕEPB(τ |x;ϕ)

[
log(P⊤

F (x)/PF (s
f |x))

]︸ ︷︷ ︸
=log(P⊤

F (x)/PF (sf |x))∇ϕ1=0

]
= ∇ϕDρ

KL(PB(τ |x;ϕ), P̃F (τ |x)) +∇ϕEPB,ρ(τ ;ϕ)

[
log(P⊤

F (x)/PF (s
f |x))

]
= ∇ϕDρ

KL(PB(τ |x;ϕ), PF (τ |x)). (21)

Equations (20) and (21) are the expected results.

A.2. Proof of Proposition 3.3

Proof. The proof can be done by a procedure similar to that of backward gradients in Proposition 3.1 by replacing P̃F (τ |x)
with PG(τ |x).

A.3. Sub-trajectory equivalence

Proposition 2 in the paper by Malkin et al. (2022b) only considered the gradients of the Sub-TB objective (Madan et al.,
2023) w.r.t. PF (·|·) and PB(·|·). We provide an extended proposition below that also takes the gradients w.r.t. state flow
estimator F (·) into consideration. For any m < n and n,m ∈ {1, T − 1}, we denote the set of sub-trajectories that start
at some state in Sm and end in some state in Sn as T̄ = {τ̄ = (sm→ . . .→sn)|∀t ∈ {m, . . . , n− 1} : (st→st+1) ∈ At}.
The sub-trajectory objective LSub−TB(PD) is defined by:

LSub−TB(PD) = EPD(τ̄)[LSub−TB(τ̄)], LSub−TB(τ̄) = log

(
PF (τ̄ |sm)F (sm)

PB(τ̄ |sn)F (sn)

)2

. (22)

In the equations above, PF (τ̄ |sm) =
∏n−1
t=m PF (st+1|st), PB(τ̄ |sn) =

∏n−1
t=m PB(st|st+1) and F (sn = x) := R(x).

Besides, we define µ(sm) := F (sm)/Ẑm and ρ(sn) := F (sn)/Ẑn where Ẑm and Ẑn are the two normalizing constants
whose values are clamped to

∑
sm
F (sm) and

∑
sn
F (sn).

Furthermore, PF,µ(τ̄) := µ(sm)PF (τ̄ |sm) and PB,ρ(τ̄) := ρ(sn)PB(τ̄ |sn) so that PF,µ(τ̄ |sn) = PF,µ(τ̄)/ρ
∗(sn)

and PB,ρ(τ̄ |sm) = PB,ρ(τ̄)/µ
∗(sm). Here, ρ∗(sn) := F ∗(sn)/Ẑ

∗
n, Ẑ∗

n is clamped to
∑
sn
F ∗(sn), and F ∗(sn) :=∑

τ̄ :sn∈τ̄ F (sm)PF (τ̄ |sm) is the ground-truth state flow over Sn implied by PF ; µ∗(sm) := F ∗(sm)/Ẑ∗
m, Ẑ∗

m is clamped
to
∑
sm
F ∗(sm), and F ∗(sm) :=

∑
τ̄ :sm∈τ̄ F (sn)PB(τ̄ |sn) is the ground-truth state flow over Sm implied by PB .

Proposition A.2. For a forward policy PF (·|·; θ), a backward policy PB(·|·;ϕ), a state flow estimator F (·; θ) for Sm, and

13

GFlowNet Training by Policy Gradients

a state flow estimator F (·;ϕ) for Sn5, the gradients of Sub-TB can be written as:

1

2
∇θLSub−TB(PF,µ; θ) = ∇θDµ(·;θ)

KL (PF (τ̄ |sm; θ), PB,ρ(τ̄ |sm)) +∇θDKL(µ(sm; θ), µ∗(sm))

= ∇θDµ(·;θ)
KL (PF (τ̄ |sm; θ), P̃B,ρ(τ̄ |sm)),

1

2
∇ϕLSub−TB(PB,ρ;ϕ) = ∇ϕDρ(·;ϕ)

KL (PB(τ̄ |sn;ϕ), PF,µ(τ̄ |sn)) +∇ϕDKL(ρ(sm;ϕ), ρ∗(sm))

= ∇ϕDρ(·;ϕ)
KL (PB(τ̄ |sn;ϕ), P̃F,µ(τ̄ |sn)), (23)

where P̃F,µ(τ̄ |sn) := PF,µ(τ̄)/ρ(sn) and P̃B,ρ(τ̄ |sm) := PB,ρ(τ̄)/µ(sm) are approximation to PF,µ(τ̄ |sn) and
PB,ρ(τ̄ |sm).

Proof. First of all, we split the parameters of the state flow estimator and forward transition probability and denote them as
F (·; θM) and PF (·|·; θF) respectively. We further define c(τ̄) =

(
log PF (τ̄ |sm)

F (sn)PB(τ̄ |sn)

)
.

For the gradients w.r.t. θF :

1

2
∇θFEPF,µ(τ̄)[LSub−TB(τ̄ ; θF)] =

1

2
EPF,µ(τ̄)

[
∇θF (c(τ̄ ; θF) + logF (sm))

2
]

= EPF,µ(τ̄) [(c(τ̄) + logF (sm))∇θF logPF (τ̄ |sm; θF)] + EPF,µ(τ̄) [∇θF (c(τ̄ ; θF) + logF (sm))]︸ ︷︷ ︸
=0 by Lemma A.1

= ∇θFEPF,µ(τ̄ ;θF) [(c(τ̄ ; θF) + logF (sm))] +∇θFEPF,µ(τ̄ ;θF)[log Ẑn − log Ẑm]︸ ︷︷ ︸
=0

= ∇θFD
µ
KL(PF (τ̄ |sm; θF), P̃B,ρ(τ̄ |sm)). (24)

Besides,

1

2
∇θFEPF,µ(τ̄)[LSub−TB(τ̄ ; θF)] =

1

2
EPF,µ(τ̄)

[
∇θF (c(τ̄ ; θF) + logF (sm))

2
]

= EPF,µ(τ̄) [c(τ̄)∇θF logPF (τ̄ |sm; θF)] + Eµ(sm)

[
logF (sm)EPF (τ̄ |sm) [∇θF logPF (τ̄ |sm; θF)]︸ ︷︷ ︸

=0 by Lemma A.1

]
= EPF,µ(τ̄) [c(τ̄)∇θF logPF (τ̄ |sm; θF)] + EPF,µ(τ̄) [∇θF c(τ̄ ; θF)]︸ ︷︷ ︸

=0

= ∇θFEPF,µ(τ̄ ;θF) [c(τ̄ ; θF)] + Eµ(sm)

[
∇θFEPF (τ̄ |sm;θF)[logµ

∗(sm)]︸ ︷︷ ︸
=log µ∗(sm)∇θF

1=0

]
+∇θFEPF,µ(τ̄ ;θF)[log Ẑn]︸ ︷︷ ︸

=0

= ∇θFEPF,µ(τ̄ ;θF) [c(τ̄ ; θF)] +∇θFEPF,µ(τ̄ ;θF)[logµ
∗(sm) + log Ẑn]

= ∇θFD
µ
KL(PF (τ̄ |sm; θF), PB,ρ(τ̄ |sm))]. (25)

For the gradients w.r.t. θM , we have:

1

2
∇θMEPF,µ(τ̄)[LSub−TB(τ̄ ; θM)] =

1

2
EPF,µ(τ̄)

[
∇θM (c(τ̄) + logF (sm; θM))

2
]

= EPF,µ(τ̄) [(c(τ̄) + logF (sm))∇θM logF (sm; θM)] + EPF,µ(τ̄)[(log Ẑn − log Ẑm)∇θM logF (sm; θM)]︸ ︷︷ ︸
=0 by Lemma A.1

= Eµ(sm)

[
DKL(PF (τ̄ |sm), P̃B(τ̄ |sm))∇θM log

F (sm; θM)

Ẑm

]
= ∇θMD

µ(·;θM)
KL (PF (τ̄ |sm), P̃B(τ̄ |sm)). (26)

5Here, Fθ and Fϕ actually share the same parameters and represent the same flow estimator F . Model parameters are duplicated just
for the clarity of gradient equivalences. Therefore the true gradient of the state flow estimator F is ∇θFθ +∇ϕFϕ.

14

GFlowNet Training by Policy Gradients

Besides,

1

2
∇θMEPF,µ(τ̄)[LSub−TB(τ̄ ; θM)] =

1

2
EPF,µ(τ̄)

[
∇θM (c(τ̄) + logF (sm; θM))

2
]

= EPF,µ(τ̄) [c(τ̄)∇θF logF (sm; θM)] + Eµ(sm) [logF (sm)∇θM logF (sm; θM)]

= EPF,µ(τ̄) [(c(τ̄) + log µ∗(sm))∇θM logF (sm; θM)] + Eµ(sm) [(logF (sm)− logµ∗(sm))∇θM logF (sm; θM)]

+ EPF,µ(τ̄)[(log Ẑn − log Ẑm)∇θM logF (sm; θM)]︸ ︷︷ ︸
=0 by Lemma A.1

= Eµ(sm)

[
DKL(PF (τ̄ |sm), PB,ρ(τ̄ |sm))∇θM log

F (sm; θM)

Ẑm

]
+ Eµ(sm)

[
(logµ(sm)− logµ∗(sm))∇θM log

F (sm; θM)

Ẑm

]
+ Eµ(sm) [∇θM (logµ(sm; θM)− logµ∗(sm))]︸ ︷︷ ︸

=0 By Lemma A.1

= ∇θMD
µ(·;θM)
KL (PF (τ̄ |sm), PB,ρ(τ̄ |sm)) +∇θMDKL(µ(sm; θM), µ∗(sm)). (27)

Combining equations (24) and (26), we obtain

1

2
∇θEPF,µ(τ̄)[LSub−TB(τ̄ ; θ)] = ∇θD

µ(·;θ)
KL (PF (τ̄ |sm; θ), P̃B(τ̄ |sm)). (28)

Combining equations (25) and (27), we obtain

1

2
∇θEPF,µ(τ̄)[LSub−TB(τ̄ ; θ)] = ∇θ

{
D
µ(·;θ)
KL (PF (τ̄ |sm; θ), PB(τ̄ |sm)) +DKL(µ(sm; θ), µ∗(sm))

}
. (29)

Splitting ϕ into ϕB and ϕM and denoting c(τ̄) = log PB(τ̄ |sn)
F (sm)PF (τ̄ |sm) , the gradient derivation of ϕ follows the similar way as

θ, and is omitted here.

B. RL framework
B.1. Derivation of RL functions

Let’s first consider the case of forward policies. For any s ∈ St and a = (s→s′) ∈ A(s) with t ∈ {0, . . . , T − 1}, we define
the VF,t and QF,t as:

VF,t(s) := EPF (τ>t|st)

[
T−1∑
l=t

RF (sl, al)

∣∣∣∣st = s

]

= RF (s) + EPF (st+1|st)

[
EPF (τ>t+1|st+1)

[
T∑

l=t+1

RF (sl, al)

∣∣∣∣st+1 = s′

] ∣∣∣∣st = s

]
= RF (s) + EπF (s,a)[VF,t+1(s

′)],

QF,t(s, a) := EPF (τ>t+1|st,at)

[
T−1∑
l=t

RF (sl, al)

∣∣∣∣st = s, at = a

]

= RF (s, a) + EPF (τ>t+1|st+1)

[
T∑

l=t+1

RF (sl, al)

∣∣∣∣st+1 = s′

]
= RF (s, a) + VF,t+1(s

′), (30)

where RF (s) := EπF (s,a)[RF (s, a)], VF,T (·) := 0, and QF,T (·, ·) := 0. Since St ∩ St′ = ∅ for any t ̸= t′, we can read
off the time indices (topological orders) from state values. Plus the fact that RF (s, a) := 0 for any a /∈ A(s), we are
allowed to define two universal functions VF : S → R and QF : S × A → R such that VF (st = s) := VF,t(s) and
QF (st = s, a) := QF,t(s, a).

15

GFlowNet Training by Policy Gradients

Remark B.1. While the transition environment G is exactly known, the state space S can be exponentially large, making the
exact values of V and Q intractable. This fact, in spirit, corresponds to a regular RL problem where the exact values of V
and Q are infeasible due to the unknown and uncertain transition environment P (s′|s, a).

For backward policies, rewards are accumulated from T − 1 to 1. Similarly, for s′ ∈ St and a = (s→s′) ∈ Ȧ(s′),

VB,t(s
′) := EPB(τ<t|st)

[
t∑
l=1

RB(sl, al)

∣∣∣∣st = s′

]
= RB(s

′) + EπB(s′,a)[VB,t−1(s)],

QB,t(s
′, a) := EPB(τ<t−1|st,at)

[
t∑
l=1

RB(sl, al)

∣∣∣∣st = s′, at = a

]
= RB(s

′, a) + VB,t−1(s), (31)

where RB(s′) = EπB(s′,a)[RB(s
′, a)], VB,0(·) := 0, and QB,0(·, ·) := 0. For the same reason as forward policies,

we can define universal functions VB : S → R and QB : S × Ȧ → R such that VB(st = s′) := VB,t(s
′) and

QB(st = s′, a) := QB,t(s
′, a).

Based on the definitions above, the expected value functions are defined as:

JF := Eµ(s0)[VF (s0)], JB := Eρ(x)[VB(x)]. (32)

By definitions, VF (s0) = EPF (τ |s0)[
∑T−1
t=0 RF (sl, al)|s0] = DKL(PF (τ |s0), P̃B(τ |s0)) , so JF =

Dµ
KL(PF (τ |s0), P̃B(τ |s0)). Likewise, we can obtain JB = Dρ

KL(PB(τ |x), P̃F (τ |x)). The advantages functions are
defined as:

AF (s, a) := QF (s, a)− VF (s), AB(s
′, a) := QB(s

′, a)− VB(s′). (33)

We define the forward accumulated state distribution as dF,µ(s) := 1
T

∑T−1
t=0 PF,µ(st = s) such that for arbitrary function

f : S ×A → R,

EPF,µ(τ)

[
T−1∑
t=0

f(st, at)

]
=

T−1∑
t=0

EPF,µ(st→st+1) [f(st, at)] =

T−1∑
t=0

EPF,µ(st),πF (st,at) [f(st, at)]

=

T−1∑
t=0

S∑
s

PF,µ(st = s)

A∑
a

πF (s, a)f(s, a) =

S∑
s

A∑
a

(
T−1∑
t=0

PF,µ(st = s)

)
πF (s, a)f(s, a)

= T

S∑
s

A∑
a

dF,µ(s)πF (s, a)f(s, a) = T EdF,µ(s),πF (s,a)[f(s, a)], (34)

where equation (34) holds in that ∀s /∈ St : P (st = s) = 0 and ∀a /∈ A(s) : πF (s, a) = 0. By the fact that St ∩St′ = ∅ for
any t ̸= t′ and any trajectory τ ∈ T must pass some st ∈ St for t ∈ {0, . . . , T − 1}, PF,µ(st) is a valid distribution over St
and

∑
st
PF,µ(st) = 1. Accordingly, dF,µ(s) is a valid distribution over S and T dF,µ(st) = PF,µ(st). Analogously, we

can define dB,ρ(s′) := 1
T−1

∑T−1
t=1 PB,ρ(st = s′) such that for arbitrary function f : S × Ȧ → R,

EPB,ρ(τ)

[
T−1∑
t=1

f(st, at)

]
= (T − 1)EdB,ρ(s′),πB(s′,a)[f(s

′, a)]. (35)

B.2. DAGs as transition environments

Theorem B.2. (Golpar Raboky & Eftekhari, 2019) Let P ∈ RN×N be a non-negative matrix. The following statements are
equivalent:

1. P is nilpolent;

2. PN =0;

3. The directed graph G(S,A) associated with P is a DAG;

16

GFlowNet Training by Policy Gradients

4. There exists a permutation matrix U such that UTPU is a strictly triangular matrix.

where S = {s0, . . . , sN−1} and A = {(si→sj)|Pi,j ̸= 0} are node and edge sets.

Lemma B.3. For any DAG graph G(S,A) associated with P ∈ RN×N with T + 1(≤ N) different topological node orders
indexed by integers [0, T],

∀t > T, P t = 0. (36)

Proof. We prove the result by contradiction. Assuming P t(t > T) is not zero, then ∃ i ̸= j:

[P t]i,j =
∑
k1:t−1

Pi,k1Pk1,k2 . . . Pkt−1,j > 0. (37)

By the nature of DAGs, ∀(s′→s) ∈ A : s′ ≺ s. Then the above expression is equal to:

[P t]i,j =
∑

k1:si≺sk1

Pi,k1

 ∑
k2:sk1≺sk2

Pk1,k2 . . .

 ∑
kt−1:s

kt−2≺skt−1

Pkt−2,kt−1Pkt−1,j

=

∑
k1:t−1:(si≺sk1≺...≺skt−1≺sj)

Pi,k1Pk1,k2 . . . Pkt−1,j

> 0. (38)

This means that there at least exists a trajectory (si ≺ sk1 ≺ . . . ≺ skt−1 ≺ sj) with non-zero probability. However, there
are t+ 1 distinct node orders in the path, which contradicts the assumption that there are T + 1 different node orders.

Let’s return to the graded DAG, G(S,A) in GFlowNets. For the easiness of analysis, we restrict forward and backward
policies and initial distribution to be tabular forms, PF ∈ R|S|×|S|, µ ∈ R|S|, PB ∈ R|S|×|S|, and ρ ∈ R|S| such that
PF (s

j |si) = [PF]j,i and PB(si|sj) = [PB]i,j . Besides, we split initial distribution vectors by µ = (µ̄; 0) ∈ R|S| and
ρ = (0; ρ̄) ∈ R|S|, where µ̄ and ρ̄ denote the probabilities of states except sf and s0 respectively. We denote the graph
equipped with a self-loop over sf as GF (S,A ∪ {(sf→sf)}), and the reverse graph equipped with a self-loop over s0 as
GB(S, Ȧ ∪ {(s0→s0)}). Accordingly, we enhance PF and PB by defining PF (sf |sf) := 1 and PB(s0|s0) := 1. (GF , PF)
specifies an absorbing Markov Chains: sf is the only absorbing state as only the self-loop is allowed once entering sf ; the
sub-graph over S \ {sf}, denoted as ḠF is still a DAG, so any state s ∈ S \ {sf} is transient as it can be visited at most one
time. Similarly, (GB , PB) specifies another absorbing Markov Chain with absorbing state s0 and a DAG over S \ {s0},
denoted as ḠB . For graph GF and GB , their transition matrices PF and PB can be decomposed into:

PF =

(
P̄F 0
rF 1

)
, PB =

(
1 rB
0 P̄B

)
. (39)

In the equations above, rF ∈ R1×(|S|−1) and rB ∈ R1×(|S|−1) denote the probabilities of (s→sf) for any s ∈ S \ {sf}
and (s0 ← s) for any s ∈ S \ {s0} respectively; P̄F ∈ R(|S|−1)×(|S|−1) and P̄B ∈ R(|S|−1)×(|S|−1) denote probability
of (s→s′) for any s, s′ ∈ S \ {sf} and (s← s′) for any s, s′ ∈ S \ {s0}, that is, the transition matrices over ḠF and ḠB
respectively.

Lemma B.4. For (G,PF , µ) and (GB , PB , ρ), dF,µ ∈ R|S| and dB,ρ ∈ R|S|, can be written in the following forms:

dF,µ =

(
d̄F,µ
0

)
, d̄F,µ =

1

T
(I − P̄F)−1µ̄,

dB,ρ =

(
0

d̄B,ρ

)
, d̄B,ρ =

1

T − 1
(I − P̄B)−1ρ̄. (40)

Proof. We first prove the result for the forward case. By the nature of Markov Chains, PF,µ(st = si) = [(PF)
tµ]i, and

dF,µ = 1
T

∑T−1
t=0 (PF)

tµ. Then, it can be easily verified (Grinstead & Snell, 2006) that:

(PF)
t =

(
(P̄F)

t 0
∗ 1

)
, (41)

17

GFlowNet Training by Policy Gradients

where the explicit expression of the upper right corner is omitted. By Theorem B.2, P̄F is a nilpotent matrix and by Lemma
B.3,

∑T−1
t=0 (P̄F)

t =
∑∞
t=0(P̄F)

t = (I − P̄F)−1, where the first equality follows from the fact that ḠF has T topological
orders, and the second equality is by the fact that (I − P̄F)

∑∞
t=0(P̄F)

t =
∑∞
t=0(P̄F)

t −
∑∞
t=1(P̄F)

t = I . Therefore,

dF,µ =
1

T

(∑T−1
t=0 P̄ tF 0
∗ 1

)
µ =

1

T

(
(I − P̄F)−1µ̄

∗µ̄

)
. (42)

By Theorem 11.4 in Grinstead & Snell (2006), [(I − P̄F)−1]j,i is the expected number of times the chain is in state sj ,
starting from si, before being absorbed in sf . And [(I − P̄F)−1µ̄]j is the expected number of times the chain is in state
sj before being absorbed. Since ∀s /∈ S0 : µ(s) = 0 and ḠF is graded, any forward trajectory over sub-graph ḠF must
start from s ∈ S0 and end in s ∈ ST−1, meaning

∑
j [(I − P̄F)−1µ̄]j = T . Thus, 1

T [(I − P̄F)
−1µ̄]j denotes the fraction of

staying in transient state sj before being absorbed, that is, the probability observing state sj within T time steps. By the
same reasoning, we can conclude that ∗µ̄ = 0 as sf can not be reached within T time steps.

For backward case, any backward trajectory over sub-graph ḠB must start from s ∈ ST−1 and end in s ∈ S1 as
∀s /∈ ST−1 : ρ(s) = 0 and ḠB is graded. Then, a proof procedure for the desired result can be derived similarly, so it is
omitted.

Lemma B.5. For two forward policy, πF and π′
F , and two backward policy, πB and π′

B , we have:

DTV (d
′
F,µ(·), dF,µ(·)) ≤ D

d′F,µ

TV (π′
F (s, ·), πF (s, ·)),

DTV (d
′
B,ρ(·), dB,ρ(·)) ≤ D

d′B,ρ

TV (π′
B(s, ·), πB(s, ·)), (43)

where for three arbitrary distributions p,q and u, DTV (p(·), q(·)) := 1
2 ∥p(·)− q(·)∥1 and Du

TV (p(·|s), q(·|s)) :=
1
2Eu(s) [∥p(·|s)− q(·|s)∥1].

Proof. The proof procedure follows that of Lemma 3 in Achiam et al. (2017). For two forward policy πF and π′
F , let

N̄F := (I − P̄F)−1 and N̄ ′
F := (I − P̄ ′

F)
−1. Then,

∆ := P̄F − P̄ ′
F = (N̄ ′

F)
−1 − N̄−1

F , (44)

and
N̄F − N̄ ′

F = N̄F∆N̄
′
F . (45)

Then, ∥∥dF,µ − d′F,µ∥∥1 =
∥∥d̄F,µ − d̄′F,µ∥∥1

=
1

T

∥∥(N̄F − N̄ ′
F)µ̄

∥∥
1
=

1

T

∥∥N̄F∆d̄′F,µ∥∥1
≤ 1

T

∥∥N̄F∥∥1 ∥∥∆d̄′F,µ∥∥1 ≤ 1

T

(
T−1∑
t=0

∥∥P tF∥∥1
)∥∥∆d̄′F,µ∥∥1

≤
∥∥∆d̄′F,µ∥∥1 =

∥∥(P̄F − P̄ ′
F)d̄

′
F,µ

∥∥
1
. (46)

Therefore, we have∥∥d′F,µ − dF,µ∥∥1 ≤ ∥∥(P̄ ′
F − P̄F)d̄′F,µ

∥∥
1

≤
∥∥(P̄ ′

F − P̄F)d̄′F,µ
∥∥
1
+
∣∣(r′F − rF)d̄′F,µ∣∣ = ∥∥(P ′

F − PF)d′F,µ
∥∥
1

=
∑
s

∣∣∣∣∣∑
s′

(P ′
F (s

′|s)− PF (s′|s)) d′F,µ(s)

∣∣∣∣∣
≤
∑
s,s′

|P ′
F (s

′|s)− PF (s′|s)| d′F,µ(s)

=
∑
s,a

|π′
F (s, a)− πF (s, a)| d′F,µ(s) = Ed′F,µ(s)

[∥π′
F (s, ·)− πF (s, ·)∥1] . (47)

The result for backward policies can be derived analogously and is omitted here.

18

GFlowNet Training by Policy Gradients

B.3. Derivation of gradients

Proposition B.6. The gradients of JF (θ) and JB(ϕ) w.r.t. θ and ϕ can be written as:

∇θJF (θ) = T EdF,µ(s)πF (s,a) [QF (s, a)∇θ log πF (s, a; θ)] + Eµ(s0)[VF (s0)∇θ logµ(s0; θ)]
= T EdF,µ(s)πF (s,a) [AF (s, a)∇θ log πF (s, a; θ)] + Eµ(s0)[VF (s0)∇θ logµ(s0; θ)],

∇ϕJB(ϕ) = (T − 1)EdB,ρ(s)πB(s,a) [QB(s, a)∇ϕ log πB(s, a;ϕ)]
= (T − 1)EdB,ρ(s)πB(s,a) [AB(s, a)∇ϕ log πB(s, a;ϕ)] . (48)

Remark B.7. This result implies that an estimated value function, which may differ from the exact one, does not lead to
biased gradient estimation.

Proof.

∇θJF (θ) = Eµ(s0)[VF (s0)∇θ logµ(s0; θ)] + Eµ(s0)[∇θVF (s0; θ)]︸ ︷︷ ︸
(1)

(1)
= EPF,µ(s0)

[
∇θEπF (s0,a0;θ)[QF (s0, a0; θ)]

]
= EPF,µ(s0)

[
EπF (s0,a0)[QF (s0, a0)∇θ log πF (s0, a0; θ) +∇θQF (s0, a0; θ)]

]
= EPF,µ(s0→s1) [QF (s0, a0)∇θ log πF (s0, a0; θ)] + EPF,µ(s0→s1) [∇θRF (s0, a0; θ) +∇θVF (s1; θ)]︸ ︷︷ ︸

(2)

(2)
= EPF,µ(s0→s1)

[
∇θ log

πF (s0, a0; θ)

πB(s1, a0)

]
︸ ︷︷ ︸

(3)

+EPF,µ(s1) [∇θVF (s1; θ)]

(3)
= EPF,µ(s0)

[
EπF (s0,a0)[1 · ∇θ log πF (s0, a0; θ)]︸ ︷︷ ︸

=0 by Lemma A.1

]
. (49)

Therefore,

EPF,µ(s0)[∇θVF (s0; θ)]
(1)
= EPF,µ(s0→s1) [QF (s0, a0)∇θ log πF (s0, a0; θ)] + EPF,µ(s1) [∇θVF (s1; θ)] . (50)

Keep doing the process, we have

EPF,µ(st)[∇θVF (st; θ)] = EPF,µ(st→st+1) [QF (st, at)∇θ log πF (st, at; θ)] + EPF,µ(st+1)

[
∇θ VF (st+1; θ)︸ ︷︷ ︸

VF (sT)=0

]
. (51)

Then,

(1)
= EPF,µ(τ)

[
T−1∑
t=0

QF (st, at)∇θ log πF (st, at; θ)

]
= EdF,µ(s)πF (s,a) [QF (s, a)∇θ log πF (s, a; θ)] . (52)

Besides,

(1)
= EdF,µ(s)πF (s,a) [QF (s, a)∇θ log πF (s, a; θ)]− EdF,µ(s)

[
VF (s)EπF (s,a)[∇θ log πF (s, a; θ)︸ ︷︷ ︸

=0

]
]

= EdF,µ(s)πF (s,a) [AF (s, a)∇θ log πF (s, a; θ)] . (53)

The derivation of ∇ϕJB(ϕ) follows the similar way to∇θJF (θ), and is omitted here.

19

GFlowNet Training by Policy Gradients

B.4. Connection of policy-based training to TB-based training

The gradient of the TB objective w.r.t. θF can be written as:

1

2
∇θFLTB(PF,µ; θF) =

T∑
t=1

EPF,µ(τ)

[
∇θF logPF (st|st−1; θF)

(
T∑
t=1

log
PF (st|st−1)

P̃B(st−1|st)

)]
. (54)

In equation (54), each term for t > 1 can be expanded as:

EPF,µ(τ≥t−1)

[
∇θF logPF (st|st−1; θF)

(
T∑
l=t

log
PF (sl|sl−1)

P̃B(sl−1|sl)

)]

+ EPF,µ(τ≤t)

[
∇θF logPF (st|st−1; θF)

(
t−1∑
l=1

log
PF (sl|sl−1)

P̃B(sl−1|sl)

)]

=EPF,µ(τ≥t−1)

[
∇θF logPF (st|st−1; θF)

(
T∑
l=t

log
PF (sl|sl−1)

P̃B(sl−1|sl)

)]

+ EPF,µ(τ≤t−1)

(t−1∑
l=1

log
PF (sl|sl−1)

P̃B(sl−1|sl)

)
EPF,µ(st|st−1)[∇θF logPF (st|st−1; θF)]︸ ︷︷ ︸

=0 by Lemma A.1

 . (55)

Thus,

1

2
∇θFLTB(PF,µ; θF) =

T∑
t=1

EPF,µ(τ)

[
∇θF logPF (st|st−1; θF)

(
T∑
l=t

log
PF (sl|sl−1)

P̃B(sl−1|sl)

)]

− C
T−1∑
t=0

EPF,µ(τ) [∇θF logPF (st, at; θF)]︸ ︷︷ ︸
=0 by Lemma A.1

= EPF,µ(τ)

[
T∑
t=1

∇θF logPF (st|st−1; θF)

(
T∑
l=t

log
PF (sl|sl−1)

P̃B(sl−1|sl)
− C

)]
, (56)

where C is an added baseline and constant w.r.t. θF for variance reduction during gradient estimation. As shown in Appendix
B.3, the gradient of JF w.r.t. θF can be written as:

∇θF JF (θF) = T EdF,µ(s)πF (s,a) [AF (s, a)∇θF log πF (s, a; θF)]

= EPF,µ(τ)

[
T−1∑
t=0

∇θF log πF (st, at; θF)QF (st, at)

]

= EPF,µ(τ)

[
T−1∑
t=0

∇θF log πF (st, at; θF)EPF,µ(τ>t+1|st,at)

[
T−1∑
l=t

RF (sl, al)

∣∣∣∣st, at
]]

= EPF,µ(τ)

[
T−1∑
t=0

∇θF log πF (st, at; θF)

(
T−1∑
l=t

RF (sl, al)

)]

= EPF,µ(τ)

[
T−1∑
t=0

∇θF log πF (st, at; θF)

(
T−1∑
l=t

RF (sl, al)− C

)]
. (57)

This result implies that: when we update the forward policy by the estimation of∇θFLTB(θF) based on a batch of sampled
trajectories, we approximate QF (st, at) empirically by Q̂F (st, at) =

∑T−1
l=t RF (sl, al) for each sample, and can further

reduce the estimation variance by some unbiased constant baseline C. By comparison, the RL formulation generalizes the
constant to an unbiased functional baseline ṼF (s; η), which is the approximation of exact VF (s). This enables to approximate

20

GFlowNet Training by Policy Gradients

QF (st, at) and AF (st, at) functionally by Q̂F (st, at) = R(st, at) + ṼF (st+1) and ÂF (st, at) = Q̂F (st, at) − ṼF (st).
Here, ÂF (st, at) can further be generalized to

∑T−1
l=t λl−t

(
Q̂F (sl, al)− ṼF (sl)

)
, allowing flexible bias-variance trade-off

for gradient estimation (Appendix B.6).

B.5. Connection between policy-based training and Soft-Q-learning

In the following text, we discuss the relationship between our policy-based method and Soft-Q-learning (Haarnoja et al.,
2018), one of the most representative Maximum-Entropy (MaxEnt) RL methods.

Firstly, we introduce their connection when the total flow estimator logZ is fixed. We can expand −JF as:

−JF = T EdF,µ(s),πF (s,a) [log πB(s
′, a)− log πF (s, a)]

= T EdF,µ(s),πF (s,a)

[
log πB(s

′, a)) + EπF (s,a)[− log πF (s, a)]
]

= T EdF,µ(s),πF (s,a) [log πB(s
′, a)) +H(πF (s, ·))] , (58)

where a = (s → s′), and H denotes the entropy of a distribution. The equation above implies that fixing the total flow
estimator logZ, maximizing −JF w.r.t. πF can be interpreted as a MaxEnt RL problem, where log πB(s

′, a) is the static
reward w.r.t. πF (s, a). We define QSF (s, a) := EPF (τ>t+1|st,at)

[
πB(st+1, at)+

∑T−1
l=t+1 πB(sl+1, al)+H(πF (sl, ·))|st =

s, at = a
]
= −QF (s, a) + log πF (s, a) and V SF (s, a) := EPF (τ>t|st)

[∑T−1
l=t πB(sl+1, al) + H(πF (sl, ·))|st = s

]
=

−VF (s, a), which implies that QSF (s, a) = log πB(s
′, a) + V SF (s′). We use a parameterized function Q̃SF as the estimator

of QSF , and define Ṽ SF (s) := log
∑
a exp{Q̃SF (s, a)} as the estimator of V SF . Then, we define πF (s, a; θ) :=

exp Q̃S
F (s,a;θ)

exp Ṽ S
F (s;θ)

,

which implies that:

Q̃SF (s, a) = Ṽ SF (s) + log πF (s, a). (59)

In Soft-Q-learning, we define the target function as:

Q̂SF (s, a) := log πB(s
′, a) + Ṽ SF (s′). (60)

Then, πF is updated by the gradient of the following objective:

T

2
EdD(s),πD(s,a)

[(
Q̃SF (s, a; θ)− Q̂SF (s, a)

)2]
. (61)

It has been shown that the policy gradients for static rewards plus the gradients of the policy entropy (or KL divergence
from some reference policy) are equivalent to the gradients of the corresponding soft Q estimator (Schulman et al., 2017a).
Likewise, we demonstrate our policy-based method with λ = 0 is equivalent to Soft-Q-learning with πD equal to πF ,
without any adaption. Noting Soft-Q-learning is off-policy, the gradients of equation (61) w.r.t. θ can be written as:

T

2
∇θEdF,µ(s)πF (s,a)

[(
Q̃SF (s, a; θ)− (logPB(s

′, a) + Ṽ SF (s′))
)2]

= TEdF,µ(s)πF (s,a)

[
∇θQ̃SF (s, a; θ)

(
Q̃SF (s, a; θ)− logPB(s

′, a)− Ṽ SF (s′)
)]

= TEdF,µ(s)πF (s,a)

[
∇θ
(
log πF (s, a) + Ṽ SF (s)

)(
Ṽ SF (s) +RF (s, a)− Ṽ SF (s′)

)]
= TEdF,µ(s)πF (s,a)

[
∇θ
(
log πF (s, a) + Ṽ SF (s)

)
δ̂F (s, a)

]
= EPF,µ(τ)

[
T−1∑
t=0

∇θ log πF (st, at; θ)δ̂F (st, at)

]
+ EPF,µ(τ)

[
T−1∑
t=0

∇θṼ SF (st; θ)δ̂F (st, at)

]
, (62)

where δ̂F (s, a) := −ṼF (s) + RF (s, a) + ṼF (s
′), and ṼF := −Ṽ SF . Compared to formula (65) with λ = 0, a clear

equivalence can be established.

21

GFlowNet Training by Policy Gradients

We further connect the Soft-Q-learning objective (61) to the Flow Matching (FM) objective (Bengio et al., 2021) and
explain the role that logZ plays during training. When Q̃SF achieves the optimal point, we have Q̃SF = Q̂SF . Consequently,

for the desired flow F , Ṽ SF (sf) = 0 by definition, Q̃SF (x, aT−1) = log πB(x, aT−1) + 0 = log F (x→sf)
Z , and Ṽ SF (x) =

log
∑
a expQ

S
F (x, a) = log F (x)

Z (= log R(x)
Z). Accordingly, Q̃SF (sT−2, aT−2) = Ṽ SF (x)+log πB(x, aT−2) = log F (x)

Z +

log F (sT−2→x)
F (x) = log F (sT−2→x)

Z , and Ṽ SF (sT−2) = log
∑
a expQ

S
F (sT−2, a) = log F (sT−2)

Z . Continuing this process, it

can be verified that Q̃SF (s, a) = log F (s→s′)
Z and Ṽ SF (s) = log F (s)

Z when Q̃S achieve the optimum. Based on the above
optimum condition of Q̃S(s, a) and the fact that Q̃S(s, a) ∈ R is a parametrized function with no assumption over its output
form during training, we can safely substitute it by F log(s → s′) := Q̃S(s, a) + logZ ∈ R, where F log(s → s′) is the
estimator for the logarithm of the desired edge flow, logF (s→ s′), and no assumption over its output form during training
is made as well. Then, objective (61) can be equivalently rewritten as:

EPD(τ)

T−1∑
t=1

F log(st−1 → st)− log

PB(st−1|st)
∑
st+1

expF log(st → st+1)

2
 , (63)

This objective is similar to the FM objective, which can be written as:

EPD(τ)

T−1∑
t=1

log

∑
st−1

expF log(st−1 → st)

− log

(∑
st

expF log(st → st+1)

)2
 . (64)

The reason is that the optimal solution of the objective (63) satisfies expF log(st−1 → st) =
PB(st−1|st)

∑
st+1

expF log(st → st+1). Taking summation over st−1 of this equation, we have
∑
st−1

expF log(st−1 →
st) =

∑
st+1

expF log(st → st+1), the optimal solution of the objective (64). We can see that logZ serves as a
baseline for modeling logF . Without logZ, we need to approximate logF by F log directly. This often leads to nu-
merical issues. For example, let’s suppose a small perturbation of logF , denoted as ϵ. Then the flow difference is
exp(logF + ϵ)−F = (exp ϵ− 1)F . As values of F can be exponentially large, especially for nodes near the root, the flow
difference can be large even if ϵ is small, making approximation to F by expF log very difficult. By contrast, TB-based
methods and our policy-based method allow the updating of logZ to dynamically scale down the value of Q̃ during training.
This also complements the claims by Malkin et al. (2022a), who show that the TB-based methods is more efficient than
flow-matching and DB-based methods.

B.6. Model parameter updating rules

In the following context, we will explain the updating rules for PF and µ within the vanilla policy-based method, also called
the Actor-Critic method, and the TRPO method. The updating rules for PB follow those of PF analogously.

Actor-Critic First of all, we split the parameter θ into θF and θZ corresponding to πF and µ. Since computing the exact
VF is usually intractable, we use ṼF parametrized by η as the functional approximation. Given a batch of trajectories
samples, we compute the sampling averaging approximation of the following gradient estimators to update θF , θZ and η as
proposed by Schulman et al. (2016) and Tsitsiklis & Van Roy (1996):

EPF,µ(τ)

[
T−1∑
t=0

ÂλF (st, at)∇θF log πF (st, at; θF)

]
+ Eµ(s0)

[
V̂ λF (s0)∇θZ logµ(s0; θZ)

]
,

EPF,µ(st)

[
T−1∑
t=0

∇η(V̂ λF (st)− ṼF (st; η))2
]
, (65)

where λ ∈ [0, 1],

ÂλF (st, at) :=

T−1∑
l=t

λl−tδ̂F (sl, al), V̂ λF (st) :=

T−1∑
l=t

λl−tδ̂F (sl, al) + ṼF (st),

δ̂F (st, at) := RF (st, at) + ṼF (st+1)− ṼF (st), (66)

22

GFlowNet Training by Policy Gradients

ÂF is called critic and πF is called actor. It can be verified that Â1
F (st, at) =

∑T−1
l=t RF (sl, al)− ṼF (st; η) renders an

unbiased estimator of ∇θF J(θ) as the first term is an unbiased estimation of QF and ṼF (·; η) does not introduce estimation
bias (Remark B.7); Â0

F (st, at) = R(st, at)+ ṼF (st+1)− ṼF (st) provided an direct functional approximation ofAF (st, at),
which usually render biased estimation with lower variance as ṼF may not equal to VF exactly. Thus, λ enables the variance-
bias trade-off for robust gradient estimation. Likewise, V̂ 1

F (st) =
∑T−1
l=t R(sl, al) and V̂ 0

F (st) = R(st, at) + ṼF (st+1)
for each τ , corresponding to unbiased and biased estimation of VF (st). Denoting the estimated gradient w.r.t. (θF , θZ , η)
as (ĝF , ĝZ , ĝV), these parameters are updated by (θ′F , θ

′
Z , η

′)← (θF − αF ĝF , θZ − αZ ĝZ , η − αV ĝV).

TRPO Parameters θZ and η are updated in the same way as the actor-critic method. Parameter θF is updated by the linear
approximation of objective (6):

min
θ′F

T g⊤F
(
θ′F − θF

)
s.t.

1

2
(θ′F − θF)⊤HF (θ

′
F − θF) ≤ ζF , (67)

with

gF = ∇θ′FEdF,µ(s;θ),πF (s,a;θ′F)

[
ÂλF (s, a; θF)

]
, HF = ∇2

θ′F
D
dF,µ(·;θ)
KL (πF (s, a; θF), πF (s, a; θ

′
F)) . (68)

Let’s denote the Lagrangian formulation of the above problem as L(dF , κ) := Tg⊤F dF −κ(d⊤FHF dF −ζF) with Lagrangian
constant κ and dF := θ′F − θF . By the optimal conditions of L(dF , κ), ∇κL(dF , κ) = 0 and ∇dFL(dF , κ) = 0,

we have dF = 1
κH

−1
F gF and κ =

(
g⊤FH

−1
F gF

2ζF

)0.5
. Thus, the maximal updating step of model parameters is: θ′F ←

θF −
(

2ζF
ĝ⊤F Ĥ

−1
F ĝF

)0.5
Ĥ−1
F ĝF . When the dimension of θ′F is high, computing Ĥ−1

F is time-demanding. Thus, we adopt the

conjugate gradient method to estimate Ĥ−1
F ĝF based on ĤF ĝF (Hestenes et al., 1952). Besides, following Schulman et al.

(2015), we perform a line search of updating step size to improve performance, instead of taking the maximal step.

C. Performance analysis
Lemma C.1. (Descent lemma (Beck, 2017)) Supposing f(·) is a β-smooth function, then for any θ and θ′:

f(θ′) ≤ f(θ) + ⟨∇θf(θ), θ′ − θ⟩+
β

2
∥θ − θ′∥22 . (69)

Lemma C.2. Given two forward policies (π′
F , πF) with D

d′F,µ

KL (π′
F (s, ·), πF (s, ·)) ≤ ζF or two backward (π′

B , πB) with

D
d′B,ρ

KL (π′
B(s, ·), πB(s, ·)) ≤ ζB , we have

1

T
(J ′
F − JF) ≤ Ed′F,µ(s),π

′
F (s,a)[AF (s, a)] + ζF ,

1

T − 1
(J ′
B − JB) ≤ Ed′B,ρ(s),π

′
B(s,a)[AB(s, a)] + ζB .

(70)

Proof. The proof procedure is analogous to that of Schulman et al. (2015) and Rengarajan et al. (2022). By the definition of
AF ,

EP ′
F (τ |s0)

[
T−1∑
t=0

AF (st, at)

]
= EP ′

F (τ |s0)

[
T−1∑
t=0

(
RF (st, at) + VF (st+1)− VF (st)

)]

= EP ′
F (τ |s0)

[
T−1∑
t=0

RF (st, at)

]
+ EP ′

F (τ |s0)[VF (sT)︸ ︷︷ ︸
=0

]− VF (s0)

= EP ′
F (τ |s0)

[
T−1∑
t=0

(R′
F (st, at) +RF (st, at)−R′

F (st, at))

]
− VF (s0)

= V ′
F (s0)− VF (s0) + EP ′

F (τ |s0)

[
T−1∑
t=0

(RF (st, at)−R′
F (st, at))

]
. (71)

23

GFlowNet Training by Policy Gradients

Thus,

J ′
F − JF = EP ′

F,µ(τ)

[
T−1∑
t=0

AF (st, at)

]
+ EP ′

F,µ(τ)

[
T−1∑
t=0

DKL(π
′
F (st, ·), πF (st, ·))

]
= T Ed′F,µ(s),π

′
F (s,a)[AF (s, a)] + T D

d′F,µ

KL (π′
F (s, ·), πF (s, ·))

≤ T
(
Ed′F,µ(s),π

′
F (s,a)[AF (s, a)] + ζF

)
. (72)

Using the fact that V ′
B(s0) = 0 and backward rewards are accumulated from T − 1 back to 1, the results for the backward

case can be derived by a similar procedure as in the forward case, so it is omitted here.

C.1. Proof of Theorem 3.5

Proof. Firstly,

JGF = JF + (JGF − JF)

= JF + EPF,µ(τ)

[
log

PF (τ |s0)Z
PG(τ |x)R(x)

− log
PF (τ |s0)Z
PB(τ |x)R(x)

]
= JF + EPF,µ(τ)

[
log

PB(τ |x)
PG(τ |x)

]
+ EPB,ρ(τ)

[
log

PB(τ |x)
PG(τ |x)

]
− EPB,ρ(τ)

[
log

PB(τ |x)
PG(τ |x)

]
= JF + JGB +

∑
τ

(PF,µ(τ)− PB,ρ(τ))RGB(τ), (73)

where RGB(τ) := log PB(τ |x)
PG(τ |x) =

∑T−1
t=1 RGB(st, at). Then,

JGF = JF + JGB +
〈
PF,µ(·)− PB,ρ(·), RGB(·)

〉
≤ JF + JGB + ∥PF,µ(·)− PB,ρ(·)∥1

∥∥RGB(·)∥∥∞
≤ JF + JGB + (T − 1) ∥PF,µ(·)− PB,ρ(·)∥1R

G,max
B , (74)

where the first inequality holds by Hölder’s inequality, and the second inequality holds by RG,max
B := maxs,a

∣∣RGB(s, a)∣∣ ≥
1

T−1 maxτ
∣∣RGB(τ)∣∣. By Pinsker’s inequality:

∥PF,µ(·)− PB,ρ(·)∥1 ≤
√

1

2
DKL(PF,µ(τ), PB,ρ(τ)). (75)

Besides,

DKL(PF,µ(τ), PB,ρ(τ)) = EPF,µ(τ)

[
log

PF,µ(τ |x)P⊤
F,µ(x)

PB(τ |x)P⊤
F,µ(x)

]

≤ EPF,µ(τ)

[
log

PF,µ(τ |x)
PB(τ |x)

]
+ EP⊤

F,µ(x)

[
log

P⊤
F,µ(x)

R(x)/Z∗

]
︸ ︷︷ ︸

≥0

= DKL(PF,µ(τ), PB(τ))

= Dµ
KL(PF (τ |s0), PB(τ |s0)) +DKL(µ(s0), PB(s0))︸ ︷︷ ︸

=0

= Dµ
KL(PF (τ |s0), P̃B(τ |s0))− logZ + logZ∗

= JF + logZ∗ − logZ. (76)

Then, we have:

JGF ≤ JF + JGB + (T − 1)RG,max
B

√
1

2
(JF + logZ∗ − logZ). (77)

24

GFlowNet Training by Policy Gradients

C.2. Proof of Theorem 3.6

Proof. By Lemma C.2 and the definition of ζF :

1

T
(J ′
F − JF) ≤ Ed′F,µ(s),π

′
F (s,a)[AF (s, a)] + ζF . (78)

Let ĀF ∈ R|S| denote the vector components of Eπ′
F (s,a)[AF (s, a)]. Then, we have:

Ed′F,µ(s)π
′
F (s,a)[AF (s, a)] =

〈
d′F,µ, ĀF

〉
=
〈
dF,µ, ĀF

〉
+
〈
d′F,µ − dF,µ, ĀF

〉
≤ EdF,µ(s)π′

F (s,a)[AF (s, a)] +
∥∥d′F,µ − dF,µ∥∥1 ∥∥ĀF∥∥∞ , (79)

where the last inequality holds by Hölder’s inequality. By Lemma B.5 and the definition of ϵF :

Ed′F,µ(s)π
′
F (s,a)[AF (s, a)] ≤ EdF,µ(s)π′

F (s,a)[AF (s, a)] + 2Ed′F,µ(s)

[
DTV (π

′
F (s, ·), πF (s, ·))

]
ϵF . (80)

By Pinsker’s inequality,

DTV (π
′
F (s, ·), πF (s, ·)) ≤

(
1

2
DKL(π

′
F (s, ·), πF (s, ·)

)0.5

.

By Jensen’s inequality and the definition of ζF ,

Ed′F,µ(s)

[(
1

2
DKL(π

′
F (s, ·), πF (s, ·)

)0.5
]
≤
(
1

2
Ed′F,µ(s)

[DKL(π
′
F (s, ·), πF (s, ·)]

)0.5

≤
(
ζF
2

)0.5

.

Thus, we have:
Ed′F,µ(s)π

′
F (s,a)[AF (s, a)] ≤ EdF,µ(s)π′

F (s,a)[AF (s, a)] + (2ζF)
0.5ϵF . (81)

Combing inequalities (81) and (78), we have:

1

T
(J ′
F − JF) ≤ EdF,µ(s)π′

F (s,a)[AF (s, a)] + ζF + (2ζF)
0.5ϵF . (82)

C.3. Proof of Theorem 3.7

Proof. By Lemma C.1,

JF (θn+1) ≤ JF (θn) + ⟨∇θnJF (θn), θn+1 − θn⟩+
β

2
∥θn+1 − θn∥22 . (83)

Thus,

−⟨∇θnJF (θn), θn+1 − θn⟩ ≤ JF (θn)− JF (θn+1) +
β

2
∥θn+1 − θn∥22 ,

α
〈
∇θnJF (θn), ∇̂θnJF (θn)

〉
≤ JF (θn)− JF (θn+1) +

βα2

2

∥∥∇̂θnJF (θn)∥∥22.
Conditioning on θn, taking expectations over both sides and noting that EP (·|θn)

[〈
∇θnJF (θn), ∇̂θnJF (θn)

〉]
=〈

∇θnJF (θn),EP (·|θn)[∇̂θnJF (θn)]
〉
= ∥∇θnJF (θn)∥

2
2, we have:

α ∥∇θnJF (θn)∥
2
2 ≤ JF (θn)− EP (θn+1|θn) [JF (θn+1)] +

βα2

2
EP (·|θn)

[∥∥∇̂θnJF (θn)∥∥22] . (84)

By the assumption that EP (·|θ)

[∥∥∇̂θJF (θ)−∇θJF (θ)∥∥22] = EP (·|θ)

[∥∥∇̂θJF (θ)∥∥22]− ∥∇θJF (θ)∥22 ≤ σF , we have:

α ∥∇θnJF (θn)∥
2
2 ≤ JF (θn)− EP (θn+1|θn) [JF (θn+1)] +

βα2

2
∥∇θnJF (θn)∥

2
2 +

βα2σF
2

. (85)

25

GFlowNet Training by Policy Gradients

Consequently, we have:(
α− βα2

2

)
EP (θ0:N−1)

[
N−1∑
n=0

∥∇θnJF (θn)∥
2
2

]
≤ Nβα2σF

2
+ EP (θ0:N)

[
N−1∑
n=0

JF (θn)− JF (θn+1)

]
,

(
α− βα2

2

)N−1∑
n=0

EP (θn)

[
∥∇θnJF (θn)∥

2
2

]
≤ Nβα2σF

2
+ EP (θ0:N) [JF (θ0)− JF (θN)] ,(

α− βα2

2

)
N min

n∈{0,...,N−1}
EP (θn)

[
∥∇θnJF (θn)∥

2
2

]
≤ Nβα2σF

2
+ EP (θ0) [JF (θ0)]− EP (θN) [JF (θN)] . (86)

Setting α =
√

2/(βN), we have:(√
(2N)/β − 1

)
min

n∈{0,...,N−1}
EP (θn)

[
∥∇θnJF (θn)∥

2
2

]
≤ σF + EP (θ0) [JF (θ0)]− EP (θN) [JF (θN)] . (87)

Since JF (θ)+logZ∗− logZ(θ) = D
µ(·;θ)
KL (PF (τ |s0; θ), PB(τ |s0)), and JF (θ∗) = 0 with logZ∗ = logZ(θ∗) for optimal

parameter θ∗, then JF (θN) + logZ∗ − logZ(θN) ≥ JF (θ∗) and we have:

min
n∈{0,...,N−1}

EP (θn)

[
∥∇θnJF (θn)∥

2
2

]
≤
σF + EP (θ0) [JF (θ0)]− EP (θN) [JF (θN) + logZ∗ − logZ(θN)](√

(2N)/β − 1
)

+
EP (θN) [logZ

∗ − logZ(θN)](√
(2N)/β − 1

)
≤
σF + EP (θ0) [JF (θ0)] + EP (θN) [|logZ∗ − logZ(θN)|](√

(2N)/β − 1
) . (88)

By the assumption that |logZ − logZ∗| ≤ σZ , we have:

min
n∈{0,...,N−1}

EP (θn)

[
∥∇θnJF (θn)∥

2
2

]
≤
σF + σZ + EP (θ0)[JF (θ0)](√

(2N)/β − 1
) . (89)

D. Additional discussion about policy-based and value-based methods
The goal of traditional RL is to learn a policy π that achieves the optimality in the expected accumulated reward Jπ
(for GFlowNet training, corresponding to the distance between PF (τ) and PB(τ), Dist(PF (τ), PB(τ))) addressing the
challenge of the exploration-exploitation (Exp-Exp) dilemma. While valued-based methods are usually off-policy allowing
to explicitly balance the Exp-Exp trade-off by designing PD, the objectives of the valued-based methods are optimized to
encourage the improvement of Jπ but they do not directly solve the optimization formulation with Jπ . Policy-based methods
directly optimize Jπ w.r.t. π, enabling optimization techniques that tackle the Exp-Exp trade-off implicitly but efficiently.
Our joint framework manages to inherit both advantages of the value-based and the policy-based methods by keeping the
optimization formulation of Jπ and allowing explicit design of PG as PD. We provide more detailed explanations of our
arguments as follows:

• The Exp-Exp dilemma is the main challenge in decision-making including different reinforcement learning (RL)
formulations. RL is guided by reward functions. To learn the desired policies, a reinforcement learning agent must
prefer actions that it has tried in the past and found to be effective in producing rewards (exploitation). But to discover
such actions, it has to try actions that it has not been selected before (exploration) at the expense of an exploitation
opportunity (Sutton & Barto, 2018). Therefore, both policy-based and value-based methods face the fundamental
challenge and try to overcome them in different ways.

• In RL, the goal is to learn a policy π that achieves the optimality in the expected accumulated reward Jπ. The
value-based methods, represented by Q-learning and Soft-Q-learning, do not optimize Jπ w.r.t. π directly. They

26

GFlowNet Training by Policy Gradients

leverage the fact that the optimal policy should satisfy the Bellman equation. By minimizing the mismatch of the
Bellman equation, which typically takes an off-policy form E(s,a)∼PD [(Qπ(s, a)− Q̂π(s, a))2] (Haarnoja et al., 2018),
the corresponding Jπ is encouraged to be improved. The improvement, however, is not guaranteed, since they do
not directly solve the optimization formulation with Jπ. So the core of the value-based methods turns to explicitly
design a sampler (agent), PD, that can effectively identify the state-action pair that gives rise to the mismatch the most
(exploration) while allowing revisiting the state-action pair that has already been found to be effective (exploitation),
and how to represent the target function Q̂π that approximates the optimal function Q∗ while balancing the trade-off
properly as well. To exemplify that both exploration and exploitation are important, let’s take the hyper-grid experiment
as an example, where modes are highly separated but do not exactly lie on the margin of the grids. In the extreme case,
a purely explorative sampler will always favor taking actions that lead to visiting the marginal coordinates, which,
however, yield low rewards.

• Likewise, original GFlowNet methods do not optimize the distance between PF (τ) and PB(τ) directly (so that
P⊤
F (x) = PB(x)), but optimizes the flow mismatch associated with, PF , which implicitly encourages the minimization

of the distance and the core of training efficiency is to design a sampler PD that effectively balance the Exp-Exp
trade-off. This motivates back-and-forth local search (Kim et al., 2023b), Thompson sampling (Rector-Brooks et al.,
2023) and temperature conditioning (Kim et al., 2023a). Besides, Detailed Balance (DB) objective can be understood as
favoring exploitation as the ‘target’ edge flow is PB(s|s′)F (s′), where F (s′) is learned from the data collected so far
and represents our partial knowledge about the environment. The Trajectory Balance (TB) objective can be understood
as favoring exploration as the target trajectory flow is PB(τ |x)R(x) which can be fixed w.r.t. PF and regarded as pure
environment feedback. So, finding better ‘target’ flow representations that properly balance the Exp-Exp trade-off is
one of the common motivations for sub-trajectory balance (Madan et al., 2023), forward-looking (Pan et al., 2023), and
energy decomposition (Kim et al., 2023a) approaches.

• Policy-based methods reformulate the problem of balancing the Bellman equation into optimizing Jπ w.r.t. π directly.
On one hand, the nature of the policy-based methods requires to be on-policy (i.e. PD = π), so we can not explicitly
design PD to overcome the exploration-exploitation dilemma. On the other hand, it saves us from the difficulty in
sampler design. The policy-based methods compute the gradients of Jπ w.r.t. π and learn π by gradient-based strategies.
So the problem of designing a sampler is converted to gradient-based optimization with robust gradient estimation.
Related techniques include variance reduction techniques, improvement of gradient descent directions like natural
policy gradients and mirror policy descent, and conservative policy updates such as TRPO and PPO. These methods
implicitly address Exp-Exp trade-off. Because a policy π that always favors either exploration or exploitation will not
render the maximum or minimum Jπ unless it is equal to the optimal policy. Besides, the intuition of conservative
policy updates like TRPO is that we keep the policy unchanged to prevent it from getting trapped into local optima
(exploration) unless we find a better point in the trust region (exploitation).

• Our joint training framework manages to inherit the advantages of both value-based methods and policy-based methods.
It keeps optimizing Jπ directly and makes the associated gradient-based optimization techniques applicable. In the
meanwhile, we can explicitly design guided policy as the design of PD in the off-policy case, to integrate expert
knowledge about the environment and balance the Exp-Exp trade-off explicitly.

E. Additional experimental settings and results
In all experiments, we follow a regular way of designing off-policy sampler,PD for value-based methods: PD is a mixture
of the learned forward policy and a uniform policy where the mix-in factor of the uniform policy starts at 1.0 and decays
exponentially at a rate of γ after each training iteration, where γ is set to 0.99 based on the results of the ablation study. In
TB-Sub, the objective is a convex combination of the sub-trajectory balance losses following Madan et al. (2023), where
the hyperparameter that controls the weights assigned to sub-trajectories of different lengths, is set to 0.9 selected from
{0.80, 0.85, 0.90, 0.95, 0.99}. For our policy-based methods, we set the value of hyper-parameter λ to 0.99 for the forward
policy gradients based on the results of the ablation study. The backward policy gradient is estimated unbiasedly, meaning
the hyper-parameter value is 1. Trust region hyper-parameter ζF is set to 0.01 select from {0.01, 0.02, 0.03, 0.04, 0.05}.

We use the Adam optimizer for model optimization. The learning rates of forward and backward policy are equal to 1×10−3,
which is selected from {5× 10−3, 1× 10−3, 5× 10−4, 1× 10−4} by TB-U. The learning rates of value functions are set to
5× 10−3, which is selected from {1× 10−2, 5× 10−3, 1× 10−3} by RL-U. The learning rates of total flow estimator is

27

GFlowNet Training by Policy Gradients

1× 10−1, which is selected from {1× 10−1, 5× 10−2, 1× 10−2, 5× 10−3} by TB-U. The sample batch size is set to 128
for each optimization iteration. For all experiments, we report the performance with five different random seeds.

E.1. Evaluation metrics

The total variation DTV between P⊤
F (x) and P ∗(x) is defined as:

DTV (P
⊤
F , P

∗) =
1

2

∑
x∈X
|P⊤
F (x)− P ∗(x)|. (90)

The total variation is similar to the average l1-distance used in prior works, which can be computed by 1
|X |
∑
x |P ∗(x)−

P⊤
F (x)|. However, the average l1-distance may be inappropriate as |X | is usually large (> 104) and

∑
x |P ∗(x)−P⊤

F (x)| ≤
2, resulting in the average l1-distance being heavily scaled down by |X |.

The Jensen–Shannon divergence DJSD between P⊤
F (x) and P ∗(x) is defined as:

DJSD(P
⊤
F , P

∗) =
1

2
DKL(P

⊤
F , P

M) +
1

2
DKL(P

∗, PM), PM = P⊤
F + P ∗. (91)

Following Shen et al. (2023), the mode accuracy Acc of P⊤
F (x) w.r.t. P ∗(x) is defined as:

Acc(P⊤
F , P

∗) = min

(
EP⊤

F (x)[R(x)]

EP∗(x)[R(x)]
, 1

)
. (92)

For biological and molecular sequence experiments, we also count the number of modes, that is, the number of modes
discovered during training. At every 10 training iterations, we sample |Xmode| terminating states by the current learned
PF (·|·) and store the states which are modes and have not been discovered before; then we count the total number of
discovered unique modes for evaluation. (Shen et al., 2023; Kim et al., 2023b). The mode set Xmode is defined as the set of
terminating states whose rewards are in the top 0.5%, 0.5%, 0.5%, and 0.1% of all rewards for the SIX6, QM9, PHO4 and
sEH datasets respectively.

E.2. Hyper-grid modeling

Environment In this environment, S \ {sf} is equal to {s = ([s]0, . . . , [s]d, . . . , [s]D)|[s]d ∈ {0, . . . , N − 1}} (=
{1, . . . , N − 1}D), where the initial state s0 = (0, . . . , 0), and the final state sf can be represented by any invalid
coordinate tuple of the hyper-grid, denoted as (−1, . . . ,−1) in our implementation. For state s ∈ S \ {sf}, we have D + 1
possible actions in A(s): (1) increment the coordinate [s]d by one, arriving at s′ = ([s]0, . . . , [s]d + 1, . . .); (2) choose
stopping actions (s→sf), terminating the process and returning s as the terminating coordinate tuple x. In this environment,
G is not a graded DAG, and S \ {sf} = X as all coordinate tuples can be returned as the terminating states. The reward
R(x) is defined as:

R(x) = R0 +R1

D∏
d=1

I
[∣∣∣∣ [s]d
N − 1

− 0.5

∣∣∣∣ ∈ (0.25, 0.5]

]
+R2

D∏
d=1

I
[∣∣∣∣ [s]d
N − 1

− 0.5

∣∣∣∣ ∈ (0.3, 0.4]

]
, (93)

where R0 = 10−2, R1 = 0.5 and R2 = 2 in our experiment. Conditioning on x, we use an unnormalized conditional guided
trajectory distribution P̃G(τ |x) for backward policy design, which is defined as:

P̃G(τ |x→ sf) := Pf (τ⪯x) =

T−1∏
t=1

Pf (st|st−1),

∀st ̸= sf :Pf (st|st−1) :=

{
PF (st|st−1)∑

s:s ̸=sf
PF (s|st−1)+ϵf

if R(st−1) ≤ R0

PF (st|st−1) otherwise
,

Pf (s
f |st−1) :=

{
ϵf∑

s:s ̸=sf
PF (s|st−1)+ϵf

if R(st−1) ≤ R0

PF (s
f |st−1) otherwise

, (94)

28

GFlowNet Training by Policy Gradients

500 1000 1500 2000
Number of iterations

0.0

0.2

0.4

0.6

0.8

1.0
To

ta
l V

ar
ia

tio
n

DB-U
DB-B
TB-U
TB-B
TB-Sub
TB-TS
RL-U
RL-B
RL-T
RL-G

500 1000 1500 2000
Number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l V
ar

ia
tio

n

DB-U
DB-B
TB-U
TB-B
TB-Sub
TS_TB
RL-U
RL-B
RL-T
RL-G

Figure 4. Training curves by DTV between P⊤
F and P ∗ for 64× 64× 64 (left) and 32× 32× 32× 32 hyper-grids (right). The curves

are plotted based on means and standard deviations of metric values across five runs and smoothed by a sliding window of length 10.
Metric values are computed every 10 iterations.

500 1000 1500 2000
Number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l V
ar

ia
tio

n

TB-0.95
TB-0.96
TB-0.97
TB-0.98
TB-0.99
RL-0.95
RL-0.96
RL-0.97
RL-0.98
RL-0.99
RL-1.0

500 1000 1500 2000
Number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l V
ar

ia
tio

n

RL-0.60
RL-0.65
RL-0.70
RL-0.75
RL-0.80
RL-0.85
RL-0.90
RL-0.95
RL-0.99
RL-1.0

Figure 5. Performance comparison between RL-U with different λ values and TB-U with different γ values. The curves are plotted based
on their mean and standard deviation values across five runs and smoothed by a sliding window of length 10. Metric values are computed
every 10 iterations.

where ϵf = 10−5, the corresponding normalized distribution can be understood as PG(τ |x → sf) = Pf (τ |x →
sf) ∝ Pf (τ⪯x), and Pf (τ) =

∏T
t=1 Pf (st|st−1). Similar to the proof of Proposition 3.1, it can be verified that

∇ϕDρ
KL(PB(τ |x → sf ;ϕ), PG(τ |x → sf))= ∇ϕDρ

KL(PB(τ |x → sf ;ϕ), P̃G(τ |x → sf)). As all the coordinate
tuples can be terminating states (i.e., sf is the child of all the other states) the expression above means that Pf assigns a low
probability to the event of the terminating state being a state with a low reward. In this way, we discourage the generative
process from stopping early at low reward coordinate tuples.

Model Architecture Forward policy PF (·|·) is parametrized by a neural network with 4 hidden layers and the hidden
dimension is 256. Backward policy PB(·|·) is fixed to be uniform over valid actions or parameterized in the same way as
PF . Coordinate tuples are transformed by K-hot encoding before being fed into neural networks.

Additional Experiment Results The obtained results from five runs on 64× 64× 64 and 32× 32× 32× 32 grids are
summarized in Fig. 4 and Table 2. The graphical illustrations of P⊤

F (x) are shown in Figs. 14 and 15. We can observe
similar performance trends to those in 256× 256 and 128× 128 grids: both TB-based methods and our policy-based method
are better than DB-based method, and our policy-based methods achieve much faster convergence than TB-based methods.
While these trends are less obvious than in 256× 256 and 128× 128 grids, this phenomenon can be ascribed to the fact that
the environment height N has more influence on the modeling difficulty than the environment dimension D. The reason is
that hyper-grids are homogeneous w.r.t. each dimension, and the minimum distance between modes only depends on N .

29

GFlowNet Training by Policy Gradients

500 1000 1500 2000
Number of iterations

0.15

0.20

0.25

0.30

0.35

0.40
To

TS
al

 V
ar

ia
tio

n
DB-U
DB-B
TB-U
TB-B
TB-Sub
TB-TS
RL-U
RL-B
RL-T
RL-G

500 1000 1500 2000
Number of iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

To
ta

l V
ar

ia
tio

n

DB-U
DB-B
TB-U
TB-B
TB-Sub
TB-TS
RL-U
RL-B
RL-T
RL-G

Figure 6. Training curves by DTV between P⊤
F and P ∗ for SIX6 (left) and QM9 (right). The curves are plotted based on means and

standard deviations of metric values across five runs and smoothed by a sliding window of length 10. Metric values are computed every
10 iterations.

500 1000 1500 2000
Number of iterations

0

50

100

150

200

250

300

Nu
m

be
r o

f m
od

es

DB-U
DB-B
TB-U
TB-B
TB-Sub
TB-TS
RL-U
RL-B
RL-T
RL-G

500 1000 1500 2000
Number of iterations

0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f m
od

es

DB-U
DB-B
TB-U
TB-B
TB-Sub
TB-TS
RL-U
RL-B
RL-T
RL-G

Figure 7. Training curves by the number of modes discovered during training for SIX6 (left) and QM9 (right). The curves are plotted
based on means and standard deviations of metric values across five runs and smoothed by a sliding window of length 10. Metric values
are computed every 10 iterations.

E.3. Biological and Molecular Sequence design

Environment In this environment, S \ sf = {−1, 0, . . . , N − 1}D with element s corresponds to a sequence composed
of integers ranging from −1 to N − 1. The set {0, . . . , N − 1} denotes the N nucleotide types or molecular building blocks,
and the integer −1 represents that the corresponding position within s is unfilled. The initial state s0 = (−1, . . . ,−1)
represents an empty sequence and the final state sf = (N, . . . , N). For st ∈ St, there are t elements in {0, . . . , N − 1}
and the rest equal to −1. There are N · (D − t) actions in A(s) that correspond to fill in one of the empty slots by one
integer in {0, . . . , N − 1}. The generative process will not stop until sequences are fulfilled. By definition, G is a graded
DAG and SD = X = {0, . . . , N − 1}D. We use the reward values provided in the dataset directly. Following Shen et al.
(2023), we compute reward exponents Rβ(x) with hyper-parameter β set to 3, 5, 3, 6 and normalize the reward exponents to
[1 × 10−3, 10], [1 × 10−3, 10], [0, 10] and [1 × 10−3, 10] for the SIX6, QM9, PHO4 and sEH datasets respectively. The
guided distribution design also follows Shen et al. (2023). For content completeness, we provide the definitions as:

PG(τ |x) =
T∏
t=1

PG(st|st−1, x), PG(st|st−1, x) =
score(st|x)∑

s′∈Ch(st−1)
score(s′|x)

,

score(s|x) :=
{
mean({R(x′)|s ∈ x′, x′ ∈ X replay}) if s ∈ x

0 otherwise (95)

where X replay corresponds to a replay buffer that stores the sampled terminating states during training.

Model Architecture Policies are constructed in the same way as the hyper-grid modeling experiment. Integer sequences
are transformed by K-hot encoding before being fed into neural networks.

30

GFlowNet Training by Policy Gradients

500 1000 1500 2000
Number of iterations

0.70

0.72

0.74

0.76

0.78

0.80
Ac

cu
ra

cy

DB-U
DB-B
TB-U
TB-B
TB-Sub
TB-TS
RL-U
RL-B
RL-T
RL-G

500 1000 1500 2000
Number of iterations

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

DB-U
DB-B
TB-U
TB-B
TB-Sub
TB-TS
RL-U
RL-B
RL-T
RL-G

Figure 8. Training curves by Acc of P⊤
F w.r.t. P ∗ for PHO4 and sEH. The curves are plotted based on their mean and standard deviation

values. The curves are plotted based on means and standard deviations of metric values across five runs and smoothed by a sliding window
of length 10. Metric values are computed every 10 iterations.

500 1000 1500 2000
Number of iterations

0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f m
od

es

DB-U
DB-B
TB-U
TB-B
TB-Sub
TB-TS
RL-U
RL-B
RL-T
RL-G

500 1000 1500 2000
Number of iterations

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f m
od

es
DB-U
DB-B
TB-U
TB-B
TB-Sub
TB-TS
RL-U
RL-B
RL-T
RL-G

Figure 9. Training curves by the number of modes discovered over training for PHO4 and sEH. The curves are plotted based on means
and standard deviations of metric values across five runs and smoothed by a sliding window of length 10. Metric values are computed
every 10 iterations.

Additional Experiment Results For PHO4 and sEH dataset, the exact computation of P⊤
F by dynamic programming

is expensive. Thus, we only plot the training curves by Acc and the number of modes as shown in Figs. 8 and 9, and
the means and standard deviations of metric values at the last iteration are provided in Table 5. We can observe similar
performance trends as in the QM9 and SIX6 datasets. Our policy-based methods achieve faster convergence rates and better
converged Acc values than the TB-based and DB-based methods. While the converged Acc of RL-T is slightly worse than
the other policy-based methods, it achieves the fastest convergence rate. RL-G and RL-B, both employing a parametrized
πB , demonstrate similar performance and converge faster than RL-U, which utilizes a uniform πB .

E.4. Bayesian Network Structure Learning

In this experiment, we investigate GFlowNets for BN structure learning following the settings adopted in Malkin et al.
(2022b). The set X corresponds to a set of BN structures, which are also DAGs. BN structure learning can be understood
as approximating P (x|D) ∝ R(x) given a dataset D. Given a set of nodes, the state space for GFlowNets is the set of all
possible DAGs over the node set. The actions correspond to adding edges over a DAG without introducing a cycle. The
generative process of a BN structure is interpreted as starting from an empty graph, an action is taken to decide to add an
edge or terminate the generative process at the current graph structure.

Environment A Bayesian Network is a probabilistic model that represents the joint distribution of N random variable and
the joint distribution factorizes according to the network structure x:

P (y1, . . . , yN) =

N∏
n=1

P (yn|Pax(yn)) (96)

31

GFlowNet Training by Policy Gradients

500 1000 1500 2000
Number of iterations

0.0

0.1

0.2

0.3

0.4

0.5

To
ta

l V
ar

ia
tio

n

DB-U
DB-B
TB-U
TB-B
RL-U
RL-B
RL-T
RL-G

Figure 10. Training curves by DTV of P⊤
F w.r.t. P ∗ for the BN structure learning experiment. The curves are plotted based on means and

standard deviations of metric values across five runs and smoothed by a sliding window of length 10. Metric values are computed every
10 iterations.

where Pax(yn) denote the set of parent nodes of yn according to graph x. As the structure of any graph can be represented
by its adjacency matrix, the state space can be defined as S :=

{
s|C(s) = 0, s ∈ {0, 1}N×N} where C corresponds to the

acyclic graph constraint (Deleu et al., 2022), the initial state s0 = 0N×N and specially sf := −1N×N in our implementation.
For each state s, a ∈ A(s) can be any action that turns one of 0 values of s to be 1 (i.e. adding an edge) while keeping
C(s′) = 0 for the resulting graph s′, or equal to (s → sf) that stopping the generative process and return x = s as
the terminating state. By definition, the corresponding G in this environment is not graded. Given observation dataset
Dy of y1:N , the structure learning problem can be understood as approximating P (x|Dy) ∝ P (x,Dy) = P (Dy|x)P (x).
Without additional information about graph structure x, P (x) is often assumed to be uniform. Thus, P (x|Dy) ∝ P (Dy|x)
and the reward function is defined as R(x) ∝ P (Dy|x). Distribution P (Dy|x) is also called graph score and we use
BGe score (Kuipers et al., 2014) in our experiment. Following Malkin et al. (2022b), the ground-truth graph structure
and the corresponding observation dataset Dy are simulated from Erdős–Rényi model. The guided distribution design
follows the hyper-grid experiment. A low probability value, 10−5 is assigned to the transition probability of (s→ sf) if
| logR(s)− logRmax| ≤ 5.

Model Architecture Policies are constructed in the same way as the hyper-grid modeling experiments, but adjacency
matrices are fed into neural networks directly without encoding. As reported in (Deleu et al., 2022), the distribution can
be very peaky between adjacent graph structures. The reward R(x) (typically ≈ e80) in this experiment is much larger
than those (typically ≈ 10) in the previous two sets of experiments. These facts give rise to numerical issues for reliable
estimation of value function. Thus, we compute the gradients w.r.t. JB empirically as the gradients w.r.t. TB-based objective,
that is, VB is not utilized during training. Besides, logZ is also very large, so we set the learning rate to 1, which is selected
from {0.1, 0.3, 0.5, 0.8, 1.0} by TB-U.

Experiment Results The number of possible DAGs grows exponentially with the number of nodes. Thus, we test the
same benchmark in Malkin et al. (2022b) with the number of nodes set to 5 and the corresponding total numbers of DAGs
is about 2.92 × 104. The number of edges in the ground-truth DAG is set to 5, and the size of the observation dataset
is set to 100. The experimental results across five runs are shown in Fig. 10 and Table 6. The graphical illustrations of
P⊤
F (x) are shown in Fig. 18. As expected, performance trends similar to those in the previous two sets of experiments are

observed. The converged DTV values of all the policy-based methods are better than those of the value-based methods, with
only TB-U achieving comparable performance. Besides, RL-T achieves the best converged DTV value and has the fastest
convergence among all the methods. These results further demonstrate the effectiveness of our policy-based methods for
GFlowNet training.

32

GFlowNet Training by Policy Gradients

E.5. Tables of converged metric values

256× 256 128× 128
Method DTV ↓ (×10−1) DJSD ↓ (×10−2) Time↓ DTV ↓ (×10−1) DJSD ↓ (×10−2) Time↓

DB-U 6.050± 0.129 24.61± 1.147 37.2 3.233± 0.138 8.357± 0.471 18.5
DB-B 4.459± 0.135 14.42± 0.656 46.8 2.621± 0.122 5.621± 0.502 21.3
TB-U 0.728± 0.095 0.763± 0.131 30.9 0.449± 0.078 0.338± 0.062 14.3
TB-B 2.101± 1.052 6.612± 5.093 32.5 0.441± 0.080 0.355± 0.105 16.4
TB-Sub 1.461± 0.058 2.915± 0.285 71.5 0.450± 0.032 0.367± 0.060 31.3
TB-TS 1.277± 0.268 1.714± 0.627 38.5 0.481± 0.050 0.364± 0.058 20.4
RL-U 0.621± 0.057 0.770± 0.096 44.4 0.440± 0.077 0.390± 0.053 18.3
RL-B 0.704± 0.190 1.064± 0.286 68.5 0.490± 0.088 0.467± 0.082 35.2
RL-T 0.708± 0.058 0.774± 0.054 90.2 0.503± 0.043 0.426± 0.053 58.3
RL-G 0.439± 0.037 0.541± 0.017 69.8 0.427± 0.158 0.353± 0.180 35.4

Table 1. Converged metric values of different methods for the modeling of 256 × 256 and 128 × 128 grids. Training time costs are
provided in minutes.

64× 64× 64 32× 32× 32× 32
Method DTV ↓ (×10−1) DJSD ↓ (×10−2) Time↓ DTV ↓ (×10−1) DJSD ↓ (×10−2) Time↓

DB-U 3.687± 0.132 10.83± 0.611 19.3 3.254± 0.151 7.570± 0.682 19.1
DB-B 2.606± 0.083 6.559± 0.486 21.5 1.248± 0.041 1.684± 0.119 20.4
TB-U 0.870± 0.065 0.737± 0.082 16.1 1.086± 0.078 1.123± 0.110 17.3
TB-B 0.909± 0.069 0.753± 0.101 17.4 1.191± 0.112 1.258± 0.184 18.6
TB-Sub 1.185± 0.106 1.397± 0.276 27.5 1.319± 0.085 1.961± 0.171 25.2
TB-TS 1.164± 0.222 1.255± 0.410 21.3 1.390± 0.161 1.781± 0.295 21.2
RL-U 1.082± 0.060 1.287± 0.105 17.4 1.180± 0.049 1.455± 0.111 18.5
RL-B 0.647± 0.111 0.440± 0.132 30.2 1.203± 0.330 1.304± 0.723 34.4
RL-T 0.654± 0.069 0.456± 0.084 49.0 0.838± 0.105 0.591± 0.140 59.3
RL-G 0.670± 0.095 0.527± 0.198 31.8 0.888± 0.068 0.666± 0.091 36.4

Table 2. Converged metric values of different methods for the modeling of 64× 64× 64 and 32× 32× 32× 32 grids. Training time
costs are provided in minutes.

SIX6
Method Acc ↑ (×102) DTV ↓ (×10−1) DJSD ↓ (×10−2) Number of modes↑

DB-U 86.26± 1.20 1.889± 0.021 3.261± 0.052 298.24± 6.84
DB-B 86.26± 1.51 1.886± 0.020 3.263± 0.064 302.00± 4.97
TB-U 93.88± 1.13 1.767± 0.015 2.915± 0.025 317.92± 2.74
TB-B 90.94± 1.46 1.998± 0.055 3.542± 0.146 295.36± 4.69
TB-Sub 88.57± 0.91 1.893± 0.021 3.261± 0.056 305.26± 3.22
TB-TS 88.66± 1.04 1.887± 0.029 3.241± 0.050 302.58± 1.27
RL-U 94.30± 1.22 1.779± 0.018 2.956± 0.025 318.84± 3.08
RL-B 94.68± 1.62 1.786± 0.019 2.967± 0.036 319.14± 1.96
RL-T 93.40± 1.01 1.832± 0.022 3.174± 0.049 321.74± 1.72
RL-G 94.70± 1.65 1.782± 0.020 2.951± 0.025 318.96± 3.03

Table 3. Converged metric values of different methods for the SIX6 datasets.

33

GFlowNet Training by Policy Gradients

QM9
Method Acc ↑ (×102) DTV ↓ (×10−1) DJSD ↓ (×10−2) Number of modes↑

DB-U 96.30± 1.07 1.889± 0.021 3.261± 0.052 780.2± 4.32
DB-B 96.93± 1.07 1.886± 0.020 3.263± 0.064 780.0± 6.04
TB-U 98.65± 1.10 1.767± 0.015 2.915± 0.025 788.8± 2.78
TB-B 98.36± 1.08 1.998± 0.055 3.542± 0.146 781.4± 3.72
TB-Sub 97.00± 1.17 1.893± 0.021 3.261± 0.056 781.8± 4.87
TB-TS 96.83± 0.76 1.887± 0.029 3.241± 0.050 780.6± 4.16
RL-U 98.79± 1.08 1.779± 0.018 2.956± 0.025 787.0± 5.29
RL-B 99.10± 0.90 1.786± 0.019 2.967± 0.036 792.8± 2.95
RL-T 98.74± 1.27 1.832± 0.022 3.174± 0.049 798.2± 0.84
RL-G 90.04± 1.20 1.782± 0.020 2.951± 0.025 794.0± 2.16

Table 4. Converged metric values of different methods for the QM9 datasets.

PHO4 sEH
Method Acc ↑ (×102) Number of modes↑ Acc ↑ Number of modes↑

DB-U 76.08± 0.23 3957.33± 18.61 88.45± 0.61 23502.97± 260.03
DB-B 76.61± 0.32 3975.00± 64.00 88.58± 0.81 23454.68± 422.14
TB-U 77.47± 0.29 3993.33± 9.87 90.49± 0.48 24250.63± 114.85
TB-B 77.00± 0.14 3901.33± 26.08 90.84± 0.85 23139.13± 634.65
TB-Sub 76.94± 0.24 3939.33± 18.61 89.81± 0.61 24652.47± 74.43
TB-TS 76.78± 0.14 3973.33± 38.68 89.57± 0.24 24491.93± 90.99
RL-U 77.31± 0.30 3984.67± 24.79 90.86± 0.42 25200.67± 24.61
RL-B 77.55± 0.25 4004.67± 15.01 91.36± 0.85 25454.03± 142.64
RL-T 76.81± 0.48 4062.67± 47.69 93.98± 0.64 26530.30± 142.27
RL-G 77.26± 0.55 4005.67± 12.50 91.28± 0.79 25368.07± 52.27

Table 5. Converged metric values of different methods for the PHO4 and sEH datasets

Method DTV ↓ (×10−1) DJSD ↓ (×10−2) Method DTV ↓ (×10−1) DJSD ↓ (×10−2)

DB-U 1.346± 0.030 4.863± 0.420 DB-B 1.284± 0.027 7.533± 1.873
TB-U 0.898± 0.124 3.121± 0.332 TB-B 1.521± 0.281 13.301± 2.107
RL-U 0.831± 0.079 7.436± 1.508 RL-B 0.929± 0.078 6.114± 1.179
RL-T 0.698± 0.052 1.890± 0.307 RL-G 0.964± 0.174 5.712± 0.845

Table 6. Converged metric values of different methods for the BN structure learning experiment, where the ground-truth BN has 5 nodes
and 5 edges.

34

GFlowNet Training by Policy Gradients

E.6. Graphical representation of P⊤
F

0 50 100 150 200 250
256×256

0

50

100

150

200

250
0 20 40 60 80 100 120

128×128

0

20

40

60

80

100

120

0 10 20 30 40 50 60
64×64×64

0

10

20

30

40

50

60

0 5 10 15 20 25 30
32×32×32×32

0

5

10

15

20

25

30

Figure 11. Graphical representation of P ∗ for different hyper-grids. For visualization easiness, the ground-truth marginal distributions of
two dimensions are plotted for 64× 64× 64 and 32× 32× 32× 32 grids.

0 50 100 150 200 250
DB-U

0

50

100

150

200

250
0 50 100 150 200 250

TB-U

0

50

100

150

200

250
0 50 100 150 200 250

TB-TS

0

50

100

150

200

250
0 50 100 150 200 250

RL-U

0

50

100

150

200

250
0 50 100 150 200 250

RL-T

0

50

100

150

200

250

0 50 100 150 200 250
DB-B

0

50

100

150

200

250
0 50 100 150 200 250

TB-B

0

50

100

150

200

250
0 50 100 150 200 250

TB-Sub

0

50

100

150

200

250
0 50 100 150 200 250

RL-B

0

50

100

150

200

250
0 50 100 150 200 250

RL-G

0

50

100

150

200

250

Figure 12. Graphical illustrations of P⊤
F (x) averaged across 5 runs of corresponding training strategies for a 256× 256 hyper-grid.

0 20 40 60 80 100 120
DB-U

0

20

40

60

80

100

120

0 20 40 60 80 100 120
TB-U

0

20

40

60

80

100

120

0 20 40 60 80 100 120
TB-TS

0

20

40

60

80

100

120

0 20 40 60 80 100 120
RL-U

0

20

40

60

80

100

120

0 20 40 60 80 100 120
RL-T

0

20

40

60

80

100

120

0 20 40 60 80 100 120
DB-B

0

20

40

60

80

100

120

0 20 40 60 80 100 120
TB-B

0

20

40

60

80

100

120

0 20 40 60 80 100 120
TB-Sub

0

20

40

60

80

100

120

0 20 40 60 80 100 120
RL-B

0

20

40

60

80

100

120

0 20 40 60 80 100 120
RL-G

0

20

40

60

80

100

120

Figure 13. Graphical illustrations of P⊤
F (x) averaged across 5 runs of corresponding training strategies for a 128× 128 hyper-grid.

35

GFlowNet Training by Policy Gradients

0 10 20 30 40 50 60
DB-U

0

10

20

30

40

50

60

0 10 20 30 40 50 60
TB-U

0

10

20

30

40

50

60

0 10 20 30 40 50 60
TB-TS

0

10

20

30

40

50

60

0 10 20 30 40 50 60
RL-U

0

10

20

30

40

50

60

0 10 20 30 40 50 60
RL-T

0

10

20

30

40

50

60

0 10 20 30 40 50 60
DB-B

0

10

20

30

40

50

60

0 10 20 30 40 50 60
TB-B

0

10

20

30

40

50

60

0 10 20 30 40 50 60
TB-Sub

0

10

20

30

40

50

60

0 10 20 30 40 50 60
RL-B

0

10

20

30

40

50

60

0 10 20 30 40 50 60
RL-G

0

10

20

30

40

50

60

Figure 14. Graphical illustrations of P⊤
F (x) averaged across 5 runs of corresponding training strategies for a 64× 64× 64 hyper-grid.

For visualization easiness, only the marginals of two dimensions are plotted.

0 5 10 15 20 25 30
DB-U

0

5

10

15

20

25

30

0 5 10 15 20 25 30
TB-U

0

5

10

15

20

25

30

0 5 10 15 20 25 30
TB-TS

0

5

10

15

20

25

30

0 5 10 15 20 25 30
RL-U

0

5

10

15

20

25

30

0 5 10 15 20 25 30
RL-T

0

5

10

15

20

25

30

0 5 10 15 20 25 30
DB-B

0

5

10

15

20

25

30

0 5 10 15 20 25 30
TB-B

0

5

10

15

20

25

30

0 5 10 15 20 25 30
TB-Sub

0

5

10

15

20

25

30

0 5 10 15 20 25 30
RL-B

0

5

10

15

20

25

30

0 5 10 15 20 25 30
RL-G

0

5

10

15

20

25

30

Figure 15. Graphical illustrations of P⊤
F (x) averaged across 5 runs of corresponding training strategies for a 32×32×32×32 hyper-grid.

For visualization easiness, only the marginals of 2 dimensions are plotted.

36

GFlowNet Training by Policy Gradients

Figure 16. In each plot, the orange line represents the P ∗(x) of all sequences in the SIX6 dataset, with its values plotted in ascending
order. The blue dots represent corresponding values of P⊤

F (x), averaged over five runs of the corresponding training strategy.

Figure 17. In each plot, the orange line represents the P ∗(x) of all sequences in the QM9 dataset, with its values plotted in ascending
order. The blue dots represent corresponding values of P⊤

F (x), averaged over five runs of the corresponding training strategy.

Figure 18. In each plot, the orange line represents the P ∗(x) of all BN structures, with its values plotted in ascending order. The blue
dots represent corresponding values of P⊤

F (x), averaged over five runs of the corresponding training strategy. Only the ground-truth and
corresponding learned values for the top 3000 structures are plotted as the remaining values are nearly zero.

37

