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Abstract
In deep learning, classification tasks are formal-
ized as optimization problems often solved via
the minimization of the cross-entropy. However,
recent advancements in the design of objective
functions allow the usage of the f -divergence to
generalize the formulation of the optimization
problem for classification. We adopt a Bayesian
perspective and formulate the classification task
as a maximum a posteriori probability problem.
We propose a class of objective functions based on
the variational representation of the f -divergence.
Furthermore, driven by the challenge of improv-
ing the state-of-the-art approach, we propose a
bottom-up method that leads us to the formula-
tion of an objective function corresponding to a
novel f -divergence referred to as shifted log (SL).
We theoretically analyze the objective functions
proposed and numerically test them in three ap-
plication scenarios: toy examples, image datasets,
and signal detection/decoding problems. The ana-
lyzed scenarios demonstrate the effectiveness of
the proposed approach and that the SL divergence
achieves the highest classification accuracy in al-
most all the considered cases.

1. Introduction
Classification problems are relevant in a multitude of do-
mains, such as computer vision, biomedical, and telecom-
munications engineering (Peng et al., 2010; Nachmani et al.,
2018; Uy et al., 2019). In general, classification refers to
the estimation of a discrete vector x (i.e., the class) given
an observation vector y. In the Bayesian framework, the
optimal method to solve classification problems is derived
from the maximum a posteriori probability (MAP) principle
(Boyd & Vandenberghe, 2004; Jeong et al., 2024). Classical
estimation theory uses a model-based approach to derive
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the estimation algorithm. Then, the MAP algorithm is well-
defined and applicable when the posterior density is known.
If the posterior probability is unknown, the first fundamental
step towards solving the MAP problem consists of learning
the posterior density from the data. In this direction, deep
learning (DL) approaches learn the model and solve the es-
timation task directly via data observation. This is achieved
by leveraging artificial neural networks, whose ability to
model probability density functions (pdfs) makes them par-
ticularly suited for this task, as shown in (Hornik et al., 1989;
LeCun et al., 2015; Mohamed & Lakshminarayanan, 2016;
Papamakarios et al., 2017). DL models require the design of
two main elements: the network architecture, which defines
the class of functions the network can estimate, and the ob-
jective function that is exploited during the training phase to
learn the optimal parameters of the network. In reference to
neural network-based classification techniques, most of the
previous work focused on the conceievement of the network
architecture (Simonyan & Zisserman, 2015; Szegedy et al.,
2015; Rezende et al., 2017; Tong et al., 2020; Bhojanapalli
et al., 2021). Contrarily, a smaller part of classification liter-
ature is dedicated to the objective function design. In most
cases, classification is achieved through the minimization
of the cross-entropy loss function between the data empir-
ical probability density function pdata and the probability
density function output of the neural network pmodel (Kus-
sul et al., 2017; Yang et al., 2018). The minimization of
the cross-entropy corresponds to the minimization of the
Kullback-Leibler (KL) divergence between the same two
probability distributions. The KL divergence is defined as

DKL(pdata||pmodel) = Epdata

[
log

(
pdata
pmodel

)]
, (1)

while the cross-entropy (CE) is Epdata
[− log (pmodel)].

Alternatively, some papers propose the usage of proper
losses, which is a family of losses characterized by Bregman
divergences (Gneiting & Raftery, 2007). For instance, the
authors in (Hui & Belkin, 2020) compare the square loss
and the cross-entropy for supervised classification tasks,
while in (Dong et al., 2019), the authors propose two novel
objective functions based on logistic regression.
Another popular class of divergence functions is the f -
divergence, which has been used for various classification
algorithms. The authors in (Yu et al., 2020) propose a
min-max game for the objective function design of deep
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energy-based models, where they substitute the minimiza-
tion of the KL with any f -divergence. In (Wei & Liu, 2021),
the authors propose a max-max optimization problem to
tackle classification with noisy labels. They maximize the
f -mutual information (a generalization of the mutual infor-
mation) between the classifier’s output and the true label
distribution. In (Zhong & Tandon, 2023), the f -divergence
is used as a regularization term in a min-max optimization
problem, for the design of fair classifiers (i.e., minimize the
classifier discrepancy over sub-groups of the population).

In this paper, we propose to estimate the conditional poste-
rior probability (needed in the MAP classifier) by expressing
it as a density ratio (see (9)) and by using a discriminative
learning approach (Song & Ermon, 2020). Density ratio
estimation approaches have been used in a wide variety of
applications (Nowozin et al., 2016; Wei & Liu, 2021; Letizia
et al., 2023a). However, unlike known classification objec-
tive functions, the main idea behind the proposed estimators
is not to use a divergence minimization-based technique.
Instead, to solve the classification task, we estimate the ra-
tio between joint and marginal probability densities with
a discriminator network and maximize such a ratio (corre-
sponding to the posterior probability) with respect to the
class elements. Therefore, contrarily to other f -divergence-
based approaches that need a double training optimization
procedure (e.g., max-max or min-max), our approach relies
on a single training maximization formulation needed to
learn the posterior density. Additionally, it enables the use
of the f -divergence to obtain a broader set of classifiers
beyond the conventional approach based on the exploitation
of the cross-entropy.

In more detail, the contributions of this paper are fourfold:
a) we design a class of posterior probability estimators that
exploits the variational representation of the f -divergence
(Nguyen et al., 2010); b) we present a second class of pos-
terior probability estimators formulated using a bottom-up
approach; c) we propose a new objective function for classi-
fication tasks that corresponds to the variational represen-
tation of a novel f -divergence. The proposed divergence is
analyzed theoretically and experimentally, and a compari-
son with the f -divergences known in the literature follows,
showing that the new one achieves the best performance in
almost all the considered scenarios; d) finally, we conceive
two specific network architectures that are trained with the
proposed objective functions.

2. MAP-based Classification Through
Posterior Probability Learning

In this section, we describe the approach that we propose
to tackle classification tasks and the notation used. Let X
and Y be two random vectors described by the probability
density functions pX(x) and pY (y), respectively. Let X
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Figure 1. System model representation. X is the input of a stochas-
tic model H(·), while the output is Y . In the example represented
by H1(·), the input is the class element ”dog” and the output is an
image of a dog. Differently, H2(·) is a communication channel,
therefore the input is a codeword, and the output is the binary
representation of such a codeword after the noise addition.

and Y be the input and output of a stochastic model (re-
ferred to as H(·)), respectively, as shown in Fig. 1. In a
classification context, X is discrete and represents the class
type with alphabet Ax, while Y is the observation of the
class elements.
The MAP estimator (classifier) is formulated as:

x̂ = argmax
x∈Ax

pX|Y (x|y), (2)

where pX|Y (x|y) is the posterior probability density. In
this paper, we propose to adopt a discriminative formula-
tion. Therefore, we express pX|Y (x|y) as the ratio between
pXY (x,y) and pY (y) by using the Bayes theorem.
Since the classification task is an estimation problem, we
formulate it with the MAP approach because it is the op-
timal approach for estimation problems in the Bayesian
framework (Proakis & Salehi, 2007; Jeong et al., 2024). A
key advantage of the proposed MAP-based approach is that
it does not need a double training optimization procedure
because it directly learns the posterior pdf formulating the
objective function either using the f -divergence (Section 3)
or with a bottom-up approach (Section 4). When the pos-
terior pdf is learned, the estimation (thus the classification)
problem is solved, because the argmax operator in (2) can
be easily computed. First, we study the more general prob-
lem of estimating the posterior pdf when X is a continuous
random vector. Then, we consider the specific case of X be-
ing discrete. The classification problem is solved choosing
the optimal class x that, during inference, maximizes the
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estimate of pX|Y (x|y) (i.e., that solves (2)).

3. Posterior Probability Learning Through the
Exploitation of f -Divergence

The first approach we propose is to estimate pX|Y (x|y) by
exploiting the variational representation of the f -divergence.

3.1. f -Divergence

Given two probability distributions P and Q admitting, re-
spectively, the absolutely continuous density functions p
and q with respect to dx defined on the domain X , the f -
divergence (also known as Ali-Silvey distance) is defined as
(Ali & Silvey, 1966; Csiszár, 1967)

Df (P ||Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dx, (3)

where the generator function f : R+ −→ R is a convex,
lower-semicontinuous function such that f(1) = 0. Every
generator function has a Fenchel conjugate function f∗, that
is defined as

f∗(t) = sup
u∈domf

{ut− f(u)} , (4)

where domf is the domain of f(·), f∗ is convex and such
that f∗∗(u) = f(u).
Leveraging (4), the authors in (Nguyen et al., 2010) ex-
pressed a lower bound on any f -divergence, that is referred
to as variational representation of the f -divergence:

Df (P ||Q) ≥ sup
T∈T

{
Ep(x) [T (x)]− Eq(x) [f

∗(T (x))]
}
,

(5)

where T (x) is parametrized by an artificial neural network,
and the bound in (5) is tight when T (x) is

T ⋄(x) = f ′
(
p(x)

q(x)

)
, (6)

where f ′ is the first derivative of f .

3.2. Posterior Estimation Through the Variational
Representation of the f -Divergence

Theorem 3.1 provides a class of objective functions that,
when maximized, leads to the estimation of the posterior
probability density.

Theorem 3.1. Let X and Y be the random vectors with
pdfs pX(x) and pY (y), respectively. Assume y = H(x),
where H(·) is a stochastic function, then pXY (x,y) is the
joint density. Define Tx to be the support of X and pU (x) to
be a uniform pdf with support Tx. Let fu : R+ −→ R be a
convex function such that fu(1) = 0, and f∗

u be the Fenchel

conjugate of fu. Let Jf (T ) be the objective function defined
as

Jf (T ) = E(x,y)∼pXY (x,y) [T (x,y)]

− E(x,y)∼pU (x)pY (y) [f
∗
u(T (x,y))] . (7)

Then,
T ⋄(x,y) = argmax

T∈T
Jf (T ) (8)

leads to the estimation of the posterior density

p̂X|Y (x|y) =
pXY (x,y)

pY (y)
=

(f∗
u)

′(T ⋄(x,y))

|Tx|
, (9)

where T ⋄(x,y) is parametrized by an artificial neural net-
work.

According to Theorem 3.1, there exists a class of objec-
tive functions to train a discriminator whose output is pro-
cessed to obtain an estimate of the posterior probability.
The choice of the f -divergence offers a degree of freedom
(DOF) in the objective function design. To improve the
training convergence of the objective functions formulated
as variational representation of f -divergences, the literature
exploits a change of variable T (x,y) = r(D(x,y)) in (7)
(Nowozin et al., 2016). With the same goal, we propose to
introduce a second DOF in the development of the objec-
tive function (7). Accordingly, it is sufficient to substitute
D⋄(x,y) = r−1(T ⋄(x,y)) in (9) to attain the correspond-
ing posterior probability estimator. The exploitation of the
DOFs uniquely defines the objective function and numeri-
cally impacts the discriminator’s parameters convergence
during the training phase. We use Theorem 3.1 to obtain
five specific estimators trained with the objective functions
reported in Tab. 1. These objective functions are obtained
by first selecting the generator function and then choosing
r(·). The generator functions used to derive Tab. 1 are
reported in Tab. 2 of Appendix A and are retrieved from
a modification of the well known f -divergences reported
for completeness in Tab. 3 of Appendix A. In particular,
the modification applied is attained as f∗

u(t) = |Tx|f∗(t),
where f∗

u(t) and f∗(t) are referred to as unsupervised and
supervised generator functions, respectively. In addition,
Tab. 1 comprises the change of variable r(D⋄(x,y)) and
the expression of D⋄(x,y) for each objective function.

Lemma 3.2 proves the convergence property of any posterior
probability estimator that is formulated as in Theorem 3.1.

Lemma 3.2. Let the artificial neural network D(·) ∈ D
be with enough capacity and training time (i.e., in the non-
parametric limit). Assume the gradient ascent update rule
D(i+1) = D(i) + µ∇Jf (D

(i)) converges to

D⋄ = argmax
D∈D

Jf (D), (10)
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Table 1. Objective functions table. The corresponding f -divergences are: Kullback-Leibler, Reverse Kullback-Leibler, squared Hellinger
distance, GAN, and Pearson χ2.

NAME OBJECTIVE FUNCTION T ⋄(x,y) D⋄(x,y)

JKL(D) EpXY (x,y)

[
log(D(x,y))

]
− EpU (x)pY (y)

[
|Tx|D(x,y)

]
log(D⋄(x,y)) + 1 pXY (x,y)

pY (y)

JRKL(D) EpXY (x,y)

[
−D(x,y)

]
+ EpU (x)pY (y)

[
|Tx| log(D(x,y))

]
−D⋄(x,y) pY (y)

pXY (x,y)

JHD(D) EpXY (x,y)

[
−
√

D(x,y)
]
− EpU (x)pY (y)

[
|Tx| 1√

D(x,y)

]
1−

√
D⋄ pY (y)

pXY (x,y)

JGAN (D) EpXY (x,y)

[
log(1−D(x,y))

]
+ EpU (x)pY (y)

[
|Tx| log(D(x,y))

]
log(1−D⋄(x,y)) pY (y)

pXY (x,y)+pY (y)

JP (D) EpXY (x,y)

[
2(D(x,y)− 1)

]
− EpU (x)pY (y)

[
|Tx|D2(x,y)

]
2(D⋄(x,y)− 1) pXY (x,y)

pY (y)

where Jf (D) is defined as in (7), with the change of vari-
able D = r−1(T ). Then, the difference between the optimal
posterior probability p⋄ and its estimate p(i) at iteration i is

p⋄ − p(i) ≃ 1

|Tx|

(
δ(i)
[
(f∗

u)
′′(r(D(i)))

])
, (11)

where δ(i) = r(D⋄)− r(D(i)), (f∗
u)

′′ is the second deriva-
tive of f∗

u , and µ > 0 the learning rate. If D⋄ corresponds
to the global optimum achieved by using the gradient ascent
method, the posterior probability estimator in (9) converges
to the real value of the posterior density.

In addition to proving the convergence property of the pos-
terior estimators in Theorem 3.1, Lemma 3.2 provides an
intuitive explanation of the posterior probability estimator’s
bias’s dependency on f in (11).

Theorem 3.1 provides an effective method to solve classifi-
cation problems by designing the objective function based
on the choice of an f -divergence. This differs from other
methods that leverage f -divergences and that need a dual
optimization strategy (Wei & Liu, 2021; Zhong & Tandon,
2023). The proposed method relies on a single optimiza-
tion problem. In fact, it generalizes the cross-entropy min-
imization approach (see Section 6). In the next section,
we propose a novel bottom-up approach that guides the de-
sign of new objective functions for the posterior probability
estimation problem.

4. Bottom-Up Posterior Probability Learning
In this section, we propose a bottom-up methodology for
developing objective functions that, when maximized, lead
to the estimation of the posterior probability. The bottom-
up approach reverses the top-down procedure typical of
f -divergence formulations (Nowozin et al., 2016; Wei &
Liu, 2021). The main advantage of this new method is that
it guides the design of the objective function by starting
with the imposition of the optimal convergence condition
of the discriminator’s output D⋄(x,y) (see Appendix C).
Theorem 4.1 presents the class of objective functions that,
when maximized, leads to the bottom-up posterior estimator.

Theorem 4.1. Let X and Y be the random vectors with pdfs
pX(x) and pY (y), respectively. Assume y = H(x), where
H(·) is a stochastic function, then pXY (x,y) is the joint
density. Let Tx and Ty be the support of pX(x) and pY (y),
respectively. Let the discriminator D(x,y) be a scalar
function of x and y. Let k(·) be any deterministic and
invertible function. Then, the posterior density is estimated
as

p̂X|Y (x|y) = k−1(D⋄(x,y)), (12)

where D⋄(x,y) is the optimal discriminator obtained by
maximizing

J (D) =

∫
Tx

∫
Ty

J̃ (D)dxdy, (13)

for all concave functions J̃ (D) such that their first deriva-
tive is

∂J̃ (D)

∂D
=
(
D(x,y)− k(pX|Y (x|y))

)
g1(D, k)

≜ g(D, k) (14)

with g1(D, k) ̸= 0 deterministic and ∂g(D,k)
∂D ≤ 0.

The proposed estimator leverages a discriminative formu-
lation to estimate the density ratio corresponding to the
posterior probability. Theorem 4.1 comprises two DOFs in
the objective function design. The former is the choice of
k(·), since the discriminator estimates an invertible transfor-
mation of the posterior density. We noticed that the classifier
performs better when k(·) is chosen to resemble particular
activation functions. The second DOF, represented by g1(·),
is a rearrangement term that modifies the result of the in-
tegration of g(·) with respect to D. The exploitation of
such a DOF allows to attain different objective functions
even when imposing the same optimal discriminator’s out-
put. Theorems 3.1 and 4.1 have different advantages. The
benefit of Theorem 3.1 is its simple applicability, that must,
however, begin with the selection of the generator function
f . Theorem 4.1 has the advantage of guiding the objective
function design without relying on existing f -divergences.
Corollary 4.2 in Appendix B.6 exploits the DOFs in the
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choice of k(·) and g1(·) to obtain the objective functions in
Tab. 1, which were previously derived from Theorem 3.1.
An interesting result highlighted by Corollary 4.2 is that
all the objective functions corresponding to the well-known
f -divergences in Tab. 2 use the same class of functions
g1(·) ∝ 1/Dα · 1/(1−D)β expressed in (64) in Appendix
B.6. This property, highlighted by the class of bottom-up
estimators, shows us that JGAN (D) is the only one using
β ̸= 0. Thanks to the observation of this peculiarity and
driven by curiosity, we develop a new objective function
starting from kGAN (·) and g1,GAN (·) but imposing β = 0.

5. Shifted Log Objective Function and
Divergence

In this section, we present a new objective function for clas-
sification problems, that we design by using Theorem 4.1.
Then, we prove that such an objective function corresponds
to the variational representation of a novel f -divergence,
called shifted log (SL). We will demonstrate in Section 7
that such a new objective function achieves the best perfor-
mance in almost all the classification scenarios discussed.

Theorem 5.1. Let X and Y be two random vectors with
pdfs pX(x) and pY (y), respectively. Assume Y = H(X),
with H(·) stochastic function, then let pXY (x,y) be the
joint density. Let Tx be the support of X . Let pU (x) be a
uniform pdf having the same support Tx. The maximization
of the objective function

JSL(D) = −E(x,y)∼pXY (x,y)

[
D(x,y)

]
+ E(x,y)∼pU (x)pY (y)

[
|Tx|

(
log(D(x,y))−D(x,y)

)]
,

(15)

leads to the optimal discriminator output

D⋄(x,y) = argmax
D

JSL(D) =
1

1 + pX|Y (x,y)
, (16)

and the posterior density estimate is computed as

p̂X|Y (x|y) =
1−D⋄(x,y)

D⋄(x,y)
. (17)

Corollary 5.2 states that JSL(D) in (15) can be obtained
from Theorem 3.1 by using a new f -divergence referred to
as shifted log.

Corollary 5.2. Define the generator function of the shifted
log divergence

fu,SL(u) = −|Tx| log(u+ |Tx|) +K, (18)

where K = |Tx| log(1 + |Tx|) is constant. Then,
JSL(D) in (15) is the variational representation of
Dfu,SL

(pXY ||pUpY ).

5.1. Remarks on the New Objective Function and
f -Divergence

Since the proposed objective function in (15) is the varia-
tional representation of an f -divergence (for Corollary 5.2),
Lemma 3.2 ensures the convergence property of its estimate
to the true posterior probability in the nonparametric limit.

The supervised version of the SL divergence is

fSL(u) = − log(u+ 1) + log(2), (19)

which is obtained by substituting |Tx| = 1 (see Appendix
A). Although fSL is obtained in the context of posterior esti-
mation problems, the proposed f -divergence can be applied
to a broader variety of tasks. Since DSL is upper-bounded
(see Corollary 5.3 in Appendix B.9), it is a suitable gen-
erator function when the optimization problem requires to
maximize the variational representation of the f -divergence
(i.e., a max-max game). For instance, for classification
tasks as in (Wei & Liu, 2021) or for representation learning
applications as in (Hjelm et al., 2019).

5.2. Comparison Between SL and GAN Divergences

The GAN divergence is known to be highly-performing in
a wide variety of tasks (Nowozin et al., 2016; Hjelm et al.,
2019). Moreover, the objective functions corresponding to
SL and GAN divergences can be obtained from Theorem
4.1 by choosing the same k(·), but different g1(·). Corollary
5.4 compares the concavity of the two objective functions
in the neighborhood of the global optimum.
Corollary 5.4. Let JSL(D) be defined as in (15). Let
JGAN (D) be defined as in Tab. 1. Let D⋄

N be the discrimi-
nator output in a neighborhood of D⋄ where JSL(D

⋄
N ) and

JGAN (D⋄
N ) are concave. Then,∣∣∣∣∣∂JGAN (D⋄

N )

∂D

∣∣∣∣∣ ≥
∣∣∣∣∣∂JSL(D

⋄
N )

∂D

∣∣∣∣∣. (20)

Although the shape of the loss landscape depends on many
factors (e.g., the batch size (Keskar et al., 2017; Chaudhari
et al., 2019)), sharper maxima attain larger test error (Li
et al., 2018). The steepness of the concavity of the objec-
tive function in the neighborhood of the global optimum
provides insights on the basin of attraction of the point of
maximum. Intuitively, a flatter landscape corresponds to a
larger basin of attraction of the global optimum, rendering
training with the SL divergence better than with the GAN
divergence. The results in Fig. 5 and Tab. 6 in Appendix D
validate the findings of Corollary 5.4.

6. Discriminator Architecture
In this section, we discuss the appropriate modifications
to the discriminator’s architecture to suit our estimators to
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(a) Unsupervised architecture (b) Supervised architecture

Figure 2. Diagrams of unsupervised and supervised architectures. The thick rectangle delineates the discriminator in Fig. 1. The
trapezoidal shape represents the neural network architecture.

the classification scenario, where the number of classes is
finite. The architecture type used differs depending on the
alphabet of X , referred to as Ax. When X is continuous,
we use a structure referred to as unsupervised architecture.
Differently, when X is discrete, we use a structure referred
to as supervised architecture.

6.1. Unsupervised Architecture

In this setting, the samples x and y drawn from the empir-
ical probability distributions pXY (x,y) and pU (x)pY (y)
are concatenated and fed into the discriminator. The dis-
criminator output is a scalar, since it is the posterior density
function estimate corresponding to the pair (x,y) given
as input. The discriminator architecture is represented in
Fig. 2(a), where the concatenation between the x and y
realizations is identified by a dashed rectangle.

6.2. Supervised Architecture

The supervised architecture (Fig. 2(b)) introduces in the
problem’s formulation the constraint that Ax is a set contain-
ing a finite number of elements Ax = {x1, . . . ,xm}. This
constraint is embedded in the architecture (highlighted by a
dashed arrow in Fig. 2(b)), so that the output layer contains
one neuron for each sample in Ax. With this modification,
the i-th output neuron returns pX|Y (xi|y). Accordingly,
the input layer is fed with only the realizations y. Nota-
tion wise, the discriminator’s output is referred to as D(y).
Theorem 6.1 shows the modification to the formulation
of the objective functions in (7) when using a supervised
architecture. First, we define the notation useful for the
theorem statement: D(y) = [D(x1,y), . . . , D(xm,y)] and
1m(xi) = [0, . . . , 0, 1︸︷︷︸

ith pos.

, 0, . . . , 0]T .

Theorem 6.1. Let pX(x) and pY (y) be pdfs describing the
input and output of a stochastic function H(·), respectively.
Let pX(x) ≜

∑m
i=1 PX(xi)δ(x − xi), where PX(·) is the

probability mass function of X . Let Tx be the support of
pX(x) and |Tx| its Lebesgue measure. Let pU (x) be the
uniform discrete pdf over Tx. Let the discriminator be char-
acterized by a supervised architecture. Then, the objective

function in (7) becomes

J (D) = Ex∼pX(x)

[
Ey∼pY |X(y|x)

[
r(D(y))1m(x)

]]

− Ey∼pY (y)

[
m∑
i=1

f∗ (r(D(xi,y)))

]
, (21)

where D(xi,y) is the i-th component of D(y) and T(y) =
r(D(y)).

The supervised versions of the objective functions utilized
in this paper are listed in Section A of the Appendix.
For classification problems, the objective function obtained
by substituting the KL divergence in Theorem 6.1 (see (25)
in Appendix A.1) is exactly the cross-entropy loss. When
the Softmax function is applied to the discriminator output
(because D⋄(x,y) = pX|Y (x|y) is a discrete pdf), the
expectation over pY (y) becomes a constant always equal to
1. Maximizing (25) is equivalent to minimizing the negative
of (25), which is precisely the minimization of the CE.

7. Results
In this section, we report several numerical results to as-
sess the validity of the methods proposed to estimate the
posterior probability density and enable the classification
task. The considered scenarios are: classification for image
datasets; signal decoding in telecommunications engineer-
ing cast into a classification task; posterior probability esti-
mation when pX(x) is continuous. The results demonstrate
that different f -divergences attain different performance.
We show that the KL divergence (thus the CE) is not nec-
essarily the best choice for classification tasks, and more
in general for probability estimation problems. We demon-
strate that the SL divergence achieves the best performance
in almost all the tested contexts. When referring to the per-
formance of any f -divergence, we will implicitly imply the
performance achieved using the objective function derived
using such an f -divergence.
The first two scenarios are classification problems, therefore
we use the supervised formulation of the discriminator archi-
tecture. The third scenario comprises two toy cases, where
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Table 4. Classification accuracy on MNIST (M), Fashion MNIST (FM), CIFAR10 (C10), and CIFAR100 (C100). The MobileNetV2 is
referred to as MobileNet.

DATASET MODEL CE RKL HD GAN P SL
M SMALL 99.08 ± 0.06 96.05± 0.25 98.68± 0.05 99.08 ± 0.07 98.89± 0.08 99.03± 0.04

FM SMALL 91.64± 0.09 82.63± 1.78 90.75± 0.13 91.63± 0.10 89.86± 0.67 91.83 ± 0.02

C10

SMALL 70.13± 0.05 63.59± 0.34 69.38± 0.28 69.98± 0.15 59.62± 0.45 70.87 ± 0.26
VGG 93.69± 0.03 84.24± 2.21 93.51± 0.06 93.75± 0.04 84.79± 0.21 93.93 ± 0.08
DLA 95.04± 0.02 90.83± 0.10 94.56± 0.11 95.04± 0.13 91.61± 0.21 95.31 ± 0.09

RESNET 95.39± 0.04 92.88± 0.26 95.15± 0.08 95.24± 0.06 93.78± 0.21 95.43 ± 0.04
MOBILENET 92.59± 0.13 83.97± 0.21 91.95± 0.33 92.37± 0.14 84.30± 0.32 93.89 ± 0.15

C100

VGG 72.73± 0.30 45.80± 2.86 73.51± 0.03 68.88± 0.20 37.19± 0.66 73.61 ± 0.05
DLA 76.29± 0.43 68.86± 1.17 78.63± 0.14 77.34± 0.22 57.97± 0.07 78.65 ± 0.01

RESNET 78.29 ± 0.18 70.68± 0.44 77.59± 0.06 77.43± 0.08 61.12± 0.23 78.03± 0.04
MOBILENET 72.61± 0.08 53.17± 0.35 73.00± 0.30 65.66± 0.46 46.00± 0.37 74.78 ± 0.23

we show that the unsupervised formulation of the proposed
estimators works for continuous random vectors X . Before
discussing the numerical results, we briefly describe the
details of the code implementation1.

7.1. Implementation Details

Supervised Architecture: For the first scenario (Section
7.2), we use convolutional neural networks. When referring
to small network, we use a discriminator comprising a small
set of convolutional layers (less than 4) followed by a feed-
forward fully connected part. Besides the small network, in
the first scenario we utilize various deep network architec-
tures: VGG (Simonyan & Zisserman, 2015), ResNet (He
et al., 2016b), DLA (Yu et al., 2018), and MobileNetV2
(Sandler et al., 2018). The discriminator hyper-parameters
slightly vary depending on the dataset tested. The network
parameters are updated by using SGD with momentum. The
activation function of the last layer depends on the objective
function optimized during the training phase.
For the second scenario (Section 7.3), we use fully con-
nected feedforward neural networks. The architecture used
for the decoding scenario comprises two hidden layers with
100 neurons each. The network weights are updated by
using the Adam optimizer (Kingma & Ba, 2015). The
LeakyReLU activation function is utilized in all the layers
except the last one, where the activation function is chosen
based on the objective function. In some cases, the Dropout
technique (Srivastava et al., 2014) helps the convergence of
the training process.

Unsupervised Architecture: The discriminator architec-
ture utilized for the unsupervised tasks comprises two hid-
den layers with 100 neurons each and the LeakyReLU acti-
vation function. The activation function of the output layer
depends on the objective function used during training. The
network weights and biases are updated by using the Adam

1Our implementation can be found at
https://github.com/tonellolab/
discriminative-classification-fDiv

optimizer. Dropout is used during training.

7.2. Image Datasets Classification

The first scenario tackled is the classification of image
datasets. The objective functions performance is tested
for the MNIST (LeCun et al., 1998), Fashion MNIST (Xiao
et al., 2017), CIFAR10, and CIFAR100 (Krizhevsky et al.,
2009) datasets. A more detailed description of the datasets
can be found in Appendix D. We compare the classifica-
tion accuracy of the supervised versions of the objective
functions in Tab. 1 and in (15), which are all reported in
Appendix A. To improve the training procedure, we apply
data augmentation on the CIFAR datasets by randomly crop-
ping and flipping the images. The learning rate is initially
set to 0.1 and then we use a cosine annealing scheduler
(Loshchilov & Hutter, 2017) to modify its value during the
200 epochs of training. We compute the mean accuracy

Figure 3. SER achieved by using a 4-PAM modulation over a non-
linear communication channel.

and its standard deviation for each dataset and f -divergence
by running the code over multiple random seeds. The clas-
sification accuracy results displayed in Tab. 4 (and in the
extended version comprising more network architectures in
Tab. 5 in Appendix D) confirm that each generator function
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TRUE KL RKL HDGAN SL P

Figure 4. Continuous posterior density estimation for various f -divergences. The results of the Exponential task is represented in the
upper row, while the outcomes of the Gaussian task are depicted in the lower row. The true posterior density is the first plot of each row.

has a different impact on the neural network training, as
also shown in (Nowozin et al., 2016; Wei & Liu, 2021). The
SL divergence attains the highest classification accuracy for
almost all the architectures tested, showing its effectiveness
compared to the other divergences and its stable behavior
over different datasets and architectures. In particular, the
SL divergence attains better performance than the CE, which
corresponds to the state-of-the-art approach for image clas-
sification tasks. Furthermore, in the few scenarios where
the SL divergence does not achieve the best performance,
it achieves the second best (only in one case the third best,
in Table 5 in Appendix D) performance, with an accuracy
close to the optimal one (see Tables 4, 5). The CE is, on
average, the second-best objective function. Conversely, the
Pearson χ2 performs the worst in almost all the scenarios.
Moreover, except from the SL divergence and the CE, the
performance of the other f -divergences is more architecture
dependent. For instance, as reported in Tab. 5 in Appendix
D, the PreActResNet (He et al., 2016a) attains the highest
accuracy when it is trained with the GAN-based objective
function. The choice of the architecture often depends on the
goal of the classification algorithm. For embedded systems,
light architectures are used. Therefore, the MobileNetV2
is an option (Chiu et al., 2020). In such a case, the SL di-
vergence obtains an accuracy 1.5/2% higher than the CE,
which makes the SL the preferred choice for the network’s
training. Additional numerical results on other network ar-
chitectures and on the speed of convergence of the training
phase are reported in Appendix D for space limitations. The
speed of convergence analysis (Fig. 5) demonstrates that the
training with the SL divergence leads to a faster convergence
to the optimum discriminator w.r.t. the GAN divergence, as
stated in Corollary 5.4.

7.3. Signal Decoding

The second scenario is the decoding problem. Decoding a
sequence of received bits is crucial in a telecommunication
system. In some cases, when the communication channel

is known, the optimal decoding technique is also known
(Proakis & Salehi, 2007). However, the communication
channel is generally unknown, and DL-based techniques
can be used to learn it (Soltani et al., 2019). By knowing that
the optimal decoding criterion is the posterior probability
maximization, we demonstrate that the proposed MAP ap-
proach solves the decoding problem and that the supervised
version of JSL(D) (see (37) in Appendix A.6) achieves
optimal performance. We consider a 4-PAM (i.e., pulse
amplitude modulation with four symbols) over a nonlinear
channel with additive Gaussian noise. In particular, given
the symbol at time instant t (referred to as xt), we obtain
the channel output as yt = sgn(xt)

√
|xt| + nt, where nt

is the Gaussian noise and sgn(·) is the sign function. We
show the symbol error rate (SER) behavior achieved by the
proposed posterior estimators when varying the signal-to-
noise ratio (SNR) in Fig. 3. The estimators proposed are
compared with the results of the max likelihood estimator
(referred to as maxL) and the MAP Genie estimators. The
MAP Genie estimator uses the knowledge of the channel
nonlinearity to decode the received sequence of bits. The
proposed list of posterior probability estimators performs
better than the max likelihood estimator, achieving accuracy
close to the optimal MAP Genie estimator. In Appendix D,
other scenarios of decoding tasks are reported.

7.4. Continuous Posterior Estimation

This section considers two toy examples for the case |Ω| ≥
|R|. The comparison between the closed-form of the poste-
rior distribution and the discriminator estimate is showed in
Fig. 4. The discriminator prediction is obtained by training
a small neural network with the objective functions reported
in Tab. 1 and in (15). The closed-form posterior distribution
(referred to as true in Fig. 4) is the first element of each row.

Exponential task. In the first toy example, we define the
model Y = X + N , where X and N are independent
Exponential random variables. Therefore, Y is a Gamma
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distribution (Durrett, 2019). The closed-form posterior prob-
ability can be expressed as in (106) (see Appendix B.12 for
the formula and proof). Similarly to the previous numerical
results, different f -divergences lead to diverse estimates of
the posterior density. The objective functions corresponding
to the GAN, SL, and HD divergences attain better estimates
w.r.t. the others. For a fixed y, in fact, the posterior density
value is constant over x.

Gaussian task. In the second toy example, we consider the
model Y = X +N , where X , N are independent Gaussian
random variables. Thus, Y is a Gaussian distribution. The
posterior density expression is reported in Appendix B.13
(see (117)). The objective functions corresponding to the
SL, KL, and P divergences attain better estimates w.r.t. the
others, since the estimate attains the desired saddle shape.

8. Conclusions
In this paper, we proposed a new MAP perspective for su-
pervised classification problems. We have proposed to use a
discriminative formulation to express the posterior probabil-
ity density, and we have derived two classes of estimators to
estimate it. From them, we extracted a list of posterior prob-
ability estimators and compared them with the notorious
cross-entropy minimization approach. Numerical results
on different scenarios demonstrate the effectiveness of the
presented estimators and that the proposed SL divergence
achieves the highest classification accuracy in almost all the
scenarios. Additionally, we show that the proposed posterior
probability estimators work for the general case of contin-
uous a priori probabilities, for which we design a specific
neural network architecture.
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Table 2. Unsupervised f -divergences table. The corresponding f -divergences are: Kullback-Leibler, Reverse Kullback-Leibler, squared
Hellinger distance, GAN, and Pearson χ2.

NAME fu(u) f∗
u(t)

KL u log
(

u
|Tx|

)
|Tx| exp (t− 1)

RKL −|Tx| log(u) −|Tx|(1 + log(−t))

HD (
√
u−

√
|Tx|)2 |Tx| t

1−t

GAN u log(u)− (u+ |Tx|) log(u+ |Tx|) −|Tx| log(1− exp (t))
P 1

|Tx| (u− |Tx|)2 |Tx|
(
1
4
t2 + t

)
Table 3. f -divergences table. The corresponding f -divergences are: Kullback-Leibler, Reverse Kullback-Leibler, squared Hellinger
distance, GAN, and Pearson χ2.

NAME f(u) f∗(t)
KL u log(u) exp (t− 1)

RKL − log(u) −1− log(−t)
HD (

√
u− 1)2 t

1−t

GAN u log(u)− (u+ 1) log(u+ 1) − log(1− exp (t))
P (u− 1)2 1

4
t2 + t

A. Appendix: Objective Functions Used in the Experiments
The unsupervised and supervised versions of the objective functions used to achieve the results showed in Section 7 are
reported in this section. The training part consists in the alternation of two phases. In the former phase, the network is
fed with N realizations of the joint distribution pXY (x,y) to compute the first term of the objective function. In the latter
phase, the type of architecture defines the procedure to compute the second term of the objective function. The unsupervised
architecture is fed with N samples drawn from pU (x)pY (y). The supervised architecture is fed with N samples drawn
from pY (y) (see Theorem 6.1).
During the test part, the network is fed with the samples drawn from the joint distribution ((x,y) ∼ pXY (x,y)), and the
posterior probability density estimate is obtained as in (9) or (12).
We report the objective functions derived from well-known f -divergences. Therefore, we first report the notorious f -
divergences in Table 3, and their unsupervised version in Table 2. These tables do not contain the constant terms that render
fu(1) = 0 or f(1) = 0, as their presence do not affect the optimization of the derived objective functions (see the proof
of Lemma B.2). Let fu and f∗

u the unsupervised generator function and its Fenchel conjugate in Table 2, respectively.
Differently, f and f∗ are the supervised generator function and its Fenchel conjugate in Table 3, respectively. Then,

f∗
u(t) = |Tx|f∗(t), (22)

where |Tx| is the Lebesgue measure of the support of pX(x). Accordingly,

fu(u) = sup
t∈domf∗

u

{ut− f∗
u(t)} . (23)

Vice versa, the supervised version of fu and f∗
u can be easily attained by substituting |Tx| = 1 in the unsupervised

formulation.
The usage of (22) in Theorem 3.1 is needed because |Tx| counterbalances the effect of pU (x) to obtain the pdf ratio
equivalent to the posterior density pX|Y (x|y) = pXY (x,y)/pY (y). In fact, |Tx| is included in the expectation term
computed over pU (x). In Lemma B.2, we prove that fu is the generator function of a valid f -divergence.

Note: The notations supervised and unsupervised refer to the discriminator architecture. The former one is the typical
supervised classification architecture, while the latter one does not use X as the set of labels, but as an additional input.
The terminology we use to distinguish between the two different versions of f -divergences (f and fu) is a consequence of
the architecture’s notation. The unsupervised architecture, in fact, is trained using objective functions defined with fu (see
Theorem 3.1 and Corollary 5.2), while the supervised architecture is trained by using objective functions based on f (see
Theorem 6.1).
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We recall the notation used in the objective functions: D(y) = [D(x1,y), . . . , D(xm,y)] is a row vector, 1m = [1, . . . , 1]T

is a column vector and 1m(xi) = [0, . . . , 0, 1︸︷︷︸
ith pos.

, 0, . . . , 0]T is a column vector.

A.1. KL-Based Objective Functions

Kullback-Leibler Divergence: The variational representation of the KL divergence is achieved substituting f∗
u,KL listed in

Table 2 in (7). This leads to the unsupervised objective function

JKL(D) = E(x,y)∼pXY (x,y)

[
log(D(x,y))

]
− E(x,y)∼pU (x)pY (y)

[
|Tx|D(x,y)

]
+ 1, (24)

where T ⋄(x,y) = log( pXY (x,y)
|Tx|pU (x)pY (y) ) + 1, pU (x) = 1

|Tx| , and D⋄(x,y) = pXY (x,y)
pY (y) . The supervised version of the

objective function in (24) is attained by using Theorem 6.1:

JKL(D) = Ex∼pX(x)

[
Ey∼pY |X(y|x)

[
log(D(y))1m(x)

]]
− Ey∼pY (y)

[
D(y)1m

]
. (25)

When the last layer of the supervised discriminator utilizes the softmax activation function (i.e., when the output is
normalized to be a discrete probability density function), then the second term in (25) is always equal to 1. Thus, the
maximization of (25) exactly corresponds to the minimization of the KL divergence in (1), and therefore to the minimization
of the cross-entropy.
Interestingly, the more general formulation in (25) allows the usage of different activation functions in the last layer, with
the only requirement that the discriminator’s output is constrained to assume positive values (e.g., softplus).

A.2. RKL-Based Objective Functions

Reverse Kullback-Leibler Divergence: Theorem 3.1 leads to the variational representation of the reverse KL divergence,
when substituting f∗

u,RKL listed in Table 2 in (7)

JRKL(D) = E(x,y)∼pXY (x,y)

[
−D(x,y)

]
+ E(x,y)∼pU (x)pY (y)

[
|Tx| log(D(x,y))

]
, (26)

where T ⋄(x,y) = − |Tx|pU (x)pY (y)
pXY (x,y) and D⋄(x,y) = pY (y)

pXY (x,y) . The supervised version of the objective function in (26) is
obtained by using Theorem 6.1.

JRKL(D) = Ex∼pX(x)

[
Ey∼pY |X(y|x)

[
−D(y)1m(x)

]]
+ Ey∼pY (y)

[
log(D(y))1m

]
. (27)

A.3. HD-Based Objective Functions

Hellinger Squared Distance: Theorem 3.1 leads to the variational representation of the Hellinger squared distance, when
substituting f∗

u,HD listed in Table 2 in (7)

JHD(D) = E(x,y)∼pXY (x,y)

[
−
√

D(x,y)
]
− E(x,y)∼pU (x)pY (y)

[
|Tx|

1√
D(x,y)

]
, (28)

where T ⋄(x,y) =
(√

pXY (x,y)
|Tx|pU (x)pY (y) − 1

)√
|Tx|pU (x)pY (y)

pXY (x,y) , and D⋄(x,y) = pY (y)
pXY (x,y) . The supervised implementation

of the objective function in (28) is achieved by using Theorem 6.1

JHD(D) = Ex∼pX(x)

[
Ey∼pY |X(y|x)

[
−
√

D(y)1m(x)
]]

− Ey∼pY (y)

[
1√

D(y)
1m

]
. (29)

13
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A.4. GAN-Based Objective Functions

GAN: Theorem 3.1 leads to the variational representation of the GAN divergence, when substituting f∗
u,GAN listed in Table

2 in (7)

JGAN (D) = E(x,y)∼pXY (x,y)

[
log(1−D(x,y))

]
+ E(x,y)∼pU (x)pY (y)

[
|Tx| log(D(x,y))

]
, (30)

where T ⋄(x,y) = log
(

pXY (x,y)
pXY (x,y)+|Tx|pU (x)pY (y)

)
and D⋄(x,y) = pY (y)

pY (y)+pXY (x,y) . The supervised implementation of
the objective function in (30) is

JGAN (D) = Ex∼pX(x)

[
Ey∼pY |X(y|x)

[
log(1m − D(y)) · 1m(x)

]]
+ Ey∼pY (y)

[
log(D(y))1m

]
.

(31)

A.5. P-Based Objective Functions

Pearson χ2: Theorem 3.1 leads to the variational representation of the Pearson χ2 divergence, when substituting f∗
u,P listed

in Table 2 in (7)

JP (D) = E(x,y)∼pXY (x,y)

[
2(D(x,y)− 1)

]
− E(x,y)∼pU (x)pY (y)

[
|Tx|D2(x,y)

]
, (32)

where T ⋄(x,y) = 2
(

pXY (x,y)
|Tx|pU (x)pY (y) − 1

)
, and D⋄(x,y) = pXY (x,y)

pY (y) . The supervised implementation of the objective
function in (32) is achieved by using Theorem 6.1

JP (D) = Ex∼pX(x)

[
Ey∼pY |X(y|x)

[
2(D(y)− 1m)1m(x)

]]
− Ey∼pY (y)

[
D(y)DT (y)

]
, (33)

where D(y)DT (y) =
∑m

i=1 D
2(xi,y).

A.6. SL-Based Objective Functions

The unsupervised and supervised versions of the objective function corresponding to the shifted log divergence are discussed
in this paragraph. For completeness, we report here the generator function and its Fenchel conjugate.
fu,SL(u) = −|Tx| log(u+ |Tx|), f∗

u,SL(t) = −|Tx|(log(−t) + t).

Shifted log: Theorem 4.1 leads to the objective function in (15) when

k(pX|Y (x|y)) =
|Tx|pU (x)pY (y)

|Tx|pU (x)pY (y) + pXY (x,y)
(34)

g1(D, k; 1, 0) = −|Tx|pU (x)pY (y) + pXY (x,y)

D(x,y)
. (35)

We report here for completeness the unsupervised objective function in (15)

JSL(D) = −E(x,y)∼pXY (x,y)

[
D(x,y)

]
+ E(x,y)∼pU (x)pY (y)

[
|Tx|

(
log(D(x,y))−D(x,y)

)]
, (36)

which can be obtained from Theorem 3.1 with T ⋄(x,y) = − |Tx|pU (x)pY (y)
|Tx|pU (x)pY (y)+pXY (x,y) and D⋄(x,y) = pY (y)

pY (y)+pXY (x,y) .
The supervised implementation of the objective function in (36) is achieved by using Theorem 6.1

JSL(D) = −Ex∼pX(x)

[
Ey∼pY |X(y|x)

[
D(y)1m(x)

]]
+ Ey∼pY (y)

[(
log(D(y))− D(y)

)
1m
]
. (37)

14
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B. Appendix: Proofs
B.1. Proof of Lemma B.1

Lemma B.1. Let f : R+ −→ R be the generator function of any f -divergence. Then, it holds:

(f∗)′(t) = (f
′
)−1(t) (38)

Proof. Let us recall the definition of Fenchel conjugate, to report a self-contained proof:

f∗(t) = sup
u∈R

{ut− f(u)} . (39)

Then, in order to find û that achieves the supremum, we impose

∂

∂u
{ut− f(u)} = 0, (40)

that implies f
′
(u) = t. The condition (40) can be imposed because f(·) is a convex function. Thus,

û = (f
′
)−1(t) (41)

Then, substituting (41) in the definition of the fenchel conjugate, it becomes:

f∗(t) = (f
′
)−1(t)t− f((f

′
)−1(t)). (42)

Then, by computing the first derivative w.r.t. t:

(f∗)
′
(t) = ((f

′
)−1)

′
(t)t+ (f

′
)−1(t)− f

′
((f

′
)−1(t))︸ ︷︷ ︸
=t

((f
′
)−1)

′
(t). (43)

The first and third terms cancel out, leading to (38).

B.2. Proof of Lemma B.2

Lemma B.2. Let f : R+ −→ R be the generator function of any f -divergence, f∗(·) its Fenchel conjugate, and K > 0 a
constant. Then, f∗

u(t) ≜ Kf∗(t) is the Fenchel conjugate of a valid f -divergence.

Proof. Firstly, we must prove the convexity of fu(u). Since f∗(t) is a convex function, then also f∗
u(t) is a convex function

because K is a positive constant (if the second derivative of f∗(t) is non-negative, then multiplying it by a positive constant
will result in a non-negative function). If f∗

u(t) is a convex function, then also fu(u) is convex, by definition, because it is
computed as the Fenchel conjugate (i.e., the convex conjugate).
Secondly, if fu(1) = C, then fu(1) = 0 is achieved by subtracting C to the fu(u) obtained from the computation of the
Fenchel conjugate of f∗

u(t). The subtraction of C to fu(u) has just a translation effect, not affecting the training process. To
prove it, let consider fu(u) = f•

u(u)− C, with fu(1) = 0 (thus f•
u(1) = C). Then,

f∗
u(t) = sup

u
[ut− fu(u)] = sup

u
[ut− f•

u(u) + C] (44)

The u that maximizes ut − f•
u(u) + C (referred to as û) is obtained by imposing the first derivative w.r.t. u equal to

zero (similarly to (40) and (41) in the proof of Lemma B.1). Therefore, û is not influenced by C, since C disappears
when computing the first derivative. Then, the value of û is substituted in ut − f•

u(u) + C. Therefore, we obtain
f∗
u(t) = ût− f•

u(û) +C, where the first two terms ût and f•
u(û) do not depend on C. Thus, C becomes a constant in f∗

u(t),
which implies that it becomes an additive constant in the objective function (see (7)), which does not have any effect on the
training procedure. Finally, fu(1) = C (thus f∗

u(t) = ût− f•
u(û) + C) does not impact the estimate of pX|Y , since it is

computed using (f∗
u)

′(·), which is not affected by C.
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B.3. Proof of Theorem 3.1

Theorem 3.1. Let X and Y be the random vectors with probability density functions pX(x) and pY (y), respectively.
Assume y = H(x), where H(·) is a stochastic function, then pXY (x,y) is the joint density. Define Tx to be the support of
X and pU (x) to be a uniform distribution with support Tx. Let fu : R+ −→ R be a convex function such that fu(1) = 0,
and f∗

u be the Fenchel conjugate of fu. Let Jf (T ) be the objective function defined as

Jf (T ) = E(x,y)∼pXY (x,y) [T (x,y)]− E(x,y)∼pU (x)pY (y) [f
∗
u(T (x,y))] . (45)

Then,
T ⋄(x,y) = argmax

T∈T
Jf (T ) (46)

leads to the estimation of the posterior density

p̂X|Y (x|y) =
pXY (x,y)

pY (y)
=

(f∗
u)

′(T ⋄(x,y))

|Tx|
, (47)

where T ⋄(x,y) is parametrized by an artificial neural network.

Proof. From (Nguyen et al., 2010), T ⋄(x,y) achieved when maximizing (45) is

T ⋄(x,y) = f ′
u

(
pXY (x,y)

pU (x)pY (y)

)
, (48)

as defined in (6). Thus, (47) is equivalent to

(f∗
u)

′(T ⋄(x,y))

|Tx|
=

(f ′
u)

−1(T ⋄(x,y))

|Tx|
(49)

=
(f ′

u)
−1
(
f ′
u

(
pXY (x,y)

pU (x)pY (y)

))
|Tx|

(50)

=
pXY (x,y)

|Tx|pU (x)pY (y)
(51)

=
pXY (x,y)

pY (y)
, (52)

where the equality in (49) is proved in Lemma B.1 in Appendix B, while (50) is obtained by substituting (48) in (49). Since
pU (x) =

1
|Tx| , as it is the uniform probability density function (pdf) over Tx, the thesis follows. From (Tonello & Letizia,

2022), the usage of the uniform probability density function pU (x) is fundamental to define the objective function in (45).
Its importance derives from the need of the discriminator to be fed with both X and Y realizations.

B.4. Proof of Lemma 3.2

Lemma 3.2. Let the artificial neural network D(·) ∈ D be with enough capacity and training time (i.e., in the nonparametric
limit). Assume the gradient ascent update rule D(i+1) = D(i) + µ∇Jf (D

(i)) converges to

D⋄ = argmax
D∈D

Jf (D), (53)

where Jf (D) is defined as in (7),with the change of variable D = r−1(T ). Then, the difference between the optimal
posterior probability p⋄ and its estimate p(i) at iteration i is

p⋄ − p(i) ≃ 1

|Tx|

(
δ(i)
[
(f∗

u)
′′(r(D(i)))

])
, (54)

where δ(i) = r(D⋄)− r(D(i)), and µ > 0 the learning rate. If D⋄ corresponds to the global optimum achieved by using
the gradient ascent method, the posterior probability estimator in (9) converges to the real value of the posterior density.
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Proof. The proof follows a procedure similar to Lemma 3 in (Letizia et al., 2023a). We define δ(i) = r(D⋄) − r(D(i))
as the difference between the optimum T ⋄ and the one achieved at the ith iteration of the training procedure, when using
a gradient ascent update method. Define p(i) and p⋄ as the posterior probability estimate at iteration i and the optimum,
respectively. Then,

p⋄ − p(i) =
1

|Tx|

(
(f∗

u)
′(r(D⋄))− (f∗

u)
′(r(D(i)))

)
(55)

=
1

|Tx|

(
(f∗

u)
′(r(D⋄))− (f∗

u)
′(r(D⋄)− δ(i))

)
(56)

≃ 1

|Tx|

(
δ(i)
[
(f∗

u)
′′(r(D⋄)− δ(i))

])
, (57)

where the last step develops from the first order Taylor expansion in r(D⋄)− δ(i). From (57), the thesis in (54) follows. If
the gradient ascent method converges towards the maximum, δ(i) −→ 0. Thus, when i −→ ∞, |p⋄ − p(i)| −→ 0.

B.5. Proof of Theorem 4.1

Theorem 4.1. Let X and Y be the random vectors with probability density functions pX(x) and pY (y), respectively.
Assume y = H(x), where H(·) is a stochastic function, then pXY (x,y) is the joint density. Let Tx and Ty be the support of
pX(x) and pY (y), respectively. Let the discriminator D(x,y) be a scalar function of x and y. Let k(·) be any deterministic
and invertible function. Then, the posterior density is estimated as

p̂X|Y (x|y) = k−1(D⋄(x,y)), (58)

where D⋄(x,y) is the optimal discriminator obtained by maximizing

J (D) =

∫
Tx

∫
Ty

J̃ (D)dxdy, (59)

for all concave functions J̃ (D) such that their first derivative is

∂J̃ (D)

∂D
=
(
D(x,y)− k(pX|Y (x|y))

)
g1(D, k)

≜ g(D, k) (60)

with g1(D, k) ̸= 0 deterministic, and ∂g(D,k)
∂D ≤ 0.

Proof. A necessary condition to maximize J (D) requires to set the first derivative of the integrand J̃ (D) w.r.t. D equal to
zero. Since g1(D, k) ̸= 0, from (60) easily follows

D⋄(x,y) = k(pX|Y (x|y)) = k

(
pXY (x,y)

pY (y)

)
. (61)

The concavity of J̃ (D) is obtained by imposing the first derivative of g(D, k) with respect to D to be nonpositive, i.e.,

0 ≥ ∂

∂D

{(
D(x,y)− k(pX|Y (x|y))

)
g1(D, k)

}
= g1(D, k) +

(
D(x,y)− k(pX|Y (x|y))

)∂g1(D, k)

∂D
. (62)

Therefore, the stationary point D⋄(x,y) corresponds to a maximum.

B.6. Proof of Corollary 4.2

Corollary 4.2. Let J (D) be defined as in Theorem 4.1. Let

k(pX|Y (x|y)) = k

(
pXY (x,y)

|Tx|pU (x)pY (y)

)
=

p0
p1

. (63)

17



f -Divergence Based Classification: Beyond the Use of Cross-Entropy

Let

g1(D, k;α, β) ≜ − p1
Dα

(
1

1−D

)β

, (64)

where α, β ∈ Q. Then, the objective functions in Table 1 are obtained from Theorem 4.1 by using k(·) and g1(·) as defined
in the set Fk,g1 ≜ {(k(x), (α, β))f}:

Fk,g1 =

{(
x, (1, 0)

)
KL

,

(
− 1

x
, (1, 0)

)
RKL

,

(
1

x
,

(
3

2
, 0

))
HD

,

(
1

1 + x
, (1, 1)

)
GAN

,

(
x, (0, 0)

)
P

}
(65)

Proof. Let rewrite for completeness

kKL(pX|Y (x|y)) = pX|Y (x|y), (66)

kRKL(pX|Y (x|y)) = − 1

pX|Y (x|y)
, (67)

kHD(pX|Y (x|y)) =
1

pX|Y (x|y)
, (68)

kGAN (pX|Y (x|y)) =
1

1 + pX|Y (x|y)
, (69)

kP (pX|Y (x|y)) = pX|Y (x|y), (70)

and

g1KL
(D, k) = −pU (x)pY (y)|Tx|

D(x,y)
, (71)

g1RKL
(D, k) =

pXY (x,y)

D(x,y)
, (72)

g1HD
(D, k) = −pXY (x,y)

D
3
2 (x,y)

, (73)

g1GAN
(D, k) = −pU (x)pY (y)|Tx|+ pXY (x,y)

D(x,y)(1−D(x,y))
, (74)

g1P (D, k) = −pU (x)pY (y)|Tx|, (75)

where the dependence of g1(·) from k is intrinsic in p1. For instance, the KL and RKL divergences are obtained by using the
same values of α and β in (64), but since kKL(·) ̸= kRKL(·), g1KL

(·) ̸= g1RKL
(·) . g1(·) ̸= 0 because by definition each

pdf is different from 0 in its support. After a substitution in (14), we obtain

gKL(D, k) =
pXY (x,y)

D(x,y)
− pU (x)pY (y)|Tx|, (76)

gRKL(D, k) = −pXY (x,y)−
pY (y)

D(x,y)
, (77)

gHD(D, k) = −pXY (x,y)√
D(x,y)

+
pU (x)pY (y)√

D3(x,y)
, (78)

gGAN (D, k) =
pU (x)pY (y)|Tx|

D(x,y)
− pXY (x,y)

1−D(x,y)
, (79)

gP (D, k) = pXY (x,y)− pU (x)pY (y)|Tx|D(x,y). (80)

After the integration w.r.t. D and the substitution in (13), the objective functions in Table 1 are attained.

B.7. Proof of Theorem 5.1

Theorem 5.1. Let X and Y be two random vectors with pdfs pX(x) and pY (y), respectively. Assume Y = H(X), with
H(·) stochastic function, then let pXY (x,y) be the joint density. Let Tx be the support of X . Let pU (x) be a uniform pdf
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having the same support Tx. The maximization of the objective function

JSL(D) = −E(x,y)∼pXY (x,y)

[
D(x,y)

]
+ E(x,y)∼pU (x)pY (y)

[
|Tx|

(
log(D(x,y))−D(x,y)

)]
, (81)

leads to the optimal discriminator output

D⋄(x,y) = argmax
D

JSL(D) =
1

1 + pX|Y (x,y)
, (82)

and the posterior density estimate is computed as

p̂X|Y (x|y) =
1−D⋄(x,y)

D⋄(x,y)
. (83)

Proof. Following Theorem 4.1, the proof starts by inverting (12). Specifically, we set k(x) = 1
1+x and from (82), by

expressing the posterior density as the density ratio pXY /pY , we achieve

D⋄(x,y)− |Tx|pU (x)pY (y)
|Tx|pU (x)pY (y) + pXY (x,y)

= 0, (84)

where pU (x) = 1/|Tx|. Then, (64) with α = 1 and β = 0 becomes

g1(D, k; 1, 0) = −|Tx|pU (x)pY (y) + pXY (x,y)

D(x,y)
. (85)

Then, (85) is substituted in (14), obtaining

g(D, k) =
∂

∂D
J̃ (D) =−

(
|Tx|pU (x)pY (y) + pXY (x,y)

)
+

|Tx|pU (x)pY (y)
D(x,y)

. (86)

The computation of the integral of (86) with respect to the discriminator’s output D leads to

J̃ (D) = −pXY (x,y)D(x,y) + |Tx|pU (x)pY (y)
(
log(D(x,y))−D(x,y)

)
, (87)

which proves the statement of the theorem, since

∂g(D, k)

∂D
= − pY (y)

D2(x,y)
≤ 0. (88)

Given the optimum discriminator D⋄, the posterior density estimator in (83) is achieved by inverting (82).

B.8. Proof of Corollary 5.2

Corollary 5.2. Define the generator function

fu,SL(u) = −|Tx| log(u+ |Tx|) +K, (89)

where K = |Tx| log(1 + |Tx|) is constant. Then, JSL(D) in (15) is the variational representation of Dfu,SL
(pXY ||pUpY ).

Proof. By comparing (15) to (7), it is immediate to notice the change of variable D(x,y) = −T (x,y). Then, the expression
of the Fenchel conjugate is attained as f∗

u,SL(t) = −|Tx|(log(−t)+ t) from inspection of the expectation over pU (x)pY (y).
The generating function fu,SL(u) = −|Tx| log(u+ |Tx|) is computed by using the definition of Fenchel conjugate. We add
a constant K = |Tx| log(1 + |Tx|) to the generator function to achieve the condition fu,SL(1) = 0, which has no impact on
the maximization of the objective function in (15). Lastly, the second derivatives of fu,SL(u) and f∗

u,SL(t) are nonpositive
functions, proving that the generator function and its Fenchel conjugate are convex.
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B.9. Proof of Corollary 5.3

Corollary 5.3. Let P and Q be two probability distributions. Let DSL(P ||Q) be the f -divergence with generator function
fSL(u) as in (19). Then,

0 ≤ DSL(P ||Q) ≤ log(2). (90)

Proof. Let f : R+ −→ R be a convex function with f(1) = 0, and f◦ : R+ −→ R defined as

f◦(u) ≜ uf

(
1

u

)
, (91)

then f◦ is also convex and such that f◦(1) = 0. Then, the Range of Values Theorem (Vajda, 1972) sets upper and lower
bounds on the value of the f -divergence between two distributions P and Q, depending on f(u) and f◦(u):

f(1) ≤ Df (P ||Q) ≤ f(0) + f◦(0) ∀Q,P. (92)

From which the thesis follows.

B.10. Proof of Corollary 5.4

Corollary 5.4. Let JSL(D) be defined as in (15). Let JGAN (D) be defined as in Table 1. Let D⋄
N be the discriminator

output in a neighborhood of D⋄ where JSL(D
⋄
N ) and JGAN (D⋄

N ) are concave. Then,∣∣∣∣∣∂JGAN (D⋄
N )

∂D

∣∣∣∣∣ ≥
∣∣∣∣∣∂JSL(D

⋄
N )

∂D

∣∣∣∣∣. (93)

Proof. To prove (93), we just need to prove∣∣∣∣∣∂J̃GAN (D⋄
N )

∂D

∣∣∣∣∣ ≥
∣∣∣∣∣∂J̃SL(D

⋄
N )

∂D

∣∣∣∣∣, (94)

(where J̃ is the integrand function in (13)) since the inequality between the integrands holds when the integrals are computed
over the same interval.
Lemma 3.2 guarantees the convergence to the optimal discriminator. Therefore, let D⋄

N = pY (y)
pXY (x,y)+pY (y) + δ, with δ

arbitrarily small, so that D⋄
N belongs to the neighborhood of D⋄. Then,

∂

∂D
J̃SL(D)

∣∣∣∣∣
D⋄

N

= −(pXY (x,y) + pY (y)) +
pY (y)

D⋄
N (x,y)

(95)

∂

∂D
J̃GAN (D)

∣∣∣∣∣
D⋄

N

= − pXY (x,y)

1−D⋄
N (x,y)

+
pY (y)

D⋄
N (x,y)

= −pXY (x,y)(pXY (x,y) + pY (y))

pXY (x,y)(1− δ)− δpY (y)

+
pY (y)

D⋄
N (x,y)

(96)

By substituting γ = 1
1−δ , (96) becomes

∂

∂D
J̃GAN (D)

∣∣∣∣∣
D⋄

N

≈ −γ(pXY (x,y) + pY (y)) +
pY (y)

D⋄
N (x,y)

, (97)
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where 0 < γ < 1 if δ < 0, and γ > 1 if δ > 0. Thus, the comparison between (95) and (97) leads to the inequalities

∂

∂D
J̃SL(D)

∣∣∣∣∣
D⋄

N

<
∂

∂D
J̃GAN (D)

∣∣∣∣∣
D⋄

N

ifδ < 0 (98)

∂

∂D
J̃SL(D)

∣∣∣∣∣
D⋄

N

>
∂

∂D
J̃GAN (D)

∣∣∣∣∣
D⋄

N

ifδ > 0. (99)

Since D⋄ corresponds to a maximum, i.e., the sign of the left derivative is positive, and the sign of the right derivative is
negative, the statement of the corollary is proved.

B.11. Proof of Theorem 6.1

Theorem 6.1. Let pX(x) and pY (y) be pdfs describing the input and output of a stochastic function H(·), respectively. Let
pX(x) ≜

∑m
i=1 PX(xi)δ(x− xi), where PX(·) is the probability mass function of X . Let Tx be the support of pX(x) and

|Tx| its Lebesgue measure. Let pU (x) be the uniform discrete probability density function over Tx. Let the discriminator be
characterized by a supervised architecture. Then, the objective function in (7) becomes

J (D) = Ex∼pX(x)

[
Ey∼pY |X(y|x)

[
r(D(y))1m(x)

]]
− Ey∼pY (y)

[
m∑
i=1

f∗ (r(D(xi,y)))

]
, (100)

where D(xi,y) is the i-th component of D(y) and T(y) = r(D(y)).

Proof. Let the alphabet of X be Ax = {x1, . . . ,xm}. The objective function in (7) can be expressed as

J (D) =

∫
Ty

∫
Tx

pX(x)pY |X(y|x)r(D(x,y))− pU (x)pY (y)f
∗
u (r(D(x,y))) dxdy. (101)

Then, let pU (x) ≜
∑m

i=1 PU (xi)δ(x− xi), with PU (xi) =
1

|Tx| .

J (D) =

∫
Ty

∫
Tx

m∑
i=1

PX(xi)δ(x− xi)pY |X(y|x)r(D(x,y))−
m∑
i=1

δ(x− xi)pY (y)f
∗ (r(D(x,y))) dxdy, (102)

where f∗
u (r(D(x,y))) = |Tx|f∗ (r(D(x,y))). Then, by using the indicator property of the delta function, the objective

function becomes

J (D) =

∫
Ty

m∑
i=1

PX(xi)pY |X(y|xi)r(D(xi,y))dy −
∫
Ty

pY (y)
m∑
i=1

f∗ (r(D(xi,y))) dy, (103)

that is equivalent to (100).

B.12. Proof of Closed Form Posterior in the Exponential Case

Closed Form Posterior Exponential Case: Let define the model Y = X + N , where X ∼ exp(λ), N ∼ exp(λ).
Therefore, Y ∼ Γ(2, 1

λ ) (i.e., a Gamma distribution with shape 2 and rate 1
λ ). Let define Y |X ≜ Z, then the cumulative

density function (CDF) is

P [Z ≤ z] = P [N + xc ≤ z] = P [N ≤ z − xc]

=
(
1− e−λ(z−xc)

)
1(z − xc), (104)

where Xc is constant. By deriving the CDF w.r.t. z, we compute the likelihood

pY |X(y|x) = λe−λ(y|x−xc)1(y|x− xc) = pN (n). (105)
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Then, the posterior probability is computed as

pX|Y (x|y) =
pN (n)pX(x)

pY (y)

=
1

y
1(x)1(y). (106)

B.13. Proof of Closed Form Posterior in the Gaussian Case

Closed Form Posterior Gaussian Case: Let define the model Y = X +N , where X ∼ N (0,ΣX), N ∼ N (0,ΣN ). Thus,
Y |X ∼ N (X,ΣN ), Y ∼ N (0,ΣN +ΣX︸ ︷︷ ︸

≜ΣY

).

The posterior probability is

pX|Y (x|y) =
pY |X(y|x)pX(x)

pY (y)
(107)

=

1√
(2π)d|ΣN |

e−
1
2 (y−x)TΣ−1

N (y−x)

1√
(2π)d|ΣY |

e−
1
2y

TΣ−1
Y y

· 1√
(2π)d|ΣX |

e−
1
2x

TΣ−1
X x (108)

=
1√
(2π)d

√
|ΣY |

|ΣN ||ΣX |
exp

{
−1

2
G

}
, (109)

where

G = xTΣ−1
x x+ yTΣ−1

N y + xTΣ−1
N x− 2xTΣ−1

N y − yTΣ−1
Y y. (110)

In the scalar case, where d = 1 and ΣN = σ2
N , ΣX = σ2

X and ΣY = σ2
X + σ2

N , we have:

G =
x2

σ2
X

+
y2

σ2
N

+
x2

σ2
N

− 2
xy

σ2
N

− y2

σ2
y

(111)

= x2

(
1

σ2
X

+
1

σ2
N

)
+ y2

(
1

σ2
N

− 1

σ2
Y

)
− 2xy

σ2
N

(112)

= x2

(
σ2
X + σ2

N

σ2
Xσ2

N

)
+ y2

(
σ2
Y − σ2

N

σ2
Nσ2

Y

)
− 2xy

σ2
N

(113)

=
1

σ2
N

[
x2σ

2
N + σ2

X

σ2
X

+ y2
σ2
x

σ2
X + σ2

N

− 2xy

]
(114)

=
1

σ2
N

[
x2k2 +

y2

k2
− 2xy

]
(115)

=
1

σ2
N

[
kx− y

k

]2
, (116)

where k ≜ σ2
X+σ2

N

σ2
X

> 1.
Then, in the scalar case the posterior density expression becomes

pX|Y (x|y) =
1√
2π

√
σ2
Y

σ2
Nσ2

X

e
− 1

2σ2
N
[kx− y

k ]
2

. (117)
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C. Appendix: Bottom-up Approach
In this section, we provide additional insights on the bottom-up approach proposed in Theorem 4.1. The idea is to design
the objective function by starting from the desired discriminator’s output. When designing an objective function using
the bottom-up approach, the choice of k(·) is the fundamental starting point of the procedure, which is summarized in the
following.

• k(·) is the first DOF and must be chosen as a deterministic and invertible function in the domain x > 0. Some examples
are k(x) = x and k(x) = 1/(1 + x). Then the posterior pdf must be expressed as the density ratio pXY /pY .

• g1(·) is an additional DOF and can be chosen as defined in Corollary 4.2.

• Substitute k(·) and g1(·) in (14).

• Compute the integral of (14) w.r.t. D, which leads to J̃ (D).

• The integral in (13) represents the expectation computed over the supports Tx and Ty .

This exact procedure is used to prove Theorem 5.1.
In the case of the KL-based objective function that we proposed, to ensure that (12) is a density for the case of discrete X ,
we use the softmax as the last activation function of the discriminator. However, k(·) is not the softmax function because
if it were the softmax, then D⋄(x,y) = softmax(pX|Y (x|y)), where pX|Y (x|y) is the density (i.e., the output of the
softmax will be pX|Y (x|y) itself, thus we do not need to apply additional transformations). Therefore, in the case of the KL
divergence, k−1(x) = x.

D. Appendix: Additional Numerical Results
D.1. Image Datasets

We study the performance of the proposed objective functions for classification (listed in Appendix A) for four image
classification datasets. MNIST (LeCun et al., 1998) comprises 10 classes with 60,000 images for training and 10,000 images
for testing. Fashion MNIST has 10 classes with 60,000 images for training and 10,000 images for testing. CIFAR10
(Krizhevsky et al., 2009) has 10 classes with 50,000 images for training and 10,000 images for testing. CIFAR100
(Krizhevsky et al., 2009) has 100 classes with 50,000 images for training and 10,000 images for testing. Table 5 shows the
classification accuracy of different network architectures trained by using the supervised versions of the objective functions
listed in Table 1 and the one presented in Theorem 5.1 (see Appendix A). The accuracies are in the form XX ± Y Y , where
XX and Y Y represent the mean and standard deviation, respectively, obtained over multiple runs of the code. The tests
are run by using various architectures: VGG (Simonyan & Zisserman, 2015), DLA2 (Yu et al., 2018), ResNet18 (He et al.,
2016b), DenseNet (Huang et al., 2017), PreActResNet (He et al., 2016a), MobileNetV2 (Sandler et al., 2018). Interestingly,
from Tab. 5, it can be observed that every network architecture suits some objective functions more than others. For instance,
the PreActResNet attains the highest accuracy when trained with the GAN-based objective function (even if the difference
in performance is just 0.2% different from the second-best one). Differently, the DenseNet performs optimally in CIFAR10
and CIFAR100 when trained with the KL-based objective function, even if the difference in accuracy w.r.t. the SL-based
objective function is minimal. The MobileNetV2 obtains the best performance when trained with the SL-based divergence,
and the difference with the second-best objective function is around 2%, which is significant. The choice of the architecture
often depends on the goal of the classification algorithm. For embedded systems, light architectures are used. Therefore, the
MobileNetV2 is an option. In such a case, the SL divergence is the preferred choice for the network’s training.

The SL divergence has been proved to have favourable convergence conditions in Corollary 5.4. We numerically compare
the convergence speed of the GAN and SL divergences on the CIFAR10 dataset in Figure 5, demonstrating the effectiveness
of Corollary 5.4. The accuracy behavior is attained by averaging over multiple runs of the code. In Figure 5, the accuracy
over the test dataset is showed, for each training epoch, with a semi-transparent color (blue and orange for the GAN and SL
divergences, respectively). The vivid colors represent a moving average over 5 epochs, helping the clarity of the visualization.
Quantitatively, we report in Tab. 6 the difference between the accuracy obtained by training the network with the SL and
GAN divergences. In detail, each column is identified by a number k and contains, for various discriminator architectures,

2The implementation of the DLA is a simplified version of the one presented in the original paper

23



f -Divergence Based Classification: Beyond the Use of Cross-Entropy

Table 5. Classification accuracy on MNIST (M), Fashion MNIST (FM), CIFAR10 (C10), and CIFAR100 (C100). The PreActResNet is
referred to as PAResNet, while the MobileNetV2 is referred to as MobileNet.

DATASET MODEL CE RKL HD GAN P SL
M SMALL 99.08 ± 0.06 96.05± 0.25 98.68± 0.05 99.08 ± 0.07 98.89± 0.08 99.03± 0.04

FM SMALL 91.64± 0.09 82.63± 1.78 90.75± 0.13 91.63± 0.10 89.86± 0.67 91.83 ± 0.02

C10

SMALL 70.13± 0.05 63.59± 0.34 69.38± 0.28 69.98± 0.15 59.62± 0.45 70.87 ± 0.26
VGG 93.69± 0.03 84.24± 2.21 93.51± 0.06 93.75± 0.04 84.79± 0.21 93.93 ± 0.08
DLA 95.04± 0.02 90.83± 0.10 94.56± 0.11 95.04± 0.13 91.61± 0.21 95.31 ± 0.09

RESNET 95.39± 0.04 92.88± 0.26 95.15± 0.08 95.24± 0.06 93.78± 0.21 95.43 ± 0.04
DENSENET 95.82 ± 0.06 91.52± 0.14 94.93± 0.07 95.67± 0.02 94.34± 0.16 95.53± 0.13
PARESNET 94.30± 0.15 89.43± 0.39 56.44± 0.02 95.17 ± 0.07 86.24± 0.08 95.09± 0.02

MOBILENET 92.59± 0.13 83.97± 0.21 91.95± 0.33 92.37± 0.14 84.30± 0.32 93.89 ± 0.15

C100

VGG 72.73± 0.30 45.80± 2.86 73.51± 0.03 68.88± 0.20 37.19± 0.66 73.61 ± 0.05
DLA 76.29± 0.43 68.86± 1.17 78.63± 0.14 77.34± 0.22 57.97± 0.07 78.65 ± 0.01

RESNET 78.29 ± 0.18 70.68± 0.44 77.59± 0.06 77.43± 0.08 61.12± 0.23 78.03± 0.04
DENSENET 80.09 ± 0.02 72.03± 0.23 79.91± 0.01 79.32± 0.34 62.27± 0.21 80.03± 0.02
PARESNET 77.13± 0.15 59.28± 0.12 76.98± 0.05 77.39 ± 0.18 61.64± 0.11 77.19± 0.25

MOBILENET 72.61± 0.08 53.17± 0.35 73.00± 0.30 65.66± 0.46 46.00± 0.37 74.78 ± 0.23

Table 6. Difference in speed of convergence of the classification accuracy on CIFAR10, between the SL and GAN divergences. Each
column is characterized by a number k, which represents the interval [1, k] of epochs over which the average is computed. Each cell
contains the difference of accuracy Ak

SL −Ak
GAN .

MODEL 5 10 25 50 75 100 125 150 175 200
RESNET18 4.15 2.81 1.48 1.43 1.16 1.12 0.95 0.86 0.75 0.67

DLA 5.40 4.39 2.52 1.43 1.15 1.11 1.00 0.91 0.81 0.72
VGG 5.93 7.40 5.19 3.42 2.68 2.36 2.07 1.84 1.63 1.44

the quantity Ak
SL −Ak

GAN , where Ak
f is the average accuracy over multiple runs of the code for the selected f -divergence,

in the epochs interval [1, k]. Each cell in Table 6 contains a positive value, which shows the average faster convergence
property of the SL divergence. Furthermore, the difference in speed convergence is more significant for the VGG training
than for the ResNet18 and DLA architectures.

ResNet18 DLA VGG

Figure 5. Convergence speed of the test accuracy over 200 training epochs.

The speed of convergence and the upper-boundness of DSL is (see Corollaries 5.4 and 5.3 in Appendix B.10 and B.9,
respectively) confirm the utility of the SL divergence for double optimization problems. For instance, when the objective
function of the learning algorithm is formulated as a max-max game. For example, in (Wei & Liu, 2021) the f -mutual
information (which is estimated by formulating a maximization problem) is maximized for classification with noisy labels.
Similarly, in (Hjelm et al., 2019) the authors maximize the JS-mutual information (where JS refers to the Jensen-Shannon
divergence, which is equivalently used in this paper as GAN divergence) for representation learning applications (then
the model is extended in (Bachman et al., 2019)). In (Letizia et al., 2023b), the authors formulate a mutual information
maximization algorithm to achieve the channel capacity in a data communication system. In (Zhu et al., 2021), the authors
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maximize the JS-mutual information for the generation of talking faces.

D.2. Additional Decoding Tasks

D.2.1. AWGN

We analyze the decoding task in presence of additive white Gaussian noise (AWGN) in the communication channel. Let
X be a d-dimensional binary vector, and N ∼ N (0,ΣN ) be Gaussian noise, with ΣN diagonal. Let Y = X +N be the
output of the communication channel. The SER behavior when varying the SNR is shown in Fig. 6 for each objective
function analyzed. To compare the estimated SER, we visualize the SER achieved by the maxL decoder, which corresponds
to the optimal decoder for an AWGN channel with uniform distribution pX(x) (Proakis & Salehi, 2007). The proposed SL
divergence achieves the best performance and close to the optimal maxL decoder. In general, different objective functions
perform better than JKL(D).

Figure 6. SER achieved in an AWGN channel by the proposed posterior probability estimators.

D.2.2. PAM WITH NON-UNIFORM SOURCE

Similarly to Section 7, we consider a 4-PAM transmission. However, in this case we examine the case where the symbols
transmitted do not have a uniform prior probability pX(x). We define the alphabet of X to be Ax = {x1, x2, x3, x4} with
probabilities P (x1) = P (x2) = P/2 and P (x3) = P (x4) = (1 − P )/2, where P = 0.05. The SER for various values
of SNR is reported in Fig. 7, where the discriminators trained with the supervised versions of the objective functions in
Tab. 1 and in (15) (see Appendix A) are compared with the maxL and MAP decoders. Although the maxL decoder is
optimal for an AWGN channel, the extreme non-uniformity of the channel significantly impacts its performance. Differently,
the optimal MAP decoder knows the distribution of pX(x). The discriminator trained with the SL and GAN divergences
achieves performance close to the optimal MAP decoder.
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Figure 7. SER achieved in an AWGN channel by a 4-PAM with non-uniform source probability distribution.
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