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Abstract
Multi-fidelity surrogate modeling aims to learn
an accurate surrogate at the highest fidelity level
by combining data from multiple sources. Tra-
ditional methods relying on Gaussian processes
can hardly scale to high-dimensional data. Deep
learning approaches utilize neural network based
encoders and decoders to improve scalability.
These approaches share encoded representations
across fidelities without including corresponding
decoder parameters. This hinders inference per-
formance, especially in out-of-distribution sce-
narios when the highest fidelity data has lim-
ited domain coverage. To address these limita-
tions, we propose Multi-fidelity Residual Neu-
ral Processes (MFRNP), a novel multi-fidelity
surrogate modeling framework. MFRNP ex-
plicitly models the residual between the aggre-
gated output from lower fidelities and ground
truth at the highest fidelity. The aggregation
introduces decoders into the information shar-
ing step and optimizes lower fidelity decoders
to accurately capture both in-fidelity and cross-
fidelity information. We show that MFRNP sig-
nificantly outperforms state-of-the-art in learning
partial differential equations and a real-world cli-
mate modeling task. Our code is published at:
github.com/Rose-STL-Lab/MFRNP.

1. Introduction
From engineering to climate science, a computational model,
often realized by simulation, is frequently used to character-
ize the input-output relationship of a physical system. These
computational models can be simulated at multiple levels of
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sophistication. The high-fidelity simulators are more accu-
rate but resource demanding, whereas lower-fidelity models
are less accurate but more computationally efficient. For
example, in climate science, people incorporate real-world
observations with computational models to calibrate sim-
ulations (Hersbach et al., 2020; Karami & Kashef, 2020).
While the calibrated data has refined details and accuracy,
the domain coverage is very limited and the simulation
process is computation heavy. Multi-fidelity surrogate mod-
eling (Peherstorfer et al., 2018) aims to balance the compu-
tation efficiency-accuracy trade-off by utilizing data across
fidelities to learn an accurate surrogate at the highest fidelity.

Gaussian Processes (GPs) (Seeger, 2004) are a popular tool
for surrogate modeling. Recent works have attempted to
extend GP to multi-fidelity setting (Perdikaris et al., 2016;
Wang et al., 2021). However, they inherit the limited scal-
ability from GP due to the inversion of the kernel matrix
(Williams & Rasmussen, 1995; Rasmussen, 2003). To solve
this issue, many have proposed deep learning-based surro-
gate models (Damianou & Lawrence, 2013; Raissi & Karni-
adakis, 2016; Salimbeni & Deisenroth, 2017; Wilson et al.,
2016). Neural Processes (NPs) (Wang & Lin, 2020; Heb-
bal et al., 2021) stand out as one of the most appealing
approaches regarding inference performance and scalability.
NPs are capable of encoding fidelity-specific data into low-
dimensional latent representations and use them to improve
inference performance at the highest fidelity, alleviating the
scalability issue from high-dimensional data.

For example, Deep Multi-fidelity Active Learning (DM-
FAL) (Li et al., 2022b;a) proposed to pass information from
lower fidelities to higher fidelities with encoded hidden
representations. This method requires a hierarchical struc-
ture in the latent space passing information from low to
high fidelity level, which can lead to the error propagation
issue. Disentangled Multi-fidelity Deep Bayesian Active
Learning (D-MFDAL) (Wu et al., 2023) alleviates this is-
sue by redesigning the NP using local and global hidden
representations. Nevertheless, these methods rely on latent
representations from only the encoders for cross-fidelity in-
formation sharing. However, the decoder parameters varies
across fidelities and are not shared. At the highest fidelity,
shared representations are decoded with different parame-
ters, making the decoded output inherently inaccurate. This
significantly limits the inference performance, especially
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when the model needs to extrapolate with out-of-distribution
(OOD) inputs when the training data has limited domain
coverage at the highest fidelity.

In this work, we introduce a novel multi-fidelity surro-
gate modeling framework, Multi-fidelity Residual Neural
Process (MFRNP), to address the aforementioned issues.
MFRNP aggregates the predictions from surrogate models
across lower-fidelity levels and employs an NP surrogate to
capture the residual between the aggregated prediction and
the ground truth at the highest fidelity level. By directly uti-
lizing the outputs from lower-fidelity surrogates to share in-
formation, MFRNP includes decoders in cross-fidelity infor-
mation sharing, improving accuracy while maintaining scal-
ability. Moreover, we developed a tailored Evidence Lower
Bound, named Residual-ELBO, to serve as our loss func-
tion. This novel loss function ensures the highest fidelity
latent variable zK depends on all the other latent variables
and decoder parameters across fidelities. Thus, MFRNP en-
sures accurate information aggregation from lower fidelities
to promote residual modeling at the highest fidelity. To
summarize, our contributions include:

• A novel multi-fidelity surrogate model, Multi-fidelity
Residual Neural Process (MFRNP). Its architecture
shares input-specific information from lower fidelities,
tackles the varying decoder problem with no error prop-
agation yet preserving scalability.

• A novel Residual-ELBO to simultaneously promote
learning across fidelities and optimize lower fidelity
decoders for residual modeling at the highest fidelity.

• Superior performance in global scale real-world cli-
mate modeling and numerous benchmark tasks on par-
tial differential equations. MFRNP outperform the state-
of-the-art baseline by ∼90% in average.

2. Background
Multi-Fidelity Modeling. Multi-fidelity modeling aims to
capture the complex mapping from low-dimensional input
variables X ⊆ Rdx to high-dimensional output Y ⊆ Rdy

of the function f : X → Y . For systems with K fidelities
where K > 1, the cost ck of evaluating fk ∈ {f1, · · · , fK}
increases with the fidelity level (c1 < · · · < cK) as fk
conveying more detailed information in approximating f .
Our goal is to learn a deep surrogate model f̂K to approxi-
mate fK by combining data from K fidelities, each with N
samples (input parameters) {xk,n, yk,n}K,N

k=1,n=1.

Neural Processes. Combining Gaussian Processes (GPs)
and neural networks (NNs), Neural Processes (NPs) (Gar-
nelo et al., 2018b) constitute a family of latent variable
models for implicit stochastic processes (Wang & Van Hoof,

2020). NPs represent distributions over functions and esti-
mate prediction uncertainties like GPs while featuring scal-
ability in high dimensions (Jha et al., 2022).

Formally, NP consists of latent variables z ∈ Rdz and model
parameters θ, trained on context set Dc ≡ {xc

n, y
c
n}Nn=1 and

target sets Dt ≡ {xt
m, ytm}Mm=1. Dc and Dt are randomly

split from the training set D. Learning the posterior of z
and θ equals to maximize the posterior likelihood below:

p(yt1:M |xt
1:M ,Dc, θ) =

∫
p(z|Dc, θ)

M∏
m=1

p(ytm|z, xt
m, θ)dz

(1)
Due to the intractability of marginalizing over latent vari-
ables z, the NP family utilize approximate inference, deriv-
ing the approximated evidence lower bound (ELBO):

log p(yt1:M |xt
1:M ,Dc, θ) ⪆

Eqϕ(z|Dc∪Dt)

[ M∑
m=1

log p(ytm|z, xt
m, θ) + log

qϕ(z|Dc)

qϕ(z|Dc ∪ Dt)

]
(2)

This variational approach approximates the intractable
true posterior p(z|Dc, θ) with the approximate posterior
qϕ(z|Dc). Here, ϕ parameterize the encoder and θ param-
eterize the decoder of the model. Implementation-wise,
each pair {xc

n, y
c
n} ∈ Dc is first encoded as a latent repre-

sentation rcn, forming a latent representation set {rcn}Nn=1,
then aggregated to parameterise the latent variable z. For
simplicity, we denote {xn}Nn=1 as X and {yn}Nn=1 as Y .

3. Methodology
The high-level goal of MFRNP is to explicitly model the
residual between the aggregated output from the lower fi-
delities and the ground truth in the highest fidelity. It opti-
mizes the aggregation to simultaneously promote in-fidelity
learning and accurate cross-fidelity information sharing.

For each fidelity k ∈ {1...K − 1}, MFRNP learns a NP sur-
rogate f̂k to approximate fk, producing an output ŷk. For
the highest fidelity K, MFRNP learns a NP to approximate
the residual function R(x) = fK(x)− [ 1

K−1

∑K−1
k=1 f̂k(x)].

The lower fidelity predictions are aggregated by linearly
interpolating to the resolution at the highest fidelity and
taking the average. We choose to average over other ag-
gregation methods because this stabilizes the aggregation
and ensures the equal contribution of lower fidelity surro-
gates. We explore other aggregation techniques in section
5.4. Unlike previous work where all the information from
a fidelity is shared via the latent variable during encoding,
MFRNP shares information via the decoded outputs. This
explicitly involves the decoder at each fidelity to improve
information-sharing. The input-specific information-sharing
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Figure 1. Graphical model comparison of MFRNP against the state-of-the-art D-MFD baseline model. Shaded circles denote observed
variables. Right: D-MFD disentangles the latent representations rk,n into local and global representations Lk,n and Gk,n to infer zk.
Each Gk,n is from a different fidelity level, while no information about the decoder parameters θk is shared, making Gk,n inaccurate
regarding θi where i ̸= k. Left: MFRNP dynamically constructs Dtrain

K = {XK , R(XK)} in cross-fidelity optimization step and learn
fidelity-specific information with in-fidelity learning step. The residual function R makes zK dependant on z1:K−1 and θ1:K−1 without
inflating any dimensions. Thus, MFRNP optimizes lower fidelity decoders for better information sharing. We use bold letters in our model
graph to denote a set of variables.

scheme further tackles the error propagation issue and en-
sures the accuracy and full exploitation of lower-fidelity
information.

Approximating the Residual Function. The core idea of
MFRNP is to make the highest fidelity latent variable zK de-
pendent on all other latent variables as well as the decoder
parameters at lower fidelities. We introduce the dependency
by approximating R(x) at the highest fidelity, which mod-
els the residual between ground truth and the proposed ag-
gregation from lower fidelities given input x. Intuitively,
f̂k∈{1,...,K−1} is optimized with two objectives. As shown
in Figure 1, the in-fidelity learning step captures fidelity-
specific information while the cross-fidelity optimization
step encourages lower fidelity surrogates to propose accu-
rate and informative aggregations w.r.t the highest fidelity
given input xK .

During inference, given target input xt, MFRNP approx-
imates fK(xt) by aggregating predictions from lower fi-
delities (1...K − 1) and adding it with the residual term
from fidelity K : f̂K(xt) = R(xt) + [ 1

K−1

∑K−1
k=1 f̂k(x

t)].
MFRNP generates ŷtK by fully exploiting the rich informa-
tion in {ŷ1···K−1}. In the OOD setup where Dtrain

K and
Dtest

K covers different input domains, MFRNP can effectively
explore the regions beyond the Dtrain

K , thus enhancing its
input-domain extrapolation capabilities in modeling fK .

Residual-ELBO. We design a Residual-ELBO (R-ELBO)
for MFRNP. For each fidelity k ∈ {1 · · ·K − 1}, we infer
the latent variable zk with the NN encoder qϕk

(zk|Dc) and
decoder pθk(y

t
k|zk, xt

k). At fidelity K, DK is dynamically
constructed with {XK , R(XK)}. Here XK denotes a set of
input variables xK . We infer the latent variable zK with the
NN encoder qϕK

(zK |z1..K−1, θ1..K−1,Dc
K) and decoder

pθk(R(XK)|zK , XK , θK), where R(XK) depends on the
proposed aggregations of lower fidelity predictions via an-
cestral sampling (Wang & Van Hoof, 2020). We derive the
R-ELBO for K > 1 fidelities in two terms:

log p(R(xt
K)|xt

K ,Dc
1:K ∪ Dt

1:K−1, θK)

≥EqϕK
(zK |Dc

1:K∪Dt
1:K)[

log p(R(xt
K)|zK , xt

K , θK)

+ log
qϕK

(zK |Dc
1:K ∪ Dt

1:K−1)

qϕK
(zK |Dc

1:K ∪ Dt
1:K)

]
=EqϕK

(zK |z1:K−1,θ1:K−1,Dc
K∪Dt

K))[
log p(R(xt

K)|zK , xt
K , θK)

+ log
qϕK

(zK |z1:K−1, θ1:K−1,Dc
K)

qϕK
(zK |z1:K−1, θ1:K−1,Dc

K ∪ Dt
K))

]
(3)

log p(yt1:K−1|xt
1:K−1,Dc

1:K−1, θ1:K−1)

≥Eqϕ(z1:K−1|Dc
1:K−1∪Dt

1:K−1)[
log p(yt1:K−1|z1:K−1, x

t
1:K−1, θ1:K−1)

+ ..+ log
qϕ(z1:K−1|Dc

1:K−1)

qϕ(z1:K−1|Dc
1:K−1 ∪ Dt

1:K−1)

]
=Eqϕ1

(z1|Dc
1∪Dt

1)..qϕK−1
(zK−1|Dc

K−1∪Dt
K−1)[

log p(yt1|z1, xt
1, θ1)

+ ..+ log p(ytK−1|zK−1, x
t
K−1, θK−1)

+ log
qϕ1

(z1|Dc
1)

qϕ1(z1|Dc
1 ∪ Dt

1)

+ ..+
qϕK−1

(zK−1|Dc
K−1)

qϕK−1
(zK−1|Dc

K−1 ∪ Dt
K−1)

]
(4)
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Equation 4 is a unified ELBO accounting for learning from
fidelity specific datasets at lower fidelities. Equation 3 is the
ELBO for the residual function at the highest fidelity. This
term introduces dependency to every fidelity and optimizes
the output aggregations to better approximate R(x).

For training, we calculate the R-ELBO with Monte Carlo
(MC) sampling and ancestral sampling (AS) to optimize the
objective function below:

Lf̂
MC =

∑K−1
k=1

[
1
S

∑S
s=1 log p(y

t
k|xt

k, z
(s)
k )

−KL[q(zk|Dc
k,Dt

k)∥p(zk|Dc
k)]

]
(5)

LR
MC = 1

S

∑S
s=1 log p(R(xt

K)|xt
K , z

(s)
K )

−KL[q(zK |Dc
K ,Dt

K)∥p(zK |Dc
K)] (6)

LMC = LR
MC + Lf̂

MC (7)

where the time for qϕ(z|Dc) to sample z
(s)
k scales linearly

with the number of fidelity levels.

Training & Inference. As shown in Algorithm 1, MFRNP
calculates Lf̂

MC by predicting the set Ŷ t
k given input target

set Xt
k for every fidelity k ∈ {1..K − 1}. For LR

MC , the AS
steps are highlighted in orange in Algorithm 1.

MFRNP introduce decoder to the information aggregation
step by predicting with the highest fidelity level input set
XK at lower fidelity levels. We note the prediction as set
{ôk,K} where k ∈ {1..K − 1}, representing surrogate pre-
dictions given XK at fidelity k. We linearly interpolate
each {ôk,K} to math the dimension of YK . Then we dy-
namically construct the training dataset at fidelity K as
D′

K = {XK , R(XK)}. Finally, we randomly split D′
K

into D′c
K ,D′t

K to obtain LR
MC and perform back propaga-

tion with LMC . Here, LR
MC encourages MFRNP to optimize

lower fidelity surrogates for residual modeling at the highest
fidelity, while Lf̂

MC regulates lower fidelity levels to learn
from fidelity-specific datasets.

The inference process is demonstrated in Algorithm 2
where the AS steps are highlighted in orange. Given in-
put set {xi,K}, MFRNP propose aggregated predictions
{ai,K} from lower fidelities and the predicted residual R̂i

at fidelity K. The final prediction is given as {ŷi,K} =

{ai,K}+ {R̂i}.

4. Related Work
Multi-fidelity Modeling. Multi-fidelity surrogate model-
ing is prevalent across scientific and engineering domains,

Algorithm 1 MFRNP Training Process
Input: Dataset D1···K , number of fidelities K.
for k = 1 to K − 1 do

Randomly split Dk into {Dc
k,Dt

k}
Sample {zi,k} where zi,k ∼ qk(.|Dc

k)
Predict {ŷti,k} where ŷti,k ∼ pk(.|zi,k, xt

i,k)
Sample {z′i,k} where z′i,k ∼ qk(.|Dc

k)
Predict {ôi,k} where ôi,k ∼ pk(.|z′i,k, xi,K)
Linearly interpolate {ôi,k} to the resolution at K.

end for
Get the residual set {Ri} at K where Ri = yi,K −∑

(ôi,1,..,ôi,K−1)
K−1

Random-split D′
K = {xi,K , Ri} into {D′c

K ,D′t
K}

Sample {zi,K} where zi,K ∼ qK(.|Dc
K)

Predict {R̂t
i} where R̂t

i ∼ pK(.|zti,K , xt
i,K)

Back propagate with LMC = LR
MC + Lf̂

MC in Eqn 7

Algorithm 2 MFRNP Inference Process
Input: Latent variables z1..K , input {xi,K}
for k = 1 to K − 1 do

Sample {z′i,k} from zk.
Predict {ôi,k} where ôi,k ∼ pk(.|z′i,k, xi,K)
Linearly interpolate {ôi,k} to the resolution at K.

end for
Obtain aggregation {ai,K} =

∑
(ôi,1,..,ôi,K−1)

K−1
Sample {z′i,K} from zK .
Predict {R̂i} where R̂i ∼ pK(.|zi,K , xi,K)

Return {ŷi,K} = {ai,K}+ {R̂i}

including applications in aerospace systems (Brevault et al.,
2020) and climate science (Hosking, 2020; Valero et al.,
2021). The foundational work of Kennedy & O’Hagan
(2000) employs GPs to connect models of varying fidelity
levels, introducing an autoregressive model. Le Gratiet &
Garnier (2014) introduces a recursive GP with a nested
structure in the input domain to facilitate rapid inference.
Perdikaris et al. (2015; 2016) addresses high-dimensional
GP scenarios by leveraging the Fourier transformation of
the kernel function. Perdikaris et al. (2017) puts forth the
concept of multi-fidelity Gaussian processes (NARGP), as-
suming a nested structure in the input domain for sequential
training at each fidelity level.

Wang et al. (2021) presents a Multi-Fidelity High-Order GP
model for accelerating physical simulations. They extend
the Linear Model of Coregionalization (LMC) to the non-
linear case, incorporating a matrix GP prior on the weight
functions. Deep Gaussian processes (DGPs) (Cutajar et al.,
2019) formulate a unified objective to optimize kernel pa-
rameters jointly across fidelity levels. DGPs face scalability
challenges with high-dimensional data. Infinite-Fidelity
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Coregionalization (IFC) from (Li et al., 2022c) models the
output space as a continuous function of fidelity and input
based on neural ODEs, allowing the model to extrapolate to
higher fidelities. However, IFC faces scalability issue due
to the computation-demanding ODE solver.

Multi-fidelity modeling has been integrated with deep learn-
ing. Guo et al. (2022) employs deep neural networks to
merge parameter-dependent output quantities. Wang et al.
(2023) utilizes diffusion model to fuse fidelity information
into the diffusion-denoising process to solve PDE problems
with a conditional scoring model. Meng & Karniadakis
(2020) proposes a composite neural network for multi-
fidelity data in inverse PDE problems, while Meng et al.
(2021) introduces Bayesian neural nets for multi-fidelity
modeling. De et al. (2020) employs transfer learning to fine-
tune high-fidelity surrogate models using deep neural net-
works trained on low-fidelity data. Despite advancements,
existing deep GP models (Cutajar et al., 2019; Hebbal et al.,
2021) struggle with cases where different fidelities involve
data with varying dimensions. Additionally, multi-fidelity
methods have been investigated in Bayesian optimization,
active learning, and bandit problems (Li et al., 2020; Song
et al., 2019; Li et al., 2022a; Perry et al., 2019; Kandasamy
et al., 2017).

Neural Processes. Neural Processes (NPs) (Garnelo et al.,
2018a; Kim et al., 2018; Louizos et al., 2019; Singh et al.,
2019) emerge as scalable and expressive alternatives to GPs
for modeling stochastic processes. Previous work by Raissi
& Karniadakis (2016) combines multi-fidelity GPs with
deep learning, placing a GP prior on features learned by
deep neural networks. Wang & Lin (2020) proposes a multi-
fidelity neural process with physics constraints (MFPC-
Net), leveraging NPs to capture correlations between multi-
fidelity data. Nonetheless, this model requires paired data
and cannot utilize unpaired data at the low-fidelity level.

The recent work of Wu et al. (2023) proposes to disentan-
gle the latent variable at each fidelity into local and global
representations and share the global part across fidelities.
However, the fidelity-specific decoder parameters are not
included in information sharing. Thus, the highest fidelity
decoder expresses shared representations differently, hinder-
ing the inference performance, especially in OOD scenarios.

Climate Modeling. Climate modeling is a central com-
ponent of modern climate science and the primary tool for
predicting future climate states (Flato et al., 2014). Various
modeling centers around the world have developed distinct
climate models. The semi-independent development pro-
cess has led to many plausible, but disagreeing, climate
models representing the same earth system (Knutti et al.,
2010; Flato et al., 2014). Averaging these models often
leads to improved results compared to using individual mod-

els (Lambert & Boer, 2001; Gleckler et al., 2008; Knutti
et al., 2010). Proper aggregation of different climate mod-
els for a consensus estimate is therefore an important topic
(Tebaldi & Knutti, 2007). Averaging all models with equal
or varying weights has been the most common approach
(Giorgi & Mearns, 2002; Abramowitz et al., 2019), known
as (weighted) ensemble averaging (EA). However, EA tech-
niques often do not retain much spatial information and can
cause severe blurring, corrupting regional signals.

To address this problem, various alternative approaches have
been developed based on Bayesian hierarchical models, re-
gression and machine learning that all use observational data
to improve model aggregation. DeepESD (Baño-Medina
et al., 2022) utilize CNNs to learn the mapping from the EA
of 8 regional climate models to the observation-calibrated
data (Dee et al., 2011) at finer resolution. Similarly, NNGPR
(Harris et al., 2023) utilizes deep kernel GPs to model the
residual between the EA of 16 low-resolution global climate
models and the up-to-date observation-calibrated ERA5-
reanalysis dataset (Hersbach et al., 2020). A lot of progress
have been made in downscaling the climate simulators with
observational data (Kotamarthi et al., 2021), yet lacking the
method to accurately infer the long-term climate scenarios
directly from climate drivers.

5. Experiments
5.1. Datasets

We include 6 Partial Differential Equation benchmarks, a
more complicated fluid simulation task and a real-world cli-
mate modeling task for earth surface temperature prediction.

Partial Differential Equations (PDEs). We include Heat
and Poisson’s equations (Olsen-Kettle, 2011) from compu-
tational physics. We test MFRNP for predicting the spatial
solution fields of these equations. We use numerical solvers
to generate the ground-truth data with dense and coarse
meshes for different fidelity levels. For both Heat and Pois-
son’s equations with 2 fidelity setting, we use 16× 16 and
32× 32 meshes as low and high fidelities. For three fidelity
scenarios, we run the solvers with 64 × 64 meshes at the
highest fidelity level. For five fidelity scenarios, we run
the solvers with 96× 96 and 128× 128 meshes as the two
additional fidelity levels. The heat equation has an input
dimension of 3, corresponding to the thermal diffusivity
coefficient and boundary conditions at the two edges. The
Poisson’s equation has an input dimension of 5, correspond-
ing to the 4 boundary conditions and the magnitude of flow
at the centered point source.

Fluid Simulation. This task simulates the dynamics of a
circular smoke cloud propelled by an inflow force within a
50× 50 grid. The spatial-temporal solution field is derived
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Task (Full) DMF NARGP MFHNP D-MFD SF-NP MFRNP

Heat 2 0.138 ± 4.0e-8 0.31±2.12e-6 0.026±4.01e-5 0.015±1.42e-5 0.308±6.38e-05 0.005±3.27e-4
Heat 3 0.137±1.23e-7 0.309±3.46e-6 0.111±4.82e-6 0.108±4.85e-8 0.307±8.62e-05 0.0039±2.94e-4
Heat 5 0.135±2.55e-4 0.306±1.14e-4 0.115±1.22e-2 0.106±1e-4 0.306±6.90e-05 0.0045±2.94e-4
Poisson 2 0.107 ± 6.58e-5 0.585±9.84e-5 0.093±2.55e-4 0.07 ±2.99e-4 0.575±1.39e-04 0.0076±7.49e-4
Poisson 3 0.121±1.47e-5 0.58 ±1.02e-4 0.335±2.37e-5 0.101±1.81e-4 0.572±1.95e-04 0.0073±5.25e-4
Poisson 5 0.101±2.24e-3 0.571±1.29e-4 0.299±8.84e-3 0.279±3.35e-3 0.571±1.82e-04 0.0046±1.2e-4
Fluid 0.275±4.59e-7 0.353±9.28e-4 0.234±4.82e-6 0.207±1.31e-5 0.383±5.53e-05 0.129±8.19e-4

Table 1. Performance (nRMSE) comparison of 6 different models applied to the Heat and Poisson simulators with two, three, five fidelities
and fluid simulation with Navier-Stokes equation with two fidelities. The full setting means same domain coverage of Dtrain

K and Dtest
K .

Task (OOD) DMF NARGP MFHNP D-MFD SF-NP MFRNP

Heat 2 0.168±1.36e-4 0.313±1.30e-4 0.033±1.37e-2 0.213±1.65e-3 0.312±1.14e-04 0.005±1.33e-4
Heat 3 0.163±6.04e-4 0.309±5.00e-4 0.143±5.88e-3 0.141±4.94e-3 0.310±7.03e-05 0.004±3.82e-4
Heat 5 0.187±8.60e-4 0.308±1.05e-4 0.15±2.72e-3 0.145±2.87e-3 0.308±5.25e-05 0.012±1.05e-2
Poisson 2 0.183±6.85e-4 0.749±1.47e-5 0.103±2.03e-2 0.214±4.28e-2 0.749±1.79e-03 0.017±2.72e-3
Poisson 3 0.186±8.06e-4 0.744±8.24e-5 0.189±1.14e-2 0.2±1e-2 0.745±7.62e-04 0.018±1.27e-3
Poisson 5 0.16±4.47e-4 0.743±3.07e-4 0.399±1.07e-2 0.375±8.56e-3 0.744±1.85e-03 0.013±2.76e-4

Table 2. Performance (nRMSE) comparison of 6 different models applied to the Heat and Poisson simulators with two, three, five fidelities.
The OOD setting here indicates Dtest

K is OOD w.r.t the training domain at fidelity K.

through the application of the incompressible Navier-Stokes
equations and the Boussinesq approximation (Holl et al.,
2020; Chorin, 1968). Initiated with the introduction of an
incompressible static smoke cloud of radius 5 at the lower
center of the grid, a persistent inflow force is subsequently
applied at the center of the cloud. The input parameters
encompass two variables governing the magnitude of the
inflow force along the x and y directions. The output is the
initial component of the velocity field following a temporal
evolution of 30 steps with the inflow force. The simulation
generates low-fidelity ground-truth with 32× 32 mesh, and
high-fidelity with 64× 64 mesh.

Climate Modeling: Earth Surface Temperature. In this
task, we take one step further from previous works in Sec-
tion 4 with multi-fidelity surrogate modeling to directly
learn the mapping from climate drivers (Watson-Parris et al.,
2022) to the observation-calibrated ERA5-reanalysis data
(Hersbach et al., 2020), together with 13 low-resolution com-
putational climate model predictions from the ScenarioMIP
project(O’Neill et al., 2016) at global scale. We provide
details about the computational models used in Appendix
A.1. We group these climate data into 9 fidelities based
on their original resolutions. The fidelity dimensions are:
144 × 192, 160 × 320, 192 × 288, 180 × 288, 120 × 180,
143× 144, 80× 96, 192× 384 and 721× 1440 at the high-
est fidelity level, representing air temperature at 2 meters
above the earth surface. The climate drivers as inputs here

consists of 12 variables representing the total emission of
greenhouse gases (CO2, CH4) and aerosol gases (BC, SO2)
from year 1850 to 2015. Each of the aerosol gas is split
into 5 signals via principal component analysis (Wold et al.,
1987; Watson-Parris et al., 2022). For years after 2015, we
test 4 hypothetical global gas emission scenarios: ssp126,
ssp245, ssp370, ssp585. Larger numbers correspond to
more total gas emissions, leading to more severe climate
change. Ssp126 represents the condition in which future gas
emissions are well controlled and gradually decrease. This
scenario makes the gas emission data as input to have similar
domain coverage as of training data. Whereas in the other
three scenarios, future gas emissions would keep increasing,
introducing out-of-distribution inputs at the highest fidelity.

5.2. Experiment Setup

We implement MFRNP with PyTorch (Paszke et al., 2019)
and compare the average nRMSE in three random runs with
following baselines. Details are provided in Appendix A.3.

• SF-NP. The naive single-fidelity neural process trained
on the highest fidelity data, as the lower performance
bound for multi-fidelity modeling.

• DMF(Li et al., 2021) performs multi-fidelity learning
based on a multi neural network (NN) structure. Each
NN corresponds to one fidelity and the NN on the next
fidelity adapts the latent output from the NN at current
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Figure 2. Perfect model test performance for climate modeling task. Measured in latitude-weighted nRMSE. MFRNP outperforms other
models in 3 out of the 4 scenarios and maintains consistent performance across all the scenarios from year 2015 ∼ 2100.

fidelity to propagate information.

• NARGP(Perdikaris et al., 2017) utilizes multi-fidelity
Gaussian Processes by sequentially train Gaussian Pro-
cesses from low to high fidelity levels under the as-
sumption of a nested input domain.

• MFHNP(Wu et al., 2022) learns distribution over func-
tions at each fidelity level with a latent variable. They
designed a hierarchical structure of the latent variables
from low to high fidelity levels to pass information.

• D-MFD(Wu et al., 2023) tackles the error propagation
problem in MFHNP and the inter-fidelity NN overfit-
ting problem in DMF by introducing local and global
latent representations at each fidelity.

PDEs Setup. For PDE tasks, we consider two data com-
position scenarios.

• In-distribution (Full) Scenario. In this setting, the
training set Dtrain and testing set Dtest at each fidelity
level have the same coverage on dataset domain D.

• Out-of-distribution (OOD) Scenario. This scenario
simulates real-world conditions where the highest fi-
delity data has limited domain coverage. We evaluate
model trained using Dtrain ⊂ D at the highest fidelity
level, and test the model performance on Dtest consists

of data covering the rest of D s.t. Dtrain ∩ Dtest = ∅
and Dtrain ∪ Dtest = D.

We construct the OOD scenario with Heat and Poisson’s
equations. We did not include Fluid data because the low
fidelity mesh is not detailed enough to capture the differ-
ences between Dtrain and Dtest. Under the OOD setting,
information covering the input domain of Dtest is missing
in all the fidelities, making it impossible for models to ex-
trapolate with lower fidelity information. For Heat equation,
we test the OOD scenario of the thermal diffusivity coeffi-
cient by limiting the corresponding input parameter to cover
80% of original domain. We uniformly sample X in the
constrained domain and obtain corresponding Y with nu-
merical solver as Dtrain. Dtest is constructed with the rest
20% of original domain. Similarly, for Poisson’s equation,
we construct Dtrain and Dtest with the 80/20 coverage
split on 3 boundary conditions. Details are demonstrated in
Appendix A.2.

Climate Modeling Setup. In this task, we also compare
MFRNP with recent works in the climate science community
of downscaling global climate projections. We include deep
kernel GPs from NNGPR (Harris et al., 2023) and Gaussian
CNN from DeepSED (Baño-Medina et al., 2022). Since no
previous work simultaneously downscales while modeling
the mapping between climate drivers and scenarios, to en-
sure fair comparison under the same task, we set up a naive
extension for these methods. We first fit 13 linear surrogate
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Figure 3. Absolute residual plot (°C) between ground truth and model predictions on ERA5-reanalysis data at year 2020, with global
resolution of 721× 1440. The first row presents global view, second row focuses on smaller geographic regions. The third row shows the
latitude weighted nRMSE to measure prediction accuracy from year 2015 to 2021. MFRNP outperforms other models staring from 2017.

models with the climate drivers as input X , and the com-
putational climate model predictions as target Y . Then we
train the models in NNGPR and DeepSED to downscale the
averaged predictions from linear surrogates given X .

We use 13 ”perfect model” tests (Knutti et al., 2017) as
the performance metric. In each test, one climate model is
held out as the ground truth and we only use its historical
data (1950 ∼ 2015) for training at the highest fidelity. The
remaining 12 climate models are grouped at lower fidelity
levels based on their resolutions. We compare the average
latitude weighted nRMSE across 13 tests. Thus, we are able
to empirically measure the performance with physics based
future projections. We then include the ERA5-reanalysis
data as the highest fidelity level to measure the performance
on a refined resolution. We use year 1950 ∼ 2014 as the
highest fidelity training data and 2015 ∼ 2021 for testing.

5.3. Results

PDEs Performance. We test the performance of MFRNP
and baselines across 7 tasks under the full setting and 6
tasks under the OOD setting. Table 1 shows the full setting
performance and Table 2 shows the OOD setup performance.
Among all the tasks and settings, our model consistently
outperforms baselines by an average of ∼ 90% in nRMSE.

The results indicate that MFRNP is more efficient in utilizing
information across fidelities to generate good predictions.
Unlike other baselines for which the performance generally
gets worse as the number of fidelities increase, the perfor-
mance of MFRNP in the 5 fidelity tasks is even better than
the corresponding 2 fidelity tasks in 3 out of 4 five-fidelity

experiments. This indicates MFRNP gathers lower fidelity
information efficiently enough to outrun the increasing task
complexity in modeling Heat and Poisson’s equations.

Climate Modeling Performance. As shown in Figure 2,
for the perfect model test, MFRNP performs consistently
across all emission scenarios and outperforms other base-
lines in 3 out of the 4 scenarios. The perfect model test
empirically shows the capability of MFRNP to efficiently
aggregate information from lower fidelities and its versatil-
ity for OOD scenarios. Although CNN and Gaussian CNN
perform relatively well, they have very limited scalability
and cannot scale to the global ERA5-reanalysis dataset. We
also had memory issues running NARGP and DMF with
9 fidelities for this task. Among the baseline models that
scale to the ERA5-reanalysis dataset (MFHNP, D-MFD and
NNGPR), the performance of MFRNP is significantly better.

For the ERA5-reanalysis data, MFRNP also outperforms
other baseline models, as shown in Figure 3. Our model
keeps a consistent performance from year 2015 ∼ 2021,
while the performance of other baseline models worsens for
further future predictions. MFRNP makes a cleaner residual
plot compared to the other models. Although we can only
evaluate performance up to year 2021 due to observation
limitations, we have empirically shown the long term pre-
diction consistency of MFRNP from the perfect model test
and we expect it to further outperform other baselines for
years after 2021 with the ERA5-reanalysis data.

MFRNP has shown superior performance across various gas
emission scenarios from year 2015 to 2100 via the perfect
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model test. Together with the accurate reanalysis predic-
tions, we have demonstrated that MFRNP is not only capable
of fully exploiting lower fidelity information for reliable
predictions, but also able to provide great scalability with
consistent performance for real-world tasks.

5.4. Ablation Study

Latent Aggregation with Residual. We evaluate the im-
pact of including decoders in the information sharing step.
The same experiment settings are maintained for consistency
in the comparison. We create a variant of MFRNP, namely
MFRNP-H, for which the surrogate models for fidelity lev-
els below the highest are implemented with a hierarchical
structure that shares information via the latent space (Wu
et al., 2022). We use the surrogate output at fidelity K−1 as
the aggregated information and model the residual between
this aggregation and the highest fidelity ground truth.

Task (Full) MFRNP-H MFRNP

Heat 3 0.013±4.46e-4 0.0039±2.94e-4
Heat 5 0.013±2.76e-4 0.0045±2.94e-4
Poisson 3 0.138±6.1e-3 0.0073±5.25e-4
Poisson 5 0.184±1.77e-2 0.0046±1.2e-4

Table 3. Performance (nRMSE) comparison of MFRNP-H and
MFRNP applied to the Heat and Poisson simulators with three,
five fidelities under Full setup.

Task (OOD) MFRNP-H MFRNP

Heat 3 0.047±2.72e-4 0.004±3.82e-4
Heat 5 0.055±1.87e-4 0.012±1.05e-2
Poisson 3 0.128±1.3e-2 0.018±1.27e-3
Poisson 5 0.151±7.9e-3 0.013±2.76e-4

Table 4. Performance (nRMSE) comparison of MFRNP-H and
MFRNP applied to the Heat and Poisson simulators with three,
five fidelities under OOD setup.

Our results in Table 3 and Table 4 show that MFRNP sig-
nificantly outperforms MFRNP-H. This indicates includ-
ing decoders in the information aggregation step promotes
cross-fidelity information sharing and yields better learning
capabilities for both Full and OOD setup.

Weighted Averaging. We explore the impact of non-
uniform averaging in this study on Heat and Poisson dataset
with 5 fidelities under Full setting. We tested MFRNP with
uniform averaging for simplicity and to avoid introducing
additional hyperparameters. Intuitively, higher fidelity lev-
els should be assigned higher weights since they provide

more detailed predictions. We set the weighted average
scheme to correlate with fidelity level as following:

Aggregation =0.1× Ŷk=1 + 0.2× Ŷk=2

+ 0.3× Ŷk=3 + 0.4× Ŷk=4

(8)

Task Uniform Averaging Weighted Averaging

Heat5 0.0045±2.94e-4 0.0042±1.19e-3
Poisson5 0.0046±1.2e-4 0.0103±2.02e-3

Table 5. Comparison of Uniform Averaging and Weighted Averag-
ing on Heat5 and Poisson5 tasks, measured with nRMSE.

As shown in Table 5, for Heat5, using increasing weights
grants 6.67% performance improvement. However, for Pois-
son5, using increasing weights doubles the nRMSE. Fine
tuning the fidelity weights could potentially bring perfor-
mance improvements, but it would require dataset-specific
weight adjustments.

6. Discussion & Conclusion
In this paper, we present Multi-fidelity Residual Neural Pro-
cesses (MFRNP), a novel Neural Process-based multi-fidelity
surrogate model. MFRNP utilizes a residual modeling frame-
work, which allows MFRNP to leverage the rich input space
coverage from lower fidelities while preserving accuracy
from the highest fidelity data. Our tailored Residual-ELBO
loss promotes learning across fidelities and simultaneously
optimizes the lower fidelity decoders for accurate informa-
tion sharing. Experimental results on partial differential
equations and climate modeling demonstrate that MFRNP
outperforming state-of-the-art methods by more than 90%,
highlighting scalability, efficiency in information fusion,
and versatility of MFRNP for real-world surrogate modeling.

The limitation of MFRNP mainly lies in encoder and decoder
complexity. Due to ancestral samplings step, the inference
time is doubled. Although this additional time penalty is
small compared with the actual simulators, it is a poten-
tial concern for computationally expensive encoders and
decoders, such as neural ODEs. Moreover, uniform aver-
aging may cause loss of detailed information from lower
fidelities. For future work, we plan to address this limitation
and incorporate physics-informed structure to better model
expensive physics simulations.
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J., González-Abad, J., Cofiño, A. S., and Gutiérrez, J. M.
Downscaling multi-model climate projection ensembles
with deep learning (deepesd): contribution to cordex eur-
44. Geoscientific Model Development, 15(17):6747–6758,
2022.

Bi, D., Dix, M., Marsland, S., O’farrell, S., Sullivan, A.,
Bodman, R., Law, R., Harman, I., Srbinovsky, J., Rashid,
H. A., et al. Configuration and spin-up of access-cm2, the
new generation australian community climate and earth
system simulator coupled model. Journal of Southern
Hemisphere Earth Systems Science, 70(1):225–251, 2020.

Boucher, O., Servonnat, J., Albright, A. L., Aumont, O.,
Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony,
S., Bopp, L., et al. Presentation and evaluation of the ipsl-
cm6a-lr climate model. Journal of Advances in Modeling
Earth Systems, 12(7):e2019MS002010, 2020.

Brevault, L., Balesdent, M., and Hebbal, A. Overview
of gaussian process based multi-fidelity techniques with
variable relationship between fidelities, application to
aerospace systems. Aerospace Science and Technology,
107:106339, 2020.

Byun, Y.-H., Lim, Y.-J., Shim, S., Sung, H. M., Sun, M.,
Kim, J., Kim, B.-H., Lee, J.-H., and Moon, H. Nims-kma
kace1. 0-g model output prepared for cmip6 scenariomip.
2019.

Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino,
D., Gualdi, S., Masina, S., Scoccimarro, E., Materia, S.,
Bellucci, A., et al. Global mean climate and main patterns
of variability in the cmcc-cm2 coupled model. Journal
of Advances in Modeling Earth Systems, 11(1):185–209,
2019.

Chorin, A. J. Numerical solution of the navier-stokes equa-
tions. Mathematics of computation, 22(104):745–762,
1968.

Cutajar, K., Pullin, M., Damianou, A., Lawrence, N., and
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A. Appendix
A.1. Climate Modeling Task Dataset

We list the 13 computational climate models used here, together with the literatures. They are all included in the ScenarioMIP
project (O’Neill et al., 2016). ACCESS-CM2(Bi et al., 2020); BCC-CSM2-MR(Wu et al., 2021); CMCC-CM2-SR5(Cherchi
et al., 2019); GFDL-ESM4(Dunne et al., 2020); INM-CM5-0(Volodin, 2022); IPSL-CM6A-LR(Boucher et al., 2020); KACE-
1-0-G(Byun et al., 2019); MCM-UA-1-0(Stouffer, 2019); MRI-ESM2-0(Yukimoto et al., 2019); CESM2(Danabasoglu et al.,
2020); MPI-ESM(Gutjahr et al., 2019); NorESM2(Seland et al., 2020); UKESM1(Sellar et al., 2019).

A.2. OOD Dataset Construction

Generally, we follow the experiment setup as the full scenario. The following describes the difference in building the highest
fidelity dataset DK . For Heat equation, we uniformly sample Xtrain in the training scope: ((0,0.8),(-1,0),(0.01,0.1)) and
use numerical solver to generate the corresponding Ytrain. We then uniformly sample Xtest in the testing scope ((0.8,
1),(-1,0),(0.01,0.1)) and use numerical solver to generate Ytest.

For the Poisson’s equation, we uniformly sample Xtrain in the training scope: ((0.1, 0.74),(0.1, 0.74),(0.1, 0.74),(0.1,
0.9),(0.1, 0.9)) and use numerical solver to generate the corresponding Ytrain. We then uniformly sample Xtest in the
testing scope ((0.74, 0.9),(0.74, 0.9),(0.74, 0.9),(0.1, 0.9),(0.1, 0.9)) and use numerical solver to generate Ytest.

A.3. Experimental Setup

Metrics. We use latitude weighted nRMSE as shown in Equation 9 to measure model performance in the climate modeling
task. For PDE tasks, we use nRMSE as shown in Equation 10.

W nRMSE =

√√√√∑N
i=1

(
cos(lati)∑N
j=1

cos(latj)

N

)
∗
(

(yi−ŷi)2

N

)
std({y1:N})

(9)

nRMSE =

√∑N
i=1

(
(yi−ŷi)2

N

)
std({y1:N})

(10)

PDE task Training Configurations. For training, we use Adam optimizer (Kingma & Ba, 2014) with base learning rate
of 1e− 3. We use 10% of training data set as validation set. For Heat and Poisson’s equation, we run our model with latent
dimension and encoder/decoder dimension of 32, and run our model with maximum epoch of 50000 and patience 10000.
We use learning rate decay of 0.85 and stepsize 10000. We set the highest fidelity weight to 2 and lower fidelities to 1 in
loss calculation to focus more on optimizing toward the highest fidelity. For Poisson5, using lower fidelity weight of 0.25
further improves performance. For context-target split, we randomly select 20% ∼ 25% of training data as our context
set, the rest as our target set for each fidelity. For fluid simulation, we follow the same setup but use latent dimension and
encoder/decoder dimension of 128. We set patience to 5000 with learning rate decay of 0.01. We normalize the data before
training and measure nRMSE on the de-normalized space. For the baseline models, we follow the same setup as above. All
models are trained on NVIDIA A100 GPU with 80GB memory.

Climate Modeling Training Configurations. We follow the similar setup as above, but set the highest fidelity weight to
5, latent and hidden dimensions to 512 to incorporate more fidelities and data at higher dimensions. We do not normalize the
data before training. For the climate methods introduced from climate science community (NNGPR, CNN, CNN Gaussian),
we use their original model setup. The linear surrogates for low-resolution climate simulators are built with 4 layers with
ReLU activation. Dimensions are 12, ⌊ (lat∗lon)

128 ⌋, ⌊ (lat∗lon)
32 ⌋, ⌊ (lat∗lon)

4 ⌋. Here, (lat, lon) refers to the climate simulator
data dimensions. These models are run until convergence.

14


