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Abstract

There is increasing interest in employing large lan-
guage models (LLMs) as cognitive models. For
such purposes, it is central to understand which
properties of human cognition are well-modeled
by LLMs, and which are not. In this work, we
study the biases of LLMs in relation to those
known in children when solving arithmetic word
problems. Surveying the learning science litera-
ture, we posit that the problem-solving process
can be split into three distinct steps: text compre-
hension, solution planning and solution execution.
We construct tests for each one in order to un-
derstand whether current LLMs display the same
cognitive biases as children in these steps. We
generate a novel set of word problems for each
of these tests, using a neuro-symbolic approach
that enables fine-grained control over the prob-
lem features. We find evidence that LLMs, with
and without instruction-tuning, exhibit human-
like biases in both the text-comprehension and
the solution-planning steps of the solving process,
but not in the final step, in which the arithmetic
expressions are executed to obtain the answer.

https://github.com/eth-lre/
solving-biases

1. Introduction
There is active discussion around large pretrained language
models (LLMs) as plausible cognitive models (Mahowald
et al., 2023), e.g., in terms of language acquisition (Warstadt
and Bowman, 2022), decision making (Aher et al., 2023)
and political orientation (Argyle et al., 2023). In the
context of education, cognitive modeling enables the
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Figure 1. A three-step model of the cognitive process involved in
solving math word problems. We study whether LLMs exhibit
similar biases as human children along each step of this process.

study of human learning without the high cost of data
collection from human subjects, which can lead to a better
understanding of human learning and, therefore, improved
learning outcomes (VanLehn et al., 1994). Several recent
articles have already employed LLMs as models of students
(Macina et al., 2023; Nguyen et al., 2023). However, for
such modeling to be meaningful, it is imperative that the
student model is consistent with actual student behavior.
Yet, that is not always the case: Many existing student
models fail to validate faithfulness to realistic classroom
scenarios (Käser and Alexandron, 2023). Importantly, an
LLM that models the problem-solving process of children
should also make similar mistakes as children, i.e., it should
mimic the cognitive biases that are salient in children
during problem-solving. Given that LLMs may be trained
predominantly on data generated by adults, it is not obvious
that they would exhibit child-like behavior.

In this paper, we study whether LLMs are subject to simi-
lar biases as children when solving arithmetic math word
problems.1 These problems are interesting because they are
conceptually simple, and yet, require several distinct skills
to solve (Stern, 1993). A learner needs to understand the
situation described, relate it to arithmetic equations, and

1Related studies have compared LLM biases to human ones
on the task of syllogistic reasoning (Ando et al., 2023; Dasgupta
et al., 2023; Eisape et al., 2024). These are discussed in §7.
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perform the required computations, as Fig. 1 illustrates. By
Piaget’s (1936) view on cognitive development, a problem
might be difficult for a child due to insufficient development
in any one of these skills. Much is known about what makes
a word problem difficult for humans; we ask whether the
same relative difficulties apply to LLMs.

To answer this question, we construct tests that are grounded
in the extensive literature on word problem solving by chil-
dren,2 and perform them on a suite of currently well-known
LLMs. Specifically, each test varies a problem feature for
which an effect on child performance has been established
in the literature, e.g., the manner in which a particular math-
ematical operation is expressed in text, while controlling for
other features. We create new English problems specifically
for these tests, by developing a generation pipeline based
on a semantic formalism over math word problems (Opedal
et al., 2023). Our generation pipeline admits a family of stan-
dard arithmetic word problems, while controlling not only
for numerical features, but structural (e.g., entity relation-
ships) and linguistic ones (e.g., sentence structure) as well.

We test three cognitive biases, each one associated with a
separate step of the solving process (which are illustrated
by arrows in Fig. 1). The first test targets consistency bias:
A problem text is easier to comprehend if the relational
keyword verbally suggests the operation that is required to
solve the problem (Lewis and Mayer, 1987). The second
test targets what we call transfer vs comparison bias,
that problems with a static comparison relationship are
more difficult for children than problems with a dynamic
change of state, even when they involve the same arithmetic
expressions (Riley et al., 1983). The third test targets the
carry effect, i.e., that arithmetic computations are more
difficult if they entail moving some digit to a column of
more significant digits (Hitch, 1978).

We find that LLMs indeed exhibit some biases that mirror
those observed in children. Our experiments with both
base and instruction-tuned models—specifically, LLaMA2
(Touvron et al., 2023), Mistral (Jiang et al., 2023), Mixtral
(Jiang et al., 2024), GPT-3.5 Turbo and GPT-4 Turbo (Ope-
nAI, 2024)—reveal that almost all models show significant
effects of consistency bias and transfer vs comparison bias,
like child learners. Most of these effects are further strength-
ened by using chain-of-thought prompting (Wei et al.,
2022). However, we do not observe a carry effect bias in
the solution execution step. These results contribute to our
understanding of the capabilities and limitations of LLMs
as cognitive models, particularly in the context of cognitive
development research and educational applications.

2This comment refers to studies performed on children, but we
note that some of the biases considered seem to be present in adults
as well (albeit with weaker effects). See Jaffe and Bolger (2023) for
a recent review on word problem performance independent of age.

2. Cognitive Modeling of the Solving Process
This section discusses the cognitive process that is involved
in solving math word problems. We first introduce our
conceptualization that is illustrated in Fig. 1, which we then
motivate by summarizing relevant literature.

Our conceptualization. We are interested in identifying
when LLMs are likely to exhibit human-like biases, and
therefore, require a holistic analysis of the human problem-
solving process. Our conceptualization, illustrated in Fig. 1,
includes four representational levels of the math word prob-
lem, along with the skills associated with transitioning from
one level to the next. We assume that a child goes through
the following procedure when posed with a math word prob-
lem: First, they form a mental model of the mathematical re-
lationships expressed in that problem (text comprehension).
Next, they distill that mental model into a sequence of arith-
metic expressions representing the step-by-step reasoning
process to find the solution (solution planning) and, finally,
calculate the answer from those expressions (solution execu-
tion). The representational levels will be formalized in §4.1.

Background. Children tend to experience greater diffi-
culty when posed with arithmetic math word problems com-
pared to the same problems formulated solely as arithmetic
expressions; see, e.g., Jaffe and Bolger (2023). This sug-
gests that arithmetic computation skill alone is not sufficient
to successfully solve math word problems. In order to dis-
tinguish the different skills that are involved, past work has
represented math word problems along similar levels as we
do above (Nesher and Teubal, 1975): (i) problem text, (ii)
underlying mathematical relationships, and (iii) arithmetic
expressions. Solving a problem, then, involves transitioning
from level (i) to a final answer, possibly through levels (ii)
and (iii), with each transition requiring a separate skill.3

There is much research on which factors best explain prob-
lem difficulty. Riley et al.’s (1983) model of the problem-
solving process emphasized the degree of complexity at
level (ii) as the leading factor underlying performance, mo-
tivated by empirical evidence that some arithmetic concepts
are harder for children to understand than others. However,
their model does not account for how the mathematical rela-
tionships are derived from the problem text (Cummins et al.,
1988). This part is significant as well, as several studies have
found that altering the linguistic form of a problem with-
out changing the underlying mathematical relationships can

3Not everyone uses all three levels in their solving process.
Hegarty et al. (1995) find evidence that unsuccessful human prob-
lem solvers often opt for short-cut strategies that rely on surface-
level features of the problem text (thus, by our conceptualization,
moving directly from text to arithmetic expressions), whereas suc-
cessful solvers are more likely to make use of mental models.
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have drastic effects on performance (Hudson, 1983; Lewis
and Mayer, 1987; inter alia) in both children and adults.
This part of the process is encompassed by the models of
Briars and Larkin (1984) and Kintsch and Greeno (1985).
None of these models give an explicit account of the com-
plexity of the arithmetic expression, however, which also has
significant influence on performance (Daroczy et al., 2015).

3. Human Biases in Word Problems
In this section we discuss the particular factors that influence
performance of human children (i.e., cognitive biases) which
we study in LLMs (§5). Each bias is reflected by a variation
in a specific level of Fig. 1. We study one bias for each of
the three levels that precedes the answer.

Problem text: Consistency bias. Given the premise “Al-
ice has 5 apples” and a question querying the (smaller)
number of apples of another agent “Bob”, an additive com-
parison statement between the two agents could take either
of the following forms:

(1) Bob has 3 fewer apples than Alice.
(2) Alice has 3 more apples than Bob.

Here, (1) represents a consistent statement because the
relational keyword (“fewer”) suggests the operation that
is indeed needed to compute Bob’s quantity (subtraction).
Conversely, (2) is an inconsistent statement because the
relational keyword (“more”) suggests a different operation
(“addition”). Note that these two statements express the
same comparison relationship, so the difference lies only in
the problem text. Problems with an inconsistent statement
are more difficult for children to solve than consistent ones
(Nesher and Teubal, 1975; Stern, 1993). This has been
hypothesized to be the case due to inconsistent statements
requiring an additional, error-prone, deduction step: to
rearrange the relational statement to be in the preferred
consistent form (Lewis and Mayer, 1987).

Mental model: Transfer vs comparison bias. Irrespec-
tive of which relational keyword is used, comparison-type
problems tend to be more difficult for children than other
types of arithmetic concepts (Riley et al., 1983). In partic-
ular, grade school children display a significant difference
in performance between comparison problems and transfer
problems. Consider the same premise as above but with a
slightly different continuation:

Alice has 5 apples. Alice gave 3 apples to Bob.
How many apples does Alice have?

This is a transfer problem (often called a change elsewhere;
Nesher et al., 1982), concerning a change of state of some
quantity. It has the same arithmetic expression as the

comparison problems above (although with another men-
tal model), but is easier for young children to solve. In
analyzing their solution strategies, it has been found that
comparison problems require a number-matching type strat-
egy that appears to be more sophisticated than the counting-
type strategies that are often sufficient for solving transfer
problems (Riley et al., 1983; Carpenter and Moser, 1984).

Arithmetic expressions: The carry effect. Beyond the
text and mental model, it is natural that the particular num-
bers used in a problem will have an effect on a child’s perfor-
mance (Daroczy et al., 2015). Consider the same problem(s)
as above, but with a different number given in the premise:

Alice has 22 apples. Bob has 3 fewer apples than
Alice. How many apples does Bob have?

The problem now has the arithmetic expression 22 − 3,
which involves an arithmetic carry, which is also called a
borrowing in the case of subtraction. A carry is a digit that
is transferred from one column of digits to another as the
result of an arithmetic computation. In this subtraction com-
putation, a unit carry of 1 is transferred from the column of
units to the column of tens in order to make the answer 19.
The previous expression (5− 3) did not have a carry, which
is easier for children (Hitch, 1978; Ashcraft et al., 1992).
The presence of a carry introduces an additional subroutine
from the standard sequence of operations, which places a
higher load on working memory (Fürst and Hitch, 2000).4

4. Problem Generation Method
Our experiments on LLMs with respect to the biases just
discussed (§5) rely on data generated for the sole purpose of
our study. By not using problems from public datasets, pre-
vious work or other existing sources it becomes unlikely that
our data has been used for training of the models, an increas-
ingly common issue (Dodge et al., 2021; Elazar et al., 2023).

This section gives the details of our data generation pipeline,
which provides control over features across all levels of
Fig. 1. In §4.1, we operationalize Fig. 1, giving definitions
related to the mental model level and other aspects of
the process. Using these definitions, we then explain our
generation pipeline in §4.2.

4.1. Operationalizing Fig. 1

The mental model level is operationalized using the for-
malism from Opedal et al. (2023), called MATHWORLD.

4The particular example numbers given here are small enough
for children to likely be relying on retrieval from some long-term
memory store instead of algorithmic computation (Koshmider and
Ashcraft, 1991), which could erase the effect of carry. We account
for this in our experiments (§5.4) by using larger number ranges.
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MATHWORLD annotates each math word problem with
a logical representation, which captures the mathematical
relationships between the entities described in text. Each en-
tity has a non-negative integer quantity. Optionally, there
may be additional information associated with an entity—
namely, an agent who possesses the entity, and a unit and
an attribute which enrich the description of it. The five
bold items in the two preceding sentences are referred to as
properties. The arithmetic relationships are classified ac-
cording to concepts; we use transfer, comparison (additive
and multiplicative), and rate in this work. We gave examples
of the transfer and comparison concepts in §3.

When discussing data generation (§4.2) and the experiments
the data is used for (§5), we will rely on the following
definitions: A predicate is a symbol that represents either
an arithmetic concept, or possession of an entity (in that
case the predicate is “container”). Each predicate takes a
set of properties as arguments.5 A predicate instantiated
with properties is called a logical form, and represents the
semantics of a given sentence in a problem. See Table 1
for examples of logical forms for all predicates we use.
The mental model of a problem is a sequence of logical
forms (separated by a “◦” symbol) for each sentence in
that problem (in the same order), representing its semantics.
In Fig. 1, we gave a mental model example in graphical
format; its equivalent sequential format is container(Alice,
5, apple) ◦ comparison(+, Alice, Bob, 3, apple). The
problem text in Fig. 1 is faithful to this mental model, in
the sense that the mental model represents the semantics
of that text under the MATHWORLD formalism. We refer
to the structure of a problem as a mental model in which
the property values are replaced by unique placeholders.
The structure associated with the previous example is
container([agent1], [n1], [entity1]) ◦ comparison(+,

[agent1], [agent2], [n2], [entity1]).

Finally, we formalize the arithmetic expression level of
Fig. 1. Every concept-based predicate corresponds to
an equation x = y ⊙ z, with ⊙ ∈ {+,−,×,÷} and
x, y, z ∈ Z≥0 ∪ V where V is a set of variable symbols.
We require that ∃!v ∈ {x, y, z} : v ∈ V . We refer to the
deductive inference step taken to solve that equation as a
reasoning step, and its output (i.e., the value of the variable)
as an intermediate result. The arithmetic expression level
consists of a sequence of such reasoning steps, which is a
proof of the answer of the problem (or solution). Any fact
from the mental model is an axiom that can be used in the
solution proof. This work focuses exclusively on linear
problems, in which every reasoning step has at most one
non-axiom premise.

5We enforce all quantities that are associated with predicates to
be explicit numbers. Note that this places a constraint on the format
of the problems: The number associated with a mathematical rela-
tionship is never an intermediate result, but is always given in text.

Logical Form Example Sentences
Predicate Properties

container

agent=Alice Alice has 5 kilograms of red
apples.quantity=5

entity=apple
Alice owns 5 kilograms of red
apples.

attribute=red
unit=kg

comparison

type=+ Bob has 3 fewer apples than
Alice.agentA=Alice

agentB=Bob
Alice has 3 more apples than Bob.quantity=3

entity=apple

transfer

receiver_agent=Bob
Alice gave Bob 3 apples.

sender_agent=Alice
quantity=3

Bob got 3 more apples from Alice.
entity=apple

rate

agent=Alice Each of Alice’s baskets holds 4
apples.quantity=4

entityA=apple Every basket that Alice has
contains 4 apples.entityB=basket

Table 1. Examples of MATHWORLD logical forms. A logical form
consists of a predicate and a set of properties. Note that the at-
tribute and unit properties are optional, and only the first logical
form has non-null values for them (“red” and “kg”, respectively).
Each logical form is given with two of the viable templated sen-
tences from our generation pipeline (§4.2), the semantics of which
is represented by the logical form.

Plausibility of the mental model framework. A mental
model theory over some reasoning domain must be able
to adequately explain the relative difficulty across different
types of reasoning problems (Johnson-Laird, 1983). Our
MATHWORLD-based operationalization emphasizes arith-
metic concepts and their relational structure as the key fea-
tures that explain errors at the mental model level, which
is in line with existing theories on word problems (Riley
et al., 1983; Briars and Larkin, 1984; Kintsch and Greeno,
1985). Our schemata for the logical forms extend the prob-
lem schemata from Riley et al. (1983), specifically, in terms
of the breadth of concepts and properties supported.

4.2. Generation Pipeline

We propose a simple problem generation pipeline, described
in this section and later applied in §5. It proceeds in four
steps: (i) sampling the (linear) problem structure, (ii) obtain-
ing a mental model by instantiating the structure with prop-
erties, (iii) transforming the mental model into templated
natural language, and, finally, (iv) correcting linguistic er-
rors and awkward phrasings in the templated text using an
instruction-tuned LLM. Fig. 2 illustrates the full pipeline.
App. A.3 discusses related approaches.

(i) Problem structure generation. Our pipeline supports
sequences of predicates under the following regular lan-
guage, which is sufficient for the hypotheses we are testing:
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Template 
Sampling

Problem 
Structure 

Instantiation

How many watchs does Annie have?

container ( [agent1], [n1], [entity1] ); 


comparison ( , [agent2], [agent1], [n2], [entity1] );

transfer ( [agent2], None, [n3], [entity1] ); 

transfer ( None, [agent2], [n4] , [entity1] ); 

container ( [agent3], [n5], [entity2] );

rate ( [agent3], [n6], [entity1], [entity2] );


comparison ( , [agent3], [agent2], [n7] , [entity1] );

×

+

Edward has 2 watchs.


Annie has 2 times the amount of watchs 
compared to the amount Edward has.


Annie bought 3 watchs.


Annie sold 4 watchs.


Maggie owns 2 boxs.


Every box that Maggie has contains 4 watchs.


Maggie has 7 more watchs than Annie.

Body

Question

🤖

LLM Prompting

Linguistic Error 
Correction

Edward has 2 watches. Annie has twice 
the number of watches that Edward has. 
Annie bought 3 more watches. She sold 4 
watches. Maggie owns 2 boxes. Every 
box that Maggie has contains 4 watches. 
Maggie has 7 more watches than Annie. 
How many watches does Annie have?

Complete Word Problem

Edward

2 watch

Annie

? watch

Annie

? watch

Annie

? watch

Maggie

2 box

Maggie

? watch

2x
+3

-4

=7Δ
ratio=4

Problem Structure Generation

agent1

n1 entity1

agent2

? entity1

agent2

? entity1

agent2

? entity1

agent3

n5 entity2

agent3

? entity1

[n2]x
+n3

-n4

=n7Δ
ratio=n6

1

2

3

4

Edward has 2 watchs.

Annie has 2 times the amount of watchs 
compared to the amount Edward has.

Annie bought 3 watchs.

Annie sold 4 watchs.

Maggie owns 2 boxs.

Every box that Maggie has contains 4 watchs.

Maggie has 7 more watchs than Annie.

Figure 2. Overview of our generation pipeline with an example problem. (1) We start by generating the problem structure. The alignment
between the graphical and sequential formats of the structure is illustrated by color coding, and the black containment boxes in the
graph represent intermediate results. (2) The properties of those structures are then instantiated with values, resulting in a mental model.
(3) Next, we sample a templated sentence for each of the logical forms in the mental model, and concatenate them in the ordering of
the logical forms. (4) Finally, we correct errors and awkward phrasings by prompting an instruction-tuned LLM (the corrections are
highlighted in blue). This particular example includes all predicate types that we use in §5.

container ◦ (concept | container)︸ ︷︷ ︸
1−N times

;

where concept = comparison | rate | transfer. Each predi-
cate in the sequence corresponds to an axiom from a distinct
sentence in the problem. The particular set of predicate
sequences (i.e., class of structures) from which we sample
is test dependent (see §5). Such a set could, for instance, be
the class of all linear reasoning structures with at most N=5
steps and only transfer concepts. We generate a problem
as follows: First, we sample the number of reasoning steps
n uniformly at random from the set {1, . . . , N}. Next, we
sample the predicates; each choice is sampled uniformly
at random. Since this first step of the pipeline generates
structures, the predicates all have associated unique place-
holders in place of properties, e.g., agent2, entity1. We
only introduce new entity placeholders in rate logical forms;
see Table 1, in which rate is the only predicate that takes
two entity properties. We determine uniformly at random
whether an entity is paired with an attribute, a unit, or nei-
ther. The instantiation of agent placeholders is test specific.
Finally, the answer of a problem is always set as the inter-
mediate result corresponding to the last logical form in the
ordering, which is unique. See the box on the left-hand side
of Fig. 2 for an example structure generated after this step.

(ii) Problem structure instantiation. Next, the problem
structure is instantiated with properties, yielding a mental

model. We use a handwritten vocabulary for each of
the lexical properties (entity, agent, unit and attribute)
and sample instantiations of these properties from those
vocabularies uniformly at random. The numerical quantities
are instantiated by sampling a set of numbers uniformly
at random from within a fixed range, which is 2–20
for the experiments in §5.2-5.3 and 100–999 for the
experiments in §5.4.6 Then, we enumerate the logical forms
and accordingly compute intermediate results for each
reasoning step, making sure that the intermediate quantities
fall in the range 0–999. If not, a new set of numbers is
sampled and the procedure is repeated from the beginning.
This naive procedure is sufficiently fast for our purposes.
Empirically, we observed an average runtime of ≈4 ms to
generate a numerical instantiation for a problem.

(iii) Template sampling. The mental model is then
converted to natural language using templated text.
Specifically, for each of the predicates we construct a set
of templates that represent natural language adhering to that
predicate. For instance, transfer(Annie, None, 3, watch)

is converted to “[Annie] bought [3] [watch]s” in Fig. 2;
see Table 1 for additional examples. The templates are
handcrafted. We sample one template uniformly at random
for each predicate in the mental model. We also create

6We omit 0 and 1 from the first number range in order to avoid
unnatural phrases like “Bob has 1 times as many apples as Alice.”
The range for the experiments in §5.4 contains larger numbers for
reasons given in Footnote 4.
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and sample interrogative templates for the questions, which
always query the intermediate result derived from the last
predicate. Finally, we concatenate the sentences to obtain
the full problem text. This step enables control over the
linguistic form of the sentences in the problem text, which
will be important for our test related to text comprehension
in §5.2. Moreover, since the faithfulness of the templated
text is guaranteed by manual design, the procedure up to this
point ensures that the text is faithful to the mental model.

(iv) Linguistic error correction. However, templated
texts occasionally induce spelling mistakes and awkward
phrasings. In the example shown in Fig. 2, the entity “watch”
is inserted into the template to make “watchs”. Inspired
by the demonstrated success of zero-shot grammatical er-
ror correction (Kwon et al., 2023; Loem et al., 2023), we
use an instruction-tuned language model (Ouyang et al.,
2022), GPT-3.5 Turbo, to correct such errors.7 We write a
short instructive prompt and have the model generate (with
greedy decoding) a corrected problem text conditioned on
that prompt together with the particular templated text we
want to correct. The prompt instructs the model to be con-
servative, i.e., to only correct linguistic errors and awkward
phrasings. We provide the exact prompt used and additional
generation details in App. A.1. This step could, in principle,
be generalized to perform less strict forms of paraphrasing.
There is then a trade-off between faithfulness and control
on the one hand and linguistic variability and naturalness on
the other, which can be tuned using different prompts and
decoding methods. The present study prioritizes control and
faithfulness, but alternative prioritizations could be used in
future studies that employ our method.

Evaluating data quality. The generated problem texts
must be faithful to the mental models from which they were
generated, so we perform manual evaluation of the data to
assess that such is the case. We follow a generic procedure
and perform it for each of the datasets generated for the
experiments in §5.2-5.4. The procedure is iterated until we
achieve satisfactory quality. The final error-rate estimates
were 0% for all three datasets. Details are given in App. A.2.

5. Experiments
We generate data to perform tests on whether LLMs exhibit
child-like biases using the pipeline discussed above. We aim
to identify where in the process in Fig. 1 those biases emerge.
We therefore split our tests according to the level (and associ-
ated skill) they target: problem text and text comprehension

7Interestingly, we found that GPT-3.5 Turbo sometimes would
transform inconsistent formulations of comparison-type relation-
ships into semantically equivalent consistent ones, which already
indicates presence of a bias towards consistent problems. Such
erroneous transformations were filtered out (see App. A.1).

(§5.2), mental model and solution planning (§5.3), and arith-
metic expressions and solution execution (§5.4). First, we
discuss the general experimental setup (§5.1).

5.1. Experimental Setup

We base our experiments on the problem features discussed
in §3 that have been found to have an effect on child perfor-
mance in solving word problems. Specifically, given such
a feature X , we want to know whether X has a causal ef-
fect on the performance of LLMs. Our generation pipeline
enables exact matching of the data: We generate problems
in pairs, where the two problems differ only in the value
of X . Using this data, we estimate the conditional average
treatment effect (CATE; Imbens and Rubin, 2015)

E[Y (x)− Y (x′) | Z], (1)

where Y is 1 if the model’s prediction is correct and 0
otherwise, x and x′ are two distinct values of the treatment
variable X , and Z is the subgroup of data generated through
our pipeline for a specific test. The two values x and x′ are
defined such that positive CATEs are consistent with human
biases. We refer to Feder et al. (2022) for further reading on
causality-based methods for NLP.

For each of the tests described below we select a specific
feature X that is localized to one of the levels, to the extent
possible. That is, varying X associated with a particular
level should have no effect on the levels above, and minimal
effect on the levels below. For instance, in §5.2 we vary the
problem text without affecting the mental model, arithmetic
expression or answer.

Having selected X , we adapt the pipeline (§4.2) to generate
example pairs, one with X = x and one with X = x′. Next,
we evaluate the data quality using the procedure described in
App. A.2. After quality assurance, we generate a larger sam-
ple of 400 additional problem pairs, which (including the
quality evaluation set) gives a total of 500 pairs for the tests.
We then generate outcomes Y (x) and Y (x′) for each of the
pairs for a set of selected LLMs. We use LLaMA2 (Touvron
et al., 2023) with 7B, 13B and 70B parameters, Mistral 7B
(Jiang et al., 2023) and Mixtral 8x7B (Jiang et al., 2024),
GPT-3.5 Turbo, and GPT-4 Turbo (OpenAI, 2024). We con-
sider both the pretrained-only and instruction-tuned versions
for the LLaMA2, Mistral and Mixtral models. We carry
out zero-shot inference with a standard prompt, a chain-of-
thought prompt (CoT; Wei et al., 2022), as well as a modified
“child-persona” CoT prompt, whose results were similar to
those of the CoT setup and are presented in App. B.1. With
the former, the models are prompted to directly provide
an answer after the input. Following previous work (Ko-
jima et al., 2022; Yang et al., 2024), we use the format “Q:
{problem}\nA: The answer (Arabic numerals) is ” for base
models and “{problem}\nThe answer (Arabic numerals)
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Mode Model

Consistency bias (§5.2) Transfer vs comparison bias (§5.3) Carry effect (§5.4)

Accuracy (%)
p-value Accuracy (%)

p-value Accuracy (%)
p-value

Co InCo CATE T C CATE NCa Ca CATE

Direct

LLaMA2 7B 9.6 4.8 4.8 <0.001 21.8 13.0 8.8 <0.001 64.8 60.0 4.8 0.009
LLaMA2 13B 17.2 14.0 3.2 0.006 28.6 20.0 8.6 <0.001 72.2 67.2 5.0 0.030
LLaMA2 70B 24.0 16.2 7.8 <0.001 45.4 26.8 18.6 <0.001 95.2 96.2 1.0 0.380
Mistral 7B 17.8 12.0 5.8 <0.001 34.0 20.4 13.6 <0.001 72.4 72.0 0.4 0.835
Mixtral 8x7B 23.0 17.0 6.0 <0.001 42.2 30.4 11.8 <0.001 95.4 93.6 1.8 0.117

LLaMA2 7B Chat 14.2 10.8 3.4 0.009 20.2 15.8 4.4 0.005 61.2 54.2 7.0 0.012
LLaMA2 13B Chat 16.4 11.8 4.6 <0.001 25.4 18.2 7.2 <0.001 65.6 59.6 6.0 0.018
LLaMA2 70B Chat 16.4 14.8 1.6 0.158 32.4 20.0 12.4 <0.001 96.4 97.0 -0.6 0.578
Mistral 7B Instr. 17.6 14.2 3.4 0.008 28.0 21.8 6.2 <0.001 78.0 78.6 -0.6 0.802
Mixtral 8x7B Instr. 23.4 21.8 1.6 0.195 42.6 28.0 14.6 <0.001 95.8 96.4 -0.6 0.578
GPT-3.5 Turbo 32.2 22.8 9.4 <0.001 61.0 33.4 27.6 <0.001 99.6 99.4 0.2 0.320

CoT

LLaMA2 7B 16.4 6.0 10.4 <0.001 18.8 13.6 5.2 0.009 33.2 38.8 -5.6 0.006
LLaMA2 13B 30.2 8.6 21.6 <0.001 37.8 13.2 24.6 <0.001 33.8 33.4 0.4 0.833
LLaMA2 70B 40.2 24.0 16.2 <0.001 63.8 33.0 30.8 <0.001 68.6 67.6 1.0 0.850
Mistral 7B 36.4 16.8 19.6 <0.001 49.8 58.8 -9.0 0.004 73.2 71.0 2.2 0.283
Mixtral 8x7B 62.4 42.2 20.2 <0.001 68.6 65.0 3.6 0.206 79.8 79.8 0.0 1.000

LLaMA2 7B Chat 66.8 38.6 28.2 <0.001 69.6 40.8 28.8 <0.001 72.4 71.0 1.4 0.514
LLaMA2 13B Chat 67.0 28.6 38.4 <0.001 79.4 48.0 31.4 <0.001 73.8 78.6 -4.8 0.017
LLaMA2 70B Chat 82.8 61.4 21.4 <0.001 99.0 76.2 22.8 <0.001 97.0 95.8 1.2 0.180
Mistral 7B Instr. 61.8 33.6 28.2 <0.001 83.4 52.0 31.4 <0.001 78.6 75.6 3.0 0.162
Mixtral 8x7B Instr. 85.4 71.6 13.8 <0.001 98.2 83.8 14.4 <0.001 97.0 94.6 2.4 0.014
GPT-3.5 Turbo 89.2 87.8 1.4 0.380 97.0 93.0 4.0 0.003 97.8 98.2 -0.4 0.580
GPT-4 Turbo 90.4 72.4 18.0 <0.001 99.2 91.4 7.8 <0.001 99.6 99.6 0.0 -

Table 2. Accuracy, conditional average treatment effect (CATE), and statistical significance (p-value) on math word problems generated
for the three tests detailed in §5.2, §5.3 and §5.4. ‘Co’ denotes consistent, ‘InCo’ inconsistent, ‘T’ transfer, ‘C’ comparison, ‘Ca’ carry,
and ‘NCa’ no carry conditions. Results are separated by whether the prompting method is direct or chain-of-thought (CoT). ‘Chat’ and
‘Inst.’ indicate the instruction-tuned versions of the models. CATE values are bolded when significant, controlling for false discovery rate
at level α=0.05. Results from an additional prompting strategy, child-persona prompting, are presented in Table 4.

is” for instruction-tuned models. Then, the model prediction
is retrieved from the response by extracting the first number
in the model’s output. For the CoT experimental procedure,
we follow the exact method from Kojima et al. (2022). First,
the model is prompted to generate a reasoning chain by
appending “Let’s think step by step” to the input. Then, the
model is re-prompted to generate the final answer, which is
extracted from the output as in the direct case. Responses
are generated with greedy decoding and a maximum length
of 256 tokens. After obtaining the model’s predictions, we
estimate the CATE and perform a two-tailed paired sample t-
test to determine whether the CATE estimate is significantly
different from 0. More specifically, the null hypothesis is
that the two groups of model accuracy have the same mean.
We control the false discovery rate at level α=0.05 using
Benjamini and Hochberg’s (1995) procedure, considering all
null hypotheses under the same bias as one distinct family.

5.2. Problem Text: Consistency Bias

Varying the linguistic form of an otherwise equivalent prob-
lem structure can have a large effect on child performance
(Cummins et al., 1988). We test whether comparison prob-
lems with inconsistent statements are harder for LLMs than
the same problems with an analogous consistent statement.

Method. Following Lewis and Mayer’s (1987) study,
we consider consistent/inconsistent problem pairs where

the required operation is either addition, subtraction,
multiplication or division. The generation pipeline is tuned
so that the problem structures follow the specification:

container ◦ (transfer | rate) ◦ · · · ◦ (transfer | rate)︸ ︷︷ ︸
0−2 times

◦

comparison ◦ (transfer | rate) ◦ · · · ◦ (transfer | rate)︸ ︷︷ ︸
0−2 times

;

Note that the problems may have between 1−5 reasoning
steps—one for every non-container predicate. Apart from
the first predicate (container), only the comparison predi-
cate introduces a new agent. The question queries the agent
that was introduced by comparison.8 The pairs are gener-
ated such that the only sentence that varies is that which
corresponds to comparison, one being consistent and the
other being its analogous inconsistent form.

Results. The results of the consistency bias test reveal 20
out of 23 statistically significant CATEs. As displayed in
Table 2 (leftmost column), all models exhibit lower accu-
racy when solving inconsistent problems compared to their
consistent counterparts. Interestingly, the bias appears to be

8The following is a (consistent) example from our dataset that
follows the pattern container ◦ transfer ◦ comparison: “Avery
has 15 desks. Avery bought 18 desks. Natalie has 16 fewer desks
than Avery. How many desks does Natalie have?”
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exacerbated by CoT prompting, which improves the overall
model performance, but magnifies the difference in accuracy
between consistent and inconsistent problems. This finding
aligns with research indicating that CoT prompting may
also amplify other types of biases present in the training
data (Shaikh et al., 2023). Particularly notable CATEs are
observed for the base versions of LLaMA2 7B, LLaMA2
13B, and Mistral 7B, for which the inconsistent formulation
of the problems leads to an accuracy drop larger than 50%.

5.3. Mental Model: Transfer vs Comparison Bias

Another factor behind performance is that it might be harder
to perform solution planning based on some mental models
compared to others. We test whether LLMs are better at
solving transfer-type problems than comparison problems.

Method. The problem structures take the following forms:

container ◦ transfer ◦ · · · ◦ transfer︸ ︷︷ ︸
1−5 times

;

container ◦ comparison ◦ · · · ◦ comparison︸ ︷︷ ︸
1−5 times

;

The two problems have identical arithmetic expressions.
Each comparison predicate corresponds to a comparison
of a new agent with the agent introduced in the preceding
sentence. Each transfer statement follows the same agent,
who was introduced in the first sentence and whose state is
updated through a transfer with some other agent. The prob-
lems resemble each other in linguistic form as much as pos-
sible. In particular, we make sure that the same agent names
are introduced in each sentence across the two problems, in
order to account for variance in performance stemming from
such choices (Goodarzi et al., 2023). Consistent or inconsis-
tent forms of comparison are sampled uniformly at random.

Results. The experimental results (middle column in
Table 2) show that models are consistently more accurate on
problems based on transfers rather than comparisons. With
the exception of CoT-prompted pretrained-only Mistral and
Mixtral, we observe statistically significant positive CATEs,
mirroring biases seen in children’s problem-solving (§3).

Further, we note that the instruction-tuned models overall
exhibit larger effects than pretrained-only models in the CoT
setting, but not in the direct setting. This seems to be the
case for the consistency bias as well. Finally, in App. B.2
we show some of the results as broken down by number of
reasoning steps in the CoT setting.

5.4. Arithmetic Expressions: The Carry Effect

While much of a child’s performance on word problems can
be explained by properties introduced by the text format, a
large portion still depends on the nature of the arithmetic

expression (Daroczy et al., 2015). We test whether LLMs
are sensitive to the presence of arithmetic carry when posed
with addition and subtraction in math word problems.

Method. We generate pairs under the comparison specifi-
cation from §5.3, but with only one step:9

container ◦ comparison;

As in §5.3, we use additive comparisons, which ensures that
the arithmetic expressions only have addition and/or sub-
traction operators. The two problems of a pair are identical
apart from the numbers. Following Fürst and Hitch (2000),
we ensure that both operands as well as the answer of the
problem are three-digit numbers (since children appear to
rely on long-term memory for problems with small num-
bers; Footnote 4). One of the problems has no carry, the
other has at least one (i.e., unit or tens carry). The correct
answer of the two problems is controlled to be the same.

Results. The results (rightmost column in Table 2) depart
from the findings above, which gave evidence for the pres-
ence of child-like biases. In this case, model performance is
similar in problems with and without carry operations—we
only observe one significant result out of the 23 tests. Thus,
the models seem not to be sensitive to variations isolated to
the arithmetic expression level.

6. Why do Language Models Exhibit Biases?
A natural set of questions that arise from our results is why
some child-like biases are present in the models, and why
some of them (like the carry effect) are absent. The most
plausible explanation in our view is the influence from the
training data: If the training data contains many examples
of humans writing and solving word problems, then it may
be that LLMs simulate human biases present in such text.
For instance, it may be that the distribution of the training
data is skewed towards consistent problem formulations
of comparison relations, which in turn could be a prod-
uct of consistency bias in the humans who wrote the word
problems. This would seem plausible given that the consis-
tency bias is present also in adults (Lewis and Mayer, 1987;
Hegarty et al., 1995).

Unfortunately, we cannot directly verify this hypothesis
since it is unknown what data has been used to train the
models considered in this study. However, as a proxy, we
performed an analysis of a set consisting of word problems
from MAWPS (Koncel-Kedziorski et al., 2016b), ASDIV-A

9The one-step case follows the setups from studies on humans
(§3). We discovered in the previous two tests that the models
frequently fail on comparison problems with only one step (which
can be inferred from Figs. 3 and 4), so if a carry effect is present,
it should be observable in such a setting.

8



Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners?

(Miao et al., 2020), and SVAMP (Patel et al., 2021). These
three datasets are well known and publicly available, and
are thus likely to have been present in the training data of
the LLMs used in this work. We found that these datasets
indeed have more consistent formulations than inconsistent
ones, and more transfer problems than comparison problems.
More specifically, the ratios observed were 5:1 (15 and 3
in absolute numbers) and 130:9 (260 and 18 in absolute
numbers), respectively.10 In other words, the imbalance in
problem types on these datasets is consistent with the biases
we found in our analyses on text comprehension (§5.2) and
solution planning (§5.3).

Extrapolating this hypothesis to the absence of a carry effect
would imply that there is little to no difference in frequency
between problems with and without carry in the training
data. This would be harder to verify, as there are many
potential traces of carry in the data beyond word problems.
Furthermore, the carry effect results suggest that there are
algorithmic differences in how LLMs and humans perform
arithmetic computations. In particular, the carry effect in
humans is partially attributed to working memory limita-
tions (Hitch, 1978), which LLMs may not implement in
the same manner. The memory and computational mech-
anisms through which models perform arithmetic (Nanda
et al., 2023; Stolfo et al., 2023a; Quirke and Barez, 2024)
are likely not affected by the increased cognitive load that
the carry operation introduces in humans. This leads to an
alternative, albeit arguably less plausible view, on why we
observe the other two biases: It might be that there is al-
gorithmic similarity between humans and language models
on text comprehension and solution planning. Assessing
this hypothesis would require knowledge about the mecha-
nisms of human and language-model reasoning alike, both
of which are beyond the scope of the present study. How-
ever, our results at least suggest a direction, namely, that
there is at least the possibility that the algorithms in text
comprehension and solution planning exhibit similarity.

7. Related Work
Our work relates most closely to studies that have compared
human and LLM biases on syllogisms (Ando et al., 2023;
Eisape et al., 2024), code generation (Jones and Steinhardt,
2022), and other non-mathematical inference tasks (Das-
gupta et al., 2023). Their findings indicate that LLMs are
susceptible to some of the same biases as humans, like con-

10We used the world model annotations from Opedal et al.
(2023) for this analysis, which enabled us to extract the problems
with the relevant concepts. The problems containing a comparison
predicate were few enough for manual inspection. For the transfer
problems, 433 in total, we manually inspected a sample of 100.
Out of these, 60 had at least one sentence with a transfer of the
same structure we consider in this work. Maximum likelihood
estimation then yields 0.6×433 ≈ 260 relevant transfer problems.

tent effects (Ando et al., 2023; Dasgupta et al., 2023) and
premise ordering effects (Eisape et al., 2024). We observe
similar results in a mathematical problem-solving setting
for consistency bias and transfer vs comparison bias, but
not for the carry effect which relates to the step of the cog-
nitive process that involves solving arithmetic equations.
Our study also differs from those referenced above in that
we systematically compare the effect of CoT prompting to
direct prompting, observing amplified effects in the CoT
setting in most cases where effects are present.

We are unaware of any other work that studies cognitive
biases in LLMs that, like the carry effect, relate directly to
numbers. However, there seem to be similarities between
the numeric representations in LLMs and the “mental num-
ber line” in humans (Shah et al., 2023). Other studies find
evidence that LLMs to some extent rely on spurious correla-
tions in numerical reasoning (Razeghi et al., 2022; Stolfo
et al., 2023b), and that their performance decreases with
increasing number size (Dziri et al., 2023; Shen et al., 2023).
Beyond numerical reasoning, LLMs appear to have difficul-
ties with causal reasoning (Binz and Schulz, 2023; Jin et al.,
2023; 2024) and proof planning (Saparov and He, 2023).

8. Conclusion and Implications
This study explored whether LLMs exhibit child-like cogni-
tive biases in arithmetic word problem-solving. We found
that LLMs demonstrate biases in text comprehension and so-
lution planning that mirror human tendencies. Specifically,
models performed better on problems where the relational
keyword is consistent with the appropriate arithmetic op-
erator compared to problems where it is not, as well as on
problems with a dynamic change of state compared to prob-
lems with a static comparison. However, at the solution
execution step, LLMs did not exhibit the child-like carry
effect for arithmetic computations. In general, studying bi-
ases that are present in children but not in adults may enable
the disentanglement of the influence of training data from
other factors that might explain language model behavior,
since one would expect the training set to be heavily biased
towards adult (rather than child) thinking. We therefore be-
lieve it might be a promising direction forward in language
model interpretability work.

Impact Statement
Cognitive modeling enables human simulations in place of
data collection that might otherwise be unethical, harmful
or costly. On the other hand, issues could arise if those
simulations are unfaithful to human behavior. As a broader
implication of our work, we encourage practitioners to exer-
cise care when developing and deploying cognitive models
of students using LLMs, particularly, in how the student
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model treats numbers and other properties of arithmetic ex-
pressions. We hope that our results can provide insights for
practitioners seeking to develop automated learning agents,
for instance, under the tutor-learning paradigm in which a
student learns by correcting the mistakes made by a com-
puter model (Okita, 2014; Shahriar and Matsuda, 2021;
Schmucker et al., 2023). We do not see any notable ethical
issues with our work.

Limitations
We cannot draw any parallels on the absolute performance in
comparison with children, only on the presence or absence
of each effect. This is because the datasets used in the
learning science studies were not available to us. The one
exception was the data from Hegarty et al. (1995), which
we evaluate on in App. B.3. Moreover, we do not consider
the grade level of the problems, but see Jiao et al. (2023) for
a generation method that does.

In selecting specific cognitive biases to study, we chose bi-
ases that are well-established in literature on human children
and whose effects could be clearly associated with one of the
steps of Fig. 1. Another factor that fulfills these desiderata
is the effect of explicit verbal cues (Hudson, 1983; Vicente
et al., 2007). More fundamentally, a complete comparison of
the biases between LLMs and humans would need to study
biases that have been found in LLMs but are not necessarily
present in humans. We do not take that direction into ac-
count, but we note that the number frequency effect reported
by Razeghi et al. (2022) might be one such example.

We did not use in-context examples in our evaluation since
the addition of such may influence the results in ways that
can be difficult to foresee. However, an interesting direction
for future work could be to study whether cognitive biases
can be controlled through specific choices of in-context
examples or other prompts.

We stress that the conceptualization in Fig. 1 is a simpli-
fied model of the solving process. For instance, it fails
to account for shortcut strategies (see Footnote 3) and it
does not consider any propositional text-base representation
which precedes the mental model representation in some
other models (Kintsch and Greeno, 1985; Hegarty et al.,
1995). We do not make any claims on the ability of LLMs to
“construct mental models” in this work, although our results
could potentially have such implications as was pointed out
by a reviewer. See App. C for a brief discussion.

Finally and importantly, we only consider problems formu-
lated in English. We note that some effects could vary across
languages. For instance, the carry effect is more pronounced
in German and other languages where the spelled-out order
of tens and units is inverted in relation to Arabic numerical
notation (Göbel et al., 2014). Our generation pipeline can

be straightforwardly adapted to other languages, and future
work might consider doing so.

Acknowledgements
We thank Emo Welzl, Ethan Gotlieb Wilcox, Julia Chatain
and Yilmazcan Ozyurt for valuable feedback and discus-
sions. Andreas Opedal acknowledges funding from the
Max Planck ETH Center for Learning Systems. Alessandro
Stolfo is supported by armasuisse Science and Technology
through a CYD Doctoral Fellowship.

References
Gati Aher, Rosa I. Arriaga, and Adam Tauman Kalai. 2023.

Using large language models to simulate multiple humans
and replicate human subject studies. In Proceedings of
the 40th International Conference on Machine Learning,
ICML’23. JMLR.org.

Risako Ando, Takanobu Morishita, Hirohiko Abe, Koji Mi-
neshima, and Mitsuhiro Okada. 2023. Evaluating large
language models with NeuBAROCO: Syllogistic reason-
ing ability and human-like biases. In Proceedings of the
4th Natural Logic Meets Machine Learning Workshop,
pages 1–11, Nancy, France. Association for Computa-
tional Linguistics.

Jacob Andreas. 2022. Language models as agent models.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pages 5769–5779, Abu Dhabi,
United Arab Emirates. Association for Computational
Linguistics.

Lisa P. Argyle, Ethan C. Busby, Nancy Fulda, Joshua R.
Gubler, Christopher Rytting, and David Wingate. 2023.
Out of one, many: Using language models to simulate
human samples. Political Analysis, 31(3):337–351.

Mark H. Ashcraft, Rick D. Donley, Margaret A. Halas, and
Mary Vakali. 1992. Chapter 8 working memory, auto-
maticity, and problem difficulty. In Jamie I. D. Campbell,
editor, The Nature and Origins of Mathematical Skills,
volume 91 of Advances in Psychology, pages 301–329.
North-Holland.

Yoav Benjamini and Yosef Hochberg. 1995. Controlling
the False Discovery Rate: A Practical and Powerful Ap-
proach to Multiple Testing. Journal of the Royal Statisti-
cal Society: Series B (Methodological), 57(1):289–300.

Marcel Binz and Eric Schulz. 2023. Using cognitive psy-
chology to understand GPT-3. Proceedings of the Na-
tional Academy of Sciences, 120(6).

10

https://proceedings.mlr.press/v202/aher23a/aher23a.pdf
https://proceedings.mlr.press/v202/aher23a/aher23a.pdf
https://aclanthology.org/2023.naloma-1.1
https://aclanthology.org/2023.naloma-1.1
https://aclanthology.org/2023.naloma-1.1
https://doi.org/10.18653/v1/2022.findings-emnlp.423
https://doi.org/10.1017/pan.2023.2
https://doi.org/10.1017/pan.2023.2
https://doi.org/https://doi.org/10.1016/S0166-4115(08)60890-0
https://doi.org/https://doi.org/10.1016/S0166-4115(08)60890-0
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1073/pnas.2218523120
https://doi.org/10.1073/pnas.2218523120


Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners?

Diane J. Briars and Jill H. Larkin. 1984. An integrated model
of skill in solving elementary word problems. Cognition
and Instruction, 1(3):245–296.

Thomas P. Carpenter and James M. Moser. 1984. The ac-
quisition of addition and subtraction concepts in grades
one through three. Journal for Research in Mathematics
Education, 15(3):179–202.

Denise Dellarosa Cummins, Walter Kintsch, Kurt Reusser,
and Rhonda Weimer. 1988. The role of understanding in
solving word problems. Cognitive Psychology, 20(4):405–
438.

Gabriella Daroczy, Magdalena Wolska, Walt Detmar Meur-
ers, and Hans-Christoph Nuerk. 2015. Word problems: a
review of linguistic and numerical factors contributing to
their difficulty. Frontiers in Psychology, 6.

Ishita Dasgupta, Andrew K. Lampinen, Stephanie C. Y.
Chan, Hannah R. Sheahan, Antonia Creswell, Dharshan
Kumaran, James L. McClelland, and Felix Hill. 2023.
Language models show human-like content effects on
reasoning tasks.

Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew,
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Correct all grammatical mistakes that appear in the fol-
lowing math word problem: [templated text]
Fix any awkward or redundant phrasing. Pay close atten-
tion to incorrect plural forms. Do NOT solve the problem.
Do NOT compute any intermediate solutions. Do NOT
make any changes to the numerical values or implied
mathematical operations. Only output the corrected math
word problem and nothing else. Do NOT restate the orig-
inal problem. Do NOT include "Corrected Version:" or
any description of the task.

Table 3. Prompt used for the linguistic error correction step in our
generation pipeline from §4.2.

A. More Details on the Generation Method
A.1. Details on Linguistic Error Correction

We use GPT-3.5 Turbo to carry out the linguistic error cor-
rection step detailed in §4.2. In Table 3, we provide the
exact prompt used for the task. The corrected problem is
generated using greedy decoding (temperature=0). We
carry out additional integrity checks of the generated prob-
lem against the original templated text. In particular, we
verify that the sentence count and relational terms (such as

“more”) are consistent post error-correction. The problem is
discarded if these additional checks are not satisfied.

A.2. Data Quality Evaluation

We describe the manual evaluation of the datasets generated
in §5. For each of the datasets, we do the following: First,
generate a control set of 10 examples. These 10 examples
are evaluated independently by three of this paper’s authors.
If there are any errors we make appropriate modifications
to the pipeline and restart the procedure. If not, we proceed
to evaluate 90 more examples, allocating 30 to each of the
three authors. Error rate is estimated on this sample of 100
examples.

We use two binary evaluation criteria, one assessing the
linguistic error correction step (iv) and one assessing test-
specific attributes. A problem is deemed to be good accord-
ing to the former if the generated problem only deviates
from the templated text through spelling or grammar cor-
rection. The test-specific criterion and the obtained error
estimates are given below.

Consistency bias (§5.2). We evaluated data quality ac-
cording to whether the two comparison statements actually
were consistent and inconsistent forms to express the same
comparison relationship. To be precise, the first problem
needs to have a consistent relational statement for the com-
parison predicate, the second problem needs to have an
equivalent inconsistent relational statement for the same
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Figure 3. CATE for the consistency effect (§5.2) in CoT-prompted
models stratified by number of reasoning steps. ‘Instruction-tuned’
refers to the Chat and Instruct versions of LLaMA2 and Mis-
tral/Mixtral, respectively.

comparison predicate, and the two problems need to be
identical otherwise. Our pipeline achieved a 0% error rate
on both criteria on the 100 evaluated example problems.

Transfer vs comparison bias (§5.3). We evaluated data
quality according to whether the comparison and transfer
problems had the same arithmetic expression and whether
they followed the specified problem structure. We also
ensured that the agent names and other properties matched.
Our pipeline achieved a 0% error rate on both criteria on the
100 evaluated example problems.
The carry effect (§5.4). We evaluated data quality accord-
ing to whether one problem had no carry computation steps,
the other one had at least one, and they were equal otherwise.
That is, only the numbers differed and the two problems had
the same answer. Our pipeline achieved a 0% error rate on
both criteria on the 100 evaluated example problems.

A.3. Related Methods

Our generation pipeline differs from Opedal et al.’s (2023)
method in that we generate intermediate templated texts,
while they generate the problem texts directly conditioned
on mental models. Polozov et al. (2015) also generates word
problems from logical representations, but their approach
does not allow explicit control over arithmetic concepts,
which is an important factor underlying difficulty level; §3.
While our experiments require strict control over linguis-
tic form, our error correction step could in principle be
broadened to perform paraphrasing and theme rewriting
(Koncel-Kedziorski et al., 2016a) as well.
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Mode Model

Consistency bias (§5.2) Transfer vs comparison bias (§5.3) Carry effect (§5.4)

Accuracy (%)
p-value Accuracy (%)

p-value Accuracy (%)
p-value

Co InCo CATE T C CATE NCa Ca CATE

Child CoT

LLaMA2 7B 14.6 5.0 9.6 <0.001 19.8 11.6 8.2 <0.001 40.0 44.4 -4.4 0.048
LLaMA2 13B 20.0 5.0 15.0 <0.001 35.0 7.0 28.0 <0.001 20.8 21.0 -0.2 0.903
Mistral 7B 39.2 17.2 22.0 <0.001 48.8 26.6 22.2 <0.001 58.4 57.2 1.2 0.415
Mixtral 8x7B 66.2 34.6 31.6 <0.001 69.8 49.4 20.4 <0.001 70.4 69.4 1.0 0.701

LLaMA2 7B Chat 55.2 24.2 31.0 <0.001 62.6 33.8 28.8 <0.001 67.8 63.0 4.8 0.069
LLaMA2 13B Chat 65.2 27.0 38.2 <0.001 79.8 48.2 31.6 <0.001 80.0 77.0 3.0 0.108
Mistral 7B Instr. 65.0 30.6 34.4 <0.001 75.2 52.8 22.4 <0.001 77.2 74.4 2.8 0.178
Mixtral 8x7B Instr. 88.6 72.4 16.2 <0.001 98.8 82.4 16.4 <0.001 97.6 97.4 0.2 0.809

Table 4. Accuracy, conditional average treatment effect (CATE), and statistical significance (p-value) on math word problems generated
for the three tests detailed in §5.2, §5.3 and §5.4. ‘Co’ denotes consistent, ‘InCo’ inconsistent, ‘T’ transfer, ‘C’ comparison, ‘Ca’ carry,
and ‘NCa’ no carry conditions. The results presented are for the child-persona prompting strategy described in App. B.1. ‘Chat’ and ‘Inst.’
indicate the instruction-tuned versions of the models. CATE values are bolded when p < 0.001.
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Figure 4. CATE for transfer vs comparison (§5.3) in the CoT-
prompted case stratified by number of reasoning steps. ‘Instruction-
tuned’ refers to the Chat and Instruct versions of LLaMA2 and
Mistral/Mixtral, respectively. Base and instruction-tuned models
display opposite relationships between length and bias strength.

B. Additional Results
B.1. Child-Persona Prompting

Taking inspiration from claims that LLMs can act as agent
models (Andreas, 2022), we also experimented with an addi-
tional prompt in which the LLM is instructed to impersonate
a grade-school child. Specifically, we employ a modified
version of the zero-shot chain-of-thought prompt, tailored to
simulate a child’s reasoning process. We prompt the model
with the phrase “Let’s think step by step as a grade-school
child would,” replacing the standard CoT instruction. Fol-
lowing this, we apply the same decoding method used in
traditional CoT. The results for this approach are reported
for the open-source models (apart from LLaMA2 70B) in
Table 4. While we notice larger consistency and transfer vs
comparison effects for some models, we observe no substan-

tial departure from the results achieved with conventional
CoT prompting.

B.2. Bias Strength by Number of Reasoning Steps

In Fig. 4 we show how the CATE of the transfer vs com-
parison bias varies with the number of reasoning steps in
the problems for the CoT setting. Interestingly, we observe
that the CATE sizes increase with the number of reasoning
steps for the instruction-tuned models, whereas they de-
crease for the pretrained-only base models. We are unaware
of literature on the relationship between human transfer vs
comparison bias and the number of steps, so we can not
make any claims about which of these patterns is more
cognitively plausible.

The consistency-effect test does not exhibit such diverging
trends for the CATEs. Fig. 3 illustrates how the strength
of the measured biases change in relation to the number of
reasoning steps in a problem (in the CoT-prompted case).
Note that the carry effect experiments were carried it out for
problems with only one step.

B.3. Data from Hegarty et al. (1995)

In Table 5 we present the results on a few selected models
when evaluated on the data from the study by Hegarty et al.
(1995). Theirs was the only background study for which
we were able to obtain the data that was used. The dataset
contains eight problem pairs and targets the consistency
bias. While we do not obtain significant results, we do get
an indication of the absolute effect of the bias as compared
to the human subjects in Hegarty et al.’s (1995) study (who
were undergraduate college students). In their study, solvers
who committed at least four errors out of the total of 16
problems had an average accuracy of 62% and 24%, on
consistent problems and inconsistent problems respectively.
None of the absolute accuracies in Table 5 are similar, but
Mixtral 8x7B Instruct displays a similar absolute effect size
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Mode Model

Consistency bias

Accuracy (%)
p-value

Co InCo CATE

Direct
Mixtral 8x7B 0 0 0 -
Mixtral 8x7B Instr. 12.5 0 12.5 0.35
GPT-3.5 Turbo 62.5 62.5 0 -

CoT
Mixtral 8x7B 37.5 12.5 25 0.35
Mixtral 8x7B Instr. 100 62.5 37.5 0.08
GPT-4 Turbo 75 62.5 12.5 0.35

Table 5. Accuracy, conditional average treatment effect (CATE),
and statistical significance (p-value) on word problems from
Hegarty et al. (1995).

(37.5% vs 38%).

C. Brief Discussion on Mental Model Building
We note that the presence of consistency bias could be
viewed as an argument against the position that language
models construct something akin to a mental model during
problem-solving. Indeed, people who exhibit consistency
bias seem to be more likely to construct a mental model
of the problem compared to those who do not, based on
eye-fixation behavior (Hegarty et al., 1995). Intuitively,
a (human or non-human) solver that constructs a mental
model should be able to be more robust against inconsis-
tent phrasings, assuming that the text-comprehension step
of the solving pipeline is not made significantly harder by
inconsistent phrasings.
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