
Skill Set Optimization:
Reinforcing Language Model Behavior via Transferable Skills

Kolby Nottingham 1 Bodhisattwa Prasad Majumder * 2 Bhavana Dalvi Mishra * 2

Sameer Singh 1 Peter Clark 2 Roy Fox 1

Abstract

Large language models (LLMs) have recently
been used for sequential decision making in in-
teractive environments. However, leveraging en-
vironment reward signals for continual LLM ac-
tor improvement is not straightforward. We pro-
pose Skill Set Optimization (SSO) for improv-
ing LLM actor performance through constructing
and refining sets of transferable skills. SSO con-
structs skills by extracting common subtrajecto-
ries with high rewards and generating subgoals
and instructions to represent each skill. These
skills are provided to the LLM actor in-context
to reinforce behaviors with high rewards. Then,
SSO further refines the skill set by pruning skills
that do not continue to result in high rewards.
We evaluate our method in the classic videogame
NetHack and the text environment ScienceWorld
to demonstrate SSO’s ability to optimize a set of
skills and perform in-context policy improvement.
SSO outperforms baselines by 40% in our cus-
tom NetHack task and outperforms the previous
state-of-the-art in ScienceWorld by 35%.

1. Introduction
Large Language Model (LLM) actors have been deployed
in interactive domains such as robotics (Ichter et al., 2022;
Huang et al., 2022a;b), games (Nottingham et al., 2023a;b),
and programming (Chen et al., 2022). Similar to the rein-
forcement learning (RL) setting, these domains often pro-
vide a reinforcement signal in the form of reward, task suc-
cess, or user feedback. For example, the task in Figure 1 may

1Department of Computer Science, University of California
Irvine, Irvine CA, United States 2Allen Institute for AI, Seattle
Washington, United States. * Equal contribution. Correspondence
to: Kolby Nottingham <knotting@uci.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

SSO

move chocolate to stove

Task: Measure the melting temp of chocolate.
State: You see chocolate and a stove.

State: You see a stove with chocolate.

activate stove

State: You see a stove with melted chocolate.

use thermometer on chocolate

State: The thermometer reads 40 C.

Task: Measure the melting
temp of water.

State: You see a stove
and a freezer with ice.

Melt substance:

1. Move substance
to stove

2. Activate stove

use thermometer move ice to stove

LLM Actor

LLM Actor

LLM Actor

LLM Actor LLM Actor

Figure 1: Example of a interactive text task and skill.

provide a success signal upon measuring the substance’s
temperature and intermediate rewards for completing sub-
goals such as activating the stove. However, finetuning an
LLM actor directly using a traditional RL policy gradient is
often impractical with contemporary LLMs and impossible
with black-box closed-source LLMs. Instead, we explore a
new paradigm of in-context policy improvement.

In natural language processing (NLP) tasks, in-context learn-
ing improves task performance by editing LLM inputs with
instructions (Brown et al., 2020), task examples (Wei et al.,
2021), or auxiliary tasks (Wei et al., 2022). However, in-
teractive domains require sequential decision making with
long trajectories and complex credit assignment (see Sec-
tion 3), so naively applying in-context learning techniques
generalizes poorly and does not scale well. Instead, recent
approaches for improving LLM actors construct a “mem-
ory” of knowledge about the world (Majumder et al., 2023),
skills (Wang et al., 2023a), or task insights (Shinn et al.,
2023) to use in-context for policy improvement.

1

Skill Set Optimization

Environment Interaction

Score

Sample

Generate

Extract

TrajectoryHistory

Subtrajs

0.12 + w3

0.98 + w2

0.87 + w1

Subtrajs

Reward

Similarity

Length

0.88

Beam
Search Subtrajs

Subtrajs LLM

LLM Actor

State

Action

Observed
Value

Skill

Executed
Skill

Subtrajs

Discounted
Reward

Observed
Value

+

<= Ɛ

> Ɛ

Filter

Skill
Subgoal:
1. Instruction
2. Instruction

S
k
i
l
l

S
e
t

C
o
n
s
t
r
u
c
t
i
o
n

S
k
i
l
l

S
e
t

R
e
f
i
n
e
m
e
n
t

Skill Set
Construction

Trajectory

Executed
Skills

Skill Set
Refinement

Skill Set

Skill

Retrieval

Skill Set

SSO Iteration

Figure 2: Each iteration of SSO collects a trajectory of interactions with the current LLM actor, uses this trajectory to
construct new skills and filter poorly performing skills, and updates the skill set for use in the next iteration. New skills are
constructed by extracting, scoring, and sampling sets of similar subtrajectories that are then used to generate subgoals and
instructions for skills. Skills are filtered based on the discounted future rewards observed after executing a skill.

Current approaches to constructing “memory” for LLM ac-
tors have shortcomings such as a lack of continual memory
evaluation, intermediate subgoals, and memory retrieval.
To address these shortcomings, we propose Skill Set Opti-
mization (SSO)1, a method for automatically constructing
skills for in-context policy improvement, where a skill is
composed of an initial state, a list of language instructions,
and a language subgoal. SSO takes inspiration from both
in-context learning and policy optimization to optimize a
set of skills for in-context policy improvement. Figure 2
shows how skills are constructed from past trajectories by
extracting similar subtrajectories, scoring and sampling sets
of subtrajectories that do not overlap, and finally generating
an abstract subgoal and instructions for each set of subtrajec-
tories. The constructed skill set is later refined by filtering
skills that do not lead to high future rewards when executed.
By prioritizing skills according to environment reward at
the construction and refinement steps, we identify subgoals
that have high impact on policy improvement. Additionally,
the subtrajectories’ initial states provide a reference for skill
retrieval allowing SSO to retrieve skills that are immediately
relevant. Finally, because each skill subgoal and instructions
are generated from multiple subtrajectories, the resulting
subgoals and instructions are often abstract (as in Figure 1)
and further facilitate task transfer.

We empirically demonstrate the advantage of using skills for
in-context policy improvement and evaluate SSO’s ability

1https://allenai.github.io/sso/

to rapidly adapt and transfer skill sets in two sequential
decision making domains. First, we evaluate SSO on the
text-based environment ScienceWorld (Wang et al., 2022)
and on the grid-based game NetHack (Küttler et al., 2020).
SSO achieves state-of-the-art performance on ScienceWorld,
outperforming the previously top performing CLIN agent
(Majumder et al., 2023) by an average of 35%. SSO also
outperforms baselines on our custom NetHack task by 40%
despite its low-level action space. Our analysis and ablations
show that SSO continually optimizes an LLM actor’s policy
by extracting increasingly helpful skills that maximize the
task’s reinforcement signal.

2. Related Work
2.1. In-Context Learning

Finetuning state-of-the-art LLMs can be prohibitively ex-
pensive. In-context learning utilizes an LLM’s ability to
recognize patterns by augmenting prompts to modify LLM
behavior (Brown et al., 2020; Wei et al., 2021; 2022). In-
struction tuning facilitates this by finetuning LLMs to follow
custom instructions (Brown et al., 2020). Previous work has
attempted to learn prompts that maximize performance on
a dataset (Deng et al., 2022; Zhang et al., 2023; Fernando
et al., 2023). However, to maintain interpretability, these
methods typically merely edit existing prompts. Also, they
require constant evaluation on a downstream task which is
often impractical for sequential tasks with delayed rewards.

2

https://allenai.github.io/sso/

Skill Set Optimization

2.2. LLMs for Sequential Decision Making

LLMs are popular tools for planning and high-level decision
making in robotic applications (Ichter et al., 2022; Huang
et al., 2022a;b) games (Nottingham et al., 2023a;b), pro-
gramming (Chen et al., 2022), and computer tasks (Kim
et al., 2023; Liang et al., 2023). Previous work focuses on
improved prompting and evaluation methods for LLM ac-
tors without considering approaches for continual learning.
This is partly because continual learning for LLMs via fine-
tuning is very expensive and often impractical, especially
in sequential decision making domains with long contexts
and noisy credit assignment. However, in this paper, we
leverage in-context learning for sequential decision making
to develop a powerful method for quickly adapting to and
generalizing between tasks.

2.3. LLMs with Environment Feedback

Some recent work has leveraged task success signals from
an environment for in-context policy improvement. The
Reflexion (Shinn et al., 2023), Voyager (Wang et al., 2023a),
DEPS (Wang et al., 2023b), and ADAPT (Prasad et al.,
2023) agents attempt to retry tasks or subgoals after a failure.
These methods work by prompting an LLM to reflect on
the failed attempt and suggest improvements to make on
the next attempt. However, none of these methods, with the
exception of Voyager (see below), leverage successful task
completions for learning and are not compatible with task
transfer or generalization.

This paper focuses on the problem of building a memory-
like collection of helpful information for adaptation to new
tasks and transfer between tasks. Previous work that has
pursued this research direction include the Voyager (Wang
et al., 2023a), ExpeL (Zhao et al., 2023), and CLIN (Ma-
jumder et al., 2023) agents. Voyager generates javascript
skills, self-corrects mistakes with a reflexion-like process,
and then stores all successful skills in-context. Similar to
SSO, Voyager’s skills store instructions for reaching a sub-
goal. However, Voyager’s skills are executed as code and
explore future subgoals that are yet to be reached rather
than extracting subgoals from past experience to maximize
reward. ExpeL prompts an LLM to generate or edit free-
form insights based on successful trajectories. Unlike SSO,
ExpeL does not leverage partially successful trajectories
when generating insights. CLIN generates a memory of
insights in the form “action X [may/should] be necessary
to do action Y” by prompting an LLM with past trajecto-
ries. Like SSO, CLIN does not require a past trajectory
to be successful in learning useful information, but CLIN
does not take task performance or policy improvement into
account when constructing its memory. Additionally, no
previous method continually evaluates memories based on
environment feedback like in SSO’s skill refinement step.

Most of the methods for in-context policy improvement in
this section are complementary. For example, the ExpeL
agent utilizes reflexion and fewshot trajectories in addition
to its memory of insights. However, for the sake of making
a direct comparison, our agent only uses SSO for policy im-
provement, and we choose to compare to one self-correcting
method (Reflexion), one insight method (CLIN), and few-
shot example trajectories.

3. In-Context Policy Improvement
With the increased dominance of LLMs in NLP, in-context
learning has become an essential tool for improving per-
formance on NLP tasks. Rather than doing expensive fine-
tuning on downstream tasks, in-context learning enables
significant increases in task performance just by adding
supplementary inputs to the LLM. In-context changes to
an LLM actor may be an efficient way to make continual
changes to the actor’s policy. However, previous work has
done little to explore effective methods of leveraging envi-
ronment feedback for LLM actor in-context learning.

Unlike other NLP tasks, sequential decision making in an
interactive environment requires multiple outputs from an
LLM actor in the correct sequence to generate a successful
trajectory. Sequential decision making is often represented
as a Markov Decision Process (MDP) with states s ∈ S,
actions a ∈ A, a transition propability function T : S ×
A × S ′ → [0, 1], and a reward function R : S × A → R.
In the case of an LLM actor, environment states are the text
inputs to the LLM, and the output of the LLM is executed
as an action in the environment. The objective of an LLM
actor is to model an optimal policy π(a|s) that maximizes
rewards in a trajectory τ = s0, a0, ..., sT , aT :

J(πθ) = E
τ∼πθ,T

[|τ |∑
t=0

R(st, at)

]

To avoid traditional gradient-based policy optimization tech-
niques, which can be computationally prohibitive with
LLMs or impossible with black-box LLMs, we assume
that the policy π is parameterized by text inputs θ that are
provided to the agent alongside the state s. A successful
in-context policy improvement method will identify a θ that
increases the objective J(πθ).

A straightforward adaptation of in-context learning for in-
context policy improvement would be to provide an LLM
actor with examples of successful trajectories, thus provid-
ing information to the LLM actor about the optimal policy.
However, this approach does not scale well as it results
in long context lengths and may include redundant infor-
mation or information that does not transfer well between
tasks. Instead, we develop a scalable and transferable mem-

3

Skill Set Optimization

None Fewshot Skills
0

10

20

30

40

50

60

70

Sc
or

e
Melting Temp

None Fewshot Skills

NetHack

Figure 3: Comparison between in-context skills, fewshot
trajectory examples, and no in-context information on the
Melting Temperature ScienceWorld and NetHack tasks.

ory structure for in-context policy improvement that we call
skills. Skills leverage the sequential information from trajec-
tory examples while keeping information brief and modular.
A skill is composed of an initial state for used for retrieval,
a final state used as a natural language subgoal, and a se-
quence of actions used as natural language instructions for
reaching that subgoal.

To demonstrate the difficultly of using fewshot trajectory
examples for in-context policy improvement, we compare
the use of fewshot trajectories vs. skills on ScienceWorld
(Wang et al., 2022) and NetHack (Küttler et al., 2020) do-
mains (see Section 5). For the fewshot LLM actor, we
gather 30 trajectories using an LLM actor and select the
three best trajectories to provide in-context at each step. For
the skill-based LLM actor, we use the same 30 trajectories
to create skills using SSO, and we retrieve three skills to
provide in-context at each step. Figure 3 shows how well
skills perform vs. fewshot examples for in-context policy
improvement. This is especially the case for the NetHack
domain where trajectories are longer and actions are ex-
pressed characters instead of language actions. Also, the
context for the fewshot actor was on average 5x longer than
the context for the skill-based actor. The following section
ellaborates on how we use SSO to learn and optimize a set
of skills for continual in-context policy improvement.

4. Skill Set Optimization
We propose optimizing LLM actors by providing transfer-
able skills in-context. First, we construct new skills for our
skill set from subtrajectories with high rewards to reinforce
successful behaviors. Second, we further refine the con-
structed skill set by filtering skills that do not result in high
rewards when used in subsequent trajectories. When using
skills in-context, we retrieve relevant skills to include in con-
text based on cosine similarity of skill initial states and the
current environment state. Each iteration of SSO includes

rolling out a single trajectory with the current LLM actor
and skills, constructing new skills, and filtering out skills
that did not result in positive rewards in the last trajectory.
The updated skill set is then used by the LLM actor in the
following iteration. This process is illustrated in Figure 2
and described in the following sections.

4.1. Skill Set Construction

A skill is expressed to the actor as an abstract LLM-
generated subgoal and list of instructions for reaching that
subgoal. We define a unique skill using one or more subtra-
jectories where the final states in each of the subtrajectories
are used to generate the subgoal and the actions in each sub-
trajectory are used to generate the instructions for reaching
that subgoal. Given the LLM actor’s previous trajectories,
we extract potential subtrajectories, score them using sev-
eral heuristics, sample a skill set using beam search, and
generate subgoals and instructions for each skill.

4.1.1. EXTRACT

To identify transferable skills, we extract multiple similar
subtrajectories to be used to generate each skill. The subtra-
jectories of a skill must be similar enough that a common
abstract subgoal and instructions can be generated. We esti-
mate the similarity of two subtrajectories using the average
cosine similarity of each of their state and action embed-
dings. Using multiple subtrajectories for each skill has two
important benefits: (1) the resulting skills are abstract and
more transferable, and (2) repeated similar subtrajectories
is a strong signal for identifying useful subgoals.

Enumerating every possible set of subtrajectories from an
LLM actor’s experience would be infeasible, so we only
consider pairs of subtrajectories of certain lengths ([2,5] in
our experiments) that come from different trajectories. After
each completed trajectory, we enumerate its subtrajectories
and extract the most similar subtrajectory from each of the
N previous completed trajectories, as shown in Algorithm 1.
Each of these subtrajectory pairs are considered for potential
skills, although most would not result in a useful skill.

4.1.2. SCORE

The majority of extracted subtrajectory pairs must be re-
moved from canidacy for the skill set. Pairs should be
similar enough to have common subgoal and instructions,
lead to high rewards, and have high coverage of past expe-
rience. To accomplish this, we calculate the average state
and action similarity, discounted future reward, and length
of each pair. We compute a score using a weighted sum
of these values to identify which subtrajectory pairs would
make useful skills. In our experiments, we set score weights
to w1 = 1, w2 = 0.1, and w3 = 0.01 to prioritize first
similarity, then reward, and finally length.

4

Skill Set Optimization

Algorithm 1 Extract

Require: D // N past trajectories
Require: τ // latest trajectory
Require: min,max // min and max skill length

SS ← ∅ // skill set
// iterate subtrajectories of length [min,max]
for τsub ∈ GetAllSubtraj(τ,min,max) do

for τ̂ ∈ D do
// get the most similar subtrajectory of same length
τ̂sub ← SimilarSubtraj(τsub, τ̂)
SS ← SS ∪ {(τsub, τ̂sub)}

end for
end for

4.1.3. SAMPLE

We utilize subtrajectory pair scores to conduct a beamsearch
over pairs to maximize the sum of scores. Many of the
extracted potential skills have significant overlap with each
other, so we impose a constraint on the beamsearch that
there can be no overlap of skill subtrajectories in a skill
set. We also include all subtrajectory pairs in the search
that were sampled during previous iterations of SSO. The
final sampled skill set includes unique skills that prioritize
similar, high reward, multi-step subtrajectory pairs.

4.1.4. GENERATE

Finally, the subtrajectories in each pair are summarized into
a single subgoal and list of instructions. We prompt the
actor LLM with the pair of subtrajectories and ask it to
generate “a numbered list of instructions for completing the
skill” and “a single target observation that would indicate
the success of the skill”. We also ask the LLM to remove
any semantically identical skills that may remain. Note that
this is the only step in SSO that utilizes a generative-LLM.
We found that depending on generative-LLMs for extraction
and scoring was less reliable in addition to increasing costs.

4.2. Skill Set Refinement

The previously described skill set construction prioritizes
including transferable high-reward skills the skill set. Exper-
imentally, including constructed skills in context improves
action accuracy across each subgoal in Table 1. We further
propose the following method for refining the skill set by
evaluating environment rewards after executing a skill.

To evaluate skill performance, we record the discounted
future return after executing a particular skill. Since it is not
straightforward to identify which skill is being executed at
each step, we ask the LLM actor to self-report when it is
executing a skill with the prompt “output which of the given
subgoals you are targeting next and then output the next

action to execute”. Table 1 reports correctly self-reports
skill execution about 70% of the time. Each time the LLM
actor self-reports using a skill, we compute the discounted
sum of future rewards and add this to the skill’s “observed
value”. If a skill’s observed value is ever below or equal to a
threshold ϵ (zero in our experiments), we filter that skill out
of the skill set. This process refines our skill set to include
skills that demonstrably result in high rewards. Example
code for self-refinement can be found in Appendix C.

Subgoal w/o Skill w/ Skill Self-Reporting

Fill container 0.07 0.37 0.69
Heat substance 0.04 0.22 0.68
Mix ingredients 0.30 0.36 0.71

Table 1: Action accuracy from example trajectories with and
without learned skills in-context, and LLM actor success
rate self-reporting that it is executing the provided skill.

5. Experimental Setup
5.1. Science World

We evaluate SSO’s ability to quickly adapt to and trans-
fer knowledge between tasks in the ScienceWorld domain
(Wang et al., 2022). ScienceWorld is a text-based simulator
that tests common sense and reasoning. It is organized into
various tasks with train and test variants of each. For each
of the 18 task classes listed in Figure 4, we test SSO and
baselines on 7 to 10 test variants. For example, the Melting
Temp task requires the LLM actor to measure the melting
temperature of a substance, but what that substance is and
the environment setup will be different in each variation.

We evaluate on two training modes: adaptation and transfer.
When evaluating adaptation, we allow 5 attempts on each
test variant with the ability to learn between each trial. When
evaluating transfer, we train the LLM actor on 10 training
variants for 30 episodes (3 trajectories each). After training,
we evaluate on the same test variants that we used to evaluate
adaptation. The environment provides intermediate rewards
for completing subtasks. A successfully completed task will
have a final cumulative reward, or score, of 100.

We compare with the following GPT-4 based methods:

ReAct (Yao et al., 2022) prompts an LLM actor to
reason about the task before outputting an action. All
other methods also incorporate this in their prompts.

Reflexion (Shinn et al., 2023) prompts an LLM actor
to reflect on failed task attempts and then retry the task.

CLIN (Majumder et al., 2023) reflects on past expe-
rience to learn transition information of the form “A
[may/should] be necessary to A”.

5

Skill Set Optimization

ScienceWorld Adaptation Transfer
Task ReAct Reflexion CLIN SSO CLIN SSO

Temperature 7.2 5.9 14.3 100 15.7 71.6
Melting Temp 6.1 28.6 51.8 97.3 49.7 69.2
Find Plant 26.7 64.9 100 100 59.2 100
Find Living 53.3 16.4 100 96.7 100 90
Chemistry 51 70.4 44.4 82.6 42.2 48
Color Mixing 58.9 70.7 56.7 81.1 85.6 71.1
Lifespan, Longest 61 100 100 100 65 90
Lifespan, Shortest 67.5 84.4 90 100 75 80
Life Stages, Plant 8 8 8 6.2 32 3.4
Life Stages, Animal 27.7 2.6 81 100 42.8 77
Boil 3.5 4.2 15.2 81.7 4.4 48.7
Freeze 7.8 7.8 10 74.3 8.9 38.9
Grow Plant 9.1 7.3 11 86.6 10.9 61.2
Grow Fruit 18.6 13 71.6 78 70.8 28.3
Gravity 40.5 50.6 100 100 70 74
Friction 44 100 72.5 94 70 67.5
Genetics, Known 25.7 50.9 100 78.5 84.5 42.5
Genetics, Unknown 16.8 23.7 92.6 48.7 61.4 20.3

Average 29.6 39.4 62.2 83.7 52.7 60.1
0 5 10 15 20 25 30

Iteration

30

35

40

45

50

55

Ta
sk

 S
co

re

NetHack

SSO
Reflexion
ReAct

Figure 4: We compare SSO with ReAct and Reflexion baselines in ScienceWorld and NetHack domains. We also compare
with the previous state-of-the-art for ScienceWorld, CLIN. In ScienceWorld we evaluate adaptation—attempting a single
variant five times—and transfer—learning on 10 train variants for 30 iterations before testing on the heldout test variants. In
NetHack we test task adaptation across 30 iterations.

5.2. NetHack

NetHack is a grid-based videogame that requires challeng-
ing exploration and problem solving (Küttler et al., 2020).
Unlike ScienceWorld, NetHack requires low-level naviga-
tion actions. We choose to include NetHack in our evalua-
tion because it poses a potential challenge for our method.
SSO requires aligning common sequences of states and
actions when extracting skills. However, in environments
with lower-level actions such as NetHack, dissimilar action
sequences can be used to achieve the same subgoal. Addi-
tionally, NetHack uses character-based actions instead of
natural language (“k” moves the player north and “,” picks
up an item). Despite this, SSO is able to successfully learn
helpful skills in NetHack.

We utilize the MiniHack library (Samvelyan et al., 2021) to
design a custom level that tests an LLM actor’s ability to
explore and learn several skills to complete a task. Figure 4
shows the layout of our custom task. The LLM actor must
pick up and use a key to unlock a door, pick up and use
an item to begin levitating, and safely cross the lava to the
goal. The task provides intermediate rewards for achieving
each subgoal. As in ScienceWorld, task completion results
in a score of 100. Starting locations of the actor, items, and
staircase are randomized in each episode so that SSO cannot
learn memorized paths between subgoals. Also, the item
that is used to levitate may be a potion or a magic ring, each
of which requires different actions to activate.

In our custom NetHack task, we compare SSO with ReAct
and Reflexion baselines. We omit CLIN for this task because
CLIN was specifically designed for ScienceWorld and reim-
plementing CLIN for a new domain would be non-trivial.
Similar to adaptation on ScienceWorld, we allow Reflexion
and SSO to adapt to our NetHack task. However, unlike the
adaptation setup in ScienceWorld, we run these methods for
30 iterations and evaluate every 10 iterations by attempting
the task 10 times with a frozen set of skills/reflections. All
LLM actors for NetHack utilize GPT-4-Turbo instead of
GPT-4 to save on costs, but we found performance between
the two LLMs to be similar.

6. Experimental Results
In both ScienceWorld and NetHack domains, SSO provides
large performance gains by informing the LLM actor about
potential subgoals and how to accomplish them. Figure
4 reports SSO’s state-of-the-art performance for both task
adaptation and transfer in ScienceWorld as well as SSO’s
superior performance and continual learning ability when
compared with ReAct and Reflexion baselines in NetHack.
Error bars for NetHack show standard error across five train-
ing runs. We do not provide standard error for ScienceWorld
because the large number of tasks and expensive GPT-4
actor limited our computational budget. In the following
sections, we analyze what makes SSO successful.

6

Skill Set Optimization

0 5 10 15 20
Iteration

10

20

30

Sk
ill

Se
t S

ize

ScienceWorld NetHack

0 5 10 15 20
Iteration

2

3

4

Ex
ec

ut
ed

 S
ki

lls

0 5 10 15 20
Iteration

30

40

50

60

70

Ta
sk

 S
co

re

Skill Statistics

Figure 5: Skill Set statistics for ScienceWorld and NetHack during training. Skill set size measures the number of skills
created minus those that were pruned during refinement. Executed skills is the average number of unique skills executed in a
trajectory as reported by the LLM actor. Finally, the average task score is reported throughout training.

6.1. Skill Analysis

Figure 5 reports several skill statistics throughout SSO train-
ing. SSO continuously increases the size of its skill set
during training, and the rate of constructing new skills de-
creases as the skill set increases in experience coverage. In
our experiments, we retrieve up to three skills to include
in-context at each step, but much fewer than this are self-
reported as “executed” during the trajectory. Despite this,
our experience suggests that even unreported skills improve
LLM actor performance. Also, the number of skills be-
ing executed per trajectory steadily increases, suggesting
that learned skills become more useful throughout training.
Finally, the subtrajectories used to create skills have an aver-
age length of 2.64 and 2.95 for ScienceWorld and NetHack
respectively. Remember that we limit subtrajectory length
to [2, 5] in our experiments. The length of generated instruc-
tions is slightly longer at 3.18 and 3.27 respectively.

ScienceWorld Melting Temp Task

Subgoal: The stove is turned on. on the stove is:
a substance called liquid [substance].

1. Focus on the thermometer
2. Focus on the substance you want to heat
3. Move the focused substance to the stove
4. Activate the stove

NetHack Task

Subgoal: You succeed in unlocking the door.
1. Stand adjacent to the closed door that

needs to be unlocked
2. Use the action ’a’ to apply the relevant

key or tool that can unlock the door
3. Confirm the unlock action by responding

affirmatively when prompted, typically
by using the action ’y’

Table 2: Example generated skills.

Qualitatively, we found that SSO was especially helpful
with less intuitive aspects of the action space. For example,
the ScienceWorld Melting Temperature task requires using
the focus action on the thermometer and substance before
attempting to melt it, and NetHack requires using the apply
action on a key to unlock a nearby door. Humans can quickly
adapt to unintuitive domain specific requirements after a few
tries, but we found that the unaltered LLM actors often got
stuck in situations where actions were unintuitive outputting
text such as “I apologize for the confusion. I am trying to...”
before attempting the invalid action again. However, skills
generated by SSO, such as those in Table 2, allow the actor
to reliably pass bottlenecks and continue to explore the next
steps of the task.

We hypothesize that SSO continually optimizes the LLM ac-
tor’s policy by iteratively creating better skills and gathering
better data. We look for evidence of this by visualizing the
skill lifecycle in Figure 6. Each row of the figure represents
the skills that were created in the corresponding iteration
of SSO and when those skills were executed during train-
ing. The densities in the figure are normalized by the total
number of skills, so the the density width indicates both
how many skills were created in that iteration and in which
iterations they were executed.

Figure 6 shows that skill set refinement prunes most skills
shortly after they are created. Also, while skills from the
initial iterations are used for longer, the LLM actor tends to
use skills that were created more recently, suggesting that
more useful skills are discovered later in training. This is
further supported by visualizing when certain actions first
appear in skills, as shown by the icons in Figure 6. Note that
the icons indicate when a skill first appears, but improved
versions of that same skill may be created in later iterations.
In general, actions that are required later in a trajectory are
included in skills later in training.

7

Skill Set Optimization

5 10 15 20 25 30
Executed Iteration

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29

Cr
ea

te
d

Ite
ra

tio
n

"go to kitchen"
first appears in a
Melting Temp skill

"activate stove"
first appears in a
Melting Temp skill

ScienceWorld

5 10 15 20 25 30
Executed Iteration

"pick up key" first
appears in a skill

"open door" first
appears in a skill

NetHack

Figure 6: Visualization of the lifecycle of SSO skills. For every skill created in an iteration of SSO, the corresponding row
shows when that iteration’s skills were executed throughout training. Most skills are pruned soon after creation and replaced
with improved skills. The icons in the figure indicate when skills with the corresponding actions were first created.

ReAct SSO

w/o Refine

w/o Reward

w/o Similarity
0

10

20

30

40

50

60

70

Sc
or

e

Melting Temp

ReAct SSO

w/o Refine

w/o Reward

w/o Similarity

NetHack

Figure 7: SSO ablations with and without refinement, re-
ward weight during scoring, and similarity-based extraction.

6.2. Ablations

We compare SSO to several ablations on ScienceWorld’s
Melting Temperature task and the NetHack task. First, we
ablate the skill refinement method described in Section 4.2
and do not ever prune the skill set. Next, we ablate the use
of task reward in scoring skills for sampling by reducing
the corresponding score weight to zero. Finally, we ablate
similarity-based extraction and instead use the three steps
before every environment reward to generate skills.

Figure 7 shows that each of these ablations decreases the per-
formance of SSO but still regularly outperform the baseline.
Skill set refinement appears to be slightly more impactful
than environment rewards and extracting pairs of similar
subtrajectories. Using similarity as an extraction method
appears less impactful than simply using environment re-
wards. However, including similarity-based extraction still
contributes to SSO by automatically determining the start
and end states for high-reward subtrajectories.

7. Discussion & Conclusion
Skill Set Optimization (SSO) is a new in-context policy op-
timization method that allows LLM actors to quickly adapt
to and transfer between tasks. SSO achieves state-of-the-art
results in the ScienceWorld domain and outperforms all ex-
perimented baselines on our custom NetHack task. Every
iteration, SSO constructs commonly executed high-reward
skills to add to the skill set and filters out poorly performing
skills. Unlike previous work, SSO utilizes ongoing envi-
ronment feedback to evaluate and prune skills, leverages
intermediate rewards to identify subgoals, facilitates skill
retrieval, and learns abstract transferable skills.

One limitation of SSO is the current similarity metric used
for extracting potential skills. State and action embedding
similarity may be less effective in environments with dis-
tracting state information or low-level actions. Also, al-
though SSO is capable of operating in environments without
intermediate rewards, for best performance task designers
must include intermediate subgoal rewards in the environ-
ment feedback. Fortunately, this is a common paradigm for
sequential decision making. Finally, SSO on its own does
not include a method for leveraging negative environment
feedback outside skill set refinement, but a method such as
Reflexion (Shinn et al., 2023) can easily be used in addition
to SSO to provide this feature. We provide these limitations
as potential inspiration for future work.

We believe that SSO takes a significant step towards reli-
able in-context policy optimization methods for LLM actors.
SSO manages this while being a general purpose solution,
not limited by specific output formats (Wang et al., 2023a),
and capable of operating in scenarios with (Zhao et al., 2023)
or without (Majumder et al., 2023) environment reinforce-
ment signals. We hope SSO inspires continued research
in improving the effectiveness and learning efficiency of
continual learning for LLM actors.

8

Skill Set Optimization

Impact Statement
This work aims to improve the ability of deployed LLMs
to continually adapt and transfer knowledge between tasks
without retraining. This research direction has the potential
to improve many state-of-the-art LLM applications, but does
not alter any of their fundamental limitations.

Acknowledgements
We would like to thank the Aristo team at the Allen Institute
for Artificial Intelligence for their discussions and feedback.
This work was funded in part by the DARPA ANSR program
under award FA8750-23-2-0004.

References
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Chen, B., Zhang, F., Nguyen, A., Zan, D., Lin, Z., Lou,
J.-G., and Chen, W. Codet: Code generation with gener-
ated tests. In The Eleventh International Conference on
Learning Representations, 2022.

Deng, M., Wang, J., Hsieh, C.-P., Wang, Y., Guo, H., Shu, T.,
Song, M., Xing, E., and Hu, Z. RLPrompt: Optimizing
discrete text prompts with reinforcement learning. In Pro-
ceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pp. 3369–3391, Abu
Dhabi, United Arab Emirates, December 2022. Associ-
ation for Computational Linguistics. URL https://
aclanthology.org/2022.emnlp-main.222.

Fernando, C., Banarse, D., Michalewski, H., Osindero,
S., and Rocktäschel, T. Promptbreeder: Self-referential
self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting ac-
tionable knowledge for embodied agents. In Interna-

tional Conference on Machine Learning, pp. 9118–9147.
PMLR, 2022a.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence,
P., Zeng, A., Tompson, J., Mordatch, I., Chebotar, Y., et al.
Inner monologue: Embodied reasoning through planning
with language models. In 6th Annual Conference on
Robot Learning, 2022b.

Ichter, B., Brohan, A., Chebotar, Y., Finn, C., Hausman,
K., Herzog, A., Ho, D., Ibarz, J., Irpan, A., Jang, E.,
Julian, R., Kalashnikov, D., Levine, S., Lu, Y., Parada,
C., Rao, K., Sermanet, P., Toshev, A. T., Vanhoucke,
V., Xia, F., Xiao, T., Xu, P., Yan, M., Brown, N., Ahn,
M., Cortes, O., Sievers, N., Tan, C., Xu, S., Reyes, D.,
Rettinghouse, J., Quiambao, J., Pastor, P., Luu, L., Lee,
K.-H., Kuang, Y., Jesmonth, S., Jeffrey, K., Ruano, R. J.,
Hsu, J., Gopalakrishnan, K., David, B., Zeng, A., and Fu,
C. K. Do as i can, not as i say: Grounding language in
robotic affordances. In 6th Annual Conference on Robot
Learning, 2022. URL https://openreview.net/
forum?id=bdHkMjBJG_w.

Kim, G., Baldi, P., and McAleer, S. Language models can
solve computer tasks. arXiv preprint arXiv:2303.17491,
2023.

Küttler, H., Nardelli, N., Miller, A., Raileanu, R., Selvatici,
M., Grefenstette, E., and Rocktäschel, T. The nethack
learning environment. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 7671–7684. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
569ff987c643b4bedf504efda8f786c2-Paper.
pdf.

Liang, Y., Wu, C., Song, T., Wu, W., Xia, Y., Liu, Y., Ou, Y.,
Lu, S., Ji, L., Mao, S., et al. Taskmatrix. ai: Completing
tasks by connecting foundation models with millions of
apis. arXiv preprint arXiv:2303.16434, 2023.

Majumder, B. P., Mishra, B. D., Jansen, P., Tafjord, O.,
Tandon, N., Zhang, L., Callison-Burch, C., and Clark,
P. Clin: A continually learning language agent for
rapid task adaptation and generalization. arXiv preprint
arXiv:2310.10134, 2023.

Nottingham, K., Ammanabrolu, P., Suhr, A., Choi,
Y., Hajishirzi, H., Singh, S., and Fox, R. Do em-
bodied agents dream of pixelated sheep? embodied
decision making using language guided world mod-
elling. In Proceedings of the 40th International
Conference on Machine Learning, 2023a. URL
https://proceedings.mlr.press/v202/
nottingham23a/nottingham23a.pdf.

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2022.emnlp-main.222
https://aclanthology.org/2022.emnlp-main.222
https://openreview.net/forum?id=bdHkMjBJG_w
https://openreview.net/forum?id=bdHkMjBJG_w
https://proceedings.neurips.cc/paper_files/paper/2020/file/569ff987c643b4bedf504efda8f786c2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/569ff987c643b4bedf504efda8f786c2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/569ff987c643b4bedf504efda8f786c2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/569ff987c643b4bedf504efda8f786c2-Paper.pdf
https://proceedings.mlr.press/v202/nottingham23a/nottingham23a.pdf
https://proceedings.mlr.press/v202/nottingham23a/nottingham23a.pdf

Skill Set Optimization

Nottingham, K., Razeghi, Y., Kim, K., Lanier, J., Baldi,
P., Fox, R., and Singh, S. Selective perception: Learn-
ing concise state descriptions for language model actors.
In NeurIPS 2023 Foundation Models for Decision Mak-
ing Workshop, 2023b. URL https://openreview.
net/pdf?id=siFopuPuCS.

Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal,
A., Bansal, M., and Khot, T. Adapt: As-needed decompo-
sition and planning with language models. arXiv preprint
arXiv:2311.05772, 2023.

Samvelyan, M., Kirk, R., Kurin, V., Parker-Holder, J., Jiang,
M., Hambro, E., Petroni, F., Kuttler, H., Grefenstette,
E., and Rocktäschel, T. Minihack the planet: A sand-
box for open-ended reinforcement learning research. In
Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 1),
2021.

Shinn, N., Labash, B., and Gopinath, A. Reflexion: an au-
tonomous agent with dynamic memory and self-reflection.
arXiv preprint arXiv:2303.11366, 2023.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Wang, R., Jansen, P., Côté, M.-A., and Ammanabrolu, P.
Scienceworld: Is your agent smarter than a 5th grader?
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 11279–
11298, 2022.

Wang, Z., Cai, S., Chen, G., Liu, A., Ma, X., and Liang, Y.
Describe, explain, plan and select: interactive planning
with llms enables open-world multi-task agents. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023b.

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned lan-
guage models are zero-shot learners. In International
Conference on Learning Representations, 2021.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K. R., and Cao, Y. React: Synergizing reasoning and
acting in language models. In The Eleventh International
Conference on Learning Representations, 2022.

Zhang, T., Wang, X., Zhou, D., Schuurmans, D., and Gonza-
lez, J. E. Tempera: Test-time prompt editing via reinforce-
ment learning. In The Eleventh International Conference
on Learning Representations, 2023.

Zhao, A., Huang, D., Xu, Q., Lin, M., Liu, Y.-J., and Huang,
G. Expel: Llm agents are experiential learners. arXiv
preprint arXiv:2308.10144, 2023.

10

https://openreview.net/pdf?id=siFopuPuCS
https://openreview.net/pdf?id=siFopuPuCS

Skill Set Optimization

A. Models and Hyperparameters
All of our ScienceWorld experiments were completed with OpenAI’s gpt-4-0613, and our NetHack experiments
were completed with gpt-4-1106-preview. We used text-embedding-ada-002 as the embedding model
for all similarity metrics. Table 3 shows the hyperparameters we used in all of our experiments. We found that these
hyperparameters we robust and worked well in all of our experiments on both domains. However, we expect that the
parameters regulating skill length and number of retrieved skills may need to be adjusted in domains with skills that operate
at a different granularity.

Parameter Value

Max skill length 5
Min skill length 2
Adaptation training episodes 5
Transfer training episodes 30
Sampling temp (train) 0.7
Sampling temp (test) 0.0
Max retrieved skills 3
Skill refinement threshold 0
Skill length score weight 0.01
Reward score weight 0.1
State similarity score weight 1.0
Action similarity score weight 1.0

Table 3: Skill Set Optimization hyperparameters.

B. Prompts and Examples
Below we detail the prompts used for our LLM actor and generating skills. All prompts are the same across domains besides
task, state, and admissible action descriptions. Text marked with <> indicate where variable text is inserted. We also include
example skills in Tables 4 and 5 and corresponding subtrajectories in Tables 6 and 7.

B.1. LLM Actor Prompt

You are playing a text-based game in which you must interact with your
surroundings to complete a task. You will occasionally be given posisible
subgoals. You may choose to target one of these subgoals or ignore them.

<task description>

Given the state, reflect on what has happened so far, explain your plan to
accomplish the task, output which of the given subgoals you are targeting next
(match one of the subgoals in the prompt word for word or output "none"), and
then output the next action to execute (use one of the action templates below).

For example:
The last action had the effect of... To accomplish the task, I will need to...
Current subgoal: [subgoal]
Next action: [action]

<admissible actions>

The following instructions contain potentially useful information about
reaching subgoals:

11

Skill Set Optimization

Instructions for reaching the subgoal <skill subgoal>:
1. <skill instruction>
2. <skill instruction>

Instructions for reaching the subgoal <skill subgoal>:
1. <skill instruction>
2. <skill instruction>

<state description>

B.2. Skill Generation Prompt

You are an expert planning system. You are creating reusable skills to execute
when completing various tasks. You create skills by looking at successful
examples of task completions. A skill is composed of a list of instructions and
a target state. After creating a skill, it will be used to execute actions in
an environment. The environment will return a set of observations that
summarize the new environment state. These observations will be used in
conjunction with the skill’s target state to determine whether the last skill
was successful.

Consider the example trajectories of states and actions below. You’ll be asked
to analyze the similarities between each. Pay attention to the wording of the
state observations and actions. Then you’ll be asked to generate the common
instructions, and target state for them.

Example 1:
<subtrajectory>

Example 2:
<subtrajectory>

Generate a summary of what is happening in the examples above and the
similarities between them. Provide a name for the skill that is being executed
in the examples above. Do not generate skill instructions or target yet.

<LLM output, unused>

Generate a numbered list of instructions for completing the skill. The
instructions should be similar to the actions in the examples. Instructions
should use the action templates provided below. Create generic instructions
that would be valid for every example but specific enough to be useful in the
examples. Do not mention the examples in the instructions. Use the output
format:
Skill [skill name] instructions:
1. instruction 1
2. instruction 2
...

Action templates: <admissible actions>

<LLM output, skill instructions>

Generate a single target observation that would indicate the success of the

12

Skill Set Optimization

skill. The target should be similar to one of the observations in the final
states. Create a generic target that would be valid for every example. Do not
mention the examples in the target. Use the output format:
Skill [skill name] target: [target observation]

<LLM output, skill subgoal>

13

Skill Set Optimization

C. SSO Code
We include the following python code as a high-level overview of SSO. However, the complete codebase is available at
https://github.com/allenai/sso.

def train(env, agent, skillset, iterations=30):
for _ in range(iterations):

state = env.reset()
trajectory = []
done = False
while not done:

skills = skillset.retrieve(state)
executed_skill, action = agent.act(state, skills)
next_state, reward, done = env.step(action)

trajectory.append((state, action, executed_skill, reward))
state = next_state

skillset = construct(skillset, trajectory)
skillset = refine(skillset, trajectory)

def construct(skillset, trajectory, N=10, min=2, max=5, weights=[1, .1, .01]):
Extract sets of similar subtrajectories
skillset.trajectories.append(trajectory)
subtraj_sets = extract(skillset.trajectories[-N:], min, max)

Score sets of subtrajectories according to similarity, reward, and length
scored_subtraj_sets = score(scored_subtraj_sets, weights)

Sample sets of subtrajectories according to score without overlapping
sampled_subtraj_sets = sample(scored_subtraj_sets)

Generate skills from sets of subtrajectories
new_skills = generate(sampled_subtraj_sets)

skillset.skills.update(new_skills)
return skillset

def refine(skillset, trajectory, gamma=.9, epsilon=0):
for t in range(len(trajectory)):

state, action, executed_skill, reward = trajectory[t]

if executed_skill:
discounted_reward = sum(

trajectory[t+i][3] * gamma ** i
for i in range(len(trajectory)-t)

)
skillset.observed_values[executed_skill] += discounted_reward

if skillset.observed_values[executed_skill] <= epsilon:
skillset.skills.remove(executed_skill)

return skillset

14

https://github.com/allenai/sso

Skill Set Optimization

Created
Iter

Executed
Count

Observed
Value

Subgoal Instructions

3 19 2.25 you focus on the thermometer 1. wait
2. focus on thermometer

5 22 5.06 you move to the kitchen 1. go hallway
2. go kitchen

11 6 1.28 the stove is turned on. on the stove is: a
substance called liquid [substance]

1. focus on the thermometer
2. focus on the substance you want to heat
3. move the focused substance to the stove
4. activate the stove

11 9 0.37 “it’s not clear how to read that.”

1. if the thermometer is not already on the
stove, move thermometer to stove
2. focus on the thermometer
3. attempt to read the thermometer
4. wait

13 1 0.65 you focus on the thermometer
1. if the stove is not activated, activate stove
2. move the object (if any) to the stove
3. focus on thermometer

24 1 0.66 successfully read the thermometer 1. focus on thermometer
2. read thermometer

Table 4: Top six learned skills for the Melting Temperature ScienceWorld task according to observed value at the end of
training.

Created
Iter

Executed
Count

Observed
Value

Subgoal Instructions

9 2 0.20 you succeed in unlocking the
door

1. a: apply/use item (choose key from the inventory)
2. k: move north (to indicate the direction of the door
to unlock)
3. y: confirm action (to unlock the door when prompted)

10 2 0.15 you have a key named the mas-
ter key of thievery

1. u: move northeast towards the key
2. ,: pick up the key at the current location

16 1 0.31 you see an open door very near
northwest

1. press ’o’ to initiate the open door action
2. press ’y’ to specify the northwest direction for the
open door action

20 2 0.26 the door opens, or you unlock
the door

1. o - open door
2. y - move or target northwest direction when prompted
for direction after attempting to open a door
3. a - apply/use item from inventory
4. g - choose the key for application when prompted
for the item to use (assuming ’g’ correlates to the
key in the inventory list)
5. y - move or target northwest direction when prompted
for direction after selecting the key to apply

23 2 0.18 the door is open

1. correctly orient towards the door if not already facing it
2. use ’o’ to attempt to open the door
3. if the door does not open and is locked, use ’a’ to apply
the key or lock pick to the door

25 3 0.29 you have a key named the mas-
ter key of thievery

1. move to the location of the key if not already adjacent
(using k, l, j, h, y, u, b, or n as appropriate)
2. identify the key at the current location (’y’ to move
northwest if the key is northwest of the agent)
3. pick up the key at the current location (’,’)

Table 5: Top six learned skills for the NetHack task according to observed value at the end of training.

15

Skill Set Optimization

Subtraj 1 Subtraj 2
Initial State:
This room is called the art studio. In it, you see:; the
agent; a substance called air; a large cupboard. The
large cupboard door is closed.; a table. On the table
is: a jug (containing nothing).; a wood cup (containing
yellow paint); a wood cup (containing red paint); a wood
cup (containing blue paint); You also see: A door to the
hallway (that is open); In your inventory, you see: an
orange

Trajectory:
Action: go hallway
Observation: You move to the hallway
Action: focus go kitchen
Observation: You move to the kitchen

Final State:
You move to the kitchen.; This room is called the
kitchen. In it, you see:; the agent; a substance called
air; a ceramic cup (containing a substance called lead);
a chair. On the chair is: nothing.; a counter. On the
counter is: a bowl (containing a red apple, a banana, an
orange, a potato), a drawer.; a cupboard. The cupboard
door is closed.; a freezer. The freezer door is closed.; a
fridge. The fridge door is closed.; a glass jar (containing
a substance called sodium chloride); a lighter; a orange
box (containing nothing); a oven, which is turned off.
The oven door is closed.; a painting; a sink, which is
turned off. In the sink is: nothing.; a substance called
soap; a stopwatch, which is deactivated.; a stove, which
is turned off. On the stove is: nothing.; a table. On
the table is: a glass cup (containing nothing).; a ther-
mometer, currently reading a temperature of 10 degrees
celsius; a yellow box (containing nothing); You also
see: A door to the bathroom (that is open), A door to
the hallway (that is open), A door to the outside (that is
open); In your inventory, you see: an orange

Initial State:
This room is called the greenhouse. In it, you see:; the
agent; a substance called air; a bee hive. The bee hive
door is closed.; a jug (containing nothing); a shovel; a
sink, which is turned off. In the sink is: nothing.; You
also see: A door to the hallway (that is open), A door to
the outside (that is open); In your inventory, you see: an
orange

Trajectory:
Action: go hallway
Observation: You move to the hallway
Action: focus go kitchen
Observation: You move to the kitchen

Final State:
You move to the kitchen.; This room is called the
kitchen. In it, you see:; the agent; a substance called
air; a chair. On the chair is: nothing.; a counter. On the
counter is: a bowl (containing a red apple, a banana, an
orange, a potato), a drawer.; a cupboard. The cupboard
door is closed.; a freezer. The freezer door is closed.; a
fridge. The fridge door is closed.; a glass jar (containing
a substance called sodium chloride); a lighter; a orange
box (containing nothing); a oven, which is turned off.
The oven door is closed.; a painting; a plastic cup (con-
taining a substance called gallium); a sink, which is
turned off. In the sink is: nothing.; a substance called
soap; a stopwatch, which is deactivated.; a stove, which
is turned off. On the stove is: nothing.; a table. On
the table is: a glass cup (containing nothing).; a ther-
mometer, currently reading a temperature of 10 degrees
celsius; a yellow box (containing nothing); You also
see: A door to the bathroom (that is open), A door to
the hallway (that is open), A door to the outside (that is
open); In your inventory, you see: an orange

Table 6: Subtrajectories used to generate the “you move to the kitchen” skill described in Table 4.

16

Skill Set Optimization

Subtraj 1 Subtraj 2

Initial State:
You have a +0 short sword (weapon in hand). You
have 15 +0 daggers (alternate weapon; not wielded).
You have an uncursed +1 leather armor (being worn).
You have an uncursed potion of sickness. You have an
uncursed lock pick. You have an empty uncursed sack.
You see a vertical wall far east. You see a horizontal
wall near north and northeast. You see a area of lava
near northeast. You see a stairs down near northeast.
You see a vertical wall near west. You see a horizontal
closed door near northwest. You see a dark area near
northwest. You see a lava very near northeast, northeast,
and east. You see a horizontal wall adjacent southeast,
south, and southwest. You see a key adjacent northwest.
Hello Agent, welcome to NetHack! You are a chaotic
male human Rogue.

Trajectory:
Action: y
Observation: You see here a key named The Master Key
of Thievery
Action: ,
Observation: g - a key named The Master Key of Thiev-
ery

Final State:
You have a +0 short sword (weapon in hand). You
have 15 +0 daggers (alternate weapon; not wielded).
You have an uncursed +1 leather armor (being worn).
You have an uncursed potion of sickness. You have an
uncursed lock pick. You have an empty uncursed sack.
You have a key named The Master Key of Thievery. You
see a vertical wall far east. You see a horizontal wall
near north and northeast. You see a lava near northeast,
east, and southeast. You see a area of lava near northeast.
You see a stairs down near east. You see a vertical wall
near west. You see a dark area near northwest. You
see a horizontal wall very near southeast, south, and
southwest. You see a horizontal closed door very near
northwest. You see a stairs up adjacent southeast. g - a
key named The Master Key of Thievery.

Initial State:
You have a +0 short sword (weapon in hand). You have
8 +0 daggers (alternate weapon; not wielded). You have
an uncursed +1 leather armor (being worn). You have
an uncursed potion of sickness. You have an uncursed
lock pick. You have an empty uncursed sack. You have
an uncursed blindfold. You see a vertical wall far east.
You see a horizontal wall near north and northeast. You
see a area of lava near northeast. You see a stairs down
near northeast. You see a vertical wall near west. You
see a horizontal closed door near northwest. You see
a dark area near northwest. You see a lava very near
northeast, northeast, and east. You see a horizontal wall
adjacent southeast, south, and southwest. You see a key
adjacent northwest. Hello Agent, welcome to NetHack!
You are a chaotic male human Rogue.

Trajectory:
Action: y
Observation: You see here a key named The Master Key
of Thievery
Action: ,
Observation: h - a key named The Master Key of Thiev-
ery

Final State:
You have a +0 short sword (weapon in hand). You have
8 +0 daggers (alternate weapon; not wielded). You have
an uncursed +1 leather armor (being worn). You have an
uncursed potion of sickness. You have an uncursed lock
pick. You have an empty uncursed sack. You have an
uncursed blindfold. You have a key named The Master
Key of Thievery. You see a stairs down far northeast.
You see a vertical wall far east. You see a horizontal wall
near north and northeast. You see a lava near northeast,
east, and southeast. You see a area of lava near northeast.
You see a vertical wall near west. You see a dark area
near northwest. You see a horizontal wall very near
southeast, south, and southwest. You see a horizontal
closed door very near northwest. You see a stairs up
adjacent southeast. h - a key named The Master Key of
Thievery.

Table 7: Subtrajectories used to generate the “you have a key named the master key of thievery” skill described in Table 5.

17

