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Abstract

Static sparse training aims to train sparse models
from scratch, achieving remarkable results in re-
cent years. A key design choice is given by the
sparse initialization, which determines the train-
able sub-network through a binary mask. Existing
methods mainly select such mask based on a pre-
defined dense initialization. Such an approach
may not efficiently leverage the mask’s potential
impact on the optimization. An alternative direc-
tion, inspired by research into dynamical isometry,
is to introduce orthogonality in the sparse sub-
network, which helps in stabilizing the gradient
signal. In this work, we propose Exact Orthogo-
nal Initialization (EOI), a novel sparse orthogonal
initialization scheme based on composing random
Givens rotations. Contrary to other existing ap-
proaches, our method provides exact (not approx-
imated) orthogonality and enables the creation of
layers with arbitrary densities. We demonstrate
the superior effectiveness and efficiency of EOI
through experiments, consistently outperforming
common sparse initialization techniques. Our
method enables training highly sparse 1000-layer
MLP and CNN networks without residual connec-
tions or normalization techniques, emphasizing
the crucial role of weight initialization in static
sparse training alongside sparse mask selection.

1. Introduction
Neural Network compression techniques have gained in-
creased interest in recent years in light of the development
of even larger deep learning models consisting of enormous
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numbers of parameters. One popular solution to decrease
the size of the model is to remove a portion of the param-
eters of the network based on some predefined criterion, a
procedure known as pruning. Classical network pruning is
typically performed after the training and is often followed
by a fine-tuning phase (LeCun et al., 1989; Han et al., 2015;
Molchanov et al., 2016)). Although such an approach de-
creases the memory footprint during the inference, it still
requires training the dense model in the first place.

More recently, Frankle & Carbin (2019) showed the exis-
tence of lottery tickets — sparse subnetworks that are able
to recover the performance of the dense model when trained
from scratch. Subsequent works have been devoted to under-
standing the properties of such initializations (Zhou et al.,
2019; Malach et al., 2020; Frankle et al., 2020a; Evci et al.,
2022; McDermott & Cummings, 2023) and proposing so-
lutions that allow to obtain the sparse masks without the
need to train the dense model. This gave birth to the field
of sparse training (ST), which focuses on studying sparse
deep neural network architectures that are already pruned
at initialization – see e.g. Wang et al. (2021) for a survey.
Such sparse initializations can be obtained either through
weight-agnostic methods (e.g. random pruning (Liu et al.,
2022), Erdős-Rényi initialization (Mocanu et al., 2018)), or
through the use of a predefined criterion dependent on the
training data or the model parameters (Lee et al., 2019b;
Wang et al., 2020a; Tanaka et al., 2020).

The term static sparse training (also known as pruning at
initialization) refers to a version of ST in which a model is
pruned at initialization, and the mask is kept fixed through-
out the whole training. (Lee et al., 2019b; Liu & Wang,
2023). Interestingly, even randomly removing a significant
portion of the parameters at the initialization does not hurt
the optimization process (Liu et al., 2022; Malach et al.,
2020). Furthermore, Frankle et al. (2020b), alongside Su
et al. (2020), demonstrated that the pruning at initializa-
tion techniques are insensitive to a random reshuffling or
reinitialization of the unpruned weights within each layer.
However, at the same time they achieve lower accuracy than
the sparse networks obtained by pruning after the full dense
training Frankle et al. (2020b). Recently, (Pham et al., 2023)
argue that the resilience to reshuffling depends on the input-
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output connectivity. In extremely high sparsities, when the
reshuffling may imply a decrease in the number of effective
input-output paths in the model, the performance drops. All
these results motivate the research into understanding what
properties make a sparse initialization successful.

In dense deep neural networks models, the topic of iden-
tifying a successful initialization technique has been an
intensive area of research (see, for instance, Narkhede et al.
(2022) for a review). One direction in this domain is given
by analyzing models that attain dynamical isometry - have
all the singular values of the input-output Jacobian close to
1 (Saxe et al., 2013). For some activation functions, this
property can be induced by assuring orthogonal initialization
of the weights. Networks fulfilling this condition benefit
from stable gradient signal and are trainable up to thousands
of layers without the use of residual connections or normal-
ization layers (Pennington et al., 2017). Interestingly, Lee
et al. (2019a) reported that inducing orthogonality can also
stabilize the optimization process in static sparse training, a
result confirmed by Esguerra et al. (2023). However, these
approaches either use only approximated isometry or are
restricted in terms of compatible architectures and per-layer
sparsity levels (Esguerra et al., 2023).

In this work, we propose a new orthogonal sparse initializa-
tion scheme called Exact Orthogonal Initialization (EOI)
that joins the benefits of exact (not approximated) isome-
try with the full flexibility of obtaining any sparsity level.
Inspired by the work in maximally sparse matrices (Cheon
et al., 2003) and sparse matrix decomposition (George &
Liu, 1987; Frerix & Bruna, 2019), our method constructs
the initial weights by iteratively multiplying random Givens
rotation matrices. As a consequence, we sample both the
mask and the initial weights at the same time. Furthermore,
multiplication by an n× n Givens matrix can be performed
in O(n) time, which keeps the sampling process efficient.
In particular, our contributions are:

• We introduce EOI (Exact Orthogonal Initialization),
a flexible data-agnostic sparse initialization scheme
based on an efficient method of sampling random
sparse orthogonal matrices by composing Givens ro-
tations. EOI provides exact orthogonality and works
both for fully-connected and convolutional layers.

• We confirm that networks initialized with our method
benefit from dynamical isometry, successfully training
highly sparse vanilla 1000-layer MLPs and CNNs.

• We validate that imposing orthogonality in static sparse
training by the use of EOI noticeably improves perfor-
mance of many contemporary networks, outperforming
standard pruning at initialization approaches and ap-
proximate isometry.

Our results suggest that introducing orthogonality in sparse
initializations practically always improves the performance

or stability of the learning, even if the underlying net-
work already benefits from signal regularization tech-
niques such as residual connections or normalization lay-
ers. As a consequence, we hope that our research will
raise the community’s awareness of the importance of
simultaneously studying both the mask and weight ini-
tialization in the domain of sparse training. The code
is available at https://github.com/woocash2/
sparser-better-deeper-stronger.

2. Related Work
Orthogonal Initialization and Dynamic Isometry The
impact of the initialization procedure on the neural net-
work training dynamics and performance is a prominent
area of research in deep learning (Glorot & Bengio, 2010;
Sutskever et al., 2013; Daniely et al., 2016; Poole et al.,
2016; Narkhede et al., 2022). One studied direction in this
topic is the orthogonal initialization. In particular, Saxe
et al. (2013) derived exact solutions for the dynamics of deep
linear networks, showing the importance of requiring the
singular values of the input-output Jacobian to be equal to
one, a property known as dynamical isometry. Those results
have been later extended to nonlinear networks with tanh ac-
tivations by Pennington et al. (2017), using the knowledge
from the mean field theory (Poole et al., 2016; Mei et al.,
2019; Schoenholz et al., 2016) and from the free random
variables calculus (Voiculescu, 1995). In addition, Xiao
et al. (2018) and Chen et al. (2018) studied the dynamical
isometry property in CNNs and Recurrent Neural Networks,
while Tarnowski et al. (2019) showed that for ResNets, dy-
namical isometry can be achieved naturally irrespective of
the activation function. However, without skip connections
or parameter sharing solutions, dynamical isometry cannot
be achieved in networks with ReLU activations (Burkholz
& Dubatovka, 2019). The practical speedups coming from
the use of orthogonal initialization have been also proved in
the work of Hu et al. (2020). Moreover, the effectiveness of
orthogonal initialization has led to many constructions de-
veloping orthogonal convolutional layers (Xiao et al., 2018;
Li et al., 2019; Wang et al., 2020b; Singla & Feizi, 2021;
Trockman & Kolter, 2021; Yu et al., 2021). In addition,
previous studies examined signal propagation in dense or
densely structured subnetworks with various regularization
methods (Larsson et al., 2016; Sun et al., 2022; Shulgin &
Richtárik, 2023). The impact of optimizing sparse weight
subsets was explored by (Thakur et al., 2022).

Static Sparse Training The field of static sparse training
focuses on pruning the networks at initialization. One type
of methods used in this area are randomly pruned initial-
izations, which exhibit surprisingly good performance (Liu
et al., 2022; Pensia et al., 2020). Another widely used ap-
proach involves integrating weight-based knowledge with
data-dependent information, like gradients, to formulate
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Figure 1: Sparse orthogonal matrix generation via composition of Givens rotations.

scoring functions for pruning less crucial weights. Exam-
ples include SNIP (Lee et al., 2019b), which approximates
the pre and post-pruning loss, GraSP (Wang et al., 2020a)
for maintaining gradient flow; and Synflow (Tanaka et al.,
2020), which prevents layer collapse by using path norm
principles (Neyshabur et al., 2015). In the light of this rapid
development, several works aim at understanding the factors
of effective sparse initializations (Frankle et al., 2020b; Su
et al., 2020). In particular, Lee et al. (2019a) investigate
the sparse training from the signal propagation perspective.
However, their proposed method is only able to approximate
orthogonality. In contrast, the recent work by Esguerra et al.
(2023) demonstrates an exact-orthogonal scheme for sparse
initializations, but it offers only discrete sparsity levels and
isn’t directly applicable to modern architectures. In com-
parison, our EOI initialization provides exact orthogonality
and offers full flexibility in achieving various sparsity levels,
combining improved performance with ease of use.

3. Preliminaries
3.1. Dynamical Isometry

Consider a fully connected network with L layers with base
parameters Wl ∈ Rn×n, where l = 1, ..., L. Let x0 denote
the input to the network. The dynamics of the model can
be described as: xl = ϕ(Wlxl−1 + bl), where ϕ denotes
the activation function. As a consequence, the input-output
Jacobian of the network is given by (Pennington et al., 2017)

J =
∂xL

∂x0
=

L∏
l=1

DlWl,where (1)

Dl
i,j = ϕ′(hl

i)δi,j and hl = Wlxl−1 + bl

The network attains dynamical isometry if all the singular
values of J are close to 1 for any input chosen from the data
distribution. For linear networks, this condition is naturally
fulfilled when each Wl is orthogonal (Saxe et al., 2013).

In the case of nonlinear networks, consider a scaled or-
thogonal initialization defined as (Wl)TWl = σ2

wIn, and
bl ∼ N (0, σ2

b ), where In denotes the identity matrix of
size n. According to the mean field theory, in the large
n limit the empirical distribution of the preactivation con-
verges to a Gaussian with zero mean and variance that ap-
proaches a fixed point qfix (Schoenholz et al., 2016). Let X

denote the mean of the distribution of the squared singular
values of matrices DW, assuming the preactivation distri-
bution reaches the fixed point qfix. The network is said
to be critically initialized if X (σw, σb) = 1, which results
in gradients that neither vanish nor explode. For tangent
activations the equation X (σw, σb) = 1 defines a line in
the (σw, σb) space. Moving along this line, dependable on
the depth L, allows one to restrict the spectrum of singular
values of J, effectively achieving dynamical isometry (Pen-
nington et al., 2017). Although the above-discussed research
focused on dense models in infinite depth and width limit, re-
cent studies have shown that influencing orthogonality also
in sparse networks can lead to improved performance (Lee
et al., 2019a; Esguerra et al., 2023).

3.2. Orthogonal Convolutions

Analogously to standard linear orthogonal layers, in con-
volutional layers, orthogonality is defined by ensuring
that ||W ∗ x||2 = ||x||2 holds for any input tensor x,
where W ∈ Rcout×cin×(2k+1)×(2k+1) represents the con-
volutional weights, and ∗ denotes the convolution opera-
tion (Xiao et al., 2018). Some examples of initializations
fulfilling this condition are the delta-orthogonal initializa-
tion (Xiao et al., 2018), the Block Convolutional Orthogonal
(BCOP) initialization (Li et al., 2019), or the Explicitly Con-
structed Orthogonal (ECO) convolutions (Yu et al., 2021).
In this work, we focus on the use of the delta-orthogonal
method, due to its pioneering impact on the study of dy-
namical isometry in CNNs, as well as a relatively simple
and intuitive construction. The delta-orthogonal approach
embeds an orthogonal matrix H into the central elements
of the convolutional layer’s kernels, while setting all other
entries to zero. Formally, the convolution weights W can
be expressed as Wi,j,k,k = Hi,j ,where H is a randomly
selected dense orthogonal matrix with shape cout × cin.

Let us also note that the standard convolution operation is
in practice implemented by multiplying the kernel W with
the im2col representation of the data (Heide et al., 2015;
Pytorch-Conv2d). Some methods explored solutions that pe-
nalize the distance ||WTW − I||2, stabilizing the Jacobian
of such multiplication (Xie et al., 2017; Balestriero & Bara-
niuk, 2018). However, this approach doesn’t necessarily
guarantee orthogonality in terms of norm preservation, as it
does not account for the change of the spectrum introduced
by applying the im2col transformation (Wang et al., 2020b).
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3.3. Static Sparse Training

In static sparse training (SST), the network is pruned at
initialization and its structure is kept intact throughout the
training process. Let M denote the binary mask with zero-
entries representing the removed parameters. The density
d of the model is defined as d = ||M ||0/m, where || · ||0
is the L0-norm and m is the total number of parameters
in the network. As a result, the sparsity s of the model
can be calculated as s = 1 − d. Different static sparse
training methods vary in how they select per-layer masks
Ml and, consequently, per-layer densities dl. Note that we
require that d =

∑L
l (dlml)/m, where ml denotes the total

number of parameters in layer l. Below, we summarize
some common SST approaches studied within this work:

Uniform - In this simple method each layer is pruned to den-
sity d by randomly removing (1− d)nl parameters, where
nl denotes the l-th layer’s size.

Erdős-Rényi (ERK) - This approach randomly generates
the sparse masks so that the density in each layer dl scales
as nl−1+nl

nl−1nl for a fully-connected layer (Mocanu et al., 2018)
and as nl−1+nl+wl+hl

nl−1nlwlhl for a convolution with kernel of
width wl and height hl (Evci et al., 2020).

SNIP - In this method each parameter θ is assigned a score
ρ(θ) = |θ∇θL(D)|, where L is the loss function used to
train the network on some data D. Next, a fraction of
s parameters with the lowest score is removed from the
network (Lee et al., 2019b).

GraSP - The Gradient Signal Preservation (GraSP) score
is given by ρ(−θ) = −θ ⊙ G∇θL(D), where G is the
Hessian matrix, and ⊙ denotes the element-wise multiplica-
tion. Next, the top s parameters with the highest scores are
removed from the network (Wang et al., 2020a).

Synflow - This approach proposes an iterative procedure,
where the weights are scored using ρ(θ) = ∇θRSF ⊙ θ.
The term RSF is a loss function expressed as RSF =
1
T
∏L

l=1 |θl|1, where 1 is the all-ones vector, |θl| is the
element-wise absolute value of all the parameters in layer l,
and L is the total number of layers (Tanaka et al., 2020).

Note that every static sparse training method automatically
defines also a sparse initialization, which is the element-
wise multiplication of the weights with their corresponding
masks. It has been shown that, in non-extreme sparsities
(≤ 99%), pruning at initialization methods are invariant to
the re-initialization of the parameters or the reshuffling of
the masks within a layer (Frankle et al., 2020b; Su et al.,
2020). Consequently, one can treat them as a source of the
per-layer densities d1, . . . , dL, inferred from their produced
masks by computing dl = ||Ml||/ml. Throughout this
work we will therefore also refer to the aforementioned
methods as density distribution algorithms. Finally, our goal

is to also compare the proposed EOI scheme with other
sparse initialization schemes. In particular, we investigate:

Approximated Isometry - Given the per layer masks Ml

form a density distribution algorithm, the Approximated
Isometry (AI) scheme optimizes the weights in the masks
by minimizing the orthogonality loss ||(Wl⊙Ml)T (Wl⊙
Ml)− I||2 with respect to layer weights Wl. Although sim-
ple in design, such an approach may suffer from slow opti-
mization procedure and approximation errors. Furthermore,
as discussed in section 3.2, the used by AI orthogonality
loss is ill-specified in terms of convolutions.

SAO - The Sparsity-Aware Orthogonal initialization (SAO)
scheme constructs a sparse matrix by first defining the non-
zero mask structure via a bipartite Ramanujan graph. Next,
the obtained structural mask is assigned orthogonal weights,
to assure isometry. In the case of convolutional layers, SAO
performs structural-like pruning, by sampling the middle
orthogonal matrix of the delta orthogonal initialization and
removing filters with only zero entries. The drawback of
SAO is that it constrains the possible dimensionality of
the weights and inputs. Furthermore, it supports only dis-
crete increases in the sparsity levels. Consequently, this
scheme cannot be adapted to arbitrary architectures. See
Appendix G for detailed description of SAO.

3.4. Givens matrices

A Givens rotation is a linear transformation that rotates an
input in the plane spanned by two coordinate axes. The
Givens matrix of size n for indices 1 ≤ i < j ≤ n and
angle 0 ≤ φ < 2π, denoted as Gn(i, j, φ), has a struc-
ture similar to identity matrix of size n, with only four
entries overwritten: Gn(i, j, φ)ii = Gn(i, j, φ)jj = cosφ,
Gn(i, j, φ)ij = − sinφ, and Gn(i, j, φ)ji = sinφ. Givens
matrices can be randomly sampled by uniformly selecting a
pair (i, j) where i < j, along with an angle φ. Importantly,
the multiplication of such a rotation with any matrix of size
n can be computed in O(n) time. This property has made
Givens matrices a popular choice in implementing linear
algebra algorithms (e.g. QR decomposition). (Olteanu et al.,
2023; Bindel et al., 2002)

4. Exact Orthogonal Initialization
In this work, we present a novel sparse orthogonal initializa-
tion scheme, called Exact Orthogonal Initialization (EOI)
compatible with both fully-connected and convolutional
layers. Our solution combines the advantages of ensuring
exact isometry with complete flexibility in achieving arbi-
trary sparsity levels. This is accomplished by generating
the sparse orthogonal matrices through a composition of
random Givens rotations.
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4.1. Random, sparse, orthogonal matrices

Algorithm 1 Generate a random n × n orthogonal matrix of
target density d.

Require: n ≥ 2, d ∈ [0, 1]
1: A← In {identity matrix of size n}
2: while dens(A) < d do
3: Pick (i, j) such that 1 ≤ i < j ≤ n,
4: uniformly, at random.
5: Pick 0 ≤ φ < 2π,
6: uniformly, at random.
7: A← A ·Gn(i, j, φ)
8: end while
9: return: A

Note that Givens matrices are orthogonal, hence their prod-
uct is also orthogonal. Moreover, iteratively composing
random Givens rotations produces denser outputs. Due
to those facts, Givens matrices are commonly used in the
study of (random) sparse orthogonal matrices (Cheon et al.,
2003; George & Liu, 1987; sprand MatLab). In partic-
ular, by leveraging the above observations, we can sam-
ple an orthogonal matrix by initiating our process with an
identity matrix A ← In, which represents the currently
stored result. Then, we randomly select a Givens rotation
Gn(i, j, φ) and multiply it with the current result, substitut-
ing A← A ·Gn(i, j, φ). We repeat this operation until we
achieve the desired target density d of the matrix. We out-
line this approach in Algorithm 1 and visualize the premise
behind it in Figure 1.

The running time of the proposed method depends on the
number of passes we need to perform in line 2 of the Algo-
rithm. This means that we are interested in how quickly the
density of the resulting matrix A increases with the number
of random Givens multiplications t. We observe that:

Observation 1. Let A(t) be a random n× n matrix repre-
senting the product of t random, independent Givens ma-
trices of size n. Then the expected density E[dens(A(t))] of
matrix A(t) is given by:

E[dens(A(t))] =
1

n
·

n∑
k=1

k · p(t, k), (2)

where p(t, k) denotes the probability that a fixed row of
A(t) will have k non-zero elements. The values p(t, k) are
independent of the choice of the row, and are defined by the
recurrent relation:

p(t+ 1, k + 1) = p(t, k + 1) ·
(
k+1
2

)
+
(
n−k−1

2

)(
n
2

) +

p(t, k) · k · (n− k)(
n
2

) (3)

with base condition p(0, 1) = 1 and p(0, k) = 0 for k ̸= 1.

For proof refer to Appendix B. Since the above result is
not immediately intuitive, we illustrate the expected density
computed via Equation 2 for a matrix of size 100× 100 in
Figure 5 in the Appendix. Our mathematical derivations
perfectly match the empirical observations. The density
smoothly rises with the number of used rotations, being ini-
tially convex up to a critical point (here it is around t ≈ 270),
and then becoming concave, which indicates a sigmoidal re-
lation. Therefore achieving high densities would necessitate
a substantial number of iterations. However, in SST our fo-
cus typically lies within highly-sparse regions, which often
do not exceed a density of 50%. This keeps the algorithm
very efficient.

4.2. EOI for Static Sparse Training

Consider a neural network with L layers, with associated
per-layer densities d1, . . . , dL given by some density dis-
tribution algorithm. The EOI scheme processes each layer
independently. If layer l is fully connected, we proceed by
sampling an orthogonal matrix Wl with the target density
dl using Algorithm 1. In the case of a non-square weight
matrix with size n ×m, where n < m, we sample a row-
orthogonal matrix by appending additional m− n columns
of zeros to the initial A and using Givens rotations of size
m. If n > m we sample a m × n row-orthogonal matrix
and transpose the output. We treat all zeros of the matrix as
pruned connections so that Ml

ij = 0 if and only if Wl
ij = 0.

For a convolutional layer of shape cout × cin × (2k + 1)×
(2k+1), we sample a sparse orthogonal matrix Hl of density
dl with shape cout × cin using the same procedure as de-
scribed above. Next, we adapt the delta orthogonal initializa-
tion and set Wl

i,j,k,k = Hl
i,j and Wl

i,j,p,q = 0 if any of p, q
is different than k. To create the sparse mask Ml, we follow
a two-step process. First, we set Ml

i,j,p,q = [Wl
i,j,p,q ̸= 0].

However, the resulting mask from this step has a density
of dl/(2k + 1)2 which is too low, and the only learnable
parameters are located in the centers of the filters within
Wl. To rectify this, in the next step, we select uniformly,
at random a sufficient number of zero entries in Ml and
change them to 1. This ensures that the desired density is
achieved while also spreading the learnable parameters of
Wl throughout the tensor. It’s worth noting that this ap-
proach also allows us to sample matrices Hl with densities
higher than the target dl, such as dHl =

√
dl, by compen-

sating for the change with a higher level of sparsity in the
non-central entries of the mask. See Appendix E for a de-
tailed description and visualization of the method. Finally,
in both the fully connected and convolutional cases, we
scale the obtained weights by σw, following the practice
from dense orthogonal initializations. The bias terms are
sampled from a normal distribution with zero-mean and
standard deviation σb.
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Figure 2: The mean (top row) and maximum (middle row) singular values of the input-output Jacobian of an MLP network
computed for varying sparsity. In addition, we also present the training loss curve (bottom row) for sparsity 0.95. The colors
indicate the used activation function, while the line- and marker-styles represent the initialization schemes. In the loss curve
plots, for clarity of the presentation, we show only the ReLU and linear activation. See Appendix C for other activations.

5. Experiments
In this section we empirically assess the performance of our
method. We start by analyzing the properties of the input-
output Jacobian to verify the improvement in signal prop-
agation. Next, we showcase the potential of EOI by train-
ing highly sparse vanilla 1000-layer networks. Finally, we
demonstrate the practical benefits of our scheme in sparsify-
ing contemporary architectures and discuss it’s efficiency.
See Appendix A for implementation details.

5.1. Study of Singular Values

To evaluate our method in the context of dynamical isometry
theory, we examine the singular values of the input-output
Jacobian of an MLP network with 7 layers and a hidden size
of 100. We use this architecture as it was also studied for the
same purposes in the work of Lee et al. (2019a). We start
by initializing the dense model to have orthogonal weights.
Next, we run the Uniform, ERK, SNIP, GraSP and Synflow
density distribution methods described in Section 3.3 to
produce the sparse masks. We compare the sparse initial-
izations obtained by directly applying these masks (Base)
with the initializations returned by the approximated isome-
try scheme (AI) and our EOI scheme. We report the mean
and maximum singular values for a set of various sparsity
levels, ranging from 0% (dense network) up to 97%. We
explore different activation functions, including linear (no

Table 1: Test accuracy (standard deviation in brackets) of
1000-layer MLP and CNN networks on MNIST and CIFAR-
10 respectively, density 12.5%. We underline the best overall
result and bold-out the best result within each method.

MLP (MNIST) CNN (CIFAR10)
Method Init

ERK Base 11.35(0.00) 10.00(0.00)
AI 95.73(0.10) 39.08(16.35)
EOI 95.98(0.25) 78.41(0.15)

GraSP Base 11.35(0.00) 16.05(0.40)
AI 95.33(0.11) 14.48(1.12)
EOI 95.68(0.30) 77.68(0.34)

SNIP Base 11.35(0.00) 10.00(0.00)
AI 95.35(0.40) 10.00(0.00)
EOI 94.06(1.11) 46.59(0.11)

Uniform Base 11.35(0.00) 10.00(0.00)
AI 95.52(0.30) 33.35(21.34)
EOI 96.11(0.20) 76.87(0.34)

SAO Base 96.74(0.13) 78.80(0.11)
EOI 97.43(0.05) 79.60(0.24)

Dense Orthogonal 97.51(0.13) 80.71(0.25)

activation), tanh, hard tanh, and ReLU. Additionally, we
also investigate the training loss for a sparsity level of 95%
in order to validate the impact of the orthogonality on the
dynamics of learning. We present the results in Figure 2.

For any Base initialization, the mean and maximum singular
values decrease with the increase of the sparsity, irrespec-
tive of the used activation function, as was also witnessed
in Lee et al. (2019a). Interestingly, we find that some den-
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Table 2: Test accuracy (standard deviation in brackets) of various convolutional architectures on dedicated datasets for
density 10%. We underline the best overall result and bold-out the best result within each density distribution.

ResNet32 ResNet56 ResNet110 VGG-16 EfficientNet ResNet110
Method Init (CIFAR10) (CIFAR10) (CIFAR10) (CIFAR10) (Tiny ImageNet) (CIFAR100)

ERK Base 89.49(0.27) 90.82(0.23) 91.51(0.32) 91.44(0.19) 45.54(0.76) 66.85(0.20)
AI 89.51(0.21) 90.74(0.17) 91.93(0.20) 91.51(0.10) 45.13(0.70) 66.97(0.10)
EOI 89.79(0.38) 91.07(0.15) 91.66(0.35) 92.02(0.12) 44.13(0.77) 66.97(0.34)

GraSP Base 88.95(0.21) 90.18(0.35) 91.60(0.50) 33.22(23.11) 46.80(0.35) 65.62(0.48)
AI 89.26(0.33) 90.66(0.35) 91.51(0.53) 34.87(21.97) 46.98(0.43) 66.31(0.46)
EOI 89.66(0.09) 90.89(0.20) 91.82(0.17) 92.65(0.28) 45.26(0.29) 66.60(1.00)

SNIP Base 89.49(0.27) 90.57(0.31) 91.44(0.31) 92.62(0.17) 22.66(1.26) 62.14(1.63)
AI 89.48(0.16) 90.46(0.20) 91.49(0.39) 92.55(0.20) 22.93(1.20) 61.61(1.80)
EOI 89.54(0.39) 90.79(0.20) 91.33(0.33) 92.58(0.17) 50.53(0.65) 66.35(0.68)

Synflow Base 88.78(0.27) 90.05(0.23) 91.33(0.24) 92.15(0.19) 53.19(0.63) 63.16(0.39)
AI 88.82(0.24) 90.31(0.29) 91.55(0.22) 92.33(0.16) 52.70(0.31) 63.14(0.65)
EOI 89.49(0.38) 90.96(0.11) 91.86(0.11) 92.36(0.24) 52.69(0.56) 64.07(1.70)

Uniform Base 88.27(0.27) 89.64(0.23) 91.11(0.38) 90.50(0.14) 30.93(0.19) 65.42(0.25)
AI 88.25(0.33) 89.86(0.08) 91.16(0.28) 90.55(0.14) 22.72(13.36) 65.37(0.38)
EOI 89.08(0.40) 90.42(0.26) 91.42(0.43) 90.91(0.26) 24.51(13.25) 63.27(0.84)

Dense Base 92.68(0.19) 93.01(0.23) 92.52(0.47) 92.84(0.08) 52.98(0.43) 70.25(1.66)
Orthogonal 92.73(0.33) 92.59(0.87) 92.79(0.85) 92.84(0.23) 53.05(0.73) 70.93(1.63)

sity distribution methods are more resilient to this behav-
ior. In particular, the Synflow method is able to maintain
good statistics of the input-output Jacobian up to a sparsity
of 0.5%. Moreover, we note that imposing orthogonality,
whether through AI or our EOI, aids in preserving nearly
identical mean and maximum singular values compared to
the dense model. However, our approach is much better at
sustaining this behavior even within the exceedingly high
sparsity range (beyond 0.95). We argue that this distinction
arises from the exactness of our orthogonality, whereas AI
is susceptible to approximation errors.

Apart from measuring the singular values we verify the
learning capabilities of the studied networks (see the bot-
tom row of Figure 2). We observe that in practically every
case, sparse orthogonal initialization helps to achieve bet-
ter training dynamics, especially in the initial steps of the
optimization. However, we find that this effect is less emi-
nent for the Synflow and SNIP methods. Interestingly, we
noted that, in the majority of the situations, the training
curve improves even in the case of the ReLU activation. In
consequence, even if dynamical isometry is not possible to
achieve, sparse orthogonal initializations can still enhance
the training procedure of the network.

5.2. 1000-Layer Networks

To showcase the effectiveness of our initialization scheme,
we carry out experiments on extremely deep networks with
the tanh activation function. Note that this activation func-
tion is necessary to obtained dynamical isometry. We use
two models: a 1000-layer MLP with a width of 128 and a
1000-layer CNN with a hidden channel size of 128. We do
not use any residual connections or normalization layers.
We initialize the baseline dense models to achieve dynamical
isometry. More precisely, we use the orthogonal initializa-

tion (delta-orthogonal with circular padding in case of the
CNN) and set the (σw, σb) parameters of that initialization
to reach criticality, i.e. X (σw, σb) = 1. To this end, we
follow the procedure discussed in Xiao et al. (2018).1. We
intentionally use these extremely deep vanilla networks in
order to study whether EOI benefits from dynamical isome-
try. Large depth and the lack of normalization layers make
a network more prone to the problem of vanishing or ex-
ploding gradients, requiring a proper initialization in order
to allow the network to learn.

To obtain the sparse baselines we employ the ERK, GraSP,
SNIP and Uniform density distribution methods for sparsity
of 87.5.%2. We leave-out Synflow as it cannot be used with
tanh activation. Apart from directly adapting the sparse
initializations provided by these methods ("Base" in col-
umn Init), we also extract their density-per-layer ratios to
produce the sparse orthogonal initializations using the AI
and EOI schemes. The chosen sparsity level of 87.5% and
network sizes enable us to incorporate the SAO method
into this study. However, this method cannot be used with
varying per-layer sparsities and comes with its own density
distribution, which is equal to the uniform one, with the first
and last layers unpruned. In addition, we also evaluate EOI
on the SAO density distribution. The results are in Table 1.

We observe that directly using the sparse mask obtained
from the density distribution algorithms ("Base" in the Ta-
ble) leads to random performance. This is expected since, as
observed in Section 5.1, the performed pruning causes the
degradation of the signal propagation. Applying orthogonal-
based sparse initialization schemes helps to recover good

1See Appendix A exact values of the initialization parameters
2When computing the scores for the density distribution meth-

ods for the CNN, we use the orthogonal convolution approach
from Algorithm 1 of Xiao et al. (2018) – see Appendix A.
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performance. Most notably, our EOI consistently outper-
forms other sparse approaches and holds the overall best
sparse performance in both models. Importantly, exact or-
thogonalization holds a clear advantage over the approxi-
mated one. We argue that, in case of MLPs, this is due to
the accumulated approximation errors. For the CNN, the AI
approach fails due to its ill-specification of the orthogonal-
ity of a convolutional layer. The SAO method, on the other
hand, can achieve high results, however, it does not hold any
clear advantage over EOI. This study showcases that, with
the use of EOI, the efficacy of orthogonal initializations and
dynamical isometry can be extended to sparse training.

5.3. Practical Benefits of Orthogonality

In the previous section, we showed that our EOI initial-
ization can excel in setups related to studies of dynamical
isometry. In this section, we demonstrate that orthogonality
can also improve the sparse performance in more commonly
used architectures that employ residual connections and nor-
malization techniques. To this end, we study a selection
of models frequently employed in sparse studies, such as
the VGG-16 (Simonyan & Zisserman, 2014), ResNet32,
ResNet56, and ResNet110 (He et al., 2016) on CIFAR-10
and CIFAR-100 (Krizhevsky et al., 2009), as well as Eff-
cientNet (Tan & Le, 2019) on the Tiny ImageNet dataset (Le
& Yang, 2015). For the baseline dense models, we study
both their base initialization, as well as the orthogonal one.
In the sparse case, similarly to the experiments from Section
5.2, we pair density distribution methods with weight / mask
initializations to form sparse initialization algorithms. Note
that we are not able to use SAO in this study, due to the
constraints it introduces for the possible density levels and
network architectures. In total we evaluate 15 variants of
sparse initialization, 5 of which are EOI-based. We present
the test accuracies in Table 2.

Interestingly, we observe that the orthogonal approaches
consistently outperform the Base one. The only exception
is the Efficient Net model. We argue that this may be due
to the bottleneck blocks used in this architecture, which
prevent proper orthogonal initializations. At the same time,
we notice that the discrepancies between the AI and EOI
are much smaller in this study than in Section 5.2. This
can be attributed to the fact that skip connections and nor-
malization layers already facilitate learning stabilization. In
consequence, the ill-specification of the convolution orthog-
onality is less detrimental in this case. Remarkably, within
each density-distribution method, we observe that our EOI
scheme typically yields the highest test accuracy. This is
evident from the mean rank assigned after evaluating the re-
sults of each scheme across all density distribution methods
and models (refer to Figure 3b).

The above results advocate for the use of sparse orthogo-

nal schemes, even if the network already has good signal
propagation properties. This may suggest that influencing
orthogonality in very sparse regimes plays yet another role,
apart from simply stabilizing the learning.

Large Scale Experiments In addition to the previous
studies, we also investigate how our EOI scheme can be
used in larger models. We consider two additional architec-
tures trained on the ImageNet dataset: the DeiT III vision
transformer (Touvron et al., 2022) and ResNet50 (He et al.,
2016). Since DeiT is a transformer network with an at-
tention mechanism for which the orthogonality denition is
not straightforward, we only apply the sparsity to the MLP
block in each encoder-building block. See Appendix A for
details of the training setup for both those models. In both
setups we investigate the benefit that the EOI can bring over
the most common data-agnostic method: the ERK static
sparse initialization, which has shown consistently strong
results among all architectures in the study form the previ-
ous section. We consider the density of 0.1 and present the
results in Figure 4.

In both setups we observe that EOI helps in improving the
results. In the case of the ResNet-50 model the advantage
of EOI is not significant. We argue that this may be an
effect of using the bottleneck architecture with EOI or an
ill-specified density of the convolution centre Hl. However,
for DeiT-III, the gain from EOI is clearly visible, resulting
in a circa 1% increase over the ERK-base performance.
This demonstrates the potential of using sparse orthogonal
initialization over randomized sparsification in challenging
datasets and large transformer models - a direction we aim
to study closer in the future.

5.4. Efficiency of EOI

To evaluate the practical time complexity, we consider the
task of generating a sparse orthogonal matrix A with dimen-
sion n × n. We evaluate the EOI, SAO and AI schemes
for matrices with size varying from n = 16 to n = 2048.
We record the actual wall-time required to obtain the sparse
isometry for each method and matrix size. Additionally, for
each such matrix, we report the mean Orthogonality Score
(OS), which is defined as the norm of the difference between
ATA and the identity matrix (Lee et al., 2019a). Lastly, we
explore how the computational time changes relative to the
target density d for a matrix with a fixed size of n = 256.
The results of these analyses are presented in Figure 3a.

By examining the Orthogonality Score, we observe that
both SAO and EOI are capable of producing genuinely
orthogonal matrices, while the AI method provides a cruder
approximation, particularly as the network size increases.
In terms of running time, we clearly observe the benefit
of the O(n) computation of Givens matrix multiplication
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Figure 3a: Left: The Orthogonality Score (OS) vs. the matrix size for density d = 0.0625.
Middle: The wall time compute vs. the matrix size for density d = 0.0625. Right: The
wall time vs. density for matrix with size n = 256. Please note the logarithic scales.
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Figure 3b: Ranking of initialization
schemes for different models. The lower
the value, the better. EOI performs the
best on the 4 out 5 cases.

Figure 4: Top-1 and Top-5 validation accuracy on ImageNet
obtained for the ERK and ERK-EOI initializations with
density 0.1 on the ResNet50 (Left) and DeiT III (Right)
models.

in contrast to the need to compute the orthogonality loss
in AI. Our method is circa 100x faster! Moreover, within
the limit of the studied matrix sizes, it is also faster than
the SAO scheme. However, we observe that SAO benefits
from an overall better scaling trend, indicating that it could
be a better choice for matrices with n > 2048. Finally,
by analyzing the plot presenting the time complexity as
a function of density, we observe that EOI is especially
efficient in producing extremely sparse networks – an area
in which SAO performs very poorly. Once again, the scaling
properties of the AI approach provide the worst running
time. This investigation confirms that our EOI scheme is an
efficient way of providing exact orthogonal initializations,
particularly for very high sparsity regimes and moderate
matrix sizes.

6. Conclusions
In this work, we introduced the Exact Orthogonal Isome-
try (EOI)—a novel sparse orthogonal initialization scheme
compatible with both fully-connected and convolutional lay-
ers. Our approach is the first orthogonality-based sparse
initialization that, at the same time, provides exact orthog-
onality, works perfectly for convolutional layers, supports
any density-per-layer, and does not unnecessarily constrain
the layer’s dimensions. As a result, it surpasses approxi-
mated isometry in high-sparsity scenarios while remaining

easily adaptable to contemporary networks and compatible
with any density distribution. Experimental analysis demon-
strates that our method consistently outperforms other popu-
lar static sparse training approaches and enables the training
of very deep vanilla networks by benefiting from dynamical
isometry. We believe that the remarkable performance of
EOI underscores the potential of employing orthogonal ini-
tializations in sparse training. Furthermore, it highlights the
critical need to take into account not only the binary mask
values but also the weight initialization characteristics that
arise (or disappear) as a result of pruning.

Limitations and Future Work. Our study concentrated on
image recognition tasks for comparability with other works.
Exploring the potential application of our sparse orthogonal
schemes in large NLP models is intriguing. Future efforts
may involve manipulating the distribution of random Givens
matrices or adjusting the central orthogonal matrix’s density
in convolutional layers for enhanced results. While our fo-
cus was on static sparse training, investigating how EOI can
contribute in dynamic sparse training would be interesting.
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A. Training Regime
In all the conducted experiments, we set the batch size to 128 and use the SGD optimizer, with a momentum parameter set
to 0.9. We conducted each experiment independently five times to ensure the robustness and reliability of the results. We do
not optimize any specific hyperparameters. In the following Subsections, we discuss the design choices specific to each
experiment setup from the main text.

A.1. Study of Singular Values

For the experiments in Section 5.1 we used a simple MLP network with 7 layers and width 100 trained on the MNIST
dataset (LeCun et al., 1998). The same architecture was used in Lee et al. (2019a) for an analogous evaluation. We train
the network for 100 epochs, employing a learning rate of 10−2 and a weight decay of 10−4. We set the parameters σw

and σb from dynamical isometry to 1 and 0, respectively. For AI (approximate isometry), we conduct 104 iterations of the
orthogonality optimization process, which is the default value also used by Lee et al. (2019a). We test sparse models with
density from the set {0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. and report the mean and maximal singular
value of the input-output Jacobian.

A.2. 1000-Layer Networks

In experiments discussed in Section 5.2 we investigated extremely deep MLPs and CNNs. In all experiments within this
category, we configure the σw and σb parameters from dynamical isometry to be 1.0247 and 0.00448, respectively. In order
to obtain those values we use the scheme discussed in (Schoenholz et al., 2016; Xiao et al., 2018).

The MLP architecture consists of 1000 layers, with 998 hidden layers, each having a shape of 128× 128, taking inspiration
from the model used in Pennington et al. (2017). We train the MLP on the MNIST dataset for 100 epochs, using a learning
rate of 10−4 and weight decay of 10−4.

In the case of the 1000-layer CNN architecture, the first layer consists of an input transformation layer that increases the
channel size to 128. The next two layers are convolutions with stride 2, that perform dimension reduction. The last layers
consist of average pooling, flattening layer and a fully-connected layer. The remaining middle layers are always convolutions
with a kernel size of 3 and input and output channel width of 128. In all convolution layers in this model, we use circular
padding. This construction was inspired by the similar architecture studied in (Xiao et al., 2018).

We train the CNN model for 100 epochs using a learning rate of 10−4 and weight decay of 10−4. Additionaly, In experiments
involving EOI, we sampled the central orthogonal matrices Hl with a density of dHl = dl. For experiments with AI, we set
the number of orthogonality optimization iterations to 103. Moreover, when computing the scores for the density distribution
algorithms for the CNN, we use the orthogonal convolution approach from Algorithm 1 of Xiao et al. (2018), instead of
the delta-orthogonal one. Note that both solutions adhere to the convolution definition from Section 3.2. However, the
delta initialization results in more weights with zero-magnitude and hence would unnecessarily bias the score-based density
distribution algorithms, such as SNIP or GraSP. For the dense baseline, we use the delta orthogonal scheme.

A.3. ResNets, VGG, EfficientNet

In this Section, we describe the setting used in experiments presented in Section 5.3. In this study, we use the VGG-
16 (Simonyan & Zisserman, 2014), ResNet-32/56/110 (He et al., 2016), as Efficient-Net-B0 (Tan & Le, 2019) architectures.
Note that for the VGG model, we adapt the VGG16-C variant introduced in Dettmers & Zettlemoyer (2019). We employ the
following common setups:

We train the VGG and ResNet models on the CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-100 (for ResNet110) dataset
for 200 epochs with a learning rate of 0.1 and weight decay of 10−4. We set the σw and σb parameters to 1 and 0, respectively.
In experiments involving EOI, we chose to sample denser orthogonal matrices Hl to be used as centers of convolutional
tensors, Specifically, we set the density dHl to

√
dl, as we observed that it leads to improved performance compared

to setting dHl = dl. Similarly to the setup discussed in Section A.2, we also use Algorithm 1 of Xiao et al. (2018) to
initialize the convolution when computing the density distribution algorithms. Here, we also use it in the dense baseline.
For experiments with AI, we configure the number of orthogonality optimization iterations to be 104. Additionally, in
experiments involving Synflow on ResNet-56 and ResNet-110, we use parameters of double precision.

For experiments involving the EfficientNet-B0 (Tan & Le, 2019) architecture, we used the Tiny-ImageNet (Le & Yang,
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Table 3: Number of parameters of the sparsified architectures used in the experiments.

Architecture Density #Params

ResNet-32 10% ∼ 45K
ResNet-56 10% ∼ 85K
ResNet-110 10% ∼ 170K
VGG16-C 10% ∼ 1.1M
EfficientNet 10% ∼ 420K

1000-layer-MLP 12.5% ∼ 2M
1000-layer-CNN 12.5% ∼ 18M

Table 4: Test accuracy (with standard deviation) of ResNet32 and VGG-16 on CIFAR-10, using various per-layer density
distribution algorithms, density 10%. We underline the best overall result and bold-out the best result within each density
distribution method.

ResNet32 VGG-16

ReLU LReLU SELU Tanh ReLU LReLU SELU Tanh
Method Init

ERK Base 89.49(0.27) 89.41(0.30) 89.24(0.16) 87.96(0.20) 91.44(0.19) 91.41(0.25) 90.70(0.30) 91.21(0.12)
AI 89.51(0.21) 89.36(0.19) 89.22(0.25) 88.30(0.18) 91.51(0.10) 91.61(0.14) 90.80(0.26) 91.09(0.22)
EOI 89.79(0.38) 89.81(0.08) 89.37(0.14) 88.06(0.12) 92.02(0.12) 92.21(0.25) 91.16(0.12) 91.13(0.27)

GraSP Base 88.95(0.21) 88.92(0.38) 89.02(0.40) 88.18(0.32) 33.22(23.11) 92.64(0.20) 91.29(0.22) 91.65(0.12)
AI 89.26(0.33) 89.03(0.26) 89.18(0.24) 88.16(0.23) 34.87(21.97) 92.57(0.15) 91.10(0.18) 91.79(0.16)
EOI 89.66(0.09) 89.59(0.26) 89.39(0.25) 88.17(0.26) 92.65(0.28) 92.48(0.29) 91.42(0.21) 91.71(0.14)

SNIP Base 89.49(0.27) 89.29(0.49) 89.05(0.22) 87.91(0.30) 92.62(0.17) 92.80(0.20) 91.51(0.12) 92.00(0.23)
AI 89.48(0.16) 89.42(0.19) 88.91(0.11) 87.73(0.25) 92.55(0.20) 92.74(0.14) 91.57(0.12) 91.83(0.06)
EOI 89.54(0.39) 89.57(0.21) 89.40(0.17) 87.90(0.57) 92.58(0.17) 92.55(0.09) 91.74(0.10) 92.08(0.15)

Synflow Base 88.78(0.27) 88.90(0.26) 88.56(0.19) - 92.15(0.19) 92.30(0.16) 91.84(0.20) -
AI 88.82(0.24) 88.85(0.41) 88.48(0.22) - 92.33(0.16) 92.33(0.12) 91.51(0.13) -
EOI 89.49(0.38) 89.46(0.25) 89.13(0.21) - 92.36(0.24) 92.63(0.24) 91.69(0.29) -

Uniform Base 88.27(0.27) 88.19(0.19) 88.27(0.11) 87.16(0.19) 90.50(0.14) 90.48(0.19) 89.96(0.14) 89.88(0.16)
AI 88.25(0.33) 88.28(0.38) 88.38(0.22) 87.11(0.24) 90.55(0.14) 90.33(0.25) 90.02(0.22) 90.10(0.21)
EOI 89.08(0.40) 88.88(0.27) 88.79(0.34) 88.01(0.29) 90.91(0.26) 91.06(0.15) 90.53(0.19) 90.45(0.39)

2015) dataset. The overall configuration follows the one on ResNets and VGG, with the exception that we train the network
for 120 epochs using a learning rate of 10−2 and a weight decay of 10−3.

Finally, let us note that throughout our work, we consistently employ the default training and test splits provided by the
datasets. However, since the default splits of MNISTm CIFAR-10, CIFAR-100 do not include a validation set, we use 10%
of the training split as the validation dataset and the remaining 90% for the actual training dataset.

A.4. Experiments on ImageNet

For the ResNet50 architecture, we use the standard hyperparameter setup with batch size 128, SGD optimizer with
momentum 0.9, weight decay 0.0001, and Nesterov= True. We start with a learning rate equal to 0.1 and decay it after the
training enters the 50% and 75% of the epochs. We use the learning rate decay of 0.1 and train the model for 90 epochs. For
the DeiT model we use the default hyperparameter setup of (Touvron et al., 2022) for the "deit_small_patch16_LS" model.3

B. Density of Givens products
In this appendix, we examine the behavior of the process of composing random, independent Givens matrices with regard
to the expected density of their product. The Givens matrix Gn(i, j, φ) was defined in section 3 and can be visualized as

3Available at https://github.com/facebookresearch/deit, access:14.11.2023.
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follows:

Gn(i, j, φ) =



1 . . . 0 . . . 0 . . . 0
...

...
...

...
0 . . . cosφ . . . − sinφ . . . 0
...

...
...

...
0 . . . sinφ . . . cosφ . . . 0
...

...
...

...
0 . . . 0 . . . 0 . . . 1


, (4)

In our setting, we assume that (G(t))t∈N is a sequence of random, independent Givens matrices of size n. We define a
sequence (A(t))t∈N of random matrices:

A(0) = In

A(t+1) = A(t) ·G(t)

Theorem 1. Define p(t, k) as the probability that the top row of A(t) will have exactly k non-zero elements. The following
recurrence relation holds:

p(t+ 1, k + 1) = p(t, k + 1) ·
(
k+1
2

)
+

(
n−k−1

2

)(
n
2

) + p(t, k) · k · (n− k)(
n
2

) (5)

with the base condition p(0, 1) = 1 and p(0, k) = 0 for k ̸= 1.

Proof. The base condition is trivially true since A(0) is the identity matrix. To prove the recurrence relation, we examine
the behavior of the top row of A(t) when we multiply the matrix by G(t). Let’s assume that a is a row vector of width
n, constituting the top row of matrix A(t), and that G(t) = Gn(i, j, φ). If l /∈ {i, j}, then we can observe that al will not
change as a result of the multiplication: (

a ·G(t)
)
l
= al

Otherwise, we can write: (
a ·G(t)

)
i
= ai cosφ+ aj sinφ(

a ·G(t)
)
j
= −ai sinφ+ aj cosφ

If both ai and aj are zero, then (a ·G(t))i and (a ·G(t))j will be zero. Otherwise, these values depend on the value of φ. If
both ai and aj are non-zero, then (a ·G(t))i and (a ·G(t))j will be non-zero with probability 1. Finally, if exactly one of
ai or aj is zero, then both (a ·G(t))i and (a ·G(t))j will be non-zero with probability 1. Thus, the number of non-zeros
in vector a can either remain the same or increase by one after multiplication by G(t). The probability that it remains the
same is equal to the probability that i and j are such that ai and aj are both non-zero or both zero. On the other hand, the
probability that it increases by one is equal to the probability that exactly one of ai or aj is non-zero. By calculating these
probabilities and using conditional probabilities to express p(t+ 1, k + 1) in terms of p(t, k + 1) and p(t, k), we arrive at
equation 5.

Theorem 2. The expected density of A(t) can be expressed by the following formula:

E[dens(A(t))] =
1

n
·

n∑
k=1

k · p(t, k) (6)

Proof. In Theorem 1, the values p(t, k) pertain to the top row of A(t). However, due to symmetry, they can be applied
to any row of A(t). In fact, the basis of Formula 5 remains the same for any row, and for any t, multiplication by G(t)

independently affects every row of A(t), regardless of the spatial distribution of non-zeros in the row (only the number of
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Figure 5: Expected density (red) of a sparse matrix produced by Algorithm 1 as as a function of the number of applied
Givens rotations. Blue curve represents the empirical evaluation.
them is relevant). Consequently, the expected density of the entire matrix A(t) should be equal to the expected density of
any of its rows. Below, we provide a straightforward derivation of this fact, with a representing the top row of A(t).

E[dens(A(t))] = E

[
#{(i, j) : A(t)

ij ̸= 0}
n2

]
=

n∑
i=1

E

[
#{j : A(t)

ij ̸= 0}
n2

]
=

1

n
· E

[
#{j : A(t)

1j ̸= 0}
]
= E[dens(a)] =

1

n
·

n∑
k=1

k · p(t, k)

As we can see, by expressing E[dens(a)] as a weighted sum of probabilities, we arrive at 6.

Theorems 1 and 2 can be employed to calculate the expected densities of Givens products. Given the size of the matrices
involved n and an upper bound on the number of rotations T , we can compute all the values p(t, k) for t ∈ {0, ..., T}
and k ∈ {1, ..., n} in O(T · n) time using dynamic programming based on recurrence relation 5. Afterward, for each
t ∈ {0, ..., T}, we can substitute the values p(t, k) into equation 6 to determine the desired expected densities.

C. Additional Loss Plots for Tanh and Hard Tanh
In addition to the plots from Section 5.1, we also present the loss curves for the remaining two studied activation functions:
the Tanh and Hard Tanh. Note that the Synflow method is not compatible with such activations, and hence we do report the
results on this density distribution.

Similarly to the observations made in the main text, we observe that using orthogonal initializations helps to achieve better
training dynamics. In addition, we also notice that sparse learning approaches based on weight initialization and function
preservation such as SNIP and GraSP benefit from better learning curves than the random initializations.

D. Additional Results on Contemporary Architectures
Apart from the main results for density 10% in Section 5.3, we also investigate the performance of the sparse initialization
methods on the ResNets and VGG models for density 5%/ The results of this study are presented in Table 5.

Similarly as in the main text, we observe that the overall best performances for each model are given by the orthogonal
methods. Furthermore, the EOI schemes is most often the best choice, irrespective of the used density distribution algorithm.
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Figure 6: Training loss curve for sparsity 0.95 for Tanh and Hard Tanh activation functions.

Table 5: Test accuracy (with standard deviation) of various convolutional architectures on dedicated datasets, density 5%.
We bold-out the best result within each density distribution method and architecture, and underline the best overall result
within each architecture.

ResNet32 ResNet56 ResNet110 VGG-16
Method Init (CIFAR10) (CIFAR10) (CIFAR10) (CIFAR10)

ERK Base 87.11(0.29) 89.11(0.28) 90.38(0.25) 90.06(0.20)
AI 87.25(0.16) 88.86(0.40) 90.21(0.27) 90.38(0.23)
EOI 87.38(0.17) 89.40(0.20) 90.52(0.24) 91.03(0.16)

GraSP Base 86.84(0.72) 88.89(0.16) 90.42(0.35) 11.81(4.04)
AI 86.78(0.41) 89.14(0.28) 90.35(0.27) 11.79(4.01)
EOI 87.40(0.41) 89.36(0.16) 90.66(0.21) 90.03(4.36)

SNIP Base 86.81(0.25) 88.46(0.25) 90.03(0.15) 92.21(0.32)
AI 86.83(0.17) 88.53(0.35) 90.18(0.32) 92.23(0.35)
EOI 86.85(0.41) 57.09(42.99) 25.90(35.54) 91.97(0.16)

Synflow Base 86.45(0.27) 88.32(0.18) 89.85(0.26) 91.36(0.09)
AI 86.27(0.30) 88.50(0.18) 89.96(0.33) 91.36(0.32)
EOI 87.47(0.22) 89.20(0.16) 90.74(0.16) 91.86(0.23)

Uniform Base 85.43(0.21) 87.67(0.32) 89.52(0.26) 88.46(0.18)
AI 85.33(0.46) 87.66(0.20) 89.34(0.26) 88.55(0.14)
EOI 86.27(0.31) 88.49(0.28) 89.99(0.09) 89.56(0.09)

Dense Base 92.68(0.19) 93.01(0.23) 92.52(0.47) 92.84(0.08)
Orthogonal 92.73(0.33) 92.59(0.87) 92.79(0.85) 92.84(0.23)

Although our method has presented poor results when tested with SNIP, we managed to restore reasonable performance by
lowering the learning rate to 10−2. In this setting, we observed results of 85.14(0.52) and 85.81(0.28) for ResNet56 and
ResNet110 respectively.

E. Details of Exact Orthogonal Initialization for Convolutions
In order to produce a weight tensor Wl of shape cout× cin× (2k+1)× (2k+1) of a convolutional layer, EOI first samples
am orthogonal matrix Hl ∈ Rcout×cin generated by Algorithm 1 and sets:

Wl
i,j,p,q =

{
Hl

i,j if p = q = k,

0 otherwise.
(7)

This step is adapted from delta-orthogonal initialization (Xiao et al., 2018), but uses a sparse matrix Hl instead of a dense
one. In the next step, we need to establish the sparse mask Ml. Initially, we set:

Ml
i,j,p,q =

{
1 if Wl

i,j,p,q ̸= 0,

0 otherwise.
(8)
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Figure 7: The embedding of an orthogonal matrix Hl in the convolutional tensor Wl. Blue entries in Wl refer to the
embedded entries of Hl. White entries in Wl denote the remaining elements which are zero.

Figure 8: The process of sparse mask generation for convolutional weights. The left-most image depicts the weight matrix
obtained by the embedding from Figure 7. Blue and gray entries correspond to the embedded entries of Hl, blue representing
the non-zero entries and gray representing the zeros. Next, the initial mask is applied, which prunes all zero entries (marked
with red). Then, a subset of initially pruned entries is selected (marked with green) and becomes unpruned so that Ml

matches the target density dl. The final mask is depicted on the right-hand side, with blue entries being unpruned. In
addition, note that entries that are not the centers of the kernels (i.e., are different from Wi,j,k,k for any k) are set to zero,
even if they are unpruned.

Note, however, that if Hl was sampled with density dl, then the above equation would produce a mask with density
dl/(2k + 1)2. This is too low since we wanted the density of the mask (not its kernel) to be equal to dl. Therefore we
assume that the density of matrix Hl is selected to ensure that the combined density of Wl with embedded Hl does not
exceed the specified target density dl. To achieve the desired density, we must convert a certain number of zero entries in
Ml into ones. We achieve it by uniformly selecting a subset of zero entries in Ml of the appropriate size and transforming
them all to ones. Figure 8 provides a visual representation of this process.

Please note that the generated weight tensor and mask produce an orthogonal convolutional layer that aligns with the
norm-preserving definition outlined in Section 3.2. The orthogonality of weights is a direct result of employing the delta-
orthogonal initialization, which inherently satisfies the defined criteria. Notably, the mask does not prune any non-zero
entries of the weights. Consequently, the orthogonality of Wl implies the orthogonality of Ml ⊙Wl.

F. Impact of the Rotation Angle on the EOI algorithm
One crucial variable of the distribution over Givens matrices is the angle of the rotation, denoted with φ. In algorithm 1, we
sampled the angles of the Givens matrices from the uniform distribution. One might wonder how the performance of our
method would change if we preferred some angles more than others. In order to verify the impact of φ on the performance of
our EOI , we run an experiment on the ResNet32 model with density 0.1 comparing three different distributions of Givens
matrices: "random-angle", which corresponds to the default uniform distribution used in algorithm 1, "small-angle", which
uses a fixed value of φ = π/180, and "large-angle", which uses a fixed φ = π · 80/180.

We present the training loss and evaluation accuracy curves at the initial stage of the training in Figure 9. We observe that
the "small-angle" method suffers from much worse convergence and higher training loss in the initial steps of the training.
This indicates that such a degenerated distribution of Givens rotations isn’t preferred and that larger values of φ are more
beneficial for efficient training.
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Figure 9: Mean training loss and mean evaluation accuracy curves for the first 20 epochs of training on ResNet32 with three
different methods of sampling Givens matrices: "random angle", "small angle" and "large angle". Despite the differing
performance in the initial stage of training, all three methods managed to finish with competitive test accuracies after 200
epochs of training - random angle: 89.58(0.09), small angle: 89.65(0.11), large angle: 89.87(0.22)

G. Description of SAO
In this section, we provide a brief description of the SAO method (Esguerra et al., 2023). The SAO algorithm is designed by
leveraging a construction based on Ramanujan expander graphs. Let G(U, V,E) be a (c, d)-regular graph, where c is the
degree of the input nodes, and d is the degree of the output nodes. The sets U and V are disjoint, and any edge (u, v) ∈ E
must connect only nodes belonging to different sets. The connectivity between the sets is defined by the bi-adjacency matrix
B ∈ {0, 1}u×v, where u = |U | and v = |V |. It is assumed that the bi-adjacency matrix is such that the full adjacency
matrix of graph G is a Ramanujan expander.4 The SAO algorithm constructs the mask M for a m× n fully-connected layer
to be the transpose of the bi-adjacency matrix of a (c, d)-regular Ramanujan expander graph. The sets U and V correspond
to the input and output of the layer. For m ≥ n and a given degree c, the output degree is set to d = dm

n . Next, the matrix
M is constructed by firstly building a (c, 1)-regular matrix M1 ∈ {0, 1}(n/d)×n and then concatenating its (dmn − 1) copies
along the vertical axis (See Figure 10 for a visual comparison of examples of masked returned by SAO and EOI). Next,
given r = cn

m , SAO constructs the sparse initialization matrix S by generating n/r sets. Each such set is composed of r
orthogonal vectors with length equal to the specified degree c and corresponds to one set of orthogonal columns. The values
of those vectors are then assigned to matrix S accordingly to the corresponding non-zero entries of the matrix M (see Figure
4 in (Esguerra et al., 2023) for visualization).5

The density of a (c, d) regular layer with weights S ∈ Rm×n is given by c/m = d/n, where c and d refer to the degree of
the input and output nodes, respectively. From here, it is evident that SAO introduces constraints on the possible level of
sparsity, as well as the sizes of layer weights. In particular, the above construction requires that the larger dimension of
the layer weights must be divisible by the specified degree c. Secondly, n

m should be equal to the degree divided by some
integer r ∈ Z , to guarantee a degree of at least 1 in the larger dimension.

In the case of a convolutional layer, the local k×k kernel already corresponds to the (c, d)-sparse connection. In consequence,
unlike EOI, the sparsity of mask M in SAO for convolutions is controlled by pruning entire kernels in channels. In particular,
given convolution weights of shape cout×cin× (2k+1)× (2k+1) the SAO-Delta scheme first samples a sparse orthogonal
matrix Sl ∈ Rcout×cin as described above, and then assigns W l

i,j,k,k = Si,j and W l
i,j,p,q = 0 if any of p or q is different

than k. Each entry Si,j = 0 will prune the entire kernel W l
i,j . For more details on SAO refer to (Esguerra et al., 2023).

4Given a full adjacency matrix A of a d-regular graph, the graph is said to be a Ramanujan expander if its two largest eigenvalues, λ1,
λ2, satisfy |λ1 − λ2| ≤ 1− λ2

d
and λ2 ≤ 2

√
(d− 1)(Esguerra et al., 2023).

5In case n < m, the algorithm proceeds analogously by building a (1, d)-regular matrix, performing the concatenation along the
horizontal axis, and constructing m/r sets.
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Figure 10: The visualization of example mask matrices returned by EOI (left) and SAO (right). The blue-shaded entries
indicate the non-zero values.

Figure 11: The CIFAR10 test accuracy obtained by the ERK-Base, ERK-AI, and ERK-EOI static pruning approaches and
the SET and RigL dynamic sparse training methods. The results were computed using the ResNet56 architecture.

H. Comparison with Dynamic Sparse Training
In addition to the experiments conducted in the main paper, we also compare the performance of our method to two
commonly used dynamic sparse training approaches - SET (Mocanu et al., 2018) and RigL (Evci et al., 2020).

In dynamic sparse training, contrary to static sparse training, the initial sparse mask is allowed to change during the training.
To be precise, given a masked model with density d, the sparse connectivity is updated after every ∆t training iterations.
This update is implemented by first selecting a percentage p% of the active weights according to some pruning criterion.
Next, the removed weights are replaced by new connections added accordingly to some growth criterion. For SET, the
growth criterion is simply random sampling, while RigL uses the gradient norm. The total density of the model remains
unchanged. The initial sparse connectivity for the DST algorithm is typically the ERK-scheme (Evci et al., 2020).

We run an experiment in which we compare the performance of SET and RigL against the ERK-Base, ERK-AI and ERK-EOI
approaches on ResNet56 trained with CIFAR10. For the dynamic sparse training methods, we use an updated period of
∆t = 800 and pruning percentage p = 50% which we anneal using the cosine schedule as in Evci et al. (2020). All other
hyperparameters are adapted from the static sparse training regime. The results are in Figure 11. We observe that the
dynamic sparse approaches indeed result in better test accuracy (as expected looking at the results of (Mocanu et al., 2018;
Evci et al., 2020)). However, our EOI initialization scheme, which is the best among the static sparse training methods,
obtains results with low variance that are only slightly worse and still within a standard deviation from RigL and SET. At
the same time, let us note that any static sparse training method can be used as an initialization point for dynamic sparse
training. We consider the applicability of EOI in dynamic sparse training an interesting area for future studies.

I. The Price of High Sparsity
In order to better understand how different sparsity levels affect our algorithm we conduct an experiment on the ResNet56
architecture in which we compare the performance of ERK-Base, ERK-AI, and ERK-EOI schemes for varying densities.
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Figure 12: Test accuracy of the ResNet56 architecture trained at various sparsity levels using different sparse initialization
schemes. The accuracy slowly drops between the 50% and 10% sparsity levels. Then it drops suddenly when the sparsity
changes from 10% down to 3%.

Table 6: Runtimes after the first epoch measured for different models and initialization schemes for density=0.1 (with
standard deviation). For the AI and EOI schemes, we report the delta to the "Base" initialization.

ResNet32 ResNet56 ResNet110 VGG-16 EfficientNet
Method Init (CIFAR10) (CIFAR10) (CIFAR10) (CIFAR10) (Tiny ImageNet)

ERK Base 27.25 (0.64) 34.85 (1.76) 48.87 (0.84) 24.57 (0.45) 67.97 (2.63)
∆AI 92.91 (1.55) 157.63 (3.67) 303.43 (6.36) 51.02 (1.69) 253.14 (55.19)
∆EOI 0.40 (2.38) -0.95 (2.31) 2.08 (0.43) 6.52 (0.95) 21.30 (5.90)

GraSP Base 60.53 (1.49) 90.36 (1.95) 157.69 (0.81) 45.79 (1.08) 1125.80 (4.72)
∆AI 96.44 (0.15) 161.12 (1.14) 312.62 (7.52) 50.36 (1.09) 248.02 (39.48)
∆EOI -0.29 (1.98) -0.09 (2.46) 2.68 (1.16) 5.92 (1.34) 26.65 (12.25)

SNIP Base 28.88 (2.03) 34.36 (1.68) 49.20 (1.60) 25.00 (1.19) 70.58 (2.27)
∆AI 96.75 (1.10) 163.55 (4.07) 312.98 (5.28) 50.74 (1.03) 249.17 (37.76)
∆EOI -0.22 (1.97) 0.17 (1.86) 1.83 (2.62) 5.11 (0.71) 17.49 (4.67)

Synflow Base 77.25 (1.72) 93.78 (4.08) 106.95 (3.05) 80.30 (1.65) 133.52 (11.60)
∆AI 99.24 (12.60) 161.68 (7.93) 308.99 (8.47) 55.96 (4.62) 229.97 (11.79)
∆EOI -3.49 (5.85) -14.43 (2.36) -1.32 (2.31) 9.64 (3.99) 33.06 (8.83)

Uniform Base 28.24 (1.49) 34.84 (0.88) 49.35 (0.90) 24.58 (0.93) 68.81 (1.06)
∆AI 93.74 (3.21) 155.45 (3.23) 303.63 (7.03) 49.76 (1.04) 274.94 (106.55)
∆EOI -1.61 (0.24) -0.67 (0.85) 3.93 (7.97) 5.67 (0.64) 20.91 (4.34)

We present the results of this setup in Figure 12. We observe that across different densities, the best performance is given by
ERK-EOI, with other methods either performing visibly worse or not holding a clear advantage. We also notice that the
benefit of using EOI is the largest for the lowest densities. This is expected when compared with the results from Figure 3,
in which we see that the signal propagation suffers the most in the high sparsity regime and that only EOI is able to maintain
good statistics of the singular values for sparsities larger than 0.8.

J. Additional Running Time Analysis
In Section 5.4 we studied the running time of the different orthogonal schemes when requiring a single sparse orthogonal
matrix. In addition to that isolated study we also run and additional experiment in which we measure the runtime after the
first epoch of training for the VGG, ResNets and EfficientNet models trained on CIFAR-10 and Tiny ImageNet. We report
the results in Table 6. Our findings indicate that the overhead of running EOI is considerably lower than that of AI across all
density-distribution methods, which also confirms the results on square matrices from Figure 3a.
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