
Local Feature Selection without Label or Feature Leakage
for Interpretable Machine Learning Predictions

Harrie Oosterhuis * 1 Lijun Lyu * 2 Avishek Anand 2

Abstract
Local feature selection in machine learning pro-
vides instance-specific explanations by focusing
on the most relevant features for each prediction,
enhancing the interpretability of complex models.
However, such methods tend to produce mislead-
ing explanations by encoding additional informa-
tion in their selections. In this work, we attribute
the problem of misleading selections by formaliz-
ing the concepts of label and feature leakage. We
rigorously derive the necessary and sufficient con-
ditions under which we can guarantee no leakage,
and show existing methods do not meet these con-
ditions. Furthermore, we propose the first local
feature selection method that is proven to have no
leakage called SUWR. Our experimental results
indicate that SUWR is less prone to overfitting
and combines state-of-the-art predictive perfor-
mance with high feature-selection sparsity. Our
generic and easily extendable formal approach
provides a strong theoretical basis for future work
on interpretability with reliable explanations.

1. Introduction
Feature attributions and feature selections in interpretable
machine learning (ML) help users understand how much
each input feature influences the output of the model (Du
et al., 2019; Molnar, 2020). One prominent family of meth-
ods are designed for local feature selection, a.k.a. instance-
wise feature selection, for interpretable ML (Gurrapu et al.,
2023). These approaches aim to only select the most-
important features per instance and to exclude the rest during
inference (Li et al., 2017), thereby making the predictions
by the model easier to interpret.

Let i refer to an instance in a dataset with xi ∈ Rd as its
*Equal contribution 1Radboud University, Nijmegen, The

Netherlands 2TU Delft, Delft, The Netherlands. Correspondence
to: Harrie Oosterhuis <harrie.oosterhuis@ru.nl>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

d-dimensional feature vector representation and yi as its
accompanying label to be predicted. A feature selector ζ
takes xi as input and outputs a feature mask hi ∈ {0, 1}d,
either through a stochastic or deterministic process: hi ∼
ζ(xi). Let xi ⊙ hi indicate the masked features that results
from applying hi to xi, where all non-selected features are
masked. We denote a masked feature with ∅, to clearly
differentiate it from a zero value, and the jth element in a
vector with [j]:

(xi ⊙ hi)[j] :=

{
xi[j] if hi[j] = 1,

∅ if hi[j] = 0.
(1)

here ζ is a local selector and produces a different mask for
each instance. We note that local feature selection differs
from global feature selection which reveals feature impor-
tance on the dataset level, as it has a fixed mask for all
instances (Balın et al., 2019; Lemhadri et al., 2021; Ya-
mada et al., 2020; Lee et al., 2021). By being able to vary
masks, local methods are more flexible and can give more
in-depth insight into the importance of features in individual
instances (Yoon et al., 2018; Arik & Pfister, 2021).

A widely used setup for local feature selection is to follow a
selector-predictor architecture that is typically jointly opti-
mized (Yoon et al., 2018; Jethani et al., 2021; Arik & Pfister,
2021). More precisely, let f be the predictor model that can
take masked features as input: f(x⊙ h), importantly, h can
be inferred exactly from x ⊙ h. The optimization of the
selector ζ and predictor f is usually based on a linear combi-
nation of a prediction loss L and the sparsity of a mask ∥h∥
to enforce high sparsity (and hence interpretability). For a
dataset of N instances, we use:

L(ζ,f):= 1

N

N∑
i=1

Ehi∼ζ(xi)

[
L(f(xi⊙hi), yi)+λ∥hi∥

]
, (2)

where the parameter λ ∈ R>0 balances feature sparsity
against predictive performance. The loss thus incentivizes
the exclusion of features that do not contribute to high pre-
dictive performance, consequently, the selector should learn
only to select the features that are the most important for
accurate predictions.

Whilst the reasoning behind the local feature selection ap-
proach appears intuitive, previous work has found a funda-

1

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

mental flaw: local methods can choose features that provide
high predictive performance but clearly are unfaithful expla-
nations of feature importance (Jacovi & Goldberg, 2021).
Jethani et al. (2021) discuss a selector and predictor combi-
nation for digit classification where a single pixel is selected
per image, yet optimal accuracy prediction is maintained.
Instead of selecting features based on importance, their
selector learned to encode a prediction of the digit in the
selection mask h. Because they are optimized jointly, the
predictor also learned the relation between the encoding and
the original prediction. In other words, instead of selecting
the most important features, the behavior of the selector
was aimed at passing as much information about the cor-
responding label as possible. The resulting selections thus
provide misleading explanations that give false insights into
the prediction process. As a remedy, Jethani et al. (2021)
add noise to the selection mask h; whilst this appears to
improve the situation, it does not address the underlying
problem. To the best of our knowledge, no existing local
feature selection method can guarantee that their selections
never provide misleading explanations by encoding addi-
tional information.

In this paper, we provide the first formal approach to the
issue of additional information being encoded in local fea-
ture selections. We name this problem leakage and define
it using two novel formal concepts: label leakage, where
information about the label is encoded in a local selection,
and feature leakage, where information about the values of
non-selected features is encoded in a local selection. Sub-
sequently, we derive the sufficient and necessary properties
of a local feature selection method, it appears no existing
method meets these criteria.

To address this problem, we propose two methods for opti-
mizing local feature selection policies that are guaranteed
to have no leakage. First, we introduce a novel linear pro-
gramming method to search for the optimal selection and
prediction policy for any desired sparsity and accuracy trade-
off. This method is highly effective but can only be applied
to problems with complete knowledge that are of small
scale, which means it has limited practical utility. Second,
we introduce a novel method that is much more practical
and widely applicable called sequential unmasking without
reversion (SUWR). SUWR selects features over several
sequential decision rounds, where each decision is based
only on the values of features that were selected in previ-
ous rounds and decisions cannot be reversed in subsequent
rounds. We prove that it is impossible for SUWR to encode
information about non-selected features or any labels, since
it never had access to those values when deciding what to
select. Moreover, we conjecture that when the feature dis-
tribution fully supports the Cartesian product of possible
feature values, SUWR is the only solution without leakage,
because it captures all possible policies that have no leakage.

Our experimental results indicate that SUWR is less prone
to overfitting and combines state-of-the-art predictive per-
formance with high feature-selection sparsity. Furthermore,
the sequential decisions of SUWR provide a novel way to
explain predictions by giving a narrative of how predictions
are formed (e.g., Figure 3), a unique insight that previous
methods do not provide. The SUWR method can be applied
to various forms of data and types of model architectures and
optimization, its approach is generic and easily extendable.

1.1. Brief related work

Approaches in interpretable machine learning have been
categorized into explaining trained models in post-hoc man-
ner (Ribeiro et al., 2016; Simonyan et al., 2013; Shrikumar
et al., 2017; Lundberg & Lee, 2017; Jethani et al., 2023) and
building intrinsically explainable models (Chen et al., 2018;
Yoon et al., 2018; Zhang et al., 2021). Local feature selec-
tion methods use only a few relevant features to generate
each prediction and thus are popular for intrinsical explain-
ability. These methods mainly adhere to a selector-predictor
architecture, e.g., CAE (Balın et al., 2019), L2X (Chen et al.,
2018), INVASE (Yoon et al., 2018) and REAL-X (Jethani
et al., 2021); or both are performed within a single model,
e.g., TabNet (Arik & Pfister, 2021). The resulting feature
selections are then supposed to serve as explanation of the
corresponding predictions. However, several recent works
question this use of feature selections as explanations (Ja-
covi & Goldberg, 2021; Zheng et al., 2022). Specifically,
earlier work has found that the joint-training regime can
result in high sparsity irrespective of the relevance of the se-
lected features (Jethani et al., 2021). In this paper, we solve
this fundamental discrepancy by providing necessary and
sufficient conditions that a local model selection method
should satisfy to provide faithful explanations. See Ap-
pendix A for a more detailed discussion of related work.

2. Leakage in Feature Selection
This section introduces a formal definition of leakage based
on label and feature leakage. Subsequently, we use them to
prove the necessary and sufficient conditions for leakage.

To keep our terminology succinct, we define leakage as
either feature leakage or label leakage, thus:1

Definition 2.1. A feature selector does not have leakage,
if it has neither label leakage (Definition 2.3) nor feature
leakage (Definition 2.4).

Table 1 displays an intuitive example of leakage where a se-
lection policy mask perfectly encodes all information about
the label and non-selected features.

1Our definition is different but related to the concept of data
leakage: the availability of information during optimization that is
unavailable during inference (Kaufman et al., 2012).

2

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

2.1. Formalization of label leakage in feature selection

Colloquially, we understand label leakage to be the problem
where the selection mask h encodes information about the
label. In the context of interpretable machine learning (ML),
the purpose of h is to select the features that provide the
most salient information. Therefore, this purpose is entirely
defeated by the injection of additional information about
the label in h. This problematic behavior has been observed
in previous work (Jethani et al., 2021; Jacovi & Goldberg,
2021), however, to the best of our knowledge, no one has
introduced a formal definition of this issue yet.

In our notation, we denote sin as the set of indices of the
selected features (included) and sex for the non-selected
features (excluded). To keep our notation brief, we define:

Definition 2.2. Ω is the set of all possible selections of
feature values and label values:

Ω := {(x, y, sin, sex) : p(x) > 0 ∧ p(sin, sex | x, ζ) > 0

∧ p(x[sin], y) > 0 ∧ sin ∪ sex = {1, 2, ..., d}}.
(3)

Our proposed definition of label leakage is based on the idea
that the selection h should not be able to provide information
about the label. For a selection, (x, y, sin, sex) ∈ Ω, the
predictive information in this selection can be represented
by the natural label distribution conditioned on the selected
feature values: p(y | x[sin]). This distribution can be further
conditioned the fact that sin has been selected by the selector
ζ: p(y | x[sin], h[sin] = 1, h[sex] = 0, ζ). The key insight
in our definition is that when there is no label leakage, these
distributions should be equal.

Definition 2.3. A feature selector ζ does not have label leak-
age, if conditioning the label distribution on the selection of
features by ζ does not change the label distribution:

∀(x, y, sin, sex) ∈ Ω, (4)

p(y | x[sin]) = p(y | x[sin], h[sin] = 1, h[sex] = 0, ζ).

In other words, if the knowledge that a feature selection
comes from a specific selector ζ changes the probability of a
label, then ζ has label leakage. Imagine two masked feature
values: x1⊙h1=x2⊙h2, one made with a uniform random
selection, the other with ζ, if predictions are only based on
the selected feature values then both should lead to the exact
same predictions: ∀y, p(y | x1 ⊙ h1) = p(y | x2 ⊙ h2, ζ).

2.2. Formalizing feature leakage in feature selection

Analogous to label leakage, we also propose the concept of
feature leakage where the selection mask h encodes infor-
mation about non-selected features. As illustrated in Table 1,
we motivate the prevention of feature leakage with two ar-
guments: (i) feature leakage defeats the purpose of feature

Table 1. Example of feature and label leakage in feature selection
(non-selected features are omitted). The label y is the sum of the
two independent features, therefore, perfect label prediction should
only be possible with both features. However, each x⊙ h value is
matched with a single label and set of feature values, thereby, this
solution provides 100% accuracy in label prediction and feature
reconstruction, with a 62.5% feature reduction. This combination
of performance and sparsity is only possible because of leakage.

p(x, y, h) x[1] x[2] h[1] h[2] (x⊙ h)[1] (x⊙ h)[2] y

0.25 1 1 1 0 1 2
0.25 0 1 0 1 1 1
0.25 1 0 0 1 0 1
0.25 0 0 0 0 0

selection as information about the values of non-selected
features is not actually excluded; and (ii) when there is a
correlation between features and labels, a basic assumption
in machine learning (Bishop & Nasrabadi, 2006), feature
leakage implies label leakage. Therefore, it also seems infea-
sible to prevent label leakage without also tackling feature
leakage. We formally define feature leakage as:

Definition 2.4. A feature selector ζ does not have feature
leakage, if conditioning the feature distribution on the selec-
tion of features by ζ does not change the feature distribution:

∀(x, y, sin, sex) ∈ Ω, p(x[sex] | x[sin])

= p(x[sex] | x[sin], h[sin] = 1, h[sex] = 0, ζ).
(5)

Similar to label leakage, the intuition behind feature leakage
is that knowing that a feature selection was made by ζ should
not affect the probability of non-selected feature values.

2.3. The necessary and sufficient conditions for leakage

From these formal definitions of feature leakage and label
leakage, we derive the sufficient and necessary conditions
for a feature selector without leakage in Appendix B. We
find the following:

Corollary 2.5. A feature selector does not have leakage
if and only if every probability for every possible feature
selection does not depend on any label values or any non-
selected feature values:

∀(x, y, sin, sex) ∈ Ω, p(h[sin] = 1, h[sex] = 0 | x[sin], ζ)

= p(h[sin] = 1, h[sex] = 0 | x[sin], x[sex], y, ζ). (6)

Proof. Follows directly from Theorem B.3 and Theo-
rem B.4 in Appendix B.

In other words, a feature selector has no leakage if the
probability of a selection is only determined by the values
of the selected features, and not by the label or non-selected
feature values. Therefore, for any possible feature values

3

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

x and any label value y and any selection mask h, any
change in the label or in any of the features not selected by
h should not result in a different probability for the selection:
ζ(h | x). Thus, for any possible feature values x′ and label
value y′, where the selected features have identical values:
x⊙ h = x′ ⊙ h, the probability of the selection should be
identical: ζ(h | x) = ζ(h | x′).

Intuitively, we can understand that if the value of the label or
unselected features changes the behavior of ζ, then it could
be possible to infer information about unselected features or
the label from the behavior of ζ . Accordingly, we can prove
a feature selector has leakage by finding a single example of
two pairs of (x, y) and (x′, y′) for which the above condition
does not hold. Conversely, to prove a feature selector has
no leakage, we have to rule out the possibility of such an
example entirely.

3. A Linear Programming Solution
We now propose our first method that meets the above crite-
ria using linear programming (Dantzig, 1963). It requires
full knowledge of the problem setting, i.e., p(x, y) is known
completely, and assumes a finite set of possible values for
x. In this setting, the perfect predictor is available, e.g., for
a mean squared error loss: f∗(x ⊙ h) = Ex[y |x⊙h] =∑

x′:x′⊙h=x⊙h p(x
′)
∑

y p(y |x′)y, and thus, only ζ has to
be optimized. Corollary 2.5 shows that the probability of
any masked feature vector x⊙ h should only depend on the
selected features, since:

∀(x, x′, h),
(
p(x) > 0 ∧ p(x′) > 0 ∧ (x⊙ h) = (x′ ⊙ h)

)
−→ ζ(h | x) = ζ(h | x′). (7)

Therefore, for optimization, we only have to consider a
single probability variable for every possible set of values
for x ⊙ h. The probability variables should be chosen to
minimize: L(ζ, f∗) (Eq. 2), under the constraint that they
describe valid probability distributions:

∀x, p(x) > 0 −→
(∑

h∈ζ(x)
ζ(h | x) (8)

=
∑

sin,sex:sin∪sex={1,2,...,d}
p(h[sin] = 1, h[sex] = 0 | x[sin], ζ) = 1

)
.

Appendix E details how this task is translated to a linear
programming problem. Whilst its requirements limit it to
unrealistic toy problems, this method enables us to closely
approximate the Pareto optimal front of selection without
leakage, which we use in our analysis of existing methods.

4. Sequential Unmasking without Reversion
In this section, we propose a more practical method titled
sequential unmasking without reversion (SUWR), which
describes a feature selection algorithm that provenly has no

Algorithm 1 Inference with the SUWR method.
1: Input: Features: x, Max-t: T , Selector: ζ , Predictor: f
2: h← 0
3: for t ∈ [0, 1, . . . , T − 1] do
4: if Bernoulli Trial(ζtstop(x⊙ h)) then
5: Return: (f(x⊙ h), h)
6: end if
7: h← h+ Sample Mask(ζtselect(x⊙ h)) # Eq. 9
8: end for
9: Return: (f(x⊙ h), h)

leakage, but is applicable to more realistic settings than the
linear programming solution. SUWR guarantees no leakage
by approaching the selection of features as a sequential
decision process where each decision is only based on a
specific subset of feature values, and no decision can be
reversed at a later step. The core of SUWR is its selection
inference algorithm, which is agnostic to what underlying
ML model is used and how it is optimized. Therefore,
SUWR can be seen as a generic framework that can easily be
extended and adapted to specific feature selection problems.

4.1. Feature selection inference with SUWR

From Section 2, we know that a feature selector ζ without
leakage, should base the probability of a specific selection
only on the values of the selected features. As discussed
in Section 3, the probability distribution over each possi-
ble selection of feature values has to be valid.2 Based on
these properties, we propose SUWR which meets these cri-
teria through sequential selection. Algorithm 1 describes
inference with SUWR in pseudocode, the remainder of this
section describes it step-by-step.

SUWR requires a model ζ that can output a stop probability
and a distribution to sample feature indices, given an input
of masked features. The feature selection process takes
place over T steps, each step starts by deciding whether to
stop the process, and if not, which features to select next.
For a step t, where 0 ≤ t < T , a Bernoulli trial is performed
according to ζtstop(x⊙ ht) and if successful then the process
is stopped and ht is the final feature selection and f(x⊙ht)
the final prediction. Otherwise, the process continues and
a new set of feature indices is sampled and added to the
selection mask:

ut ∼ ζtselect(x⊙ ht), ht+1 = ht + ut. (9)

Importantly, both the stop probability and the sampling of
new features are only conditioned on the values of features

2Meeting both of these criteria is not trivial, since a standard
normalization term would depend on all possible selections for
an instance x and thus also on non-selected features; i.e., ζ(h |
x) := ζ̂(h | x)/

∑
h ζ̂(h | x) is not allowed since the normalizing

denominator depends on all feature values.

4

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

selected in the previous steps (x ⊙ ht). Accordingly, the
first step (t = 0) starts with an empty mask h0 = 0, and the
stop probability ζ0stop(x⊙ h0) = ζ0stop(∅) is constant over x,
similarly, the feature distribution ζ0select(x⊙ h0) is the same
for every x in the first step. Additionally, since each step
only adds features to the selection and never removes any,
the probability of the decisions that lead to ht in a step t,
only depends on the values of features selected in previous
steps (x⊙ht−1). If the final step t = T − 1 is reached, then
the process is automatically stopped (ζTstop(·) = 1) and the
final selection is hT and the final prediction f(x⊙ hT).

As we can see, SUWR is completely agnostic to what the
underlying model ζ and predictor f are; it only requires
them to handle masked inputs and ζ to output a stop prob-
ability and feature distribution. The parameter T acts as a
computational budget as it ensures the process halts within
T steps. Additionally, T is also a feature budget when ζ
limits the number of features to be sampled per step.

Appendix C provides a full proof that proves SUWR has
no leakage. The intuition behind this property is straight-
forward: Any decision to select a feature is never based on
information from (thus far) unselected features. Therefore,
the value of a feature that is not in the final selection could
never affect its probability. Furthermore, the process guar-
antees a selection is always made, thereby providing a valid
probability distribution over all possible feature selections.

In addition, in Appendix D we conjecture that the SUWR
algorithm describes every possible selection policy with-
out leakage, when the feature value distribution provides
support for the Cartesian product of possible feature values:

∀i, j, a, b,
(
p(x[i] = a) > 0 ∧ p(x[j] = b) > 0

)
−→ p(x[i] = a, x[j] = b) > 0.

(10)

In other words, we conjecture that when Eq. 10 holds, the
inference of any feature selection policy without leakage can
be computed by the SUWR algorithm. Therefore, in this
setting, SUWR captures all solutions to feature selection
without leakage, and thus, SUWR provides the only solution
to feature selection without leakage when Eq. 10 is true.

4.2. Optimization of SUWR feature selection policies

While SUWR inference strictly follows Algorithm 1 to pre-
vent leakage, there are no restrictions on the optimization of
the underlying ζ and f models. Therefore, any optimization
method can be chosen without risking the introduction of
leakage. For this paper, we propose a reinforcement learning
optimization approach that is evaluated in our experiments.

The set of possible feature selections grows exponentially
with the number of features, it is therefore important that we
avoid iterating over all possibilities. We use a REINFORCE
approach (Sutton et al., 1999) and repeatedly sample a set

of T selection steps while ignoring the stop probabilities.
Thus, we start at t = 0 with the zero selection: h̄0

i = 0, and
for each subsequent step t, we follow the SUWR procedure:
ūt
i ∼ ζ(xi ⊙ h̄t−1

i), h̄t
i = h̄t−1

i + ūt
i. For each datapoint

xi, this results in a sampled sequence of T selection masks:
H̄i = {h̄0

i , h̄
1
i ,..., h̄

T
i }. The probability that SUWR stops at

any t, conditioned on the sampled sequence is:

pstop(t | H̄i) := ζtstop(xi⊙ht
i)

t−1∏
j=0

(
1−ζjstop(x

j
i⊙h

j
i)
)
. (11)

Using this formulation, we can create the following unbiased
estimate of our generic loss function (Eq. 2):

L̄(ζ, f) := (12)

1

N

N∑
i=1

T∑
t=0

pstop(t | H̄i)
(
L(f(xi ⊙ h̄t

i), yi) + λ∥h̄t
i∥
)
.

Computing its gradient w.r.t. ζstop is straightforward; for
the gradient w.r.t. ζselect, we use the log-trick from the RE-
INFORCE method (Sutton et al., 1999). Then, we apply
standard gradient descent to optimize both ζ and f based
on our sampled loss L̄.

4.3. Discussion

Since we can prove SUWR has no leakage, each mask h
is guaranteed to indicate the only features that were used
to make its corresponding prediction. To the best of our
knowledge, SUWR is the first method to have this guaran-
tee, therefore, we argue it is also the first feature selection
method that guarantees its explanations are faithful (Jacovi
& Goldberg, 2021). Furthermore, the sequential selection
procedure can be interpreted as a step-by-step narrative of
how the prediction was constructed. For example, Figure 3
displays multiple steps of SUWR on images of a sandal
and a boot. At each step, we can see what information
became available to the predictor and how this changes its
predictions. Thereby, this step-by-step explanation provides
even more insight than the final selection mask. We be-
lieve SUWR is the first approach that produces narrative
explanations about feature importance.

While the guarantee of no leakage is a great advantage over
existing methods, the SUWR algorithm could potentially
require more computational costs than previous approaches.
Namely, for each intermediate feature selection step, a call
to ζselect is made. This could pose a challenge to data with
high dimensionality, e.g., if ζ only selects a single feature
per step, and thus a high T should be chosen. Luckily, the
SUWR framework is highly flexible and can be adapted to
handle such situations better. For instance, one can choose
ζselect to be a lightweight model that can choose multiple
features at once. In our experiments in Sections 5 & 6,
we choose ζselect to be a model that selects one feature per

5

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

step t; in contrast, for the experiment based on image data
in Section 7, we use a ζselect that selects a patch of nine
pixels per step. This makes the resulting selection easier to
interpret than one where individual pixels can be selected,
while at the same time reducing the number of steps needed
to select a complete image. We expect that specific ζselect
models can be developed to increase the computational
efficiency and scalability of SUWR further.

Nevertheless, we want to note that there are some unintuitive
aspects of SUWR that seem to be unavoidable consequences
from the definition of leakage. In particular, at the first step
(t = 0) SUWR selects features without conditioning on any
feature values, thus this first step can be seen as a blind
selection. While ζselect(∅) can be optimized to select the
most informative features, its distribution over features must
be the same for all possible values of x. At first glance
this may seem counter-intuitive, however, it appears that
this is an inevitable consequence of selecting without leak-
age. Consider a setting where we wish to select a single
feature per x without leakage, according to Corollary 2.5,
the selection of a single feature can only depend on the
value of that single feature. However, if the distribution of
features supports the Cartesian product of possible feature
values (Eq. 10), then the probability of each mask is not
dependent on any feature values. To put this formally, let
honly i indicate the mask where only feature i is selected:
honly i[i] = 1,∀j ̸= i, honly i[j] = 0, if only such masks can
be chosen then the probability each mask is independent of
any feature value since:

ζ(honly i | x[i]) (13)

= 1− max
{x′:p(x′)>0∧x[i]=x′[i]}

∑
j:0<j<d∧i ̸=j

ζ(honly j | x′[j])

= 1− max
{x′:p(x′)>0}

∑
j:0<j<d∧i ̸=j

ζ(honly j | x′[j]) = ζ(honly i),

where we rely on the fact that Eq. 10 implies that the maxi-
mum operator over unselected feature values is a constant
w.r.t. the value of any selected feature x[i]. Thus, this deriva-
tion proves that, in this setting, blind selection is necessary
for feature selection without leakage.

5. Experiment 1: Pareto Front Analysis
Setup. Our first experiment is designed to identify whether
existing methods have leakage. For that, we design an ideal-
ized setup where complete information is available so the
Pareto front can be approximated. Leakage can then be
identified by performance that exceeds that front. Specif-
ically, we design a toy problem with ten binary features:
x ∈ {0, 1}10, in a uniform distribution: p(x) := 1024−1.
As labels we use a sum of the product of feature pairs:
y := (

∑5
i=1 x2i−1x2i)

2, this induces feature redundancies
that enable interesting local feature selection. For example,

0.0 0.2 0.4 0.6 0.8 1.0
Mean Ratio of the Number of Selected Features

0

2

4

6

8

10

M
ea

n
Sq

ua
re

d
Er

ro
r

Global-optimal
Local-optimal
L2X
INVASE
REAL-X
TabNet
SUWR (ours)

Figure 1. Performance curves of the first experiment. Grey area
indicates performance that is impossible without leakage.

if x1 = 0 then the value of x2 is irrelevant to y, but if x1 = 1
then x2 is relevant; this is a typical kind of pattern that only
local feature selection methods can capture. For this experi-
ment, all methods are provided all possible values of x and
y, this creates a fair comparison with the Pareto front which
is constructed using the same complete information.

Methods. The comparison includes the following state-
of-the-art methods: (i) L2X (Chen et al., 2018); (ii) IN-
VASE (Yoon et al., 2018); (iii) TabNet (Arik & Pfister,
2021); (iv) REAL-X (Jethani et al., 2021), and (v) our pro-
posed SUWR method. In addition, we added the following
for further insight: (vi) local-optimal, a close approximation
of the Pareto front using the linear programming method
from Section 3; and (vii) global-optimal, the Pareto front of
global feature selection computed through brute-force. All
methods optimize the same feed-forward network architec-
tures for ζ , except TabNet which requires a method-specific
architecture. We repeat optimization with various λ weights
to visualize the tradeoff between feature sparsity and accu-
racy for each method. Further details on the experimental
setup can be found in Appendix F.1.

Results. Figure 1 displays the performance curves of each
method in terms of mean squared error (MSE) and mean
ratio of the number of selected features. There is a large gap
between the Pareto fronts of local and global feature selec-
tion, showing the usefulness of local selection in this setting.
However, all of the baseline methods produce policies that
improve over the Pareto front, which is impossible without
leakage. For instance, TabNet only needs two features to
achieve perfect prediction. Clearly, given the formula for
y, this is impossible with predictors that truly only use two
features. Therefore, our results prove that L2X, INVASE,
TabNet and REAL-X all have leakage, and thus, that their
selectors encode additional information into their selections.
Even though REAL-X was specifically proposed to miti-
gate this issue by adding noise to h, our results prove that
this strategy is not enough to prevent leakage. In contrast,
SUWR is the only method that is close to the Pareto front
and stays in the range of possible performance. As expected,
because SUWR is guaranteed to have no leakage.

6

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

Table 2. Selection and prediction performance on the synthetic benchmark of the second experiment. Results are averages over five runs.

Dataset Syn1 (g1) Syn2 (g2) Syn3 (g3) Syn4 (g4) Syn5 (g5) Syn6 (g6)

Metrics TPR↑ FDR↓ AUROC↑ TPR FDR AUROC TPR FDR AUROC CFSR↑ TPR↑ FDR↓ AUROC↑ CFSR TPR FDR AUROC CFSR TPR FDR AUROC

w/o FS 100. 82. .578 100. 64. .789 100. 64. .854 100. 100. 64. .558 100. 100. 64. .662 100. 100. 55. .692
Oracle 100. 0. .700 100. 0. .895 100. 0. .903 100. 100. 0. .818 100. 100. 0. .823 100. 100. 0. .902

L2X 33.2 33.6 .675 44.6 55.4 .872 66.0 34. .889 56.5 79.2 34.7 .781 51.0 71.9 43.6 .788 34.0 80.1 19.9 .876
INVASE 100. 0. .692 100. 0. .873 95.0 0. .883 56. 91. 10.2 .792 40.7 76. 2.2 .780 60.7 89.4 7.0 .877
TabNet 86.4 57.9 .667 98.7 5.6 .885 96.6 9.7 .903 99.7 91.5 29.5 .789 98.9 92.5 36.2 .791 100. 97.5 23.6 .870
REAL-X 100. 24.2 .661 100. 20.0 .794 100. 7.94 .873 100. 99.9 41.9 .748 100. 99.8 52.4 .774 100. 97.2 8.27 .842

SUWR 100. 2.35 .700 97.0 0. .895 100. 0. .903 100. 98.0 20.0 .810 100. 99.6 20.0 .816 100. 97.4 0.37 .896

Conclusion. These results conclusively prove that all of the
baseline methods have leakage. To the best of our knowl-
edge, we can therefore conclude that SUWR is the first and
the only local feature selection method without leakage.

6. Experiment 2: Synthetic Benchmark
Setup. Whilst SUWR has excellent performance for the first
experiment (Section 5), it concerned an idealized complete-
information setting. Our second experiment aims to eval-
uate its generalizability by considering a more realistic
setup where the training and test sets are separated. For
a better comparison with previous work, we use an ex-
isting benchmark (Chen et al., 2018; Yoon et al., 2018;
Jethani et al., 2021). In this setup, eleven features, x ∈ R11,
are sampled from a normal distribution: x[i] ∼ N (0, 1).
Labels are binary, y ∈ {0, 1}, and sampled according to
p(y = 1 | x) := 1

1+g(x) . The g(x) function thus determines
the relation between x and y. Six different g(x) functions
are used, the first three use non-overlapping sets of features:
g1(x) := exp(x[1]x[2]); g2(x) := exp(

∑6
i=3 x[i]

2 − 4);
and g3(x) := −10 sin(2x[7])+2|x[8]|+x[9]+exp(−x[10]).
The latter three use a selection function based on the
eleventh feature: z(x, g, g′) := 1[x[11] < 0]g(x) +
1[x[11] ≥ 0]g′(x), to choose between the first three func-
tions: g4(x) := z(x, g1, g2); g5(x) := z(x, g1, g3); and
g6(x) := z(x, g2, g3). Thereby, the latter are specifically de-
signed for local feature selection where the eleventh feature
(called the control-flow feature) determines the relevance of
the other features. We use 10,000 independent samples for
training and another 10,000 as the test set.

Methods. The same methods are included as in the first
experiment (Section 5). Additionally, we also train a pre-
dictor without feature selection (w/o FS) and another with
an oracle selector that only selects the features used by g(x)
for each x. See Appendix F.2 for more details.

Metrics. We use the same metrics as Jethani et al. (2021):
the true positive rate: TPR = # selected relevant features

relevant features ; the
false discovery rate FDR = # selected irrelevant features

selected features ; and the
control-flow selection rate (CFSR): the frequency of select-
ing the eleventh feature. To measure predictive performance,
we use the area under the receiver operating characteristic
curve (AUROC). We note that a low CFSR score indicates

leakage especially when TPR or AUROC is high, because it
means the feature selection method actually uses the control-
flow feature but does not select it.

Results. Table 2 displays our results on the synthetic bench-
mark test set. Interestingly, there is a large gap in the AU-
ROC between the baseline without feature selection and the
oracle baseline in all settings, this indicates that excluding
irrelevant features can make prediction substantially easier.

In terms of AUROC, SUWR consistently has the highest
performance of all methods (excluding the oracle), with es-
pecially high margins on the latter three settings (Syn4-6). In
the first three settings (Syn1-3), SUWR reaches oracle per-
formance; whilst among the other methods, only TabNet is
able to reach oracle performance in the third setting (Syn3).
This is surprising, since the first experiments showed that the
existing methods could reach extremely high performance
through leakage. However, a key difference with the first
experiment is that in this setting evaluation is based on a
held-out test set. Therefore, leakage could instead result in
heavy overfitting in this setting, whereas it could not in the
first experiment. We believe that this explains why SUWR
has substantially higher predictive performance for the sec-
ond experiment: There are many more ways to overfit with
leakage than without, as a result, SUWR is less prone to
overfitting than the existing methods.

In terms of correct feature selection, SUWR has a near-
perfect TPR that is greater than 97% across all settings and
a perfect CFSR of 100% in the relevant settings (Syn4-6).
REAL-X is the only baseline that has comparable TPR and
CFSR across all settings. The FDR of SUWR is consistently
lower than all baselines in all settings, except for INVASE
which does better in the fourth and fifth setting (Syn4-5).
Nevertheless, INVASE also has a very low CFSR and TPR
in these settings, which strongly suggests that it is benefit-
ting from leakage. Accordingly, the possibility of feature
leakage makes it difficult to compare the feature sparsity
of SUWR with the baselines. Nonetheless, in our results,
SUWR has near-perfect TPR and perfect CFSR, and the
best FDR of baselines with comparable TPR and CFSR.

Additional results in Appendix F.2 also show that SUWR
consistently learns to select the control-flow feature first and
that SUWR is very robust to the budget parameter T .

7

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

1

2

1

2

3

4
5

1

2

3
4

1

2

3

4
5

6

1

2

3

4 1

2

3

4
5

1

2

3

4

5

Figure 2. Several selection masks produced by SUWR for different fashion items from fashion-MNIST. Red squares indicate selected
patches, the numbers shown inside indicate at what step each patch was selected. All items were correctly classified by SUWR.

Others: 0.0
Sandal: 0.44
Sneaker: 0.02

Boot: 0.54

ζstop = 0.

Others: 0.0
Sandal: 0.94
Sneaker: 0.0
Boot: 0.06

ζstop = 0.

Others: 0.0
Sandal: 0.99
Sneaker: 0.01

Boot: 0.0

ζstop = 0.05

Others: 0.0
Sandal: 1.0
Sneaker: 0.0

Boot: 0.0

ζstop = 0.99

Others: 0.0
Sandal: 0.21

Sneaker: 0.54
Boot: 0.25

ζstop = 0.

Others: 0.0
Sandal: 0.11

Sneaker: 0.68
Boot: 0.21

ζstop = 0.

Others: 0.0
Sandal: 0.11

Sneaker: 0.27
Boot: 0.62

ζstop = 0.

Others: 0.0
Sandal: 0.01

Sneaker: 0.03
Boot: 0.96

ζstop = 0.53

Figure 3. Narrative explanations derived from the SUWR inference process for a sandal (top) and boot (bottom) from fashion-MNIST.
Step t = 2 up to t = 5 are visualized, red squares indicate patches selected in that step, blue squares those selected in previous steps.

Conclusion. Our results on the synthetic benchmark reveal
that SUWR reaches higher predictive performance than the
baselines. We believe this is the case because leakage makes
local feature selection methods more prone to overfitting,
from which SUWR is unaffected. Furthermore, it also ap-
pears that SUWR selects nearly all relevant features while
excluding more irrelevant features than baseline methods.

7. Experiment 3: MNIST Digits and Fashion
Setup. Finally, we evaluate SUWR on an image classifi-
cation task on two datasets: digits-MNIST (LeCun et al.,
2010) and fashion-MNIST (Xiao et al., 2017). Both datasets
consist of 28×28 (784) pixel images and each image is an-
notated by one of ten classes, indicating either which digit
or which type of fashion item is in the image. Because
individual pixels are difficult to see in visualizations, we
let the methods select 3×3 patches of pixels on the fashion
dataset. As a result, the produced selection masks are much
easier to interpret as selected pixels are less scattered.

Methods. We omit L2X and INVASE from this compar-
ison due to their extremely unrealistic and unfaithful be-
havior in a previous study by Jethani et al. (2021) (e.g.,
96% accuracy while selecting a single pixel). Despite its
leakage, we do include REAL-X since its introduction was
motivated with its performance on digits-MNIST (Jethani
et al., 2021). Additionally, we include the concrete autoen-
coder (CAE) (Balın et al., 2019), a state-of-the-art global
feature selection method, and a predictor trained without any
feature selection. More details are given in Appendix F.3.

Results. Figure 4 displays the performance curves of the

10 20 30 40 50
Mean Number of Selected Pixels

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

w/o FS
CAE
REAL-X
SUWR (ours)

4 6 8 10
Mean Number of Selected Patches

0.60

0.65

0.70

0.75

0.80

0.85

w/o FS
CAE
REAL-X
SUWR (ours)

Figure 4. Results on MNIST: digits (left) and fashion (right).

methods in terms of accuracy and the number of selected
pixels or patches on the test sets. We see that SUWR consis-
tently outperforms both CAE and REAL-X on both datasets,
and even approximates the performance of the baseline
without feature selection while only selecting a fraction of
the features. Admittedly, on digits-MNIST, the difference
between SUWR and CAE becomes marginal when more
than thirty pixels are selected, indicating that local selection
is less beneficial on this dataset. In contrast, on fashion-
MNIST, the differences between SUWR, CAE and REAL-
X are considerably large; for instance, CAE with ten patches
does not yet achieve the performance that SUWR reaches
with just six patches. Surprisingly, REAL-X consistently
has considerably lower performance than both SUWR and
CAE. In other words, the local feature selection of REAL-X
does substantially worse than even the global selections of
CAE. We speculate REAL-X is overfitting due to leakage,
and additionally, that its intentional injection of noise during
optimization hinders its performance.

Conclusion. Our results on the MNIST datasets reveal that

8

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

SUWR provides substantially better performance curves
than REAL-X and CAE. Thereby, SUWR shows that local
feature selection without leakage can provide considerably
higher performance than global feature selection.

Interpretability. Lastly, we discuss several examples that
illustrate how SUWR makes predictions more interpretable.
Figure 2 displays the selection masks for several items in
fashion-MNIST, and the order in which patches were se-
lected. We see that the placement, order and number of
selected patches highly varies per image. Because SUWR
has no leakage, we are certain that no features outside of
the selected patches were used for prediction. Thus, i.e.,
we know that the trousers were correctly classified based
only on two patches. Similarly, the bag was classified using
only four patches: three on its edges and an empty patch
on the top. While these insights may be surprising, they are
provenly faithful and thus provide an accurate account of the
complete information that SUWR used for its predictions.

Figure 2 illustrates several steps in the SUWR inference
process for a sandal and a boot. Besides what patches are
selected per step, we also see how predictions and stop prob-
abilities change as more features are selected. This brings
numerous interesting insights; e.g., the differences in pre-
dictions between the two items at t = 2 can be attributed
to a single pixel (top-left of the bottom patch). Addition-
ally, we see that the predictor is already correct about the
sandal after the third patch, but SUWR decides to select
more features for more certainty. To the best of our knowl-
edge, SUWR is the first local feature selection method that
provides narrative explanations that are guaranteed to be
faithful.

8. Conclusion
This work has provided the first formal approach to feature
and label leakage, which cause local feature selection meth-
ods to provide misleading explanations of what information
predictions are based on. We derived the necessary and
sufficient conditions for leakage and introduced the first
methods that are guaranteed to have no leakage: a linear
programming method and SUWR. Our experimental results
reveal that existing state-of-the-art methods are all subject
to leakage, in addition to being misleading, this also appears
to make them more prone to overfitting. In contrast, our
results indicate that SUWR combines high selection sparsity
with high predictive accuracy, outperforming all our base-
lines across several benchmarks. Uniquely, the step-by-step
SUWR process can be used as a narrative explanation itself.
The SUWR approach is generic and easily extendable, we
believe it can serve as a strong foundation for future work
on faithful interpretable ML predictions with theoretical
guarantees.

In particular, future work could consider methods to scale

the SUWR approach to high-dimensional data. For instance,
by developing model architectures that can be applied effi-
ciently in the SUWR framework. Alternatively, one could in-
vestigate whether our definitions of leakage could be provide
a basis for novel indicators of feature importance. In order
to promote future extentions of our work, we have made the
implementations of our method and experiments publicly
available at https://github.com/GarfieldLyu/
SUWR.

Acknowledgements
This work is partially supported by German Research Foun-
dation (DFG), under the Project IREM with grant No. AN
996/1-1, and by the Netherlands Organisation for Scientific
Research (NWO) under grant No. VI.Veni.222.269.

Impact Statement
This paper makes a significant contribution to the field of
interpretable machine learning, which is crucial for the de-
velopment of transparent and hence responsible machine
learning models. We show that our methods are versatile
(covering at least two data types – tabular data and im-
ages) and can be applied to numerous applications, from
healthcare to finance. Our research provides the theoretical
foundation for further advancements in creating models that
are not only effective but also intrinsically transparent and
thus promote accountability. In an era where algorithmic de-
cisions have profound impacts on individuals and societies,
the methodologies presented in this paper ensure that these
systems can be scrutinized and understood by stakeholders,
thereby fostering trust and facilitating the broader adoption
of AI technologies in sensitive and impactful domains.

References
Arik, S. Ö. and Pfister, T. Tabnet: Attentive interpretable

tabular learning. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021, Thirty-Third Confer-
ence on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, pp. 6679–6687. AAAI Press, 2021.

Balın, M. F., Abid, A., and Zou, J. Concrete autoencoders:
Differentiable feature selection and reconstruction. In
International conference on machine learning, pp. 444–
453. PMLR, 2019.

Bastings, J., Aziz, W., and Titov, I. Interpretable neural
predictions with differentiable binary variables. In Pro-
ceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 2963–2977, 2019.

9

https://github.com/GarfieldLyu/SUWR
https://github.com/GarfieldLyu/SUWR

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition
and machine learning, volume 4. Springer, 2006.

Chen, H., He, J., Narasimhan, K., and Chen, D. Can ra-
tionalization improve robustness? In North American
Chapter of the Association for Computational Linguistics
(NAACL), 2022.

Chen, J., Song, L., Wainwright, M., and Jordan, M. Learn-
ing to explain: An information-theoretic perspective on
model interpretation. In International Conference on
Machine Learning, pp. 883–892. PMLR, 2018.

Covert, I. C., Qiu, W., Lu, M., Kim, N. Y., White, N. J., and
Lee, S.-I. Learning to maximize mutual information for
dynamic feature selection. In International Conference
on Machine Learning, pp. 6424–6447. PMLR, 2023.

Dabkowski, P. and Gal, Y. Real time image saliency for
black box classifiers. Advances in neural information
processing systems, 30, 2017.

Dantzig, G. Linear programming and extensions. Princeton
university press, 1963.

DeYoung, J., Jain, S., Rajani, N. F., Lehman, E., Xiong,
C., Socher, R., and Wallace, B. C. Eraser: A benchmark
to evaluate rationalized nlp models. In Proceedings of
the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 4443–4458, 2020.

Du, M., Liu, N., and Hu, X. Techniques for interpretable
machine learning. Communications of the ACM, 63(1):
68–77, 2019.

Gurrapu, S., Kulkarni, A., Huang, L., Lourentzou, I., Free-
man, L. J., and Batarseh, F. A. Rationalization for ex-
plainable NLP: A survey. CoRR, abs/2301.08912, 2023.
doi: 10.48550/ARXIV.2301.08912.

Jacovi, A. and Goldberg, Y. Aligning faithful interpreta-
tions with their social attribution. Transactions of the
Association for Computational Linguistics, 9:294–310,
2021.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with gumbel-softmax. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceed-
ings. OpenReview.net, 2017.

Jethani, N., Sudarshan, M., Aphinyanaphongs, Y., and Ran-
ganath, R. Have we learned to explain?: How inter-
pretability methods can learn to encode predictions in
their interpretations. In Banerjee, A. and Fukumizu, K.
(eds.), The 24th International Conference on Artificial
Intelligence and Statistics, AISTATS 2021, April 13-15,
2021, Virtual Event, volume 130 of Proceedings of Ma-
chine Learning Research, pp. 1459–1467. PMLR, 2021.

Jethani, N., Saporta, A., and Ranganath, R. Don’t be fooled:
label leakage in explanation methods and the importance
of their quantitative evaluation. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 8925–
8953. PMLR, 2023.

Kaufman, S., Rosset, S., Perlich, C., and Stitelman, O. Leak-
age in data mining: Formulation, detection, and avoid-
ance. ACM Transactions on Knowledge Discovery from
Data (TKDD), 6(4):1–21, 2012.

LeCun, Y., Cortes, C., and Burges, C. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Lee, C., Imrie, F., and van der Schaar, M. Self-supervision
enhanced feature selection with correlated gates. In Inter-
national Conference on Learning Representations, 2021.

Lei, T., Barzilay, R., and Jaakkola, T. Rationalizing neural
predictions. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp.
107–117, 2016.

Lemhadri, I., Ruan, F., Abraham, L., and Tibshirani, R.
Lassonet: A neural network with feature sparsity. Journal
of Machine Learning Research, 22(127):1–29, 2021.

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P.,
Tang, J., and Liu, H. Feature selection: A data perspective.
ACM computing surveys (CSUR), 50(6):1–45, 2017.

Li, Y. and Oliva, J. Active feature acquisition with genera-
tive surrogate models. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning
Research, pp. 6450–6459. PMLR, 2021.

Lundberg, S. M. and Lee, S.-I. A unified approach to inter-
preting model predictions. Advances in neural informa-
tion processing systems, 30, 2017.

Martins, A. and Astudillo, R. From softmax to sparsemax: A
sparse model of attention and multi-label classification. In
International conference on machine learning, pp. 1614–
1623. PMLR, 2016.

Molnar, C. Interpretable machine learning. Lulu.com,
2020.

Paranjape, B., Joshi, M., Thickstun, J., Hajishirzi, H., and
Zettlemoyer, L. An information bottleneck approach
for controlling conciseness in rationale extraction. In
Webber, B., Cohn, T., He, Y., and Liu, Y. (eds.), Pro-
ceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, Online,

10

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

November 16-20, 2020, pp. 1938–1952. Association for
Computational Linguistics, 2020. doi: 10.18653/V1/
2020.EMNLP-MAIN.153. URL https://doi.org/
10.18653/v1/2020.emnlp-main.153.

Ribeiro, M. T., Singh, S., and Guestrin, C. ” why should
i trust you?” explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pp.
1135–1144, 2016.

Schwab, P. and Karlen, W. Cxplain: Causal explanations
for model interpretation under uncertainty. In Wallach,
H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F.,
Fox, E. B., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
10220–10230, 2019.

Shrikumar, A., Greenside, P., and Kundaje, A. Learning
important features through propagating activation differ-
ences. In International conference on machine learning,
pp. 3145–3153. PMLR, 2017.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep in-
side convolutional networks: Visualising image clas-
sification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999.

Tomsett, R., Harborne, D., Chakraborty, S., Gurram, P., and
Preece, A. Sanity checks for saliency metrics. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 6021–6029, 2020.

Vanderbei, R. J. et al. Linear programming. Springer, 2020.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

Yamada, Y., Lindenbaum, O., Negahban, S., and Kluger,
Y. Feature selection using stochastic gates. In Interna-
tional conference on machine learning, pp. 10648–10659.
PMLR, 2020.

Yoon, J., Jordon, J., and van der Schaar, M. Invase: Instance-
wise variable selection using neural networks. In Interna-
tional Conference on Learning Representations, 2018.

Zhang, Z., Rudra, K., and Anand, A. Explain and pre-
dict, and then predict again. In Proceedings of the 14th
ACM International Conference on Web Search and Data
Mining, pp. 418–426, 2021.

Zheng, Y., Booth, S., Shah, J., and Zhou, Y. The irra-
tionality of neural rationale models. In Proceedings of
the 2nd Workshop on Trustworthy Natural Language Pro-
cessing (TrustNLP 2022), pp. 64–73, Seattle, U.S.A., July
2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.trustnlp-1.6.

11

https://doi.org/10.18653/v1/2020.emnlp-main.153
https://doi.org/10.18653/v1/2020.emnlp-main.153

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

A. Related Work
The current mainstream lines of work in interpretable machine learning have been categorized into explaining trained
models in post-hoc manner (Ribeiro et al., 2016; Simonyan et al., 2013; Shrikumar et al., 2017; Lundberg & Lee, 2017) and
building intrinsically explainable models (Zhang et al., 2021; Chen et al., 2018; Yoon et al., 2018). Due to the discrepancies
within post-hoc methods (Tomsett et al., 2020), the latter has been increasingly advocated in recent years. In the neural era,
one common way of building interpretable models is via input features. The main idea is to learn to select a small set of
informative input features and use those features exclusively for the final prediction. Meanwhile, explanations come from
the selected features, e.g., pixels for images and words for texts (we note that in language tasks this sort of method is more
often referred as rationale models (Lei et al., 2016; Bastings et al., 2019; Paranjape et al., 2020; Chen et al., 2022)). Thus,
sparsity (i.e., the number of selected features) and the final prediction performance are considered together to measure the
model effectiveness and explainability (DeYoung et al., 2020).

Feature selection as explanation. One challenge of feature selection is the scarcity of ground-truth labels to indicate the
importance of features. As a result, existing solutions learn to select features by jointly optimizing predictive performance
and selection sparsity. This type of joint training is referred as Joint amortized explanation methods (Dabkowski &
Gal, 2017; Schwab & Karlen, 2019; Jethani et al., 2021). The learnable selection and prediction function (selector and
predictor) can be two separated models, e.g., as for CAE (Balın et al., 2019), L2X (Chen et al., 2018), INVASE (Yoon
et al., 2018) and REAL-X (Jethani et al., 2021), or components within a single model, e.g., as for TabNet (Arik & Pfister,
2021). For the former type, the training signals (e.g., the gradients or rewards) between the predictor and selector are
propagated via Gumbel-relaxation (Jang et al., 2017) or policy gradient. For TabNet, the selection is generated by sparsemax
activation (Martins & Astudillo, 2016) and thus trained by standard back-propogation. Additionally, CAE conducts global
selection, and the others are local selection methods that vary selections per instance.

Irrationality of local feature selection. Nevertheless, local selection methods, particularly the joint amortized methods
have raised increasing concerns in recent works (Jacovi & Goldberg, 2021; Zheng et al., 2022; Jethani et al., 2023). They
argue the selected features do not necessarily align with the true explanations, and thus unfaithful to the model behaviors.
Furthermore, Jethani et al. (2021) showcased the selection mask can leak prediction to the predictor, and therefore achieve
unrealistic high performance whether the selected features are relevant or not. As a remedy, they proposed REAL-X, which
aims to prevent the predictor overfitting on the selector by injecting noise into the selection masks. Our work shows that
REAL-X is still subject to leakage (Section 5), and to the best of our knowledge, we have proposed the first theoretically
guaranteed solutions to this problem.

Dynamic feature selection. Another tangentially relevant line of work is dynamic feature selection (Li & Oliva, 2021;
Covert et al., 2023). Similar to SUWR, some dynamic feature selection methods also conduct a greedy selection procedure
without access to the full feature set. However, dynamic feature selection is designed for settings where features are costly,
and selection should be made to avoid the costs associated with retrieving specific feature values. This is a very different
purpose than our work, hence their methods are not designed to address leakage, nor do they formally analyse interpretability
for ML models.

B. Necessary and sufficient conditions for feature selection without label or feature leakage
Our formal proofs for the conditions for leakage will rely on two basic assumptions:

Assumption B.1. The choice of selector policy has no effect on the label distribution:

∀(x, y, sin, sex) ∈ Ω, p(y | x[sin]) = p(y | x[sin], ζ). (14)

Assumption B.2. The choice of selector policy has no effect on the feature distribution:

∀(x, y, sin, sex) ∈ Ω, p(x[sex] | x[sin]) = p(x[sex] | x[sin], ζ). (15)

Together, these assumptions entail that the natural distribution of features and labels is not dependent on the feature selector,
i.e., ζ does not have any effect on the feature and label frequencies in the data.

Theorem B.3. A features selector does not have label leakage if and only if every probability for every possible feature

12

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

selection does not depend on label values:(
¬Label-Leakage(ζ)

)
←→

(
∀(x, y, sin, sex) ∈ Ω, p(h[sin] = 1, h[sex] = 0 | x[sin], ζ) = p(h[sin] = 1, h[sex] = 0 | x[sin], y, ζ)

)
.

(16)

Proof. First, we take Eq. 4 from Definition 2.3 and multiply both sides with p(h[sin] = 1, h[sex] = 0 | x[sin], ζ), to get the
following:

∀(x, y, sin, sex) ∈ Ω, p(y | x[sin])p(h[sin] = 1, h[sex] = 0 | x[sin], ζ) = p(y, h[sin] = 1, h[sex] = 0 | x[sin], ζ). (17)

From Assumption B.1, we have p(y | x[sin]) = p(y | x[sin], ζ), from Definition 2.2 we know these values are positive, and
thus we can divide each side of Eq. 17 by them:

∀(x, y, sin, sex) ∈ Ω,
p(y | x[sin])p(h[sin] = 1, h[sex] = 0 | x[sin], ζ)

p(y | x[sin])
=

p(y, h[sin] = 1, h[sex] = 0 | x[sin], ζ)

p(y | x[sin], ζ)
. (18)

Reformulating each side of the above equation, results in:

∀(x, y, sin, sex) ∈ Ω, p(h[sin] = 1, h[sex] = 0 |x[sin], ζ) = p(h[sin] = 1, h[sex] = 0 |x[sin], y, ζ). (19)

Thereby, we have proven that the condition for label leakage in Eq. 4 of Definition 2.3 implies the condition in Eq. 19.
Since our derivation is still valid when reversed, it also proves Eq. 19 implies Eq. 4. Therefore, the conditions are logically
equivalent, this completes our proof.

Theorem B.4. A features selector does not have feature leakage if and only if every probability for every possible feature
selection does not depend on non-selected feature values:(
¬Feature-Leakage(ζ)

)
←→

(
∀(x, y, sin, sex) ∈ Ω, p(h[sin] = 1, h[sex] = 0 | x[sin], ζ) = p(h[sin] = 1, h[sex] = 0 | x[sin], x[sex], ζ)

)
.

(20)

Proof. Analogous to the proof for Theorem B.3, we begin by taking Eq. 5 from Definition 2.4 and multiply both sides with
p(h[sin] = 1, h[sex] = 0 | x[sin], ζ), to get the following:

∀(x, y, sin, sex) ∈ Ω, p(x[sex] | x[sin])p(h[sin] = 1, h[sex] = 0, | x[sin], ζ) = p(x[sex], h[sin] = 1, h[sex] = 0, | x[sin], ζ).
(21)

From Assumption B.2, we have p(x[sex] | x[sin]) = p(x[sex] | x[sin], ζ), from Definition 2.2 we know these values are
positive, and thus we can divide each side of Eq. 21 by them:

∀(x, y, sin, sex) ∈ Ω,
p(x[sex] | x[sin])p(h[sin] = 1, h[sex] = 0, | x[sin], ζ)

p(x[sex] | x[sin])
=

p(x[sex], h[sin] = 1, h[sex] = 0, | x[sin], ζ)

p(x[sex] | x[sin], ζ)
.

(22)
Reformulating each side of the above equation, results in:

∀(x, y, sin, sex)∈Ω, p(h[sin] = 1, h[sex] = 0 | x[sin], ζ) = p(h[sin] = 1, h[sex] = 0 | x[sin], x[sex], ζ). (23)

Thereby, we have proven that the condition for feature leakage in Eq. 5 of Definition 2.3 implies the condition in Eq. 23.
Since our derivation is still valid when reversed, it also proves Eq. 23 implies Eq. 5. Therefore, the conditions are logically
equivalent, this completes our proof.

C. Local Feature Selection with SUWR has no Leakage
Theorem C.1. All SUWR feature-selection policies have no leakage. In other words, if the inference of a policy ζ is
computable with SUWR then it has no leakage according to Definition 2.1.

13

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

Proof. If ζ is computable by the inference algorithm of SUWR, then it performs at most T steps to make a selection. From
Algorithm 1, we see that the creation of a selection ends when a Bernoulli trail with a probability determined by ζstop
succeeds. Therefore, the probability ζ(h | x) can be written as an expectation over T steps; let q(t = i, h | x, ζ) indicate the
probability that SUWR reaches step t = i and with the mask h, we can then formulate ζ(h | x) as:

ζ(h | x) = q(t = T, h | x, ζ) +
T−1∑
i=0

q(t = i, h | x, ζ)ζt=i
stop (x⊙ h). (24)

In less formal terms, it is a sum over the probability of reaching each possible step and the mask being h at that step
multiplied with the probability of stopping at that step. Thus, q(t = i, h | x, ζ) is the probability of SUWR reaching a step,
not necessarily stopping at that step. Accordingly, in the first step (t = 0), the mask is always the empty mask, therefore:

q(t = 0, h = 0 | x, ζ) = 1, q(t = 0, h ̸= 0 | x, ζ) = 0. (25)

To keep our notation brief, we call a mask a subset of another mask if it selects the same or a subset of features:

h′ ⊆ h←→ (∀i, h′[i] = 1 −→ h[i] = 1). (26)

This enables us to give a short definition general definition of q(t, h | x, ζ) by using its recursive nature:

q(t, h | x, ζ) =

1, if t = 0 ∧ h = 0,

0, if t = 0 ∧ h ̸= 0,∑
h′:h′⊆h

q(t− 1, h′ | x, ζ)(1− ζt−1
stop (x⊙ h′))

∑
u∈{0,1}d:h′+u=h

ζt−1
select(u | x⊙ h′), otherwise.

(27)

Thus, when t > 0, the value of q(t, h | x, ζ) is a sum over the probability that the previous step (t− 1) was reached with a
subset of h′ ⊆ h, and that the SUWR process did not stop, and that a new feature mask u was sampled such that h = h′ + u.
This recursion ends when t = 0 is reached.

Clearly, we can see from Eq. 27 that for t = 0 the q function is not conditioned on x:

q(t = 0, h = 0 | x, ζ) = q(t = 0, h = 0 | ζ), q(t = 0, h ̸= 0 | x, ζ) = q(t = 0, h ̸= 0 | ζ), (28)

and therefore:
q(t = 0, h | x, ζ) = q(t = 0, h | ζ). (29)

Similarly, at t = 1 the following holds:

q(t = 1, h | x, ζ) = q(t = 0, h = 0 | ζ)(1− ζt=0
stop (∅))ζt=0

select(h | ∅), (30)

and therefore:
q(t = 1, h | x, ζ) = q(t = 1, h | ζ). (31)

We can continue this pattern by considering Eq. 27, where we can see that when t > 0 the ζstop and ζselect only take subsets
of h as input. Similarly, through the recursion of q only subsets of h are given as input to q, therefore, the recursion cannot
add a dependency on any feature value not selected by h. Consequently, the value of q(t, h | x, ζ) does not depend on any
values of x not selected by h:

q(t, h[sin] = 1, h[sex] = 0 | x, ζ) = q(t, h[sin] = 1, h[sex] = 0 | x[sin], ζ). (32)

Finally, combining this result with Eq. 24, we see that the final stop probability also does not add a dependency on feature
values not selected by h, therefore:

ζ(h[sin] = 1, h[sex] = 0 | x) = ζ(h[sin] = 1, h[sex] = 0 | x[sin]). (33)

According to Corollary 2.5, this proves that ζ does not have leakage.

14

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

∅

{x[1]} {x[2]} {x[3]}

{x[1], x[2]} {x[1], x[3]} {x[2], x[3]}

{x[1], x[2], x[3]}

t = 0

t = 1

t = 2

t = 3

Figure 5. Visualization of all possible steps and transitions for a RDHD SUWR policy when selecting from a set of three features.

D. Conjecture: SUWR Describes any Selection Policy without Leakage under Full-Support
Feature Distributions

Assumption D.1. The feature value distribution provides support for the Cartesian product of possible feature values. In
other words, if there is a positive probability that feature x[i] has value a and a positive probability that feature x[j] has
value b, then there is a positive probability that feature x[i] has value a and feature x[j] has value b simultaneously:

∀i, j, a, b,
(
p(x[i] = a) > 0 ∧ p(x[j] = b) > 0

)
−→ p(x[i] = a, x[j] = b) > 0. (34)

Definition D.2. We define a reversed directed Hasse diagram (RDHD) SUWR policy as a SUWR policy where the
maximum step is the number of features: T = d, and ζtselect(x⊙ h) is a distribution over all single features that have not
been selected yet:

ζtselect(u | x⊙ h)

{
≥ 0 if

(
∃!i, u[i] = 1

)
∧
(
∀i ∈ {1, 2, . . . , d}, u[i] = 1→ h[i] = 0

)
,

= 0 otherwise.
(35)

Thereby, at each step t, the process either stops or a single feature is added to h. As a result, the number of features selected
by ht is always equal to t:

∑d
i=1 h

t[i] = d. An example visualization of the possible steps of a RDHD SUWR policy for
three features is shown in Figure 5.

The naming of this type of policy is inspired by the fact that the inference process of a RDHD SUWR policy can be
visualized as traversing over a Hasse diagram (e.g., in Figure 5). Traditionally, Hasse diagrams are constructed from the
complete set and are not directed. In contrast, RDHD SUWR policies start with the empty set and explicitly only traverse in
the direction where elements are added. Hence, we name it after a reversed and directed version of the Hasse diagram.

Conjecture D.3. Under the assumption that the feature distribution supports the Cartesian product of possible feature values
(Assumption D.1), every feature selection policy ζ that has no leakage (Definition 2.1) has an equivalent RDHD SUWR
policy. In other words, the set of all possible feature selection policies without leakage is a subset of the set of all possible
RDHD SUWR policies.

Support. We will provide reasons to support that, under Assumption D.1, for any ζ without leakage, there exists a ζtstop
and ζtselect for a RDHD SUWR policy, such that ζ and the RDHD SUWR policy have an identical distribution over feature
selections.

For this section, the same q function is used as for Theorem C, but to keep our notation short, we will use q(h | x ⊙ h)
instead of q(t, h[sin] = 1, h[sex] = 0 | x[sin], ζstop, ζselect). We can do this without loss of specificity since each h can only
occur at a single specific step: t =

∑d
i=1 h[i], we only consider q in the context of ζstop & ζselect, and we have already proven

that q only depends on the features selected by h, i.e., x⊙ h (see Theorem C). In other words, we use q(h | x⊙ h) as the
probability that the SUWR process at some point considers mask h, this is not the probability that h is selected.

15

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

This difference reveals the requirement on the SUWR policy, the probability of considering h should be equal to or greater
than the probability to select h:

∀h, x, p(x) > 0 −→ q(h | x⊙ h) > ζ(h | x⊙ h). (36)

This requirement exists because the probability of selecting h in a RDHD SUWR policy is equal to:

∀h, x, p(x) > 0 −→ ζ(h | x⊙ h) = q(h | x⊙ h)ζstop(h | x⊙ h). (37)

Therefore, the probabilities ζstop(h | x⊙ h) have to be:

∀h, x, p(x) > 0 −→ ζstop(h | x⊙ h) =
ζ(h | x⊙ h)

q(h | x⊙ h, ζstop, ζselect),
(38)

this is a valid probability, i.e., ζstop(h | x⊙ h) ∈ [0, 1], if Eq. 36 is true, i.e., q(h | x⊙ h) > ζ(h | x⊙ h).

Thus, we have to choose ζselect such that Eq. 36 is guaranteed to hold. To keep our notation short, we denote ζtselect(i | x⊙ h)
for the selection of feature i, i.e., the sampling of a vector u such that only element i is one: u[i] = 1 and all other values are
zero: i ̸= j ↔ u[j] = 0, conditioned on the feature values of x selected by h.

Our key insight is that every time a RDHD SUWR policy samples a feature, it is excluding a set of possible selections,
which can no longer be reached afterwards. Instead of thinking about how the SUWR process includes features into its
selection, we consider the possible feature selections it excludes through the addition of each feature. The following set
covers all masks that can no longer be reached after i is sampled by SUWR to be added to mask h:

excluded(h, i) = {h′ : h[i] = 0 ∧ ∀j ∈ {1, 2, . . . , d}, h[j] = 1→ h′[j] = 1}. (39)

As we can see, each mask in excluded(h, i) makes the same selections as h, in addition to every other possible selection,
that does not select i as well. We note that when the set is empty when i has already been selected in h: h[i] = 1 −→
excluded(h, i) = ∅. Therefore, the probability that feature i is added to selection h should not exceed the following:

q(h | x⊙ h, ζstop, ζselect)(1− ζstop(i | x⊙ h))ζselect(i | x⊙ h)︸ ︷︷ ︸
probability of reaching h and adding i

≤ 1− max
{x[j]:h[j]=0∧i̸=j}

∑
h′∈excluded(h,i)

ζ(h′ | x⊙ h)

︸ ︷︷ ︸
max. prob. of selections no longer accessible afterwards

. (40)

This leads to the following restriction on ζselect:

ζselect(i | x⊙ h) ≤
1−max{x[j]:h[j]=0∧i ̸=j}

∑
h′∈excluded(h,i) ζ(h

′ | x⊙ h)

q(h | x⊙ h, ζstop, ζselect)(1− ζstop(i | x⊙ h))
(41)

This maximum restriction ensures that these selections remain reachable by the RDHD SUWR policy with the required
probability. Thereby ensuring the requirement in Eq. 36 is true. Importantly, this maximum can be inferred without
knowledge of feature values that are not selected in h, thus it can be incorporated without introducing leakage.

However, not selecting feature i also excludes a possible selection. Namely, the selection that is made by only adding feature
i to h, as this can no longer be reached after the addition of a different feature. We denote this mask as h+i:

h+i ∈ {0, 1}d s.t. h[i] = 1 ∧ ∀j ∈ {1, 2, . . . , d}, i ̸= j ↔ h′[j] = h[j]. (42)

Therefore, the probability of reaching h and selecting i must be at least as great as the maximal possible probability of h+i

conditioned on the feature values selected so far:

max
x[i]

ζ(h+i | x⊙ h+i) ≤ q(h | x⊙ h, ζstop, ζselect)(1− ζstop(i | x⊙ h))ζselect(i | x⊙ h). (43)

This results in the following restriction on ζselect:

maxx[i] ζ(h
+i | x⊙ h+i)

q(h | x⊙ h, ζstop, ζselect)(1− ζstop(i | x⊙ h))
≤ ζselect(i | x⊙ h). (44)

16

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

Again, we note that this restriction can be enforced without introducing leakage as the minimum value only depends on
feature values that are not selected in h.

By combining the requirement in Eq. 44 and Eq. 41, we see that we need the following requirement to be true:

max
x[i]

ζ(h+i | x⊙ h+i) + max
{x[j]:h[j]=0∧i ̸=j}

∑
h′∈excluded(h,i)

ζ(h′ | x⊙ h) ≤ 1. (45)

Since if Eq. 45 is not true, there is no value of ζselect(i | x⊙ h) that can satisfy both Eq. 44 and Eq. 41.

We will now show that under Assumption D.1, the requirement in Eq. 45 is always guaranteed.3 To start, we use the
following to denote the feature values that maximize each of the maximum operations:

x[i]∗ = argmax
x[i]

ζ(h+i | x⊙ h+i),

{x[j]∗} = max
{x[j]:h[j]=0∧i ̸=j}

∑
h′∈excluded(h,i)

ζ(h′ | x⊙ h).
(46)

Importantly, feature i is not selected by any mask in the excluded set: ∀h′ ∈ excluded(h, i), h[i] = 0. Therefore, there is
no overlap between x[i]∗ and {x[j]∗}, this means that a possible vector of feature values exists that includes x[i]∗, {x[j]∗}
and x⊙ h. We denote this combination of possible values as:

∃x∗ : x∗[i] = x[i]∗ ∧
(
∀x[j]∗, x∗[j] = x[j]∗

)
∧ x⊙ h = x∗ ⊙ h. (47)

By the definition of x∗, x[i]∗ and {x[j]∗}, this vector maximizes both parts of the left side of Eq. 45:

ζ(h+i | x∗ ⊙ h+i) = max
x[i]

ζ(h+i | x⊙ h+i),∑
h′∈excluded(h,i)

ζ(h′ | x∗ ⊙ h) = max
{x[j]:h[j]=0∧i ̸=j}

∑
h′∈excluded(h,i)

ζ(h′ | x⊙ h).
(48)

Assumption D.1 states that every possible combination of feature values is supported by the feature distribution, therefore:
p(x∗) > 0. ζ is a valid probability distribution over all possible feature masks. For every possible value of x, this means the
sum of all probabilities of all masks cannot be greater than one. Therefore, the same goes for this subset of masks:

p(x∗) > 0 −→ ζ(h+i | x∗ ⊙ h+i) +
∑

h′∈excluded(h,i)

ζ(h′ | x∗ ⊙ h) ≤ 1. (49)

Consequently, the requirement in Eq. 45 is guaranteed to hold under Assumption D.1, and therefore, there always exists a
value for ζselect(i | x⊙ h) that can satisfy both Eq. 44 and Eq. 41.

Unfortunately, this does not provide a complete proof, since there is an additional requirement that we were unable to prove.
Namely, Eq. 44 can only hold if the following is true:

maxx[i] ζ(h
+i | x⊙ h+i)

q(h | x⊙ h, ζstop, ζselect)(1− ζstop(i | x⊙ h))
≤ 1, (50)

since otherwise, Eq. 44 implies that ζselect(i | x⊙ h) > 1 which would make it an invalid policy. A simple reformulation
reveals that this is a requirement on q:

q(h | x⊙ h, ζstop, ζselect) ≤
maxx[i] ζ(h

+i | x⊙ h+i)

1− ζstop(i | x⊙ h)
. (51)

In other words, the probability of h being considered conditioned on x ⊙ h, ζstop and ζselect needs to be great enough to
provide enough probability mass for both the maximum possible probability of h and h+i. For very small problems with
two binary features, we are able to find a closed-form solution that gaurantees this. Unfortunately, we were unable to extend
this approach to a more generic setting. Nonetheless, it appears that satisfying both Eq. 44 and Eq. 41 also guarantees Eq. 51,
but until this is proven our claim can only remain a conjecture.

3For comparison, Table 3 displays an example where Assumption D.1 is not true, and accordingly, Conjecture D.3 does not hold.

17

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

Table 3. Example of a feature selection policy without leakage that is impossible to compute with SUWR. This happens because the
feature distribution does not support the Cartesian product of possible feature values, as stated in Assumption D.1. In this example,
knowing that x[1] = 1 means one also knows x[2] = 0 and x[3] = 0, therefore, these selections can be safely removed once x[1] = 1 is
known, without introducing leakage. Since SUWR is agnostic to the underlying feature distribution, it does not use this property to enable
the removal of features after their selection. Consequently, the displayed policy cannot be executed through the SUWR algorithm. (See
Table 1 for an explanation of the notation).

p(x, y, h) x[1] x[2] x[3] h[1] h[2] h[2] (x⊙ h)[1] (x⊙ h)[2] (x⊙ h)[3] y

0.333 . . . 1 0 0 1 0 0 1 2
0.333 . . . 0 1 0 0 1 0 1 1
0.333 . . . 0 0 1 0 0 1 1 0

E. Details on the Linear Programming Approach
For our linear programming approach, we assume that the problem is fully known, thus complete knowledge of p(x, y)
is available. In addition, we assume that the set of possible feature and label values is finite and iterable. As a result, the
optimal predictor f∗ can be treated as a lookup table that stores the optimal prediction per possible selected feature values.
For simplicity, we assume that the optimal prediction value is the expected label conditioned on the selected feature values:

f∗(x⊙ h) = Ex[y | x⊙ h] =
∑

x′:x′⊙h=x⊙h

p(x′)
∑
y

p(y | x′)y =
∑

x′:x′⊙h=x⊙h

p(x′)
∑
y

p(y | x′)y. (52)

Therefore, we only have to find the optimal selector policy ζ. Our linear programming approach poses the search as a
constrained minimization problem in the following form (Dantzig, 1963; Vanderbei et al., 2020):

min
θ

cT θ s.t. Aθ = b ∧ 0 ≤ θ ≤ 1, (53)

where θ is a vector where each element represents the conditional probability of a selection ζ(h | x). The remainder of this
section will show how the vectors b and c and matrix A can be constructed so that this minimization problem is equivalent
to selection policy optimization.

To start, we will show how c and θ can be chosen so that cT θ = L(ζ, f∗) (cf. Eq. 2). Importantly, we want our selection
policy to have no leakage, as discussed in Section 2.3 this means that:

∀(x, x′, h), x⊙ h = x′ ⊙ h −→ ζ(h | x) = ζ(h | x′). (54)

Therefore, we only have to find a single conditional probability ζ(h | x) for every unique x⊙ h value. Thus, the size of
vector x is going to be the number of unique possible selected feature values, where each element corresponds to a single
x⊙ h and contains the value for all corresponding ζ(h | x) values. To see that our loss can be rewritten as a dot product
with such a vector, we rewrite it as follows:

L(ζ, f∗) =
∑
x,y

p(x, y)
∑
h

[
ζ(x⊙ h)L(f∗(x⊙ h), y) + λ∥h∥

]
=

∑
x⊙h

ζ(h | x)
∑

x′:x′⊙h=x⊙h

p(x′)
(
λ∥h∥+

∑
y

p(y)L(f∗(x⊙ h), y)
)
,

(55)

where the summation
∑

x⊙h sums over every possible value of x⊙ h once. In other words, if multiple feature values result
in the same selected feature values e.g., x⊙ h = x′ ⊙ h, only one of them is considered in the

∑
x⊙h sum. From the above

reformulation, we see that for cT θ = L(ζ, f∗) we require:

∀(x, h), ∃!i ∈ N>0, θi = ζ(h | x) ∧ ci =
∑

x′:x′⊙h=x⊙h

p(x′)
(
λ∥h∥+

∑
y

p(y)L(f∗(x⊙ h), y)
)
. (56)

Algorithm 2 shows how we construct c accordingly: first a mapping is made for every possible selected feature value (x⊙ h)
to an index on c, next the value of each element of c is computed following Eq. 56 and stored in the corresponding position.

18

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

Besides minimizing L, it is important that the ζ is a valid probability distribution. To be more precise, for all possible values
of the full set of features x, ζ should produce a valid distribution over all possible selections (ζ(h | x)). We can express this
formally in the following manner:

∀x, p(x) > 0 −→
(∑

h∈ζ(x)

ζ(h | x) =
∑

sin,sex:sin∪sex={1,2,...,d}
p(h[sin] = 1, h[sex] = 0 | x[sin], ζ) = 1

)
. (57)

For the linear program, this requirement can be expressed through the A matrix and b vector in a straightforward manner.
We set b = 1 as a vector of ones with the size of the number of possible values for x. The matrix A gets a first dimension
with the same size as b and the second dimension the same size as θ. Thereby, each row corresponds to a possible value of x
and each column to a possible value of x⊙ h. Algorithm 2 iterates over each row, representing a possible value of x, and
then selects each column that corresponds to a possible set of masked features that could occur for x and sets it to one. As a
result, Aθ = b indicates that the probability distribution ζ(h | x) sums to one for each possible value of x.

Having constructed A, b and c, we use SciPy to solve the linear programming problem of Eq. 53 (Virtanen et al., 2020)
and find the optimal value of θ. Correspondingly, the output of Algorithm 2 is a lookup-table representing the optimal
predictor f∗, the vector θ containing the optimal probabilities for ζ, and an index that maps each (x, h) to the element in θ
that contains the corresponding ζ(h | x) value. If the linear programming solver functions correctly, this solution represents
the optimal predictor and selector policies possible for the task. In our experimental analysis, we assume that the produced
solutions are a close approximation of the optimal policies.

F. Experimental Details
In this section, we describe the experimental details including datasets, implementation, hyper-parameters and additional
results. Our experimental implementation is available here: https://github.com/GarfieldLyu/SUWR. For all
baselines, we adapted the original source code and when necessary, modified it to fit our experimental objectives. We use
the following links for baseline implementation:

• L2X: https://github.com/Jianbo-Lab/L2X

• INVASE: https://github.com/jsyoon0823/INVASE

• TabNet: https://github.com/dreamquark-ai/tabnet

• REAL-X: https://github.com/rajesh-lab/realx

• CAE: https://github.com/mfbalin/Concrete-Autoencoders

All methods are built on neural networks. Among all, L2X, INVASE and REAL-X have independent selector and predictor
models. The selector is constructed by feed-forward (FF) layers and outputs a selection probability for each feature. The
predictor has a similar architecture but outputs the task-specific prediction, using the selected input by masking out the
unselected features. CAE is slightly different, as it uses a single trainable d× k matrix as the global selector, the matrix
values are used as the selection probabilities. The predictor is an FF network, which transforms the selected features (so
the input dimension reduces to k) and outputs the prediction. TabNet unlike the others, has a single architecture for both
selection and prediction. The selection is conducted step-wisely by a neural selection component and the final prediction is
generated by ensembling the outputs from all steps.

Our method is flexible in architecture design. We choose to employ a simple model with FF networks to generate selection
(ut), prediction (ŷt) and stop probability (ptstop) simultaneously at the step t, defined as follows:

enc = FFenc(x⊙ ht), ptstop = FFstop(enc), ut = FFselect(enc), ŷt = FFpred(enc) (58)

FFenc is used to encode the input to a hidden representation and across all experiments, we set it to 3 layers. FFstop and
FFselect are both set to 1 layer. FFpred is set to 1 layer for toy and synthetic datasets, and 2 layers for MNIST datasets. The
selection for next step ht+1 is sampled from ut, and to avoid repeated selection, the probabilities of selected features in
corresponding ut are set to 0 before sampling.

19

https://github.com/GarfieldLyu/SUWR
https://github.com/Jianbo-Lab/L2X
https://github.com/jsyoon0823/INVASE
https://github.com/dreamquark-ai/tabnet
https://github.com/rajesh-lab/realx
https://github.com/mfbalin/Concrete-Autoencoders

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

Algorithm 2 Our linear programming approach.
1: Input: Set of possible features: X , Set of possible labels: Y , Set of possible masks: H ,

Probability distribution function: p(x, y), Loss: L, Sparsity weight: λ.
2: feat index← {} # Empty dictionary to map possible masked feature values to indices.
3: feat labels← {} # Empty dictionary to keep track of label values.
4: Nunique ← 0 # Counter tracking number of possible unique selected feature values.
5: for x ∈ X, y ∈ Y : p(x, y) > 0 do
6: for h ∈ H do
7: if x⊙ h ̸∈ feat index then
8: Nunique ← Nunique + 1
9: feat index[x⊙ h] = Nunique # If unique, the value x⊙ h receives the next available index.

10: feat labels[x⊙ h] = ∅ # Initialize an empty set for every possible associated label value.
11: end if
12: feat labels[x⊙h]← feat labels[x⊙h]∪{(y, p(x, y))} # Possible labels and cond. probabilities stored per x⊙h.
13: end for
14: end for
15: c← zero vector(Nunique) # Zero initialization of cost vector of size Nunique.
16: f∗ ← {} # Empty dictionary to store optimal predictor.
17: for x⊙ h ∈ feat index do
18: p(x⊙ h)←

∑
(y,p(x,y))∈feat labels[x⊙h] p(x, y) # Natural probability of the selected feature values.

19: f∗(x⊙ h)← 1
p(x⊙h)

∑
(y,p(x,y))∈feat labels[x⊙h] p(x, y)y # Assumption: Optimal prediction is the expected value.

20: i← feat index[x⊙ h]
21: c[i]←

∑
(y,p(x,y))∈feat labels[x⊙h] p(x, y)

(
L(f∗(x⊙ h), y) + λ|h|

)
22: end for
23: A← zero matrix(|X|, Nunique) # Zero initialization of constraint matrix of size |X| ×Nunique.
24: i← 0
25: for x ∈ X do
26: i← i+ 1
27: for h ∈ H do
28: j ← feat index[x⊙ h]
29: A[i, j]← 1 # Setting ones for every possible selected feature values per row for each x.
30: end for
31: end for
32: b← one vector(|X|) # Vector of size |X| (number of possible feature values) filled with ones.
33: θ ← Linear Program Solver(A, b, c) # Solves Eq. 53, outputs vector of size Nunique with ordering matching feat index.
34: Return: f∗, θ, feat index

For sparsity-related hyper-parameters, both L2X and CAE require a pre-specified k value as the number of selected features;
the rest of methods determine the number of selections by a sparsity weight λ. Additionally, TabNet also requires a number
of steps nsteps, except for λ. For our method, we need to specify a maximum selection budget (or step) T , and a sparsity
weight λ to control the number of selections. We experimented with a range of values for these hyper-parameters, which we
report in the following corresponding subsections.

F.1. Toy Dataset

This dataset contains the input of 10-dimensional binary features, and thus results in 1024 = 210 instances. All methods
are trained and evaluated on all 1024 instances. For our method, the reported results come from the FF networks with 64
hidden units, T = 10, and λ in {0.3, 0.4, 0.5, 0.8}. For L2X, we set both selector and predictor as a 3-layer FF model
with 64 hidden units, and k from 1 to 10. For INVASE, we use the same selector and predictor architecture as L2X, and
vary λ in {7.0, 8.0, 10.0, 11.0}. For TabNet, we vary nsteps in {1, 2, 3} and λ in {0.002, 0.003, 0.004, 0.005}. Lastly for
REAL-X, we have to modify the original objective from Cross-Entropy to MSE loss, and vary λ in {1.5, 2.0, 3.0, 5.0}, the
model architecture remains the same as L2X. For all methods, we train the model for maximum 2000 epochs, and use early
stopping with a patience of 1000 epochs.

20

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

F.2. Synthetic Dataset

For all synthetic datasets (Syn1 – Syn6), we generate 10,000 training samples with a random seed 0, and 10,000 test samples
with a random seed 100. All methods are learned on the training dataset and evaluated on the test dataset, the reported
results in Table 2 are averaged over 5 tries.

The selector and predictor model for L2X, INVASE and REAL-X are both 3-layer FF networks with 200 hidden units.
For L2X, we set the k for Syn1 to Syn6 as {1, 4, 4, 5, 5, 5}, respectively. For INVASE, we choose λ = 0.1 for Syn1 to
Syn3, λ = 0.2 for Syn4 and Syn6, and λ = 0.15 for Syn5. For REAL-X, we run the model by varying λ across { 0.05, 0.1,
0.15, 0.2} and choose 0.05 for Syn4 and Syn5, 0.1 for Syn6, and 0.15 for Syn1, Syn2 and Syn3. For TabNet, we chose the
recommended hyper-parameters reported in the original paper. In detail, the nsteps is set as 4 for Syn1 – Syn3 and 5 for
Syn4 – Syn6, the λ is 0.02 for Syn1, 0.01 for Syn2 and Syn3, and 0.005 for Syn4 – Syn6. The rest of hyper-parameters in
TabNet remain the same as the default setup. Our method uses FF networks with 100 hidden units. For Syn1, we report the
results with T = 4 and λ = 0.01. For Syn2 and Syn3, the T is set as 4 and λ as 0. For Syn4 and Syn5, we choose T as 5
and λ as 0.005. Lastly for Syn6, T is 5 and λ is 0.

We also provide additional results in Figure 6 to show the advantages of our method. Firstly, as shown in the left figure, our
method is able to select the control-flow feature (x11) at the very first step, as its value determines the upcoming relevant
features. We observed that for the other step-wise method TabNet, x11 is usually selected in a later step. Our method in this
regard, provides a more interpretable reasoning logic for the selection decision. Furthermore, as the right figure shows, our
method has the flexibility to allow us to either explicitly specify a selection budget without sparsity penalty, or figure out the
right number of features by tuning a sparsity weight within a maximum selection budget, so that the model can squeeze out
irrelevant features and converge to the optimal selection within the budget window.

0 200 400 600 800 1000
Number of iterations

0
1

3

5

7

9

St
ep

 in
de

x

budget=5
budget=7
budget=9
budget=10
budget=11

0 200 400 600 800 1000
Number of iterations

0

2

4

6

8

Av
er

ag
e

sp
ar

sit
y budget=2

budget=3
budget=4
budget=6
budget=8

Figure 6. Left: at what step x11 is selected for Syn6. Right: selection budget vs. sparsity for Syn1, where only two features are relevant.

F.3. MNIST Datasets

We follow the benchmark splits for both digits-MNIST and fashion-MNIST. All methods are trained on the 60,000 training
samples and tested on the 10,000 test sets. The reported results are averaged over 3 tries.

For the predictor without feature selection, we use a 3-layer FF network with 200 hidden units. We
choose the same architecture for both selector and predictor for REAL-X. Additionally, we vary the λ across
{1.5, 3.0, 5.0, 6.0, 8.0, 10.0, 12.0, 13.0, 14.0, 18.0, 20.0} to produce the performance curves in figure 4. For CAE, we
run the original code with supervised learning setup. The predictor for CAE is a 3-layer FF with 320 hidden units. We
vary k in {15, 20, 30, 40, 50} for selection by pixels. For the patch selection, we first obtain the top-k important features
learned by CAE, and then train the predictor with the 3× 3 patches of features around the selected ones. For our method we
choose 200 as the FF hidden unit. The maximum selection step T is set to 50, and the sparsity weight λ is varied across
{0.05, 0.1, 0.15, 0.2, 0.3}.

Additionally, we also include some patch-selection examples from digits-MNIST datasets. Figure 7 again shows the benefits
of early stopping in reducing selection while maintaining performance. On the left side, we plot the average number of
actual selections (i.e., the average sparsity) can be much smaller than the maximum selection budget T , under the same
prediction performance. The right side gives a concrete image example of the digit 0. After 4 steps, the model (1) can
correctly predict the digit with high confidence; and (2) is recommended to stop here by the stop probability. Continuing the
selection will not affect the prediction performance. Another example in Figure 8 shows the process of predicting an image
of “3” with step-wisely selecting patches. The first three patches are enough to distinguish the image from the rest of classes

21

Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions

except for “8”, and the fourth path however, shows high discriminative information of “3” or “8”. This is also supported by
the minor perturbation of pixels in the fourth patch. When the fourth patch is not blank anymore, the prediction is flipped
from “3” to “8”. This example shows a strong example of how the SUWR can explain the contribution of each feature to the
prediction, which here gives much more insight than if one would highlight all selected features at once.

0 2 4 6 8 10 12 14 16 18 20
Number of steps

0.6

0.7

0.8

Pe
rfo

rm
an

ce 6 steps earlier
8 steps on average

Budget
Average sparsity

1
2

3
4

56
7

89

10
1 2 3 4 5 6 7 8 9 10

Step

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Stop
before Stop
after Stop

Figure 7. Selecting by patch on digits-MNIST. Early stopping before maximum step budget T .

Perturb

3 8

ζstop = 0.

3 8

ζstop = 0.02

3 8

ζstop = 1.0

3 8

ζstop = 1.0

3 8

ζstop = 0.

3 8

ζstop = 0.02

3 8

ζstop = 0.96

3 8

ζstop = 1.0

Figure 8. Digit 3 or 8? Each image (indicates one step) is masked by the colored squares and accompanied by a prediction bar chart and a
stop probability ζstop. The red square is the new selection at the current step and the blue ones indicate the previous selections. The first
two steps are omitted. The second row shows the same image as the top row, except for one particular patch which is filled with gray
pixels, highlighted by the arrow. Due to this change, the prediction on the second row is flipped in the fourth step (second image from the
left).

22

