
Variational Linearized Laplace Approximation for Bayesian Deep Learning

Luis A. Ortega 1 Simón Rodríguez Santana 2 Daniel Hernández-Lobato 1

Abstract
The Linearized Laplace Approximation (LLA)
has been recently used to perform uncertainty esti-
mation on the predictions of pre-trained deep neu-
ral networks (DNNs). However, its widespread
application is hindered by significant computa-
tional costs, particularly in scenarios with a large
number of training points or DNN parameters.
Consequently, additional approximations of LLA,
such as Kronecker-factored or diagonal approxi-
mate GGN matrices, are utilized, potentially com-
promising the model’s performance. To address
these challenges, we propose a new method for ap-
proximating LLA using a variational sparse Gaus-
sian Process (GP). Our method is based on the
dual RKHS formulation of GPs and retains, as the
predictive mean, the output of the original DNN.
Furthermore, it allows for efficient stochastic op-
timization, which results in sub-linear training
time in the size of the training dataset. Specifi-
cally, its training cost is independent of the num-
ber of training points. We compare our proposed
method against accelerated LLA (ELLA), which
relies on the Nyström approximation, as well as
other LLA variants employing the sample-then-
optimize principle. Experimental results, both on
regression and classification datasets, show that
our method outperforms these already existing
efficient variants of LLA, both in terms of the
quality of the predictive distribution and in terms
of total computational time.

1. Introduction
Deep neural networks (DNNs) have gained widespread pop-
ularity for addressing pattern recognition problems due to
their state-of-the-art performance in predicting target values

1Universidad Autónoma de Madrid 2Institute for Research
in Technology (IIT), ICAI Engineering School, Universidad
Pontificia Comillas. Correspondence to: Luis A. Ortega
<luis.ortega@uam.es>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

from a set of input attributes (He et al., 2016; Vaswani et al.,
2017). Despite this great success, DNNs exhibit limitations
when computing a predictive distribution that accounts for
the confidence in the predictions. Specifically, DNNs result
in weak calibration (Guo et al., 2017) and in poor reasoning
regarding model uncertainty (Blundell et al., 2015). These
issues become particularly critical in risk-sensitive situa-
tions like autonomous driving (Kendall & Gal, 2017) and
healthcare systems (Leibig et al., 2017) among others.

A Bayesian approach, where probabilities describe degrees
of belief in the potential values of the DNN parameters,
has proven useful for treating these pathologies (MacKay,
1992b; Neal, 2012; Graves, 2011). Bayes’ rule is used here
to get a posterior distribution in the high-dimensional space
of DNN parameters. Nevertheless, due to the intractability
of the calculations, the exact posterior is often approximated
with a simpler distribution. Different techniques can be used
for this, including (but not limited to) variational inference
(VI) (Blundell et al., 2015), Markov chain Monte Carlo
(MCMC) (Chen et al., 2014) and the Laplace approximation
(LA) (Mackay, 1992; Ritter et al., 2018).

LA offers several advantages over alternative methods. It
leverages the maximum a posteriori (MAP) solution, attain-
able via back-propagation, along with the inverse of the
Hessian of the DNN parameters there. The negative inverse
Hessian provides the covariances of a Gaussian posterior ap-
proximation and the MAP estimate furnishes the mean. Con-
sequently, LA yields a Gaussian posterior approximation
following standard DNN training with back-propagation.
This resembles a pre-training step followed by fine-tuning, a
common practice in deep learning (Daxberger et al., 2021a).

The main drawback of LA is the necessity of computing the
Hessian at the MAP estimate, which becomes prohibitive
for large DNNs. To simplify this, the Hessian is often
approximated using the generalized Gauss-Newton (GGN)
matrix (Martens & Grosse, 2015). While this is known
to produce underfitting in LA (Lawrence, 2001), using a
linearized DNN for prediction alleviates it (Foong et al.,
2019). This approach aligns with the fact that the GGN
Hessian estimate is exact when applying LA to a linearized
DNN. This method is referred to as Linearized LA (LLA)
(Immer et al., 2021) and it simply consist in applying LA
on a first-order Taylor approximation of the DNN output.

1



Variational Linearized Laplace Approximation for Bayesian Deep Learning

LLA VaLLA ELLA
Initial Inducing Points
Optimized Inducing Points

Last-Layer LLA MoE LLA Kronecker LLA

Figure 1. Predictive distribution (mean in blue and shaded two times the standard deviation) on a toy 1D regression dataset with a 2
hidden layer MLP with 50 units trained using back-propagation. The predictive distribution of VaLLA is on par with or better than other
approximations (last layer and Kronecker factorization), MoE LLA with 200 clusters and other methods (ELLA). The optimal values for
the noise and prior are optimized by maximizing the marginal log likelihood estimate of LLA. VaLLA and ELLA use the optimal values
found by LLA. VaLLA uses 20 inducing points for the predictive variances. ELLA uses 20 random locations and 20 features.

As a consequence of the Taylor approximation, in regres-
sion problems, the mean of LLA’s predictive distribution
coincides with the DNN’s prediction at the MAP estimate.
This means that LLA simply provides error bars on the
pre-trained DNN’s predictions. Additionally, the Hessian
estimate is always positive definite in LLA. This enables the
usage of LLA at any point, not limited to the MAP estimate.
This enhances the post-hoc nature of LLA w.r.t. that of LA.

LLA has shown competitiveness with other approaches on
a variety of uncertainty quantification tasks (Immer et al.,
2021; Foong et al., 2019). Nevertheless, for the practical
usage of LLA in the context of large DNNs, further approxi-
mations on top of GGN are required. For instance, diagonal
or Kronecker-factored (KFAC) approximations of the com-
plete GGN matrix are used. This is motivated by the cubic
cost of computing posterior variances in LLA w.r.t. the
training set size or the number of parameters in the DNN.

Here, we broaden LLA’s usage for DNNs to cases with
a substantial number of parameters and training instances.
We reinterpret the LLA predictive distribution as that of a
Gaussian Process (GP) (Khan et al., 2019), and use a sparse
variational GP based on inducing points to approximate it
(Titsias, 2009). Standard sparse GPs often alter the predic-
tive mean and hence may deteriorate the accuracy of the
pre-trained DNN, which is assumed to have minimal gener-
alization error. To avoid this, we use a dual representation
of the GP in the Reproducing Kernel Hilbert Space (RKHS).
This enables the sparse approximation to be used only in
the computation of the predictive variances of the GP. The
result is a sparse GP approximation where the predictive
mean coincides with the predictions of the pre-trained DNN,
without introducing additional prediction error.

We call our method Variational LLA (VaLLA) and conduct
a series of regression and classification experiments to com-
pare its performance and computational cost with that of re-
lated methods from the literature. Our comparisons include
(i) a method that uses Kronecker and diagonal approxima-
tions of the GGN matrix, (ii) a method that uses a Nyström
approximation of that matrix (ELLA) (Deng et al., 2022),
and (iii) a method that relies on generating samples from
LLA’s posterior distribution using the sample-then-optimize
principle (Antorán et al., 2023). VaLLA’s performance is
comparable to or better than that of these other methods and
is obtained at a smaller cost. Specifically, VaLLA adopts
mini-batch training, resulting in sub-linear cost w.r.t. the
training set size. Furthermore, VaLLA often generates pre-
dictive distributions that closely resemble those of LLA.
Figure 1 shows this in a simple 1-D toy regression prob-
lem. A Mixture of Experts approach (MoE LLA) based on
dividing the input space into different regions (Lee et al.,
2022) using 200 clusters is also included in the figure for
comparison. This method is further discussed in Section 4.

2. Background
Consider the task of inferring an unknown function f :
RD → R based on noisy observations y = (y1, . . . , yN )T

at corresponding locations X = (x1, . . . ,xN ). Deep learn-
ing (DL) defines a Neural Network g : RD × RP → R
with P parameters so that ∃θ⋆ ∈ RP s.t. f(·) ≈ g(·,θ⋆).
Thus, f is fully specified by θ⋆. DL often estimates θ⋆ via
back-propagation. Nonetheless, despite the remarkable per-
formance achieved (Vaswani et al., 2017), DL methods lack
proper estimation of output uncertainty, which can cause
overconfident predictions in regions without training data.

2



Variational Linearized Laplace Approximation for Bayesian Deep Learning

In the context of Bayesian inference, the observations are
related to g = (g(x1,θ), . . . , g(xN ,θ))T via the likelihood,
p(y|θ). In regression problems, yi ∈ R and the likelihood
is typically Gaussian. By contrast, in classification prob-
lems, yi ∈ {1, . . . , C}, with C the number of classes and
the likelihood is categorical with probabilities given by a
softmax link function. In this case, g : RD × RP → RC is
a multi-output function with C outputs, one per class label.

Bayesian neural networks (BNNs) use a probabilistic frame-
work (Mackay, 1992), establishing a prior over the net-
work parameters p(θ) and computing the Bayesian pos-
terior, p(θ|y) ∝ p(y|θ)p(θ), for predictions1. The ana-
lytic computation of the posterior is often intractable due
to the strong non-linearities of the NN. Most methods re-
sort to an approximate posterior q(θ) ≈ p(θ|y), later
used for prediction p(y⋆|x⋆,y) = Ep(θ|y) [p(y

⋆|x⋆,θ)] ≈
Eq(θ) [p(y

⋆|x⋆,θ)] ≈ S−1
∑S

s=1 p(y
⋆|x⋆,θs) with θs ∼

q(·) and S Monte Carlo samples. This approximate distri-
bution captures prediction uncertainty (Bishop, 2006).

The Laplace approximation (LA) builds a Gaussian approx-
imate posterior (Mackay, 1992). This takes the form of
q(θ) = N (θ|θ̂,Σ), where θ̂ denotes the MAP solution, i.e.,
θ̂ = argmaxθ log p(y|θ) + log p(θ), and Σ is the inverse
of the negative Hessian of the log posterior, i.e.,

Σ−1 = −∇2
θθ [ log p(y|θ) + log p(θ)]|θ=θ̂ . (1)

Often, an isotropic Gaussian prior p(θ) = N (θ|0, σ2
0IP ) is

considered so that −∇2
θθ log p(θ)|θ=θ̂ = IP /σ

2
0 . Hence

Σ−1 = −∇2
θθ log p(y|θ)|θ=θ̂ + 1

σ2
0
IP . (2)

Given the intractability of the Hessian in large DNNs and
its non-guaranteed positive-definiteness, it is common to
approximate it with the generalized Gauss-Newton (GGN)
matrix (Immer et al., 2021):

Σ−1 ≈∑N
n=1 Jθ̂(xn)

TΛ(xn, yn)Jθ̂(xn) +
1
σ2
0
IP , (3)

where Jθ̂(xn) = ∇θ g(xn,θ)|θ=θ̂ and Λ(xn, yn) =
−∇2

gg log p(yn|g)|g=gθ̂(xn,θ)
. The GGN matrix is guar-

anteed to be positive semi-definite, which means that θ̂ need
not be a maximum of the log posterior. It can be, e.g., any
solution found by early-stopping back-propagation.

The earlier formulation of LA suffers from underfitting
(Lawrence, 2001). This is attributed to the fact that the GGN
approximation is the true Hessian matrix of the linearized
DNN glin

θ̂
(x,θ) := g(x, θ̂) + Jθ̂(xn)(θ − θ̂) (Immer et al.,

2021). This implies a shift between posterior inference and
predictions that can be mitigated by also predicting using
the linearized model:

pLLA(y
⋆|x⋆,y) = Eq(θ)

[
p(y⋆|glin

θ̂
(x⋆,θ))

]
. (4)

1We ignore the dependence on X to simplify the notation.

This method is known as the linearized LA (LLA). How-
ever, despite these approximations, LLA still requires the
inversion of Σ−1 which scales cubically with the number
of parameters of the DNN. A dual formulation of LLA as a
Gaussian Process (GP), described in the next section, scales
with cubic cost w.r.t the number of training points.

2.1. Gaussian Process (GP) Interpretation of LLA

A linear model with a Gaussian distribution on the model
parameters generates a GP with specific mean and covari-
ance functions (Williams & Rasmussen, 2006). Consider
the prior p(θ) = N (θ|0, σ2

0IP ). The linearized BNN gen-
erates random functions that follow a GP with mean and
covariance functions defined as

m(x) = glin
θ̂
(x,0), K(x,x′) = σ2

0Jθ̂(x)
TJθ̂(x

′) . (5)

Using the approximate posterior from LLA, i.e., q(θ) =

N (θ|θ̂,Σ), we also obtain a GP for prediction. The mean
and covariance functions, providing the predictive mean and
variances of the LLA approximation, are in this case:

m(x) = glin
θ̂
(x, θ̂) = g(x, θ̂) ,

K(x,x′) = Jθ̂(x)
TΣJθ̂(x

′) .
(6)

The Woodbury formula on Σ, as defined in (3), gives

Σ = σ2
0

(
IP − JT

(
1
σ2
0
Λ−1

X,y + JJT
)−1

J
)
. (7)

Defining κ(x,x′) = σ2
0Jθ̂(x)

TJθ̂(x
′) as the (scaled) Neu-

ral Tangent Kernel (i.e., prior covariance function) of the
GP (Immer et al., 2021), and Q = Λ−1

X,y + κ(X,X), the
covariance function of the GP in (6) takes the expression

K(x,x′) = κ(x,x′)− κ(x,X)Q−1κ(X,x′) . (8)

This allows us to interpret the LLA approximate predictive
distribution as a posterior GP in function space, with prior
covariance function given by κ(·, ·). The bottleneck of this
interpretation is the evaluation of Q−1, withO(N3+N2P )
cost. In the case of classification problems with C classes,
κ(X,X) and Q have size NC ×NC, thus the cost is also
cubic w.r.t. the number of classes C or DNN outputs.

2.2. Dual formulation of Gaussian Processes in RKHS

A Reproducing Kernel Hilbert Space (RKHS)H is a Hilbert
space of functions with the reproducing property: ∀x ∈
X ∃ϕx ∈ H such that ∀f ∈ H, f(x) = ⟨ϕx, f⟩. In general,
H can be infinite-dimensional and uniformly approximate
continuous functions on a compact set.

A zero-mean prior GP with posterior mean and covariance
functions m(·) and K(·, ·), respectively, has a dual repre-
sentation in a RKHS (Cheng & Boots, 2016). There ex-
ists µ ∈ H and a linear semi-definite positive operator

3



Variational Linearized Laplace Approximation for Bayesian Deep Learning

Σ : H → H such that ∀x,x′ ∈ X , ∃ϕx, ϕx′ verifying

m(x) = ⟨ϕx, µ⟩ and K(x,x′) = ⟨ϕx,Σ(ϕx′)⟩ . (9)

As a shorthand and an abuse of notation, we write that
p(f) = N (f |µ,Σ), where this refers to a Gaussian measure
in an infinite dimensional space, not a Gaussian density.

3. Variational LLA (VaLLA)
Here, we present our proposed method, Variational LLA
(VaLLA). VaLLA leverages the use of variational sparse
GPs. Thus, we proceed to describe these methods first.

3.1. Variational Sparse GPs

Variational sparse GPs approximate the GP posterior using
a GP parameterized by M inducing points Z, each in RD,
and associated process values u = f(Z) (Titsias, 2009),

p(f ,u|y) ≈ q(f ,u) = p(f |u)q(u) , (10)

where q(u) = N (u|m̂, Ŝ), f = f(X) and p(f |u) is fixed.
The approximate distribution q(u) is obtained by minimiz-
ing the KL-divergence KL (q(f ,u) | p(f ,u|y)). In practice,
the minimization problem is transformed into the maximiza-
tion of the lower bound of the log-marginal likelihood

log p(y) ≥ max
Z,m̂,Ŝ

∫
f ,u

q(f ,u) log
p(y|f)p(f |u)p(u)

q(f ,u)
, (11)

which has cost O(NM2 +M3) due to the cancellation of
the factor p(f |u) since q(f ,u) = p(f |u)q(u).
Theorem 1 (Cheng & Boots (2016)). Using a sparse GP
approximation with q(f ,u) = p(f |u)q(u) is equivalent to
restricting the mean and covariance functions of the dual
representation in the RKHS to

µ̃ = ΦZ(a) and Σ̃ = I +ΦZAΦT
Z , (12)

where the functional ΦZ : RM → H defines a linear combi-
nation of basis functions as ΦZ(a) =

∑M
m=1 amϕzm

, with
a = (a1, . . . , aM ) ∈ RM and the functional ΦZAΦT

Z =∑M
i=1

∑M
j=1 ϕziAi,jϕ

T
zj

, defines a quadratic expression
where A ∈ RM×M such that Σ̃ ≥ 0.

Theorem 1 indicates that the algorithm of Titsias (2009)
optimizes a variational Gaussian measure where µ̃ and Σ̃
are parameterized by a function basis {ϕz ∈ H | z ∈ Z}.
Cheng & Boots (2017) propose to generalize this so that
each of the linear operators is optimized using different
bases (sets of inducing points). Let Zα and Zβ be two sets of
inducing points for the mean and the variance, respectively.
The parameterization of Cheng & Boots (2017) is:

µ̃ = ΦZα(a) and Σ̃ = (I +ΦZβ
AΦT

Zβ
)−1 , (13)

where ΦZα
: RMα → H and ΦZβ

: RMβ → H are de-
fined as ΦZ using Zα and Zβ , respectively. Now, there are
two sets of inducing points, Mα for the mean and Mβ for
the covariances, respectively. This parameterization is a
generalization and cannot be obtained using the approach
of Titsias (2009). Here, q must be found by optimizing
Gaussian measures (Cheng & Boots, 2016):

max
q(f)
L(q(f)) = max

q(f)

∫
q(f) log

p(y|f)p(f)
q(f)

df

= max
q(f)

Eq [log p(y|f)]− KL (q | p) ,
(14)

where the KL term is:

KL (q | p) = 1

2
aTKαa+

1

2
log |I +KβA|

− 1

2
tr
(
Kβ(A

−1 +Kβ)
−1
)
,

(15)

with Kα and Kβ matrices with the prior covariances among
f(Zα) and f(Zβ), respectively.

3.2. Using Decoupled SGP and LLA

We utilize the decoupled reparameterization of sparse GPs
to establish a model where the mean of the approximated
posterior distribution is anchored to a pre-trained MAP so-
lution. We denote this method as variational LLA (VaLLA).

Proposition 1. If g(·, θ̂) ∈ H, then ∀ϵ > 0 exists a set of
Mα inducing points Zα and a collection of scalar values
a ∈ RMα such that the dual representation of the sparse
Gaussian process defined by

µ̃ = ΦZα
(a) and Σ̃ = (I +ΦZβ

AΦT
Zβ

)−1 , (16)

corresponds to a GP posterior approximation with mean
and covariance functions defined as

m⋆(x) = hϵ(x) , (17)

K⋆(x,x′) = K(x,x′)−Kx,Zβ
(A−1 +Kβ)

−1KZβ ,x′ ,

where Zβ is a set of Mβ inducing points, A ∈ RMβ×Mβ ,
Kx,Zβ

is a vector with the covariances between f(x) and
f(Zβ), and hϵ verifies dH(g(·, θ̂), hϵ) ≤ ϵ, with dH(·, ·)
the distance in the RKHS (see proof in Appendix A).

Proposition 1 implies that if g(·, θ̂) ∈ H we can find
values for a and inducing points for the mean Zα s.t.
dH(g(·, θ̂), hϵ) can be made as small as desired. For suf-
ficiently small ϵ, hϵ(·) ≈ g(·, θ̂), and g(·, θ̂) can be used
for prediction instead of hϵ(x). Thus, there is no need to
optimize a and Zα in (14), and the posterior distribution
of VaLLA uses g(·, θ̂) as its mean function. The optimal
parameters Zβ and A can be found by optimizing (14) with
a and Zα held constant. From the following proposition,
computing the optimal value of A has costO(NM2

β +M3
β).

4



Variational Linearized Laplace Approximation for Bayesian Deep Learning

Proposition 2. The value of A in Proposition 1 that mini-
mizes (14) is

A =
1

σ2
K−1

β KZβ ,XKX,Zβ
K−1

β , (18)

where σ2 is the noise variance and KX,Zβ
is a matrix with

the prior covariances between f(X) and f(Zβ). If Zβ =
X, the covariance function of the predictive distribution in
(17) is equal to that of the full GP (see proof in Appendix A).

MAP solution and Hilbert space. Proposition 1 presup-
poses that g(·, θ̂) ∈ H. In practice, this need not be the
case. Covariance functions such as squared exponential
or Matérn are recognized for spanning the entire space of
continuous functions. However, whether g(·, θ̂) ∈ H holds
in general remains unknown. For further discussions on this
matter, please refer to Appendix C. From here onwards, we
assume that if g(·, θ̂) /∈ H, thenH is sufficiently expressive
to include a close approximation to g(·, θ̂). Consequently,
g(·, θ̂) can be used as the sparse GP posterior mean.

3.3. Hessian Approximation in VaLLA

Despite the formulation using GPs function-space duality,
VaLLA can be also understood as a Hessian approximation
method. Note that the predictive covariances of VaLLA are
given in (17). From this equation, we can make a connection
with the exact posterior variances given by the full Hessian
in (6). From there, one can conclude that VaLLA’s inverse
negative Hessian approximation is given by:

σ2
0IP − σ2

0ΦZβ
(A−1 + σ2

0Φ
T
Zβ

ΦZβ
)−1ΦT

Zβ
σ2
0 , (19)

which is equal to (IP /σ
2
0 +ΦT

Zβ
AΦZβ

)−1 using the Wood-
bury formula, where A is a free parameter adjusted by
VaLLA by minimizing the KL divergence between stochas-
tic processes, as described above. VaLLA’s negative Hes-
sian approximation is the inverse of the previous quantity.
Namely,

IP /σ
2
0 +ΦT

Zβ
AΦZβ

, (20)

which is similar in structure to the GGN approximation
in (3) considered by LLA, where the data dependent term
has been replaced by the inducing points and the matrix A.

3.4. Hyper-parameter Tuning and α-divergences

VaLLA’s predictive mean is anchored to the DNN output,
making the maximization of the ELBO in (14) unsuitable for
tuning hyper-parameters like the prior variance σ2

0 . Specif-
ically, in a regression scenario with Gaussian noise with
variance σ2 the first term in the r.h.s. of (14) becomes:

N∑
i=1

− log(2πσ2)

2
− (yi − g(xi, θ̂))

2

2σ2
− K⋆(xi,xi)

2σ2
(21)

where (yi − g(xi, θ̂))
2 is constant. Maximizing (21) w.r.t.

σ2
0 results in the prior covariances, σ2

0Jθ̂(x)
TJθ̂(x

′), tend-
ing to 0. This makes posterior covariances K⋆(xi,xi) also
tend to 0, effectively cancelling the last term in (21). The KL
term in (14) is also optimal and 0 if σ2

0 → 0. The reasoning
is that, in sparse GPs, tuning hyper-parameters involves a
trade-off between fitting the mean to the training data and
reducing the predictive variance of the model. Therefore,
in VaLLA’s setting, where the predictive mean is fixed, the
optimal predictive variance tends to be zero.

To address these issues, we propose an alternative objective
to (14) that facilitates hyper-parameter optimization:

max
q(f)

N∑
i=1

1

α
logEq [p(yi|f)α]− KL (q|p) . (22)

Here α ∈ (0, 1] is a parameter. Instead of minimizing
KL(q(f)|p(f |y)), this objective minimizes, in an approxi-
mate way, the α-divergence between p(f |y) and q(f) (Li
& Gal, 2017). Remarkably, this can be achieved by simply
changing the data-dependent term in the objective of (14).

The use of α-divergences for approximate inference has
been extensively studied (Bui et al., 2017; Villacampa-Calvo
& Hernández-Lobato, 2020; Santana & Hernández-Lobato,
2022), with observations suggesting that values of α ≈ 0
result in better predictive mean estimation. Conversely,
values of α ≈ 1 provide superior predictive distributions
in terms of the log-likelihood. Thus, in this work we opt
for α = 1. In this case, (22) does not promote σ2

0 → 0,
unlike (14), as the data-dependent term is the log-likelihood
of the training data. An unexpected behavior, however,
is that (22) may lead to overfitting. To alleviate this, we
employ an early-stopping strategy using a validation set (see
Appendix D for further details). Early stopping is also used
in other LLA approximations s.a. ELLA (Deng et al., 2022).

Mini-batch Optimization. The objective in (22) supports
mini-batch optimization with cost O(M3

β). For α = 1.0,

N |B|−1
∑
b∈B

logEq [p(yb|f(xb))]− KL (q|p) . (23)

Here, B denotes a mini-batch, and the expectation can be
computed in closed form in regression problems. In classifi-
cation, an approximation is available via using the softmax
approximation of Daxberger et al. (2021b). This sub-linear
cost of VaLLA enables its use in very large datasets.

Prediction. Predictions for test points (y⋆,x⋆) are com-
puted using (17) with the DNN output g(x⋆, θ̂) as the mean.
p(y⋆|x⋆) ≈ Eq[p(y

⋆|f(x⋆)] is evaluated as in training.

Inducing Points. The locations of the inducing points Zβ

are found by optimizing (23) with K-means initialization.

5



Variational Linearized Laplace Approximation for Bayesian Deep Learning

3.5. Limitations of VaLLA

VaLLA is limited by three factors: (i) Computing the predic-
tive distribution at each training iteration involves inverting
A−1+KZβ

in (17), with cubic cost in the number of induc-
ing points Mβ . Therefore, VaLLA cannot accommodate a
very large number of inducing points. (ii) The objective in
(22) requires a validation set and early-stopping for effective
optimization of the prior variance σ2

0 , thus further increasing
training time. (iii) VaLLA requires additional training com-
pared to other LLA approximations. However, in this regard,
early-stopping can also reduce the training time by cutting
down the number of iterations. In the Taxi experiments per-
formed in Section 5, early-stopping is triggered when only
16.6% of the training data has been seen. (iii) Mini-batch
optimization in (23) involves evaluating Kx,Zβ

∀x ∈ B and
Kβ . Hence, we require efficient evaluation of the (scaled)
Neural Tangent Kernel, κ(·, ·) = σ2Jθ̂(·)TJθ̂(·) and its gra-
dients to find Zβ . While there are libraries that use structure
in the derivatives for the efficient computation of κ(·, ·),
these are limited to a few DNN models (Novak et al., 2022).
A simple but inefficient approach to evaluate κ(·, ·) involves
computing and storing all full Jacobians in memory, for each
mini-batch instance and inducing point. This is tractable in
our problems, but makes VaLLA infeasible for very large
problems, e.g., ImageNet. Appendix F.3 shows a very effi-
cient layer-by-layer method to obtain Kx,Zβ

∀x ∈ B and
Kβ . However, this requires computing each layer’s contri-
bution to the Jacobian at hand, which is difficult for large
and complex DNNs.

4. Related Work
LA for DNNs was originally introduced by Mackay (1992),
applying it to small networks using the full Hessian.
MacKay (1992a) also proposed an approximation similar to
the generalized Gauss-Newton (GGN). The combination of
scalable factorizations or diagonal Hessian approximations
(Martens & Grosse, 2015; Botev et al., 2017) with the GGN
approximation (Martens, 2020) played a crucial role in the
resurgence of LA for modern DNNs (Ritter et al., 2018;
Khan et al., 2019). Recent works aim to relax the Gaussian
assumption of LLA adopting a Riemannian-Laplace approx-
imation, where samples naturally fall into weight regions
with low negative log-posterior (Bergamin et al., 2023).

To address the underfitting issue associated with LA
(Lawrence, 2001), particularly when combined with the
GGN approximation, Ritter et al. (2018) proposed a Kro-
necker factored (KFAC) LLA approximation. This approach
outperforms LA with a diagonal Hessian matrix.

The GP interpretation of LLA (Khan et al., 2019) allows us-
ing GP approximate methods to speed up the computations.
Immer et al. (2021) propose to use a subset of the training

dataset as a scalable alternative to the true GP. Lee et al.
(2022) propose a Mixture of Experts approach where each
expert is trained on a different soft-margin cluster. However,
the proposed clustering algorithm, although more efficient
than Kernel-K-means, has linear cost w.r.t. the training set
size. VaLLA, on the other hand, has sub-linear training time
w.r.t. training set size due to mini-batch training. Moreover,
it is not clear how to consider neighboring clusters in high
dimensional input spaces. The authors only provide code
for a 1-dimensional problem. Third, fitting a local GP using
the data of the corresponding cluster and its neighbors is
expected to overestimate the predictive variance since the
model has been trained with a smaller number of training
instances (see Figure 1). This is particularly the case in
datasets with millions of training instances such as Taxi.
This problem is also described by Immer et al. (2021).

Deng et al. (2022) proposed a Nyström approximation of
the true GP covariance matrix by using M ≪ N points
chosen at random from the training set. The method, called
ELLA, has cost O(NM3). ELLA also requires computing
the costly Jacobian vectors required in VaLLA, but does
not need their gradients. Unlike VaLLA, the Nyström ap-
proximation needs to visit each instance in the training set.
However, as stated by Deng et al. (2022), ELLA suffers
from over-fitting. An early-stopping strategy, using a val-
idation set, is proposed to alleviate it. In this case, ELLA
only considers a subset of the training data. ELLA does
not allow for hyper-parameter optimization, unlike VaLLA.
The prior variance σ2

0 must be tuned using grid search and a
validation set, which increases training time significantly.

The recent work of Scannell et al. (2024) proposes a sim-
ilar approach to VaLLA, where an inducing point sparse
approach is used to construct a GP from a pre-trained DNN.
However, two main points differentiate this work from our
approach: (i) the pre-trained DNN is not kept as the poste-
rior mean of the model, potentially losing prediction per-
formance and also departing from LLA’s post-hoc nature
and goal; (ii) instead of using mini-batches to optimize vari-
ational parameters, they perform a full iteration over the
training data to find optimal variational parameters. Thus,
this results in a potentially slower method than VaLLA,
which due to early-stopping and stochastic optimization,
can avoid iterating over the full dataset.

Samples from a GP posterior can be efficiently computed
using stochastic optimization, eluding the explicit inversion
of the kernel matrix (Lin et al., 2024). This approach can be
extended to LLA to generate samples from the GP posterior,
avoiding the O(N3) cost (Antorán et al., 2023). However,
this method cannot provide an estimate of the log-marginal
likelihood for hyper-parameter optimization. To address
this limitation, Antorán et al. (2023) propose using the EM-
algorithm, where samples are generated (E-step) and hyper-

6



Variational Linearized Laplace Approximation for Bayesian Deep Learning

Airline Year Taxi

Model NLL CRPS CQM NLL CRPS CQM NLL CRPS CQM

MAP 5.087 18.436 0.158 3.674 5.056 0.164 3.763 3.753 0.227
LLA Diag 5.096 18.317 0.144 3.650 4.957 0.122 3.714 3.979 0.270
LLA KFAC 5.097 18.317 0.144 3.650 4.955 0.121 3.705 3.977 0.270
LLA∗ 5.097 18.319 0.144 3.650 4.954 0.120 3.718 3.975 0.270
LLA∗ KFAC 5.097 18.317 0.144 3.650 4.954 0.120 3.718 3.976 0.270
ELLA 5.086 18.437 0.158 3.674 5.056 0.164 3.753 3.754 0.227
VaLLA 100 4.923 18.610 0.109 3.527 5.071 0.084 3.287 3.968 0.188
VaLLA 200 4.918 18.615 0.107 3.493 5.026 0.076 3.280 3.993 0.188 0.0 0.2 0.4 0.6 0.8 1.0

α

0.0

0.2

0.4

0.6

0.8

1.0

P (
x
,y

)[
y
∈
I

(x
,α

)]

ELLA

VaLLA

LLA KFAC

Figure 2. (left) Results on regression datasets. (right) Illustration of CQM on Taxi. Average results across 5 different random seeds
(standard deviations always < 10−4 and omitted). Best value highlighted in purple and second to best in teal. ∗ for Last Layer LLA.

parameters are optimized afterwards (M-step) iteratively.
The EM algorithm significantly increases computational
cost, as generating a single sample is as expensive as training
the original DNN on the full data. Finally, the method of
Antorán et al. (2023) only considers classification problems.

Another GP-based approach for obtaining prediction uncer-
tainty in the context of DNNs is the Spectral-normalized
Neural Gaussian Process (SNGP) (Liu et al., 2023), where
the last layer of a DNN is replaced by a GP. This approach
allows to either (i) fine-tune a pre-trained DNN model, or
(ii) train a full DNN model from scratch. We compare re-
sults with the former in our experiments. However, we have
observed that replacing the last layer with a GP often re-
duces the prediction performance of the initial DNN. This is
also observed in the results of Liu et al. (2023). As a result,
this method also lies outside LLA-based methods’ main
objective, which is to preserve the initial DNN predictions.

5. Experiments
We compare VaLLA with other methods using the LLA im-
plementation by Daxberger et al. (2021a). VaLLA utilizes a
batch size of 100. In regression, MNIST and FMNIST prob-
lems, we train our own DNN (standard multi-layer percep-
tron), which is stored for reproducibility. In the CIFAR10
experiments with ResNet, we report the results for the other
methods given by Deng et al. (2022) and use the same DNN
for VaLLA. Hyper-parameters in all LLA variants (diagonal,
KFAC, last-layer LLA) are optimized using the marginal
log-likelihood estimate. Additional experimental details are
given in Appendix F. VaLLA’s code is available at https:
//github.com/Ludvins/Variational-LLA.

5.1. Synthetic Regression

We compare the predictive distribution of VaLLA with that
of LLA (which is considered the optimal method), other
LLA variants and ELLA, on the 1-D regression problem of
Izmailov et al. (2020). In ELLA and VaLLA, we use the
optimal hyper-parameters from LLA. The results in Figure 1
illustrate that VaLLA’s predictive distribution closely aligns

with that of LLA. Figure 7 (see Appendix E) depicts the
predictive distributions of VaLLA and ELLA for varying
numbers of inducing points and points in the Nyström ap-
proximation, respectively. It shows that VaLLA converges
to the true posterior faster than ELLA, with VaLLA tending
to overestimate the predictive variance while ELLA under-
estimates it. In Figure 6 (see Appendix E) we observe the
effect of tuning the prior variance in VaLLA in another toy
1-D problem, with and without early-stopping. Notably,
early stopping, using a validation set, prevents overly small
predictive variances in VaLLA. Finally, we observe that
when VaLLA estimates the prior variance by maximizing
(22), it tends to underestimate LLA’s predictive variance.

5.2. Airline, Year and Taxi Regression Problems

We carry out experiments on large regression datasets. (i)
The Year dataset (UCI) with 515, 345 instances and 90 fea-
tures. We use the original train/test splits. (ii) The US flight
delay (Airline) dataset (Dutordoir et al., 2020). Following
Ortega et al. (2023) we use the first 700, 000 instances for
training and the next 100, 000 for testing. 8 features are con-
sidered: month, day of the month, day of the week, plane
age, air time, distance, arrival time and departure time. (iii)
The Taxi dataset, with data recorded on January, 2023 (Sal-
imbeni & Deisenroth, 2017). 9 attributes are considered:
time of day, day of week, day of month, month, PULoca-
tionID, DOLocationID, distance and duration. We filter
trips shorter than 10 seconds and larger than 5 hours, result-
ing in 3 million instances. The first 80% is used as train
data, the next 10% as validation data, and the last (10%)
as test data. In all experiments, a 3-layer DNN with 200
units, tanh activations and L2 regularization is employed.
VaLLA and ELLA use 100 inducing points and 100 ran-
dom points, respectively. We carry out 40, 000 iterations of
mini-batch size 100 in VaLLA. However, in the Taxi dataset,
with nearly 3 million data instances, due to early-stopping,
training finishes at 5, 000 iterations for one of the random
seed initializations (this value differs for each random). This
means that 500,000 points are visited during training for
that seed, which is only 16.6% of the complete dataset.

7

https://github.com/Ludvins/Variational-LLA
https://github.com/Ludvins/Variational-LLA


Variational Linearized Laplace Approximation for Bayesian Deep Learning

Model ACC NLL ECE BRIER OOD-AUC

MAP 97.6 0.076 0.008 0.036 0.905
LLA Diag 97.4 0.143 0.072 0.053 0.922
LLA KFAC 97.5 0.094 0.029 0.041 0.949
LLA∗ 97.6 0.081 0.015 0.037 0.909
LLA∗ KFAC 97.6 0.081 0.015 0.037 0.909
ELLA 97.6 0.076 0.008 0.036 0.905
Sampled LLA 97.6 0.087 0.026 0.040 0.954
VaLLA 100 97.7 0.076 0.010 0.036 0.916
VaLLA 200 97.7 0.075 0.010 0.035 0.921

102 103 104

Seconds

VaLLA 200

VaLLA 100

Sampled LLA

ELLA

LLA? KFAC

LLA?

LLA KFAC

LLA Diag

Figure 3. (left) MNIST experiments. Results averaged over 5 different random seeds (standard deviations < 10−4 in all cases and omitted).
(right) Box-plots of training times in seconds. ELLA considers 10 prior values chosen using a validation set. Sampled-LLA uses 8 EM
steps and 32 samples. Best value is highlighted in purple and second to best in teal. ∗ for Last Layer LLA.

Model ACC NLL ECE BRIER OOD-AUC

MAP 86.6 0.373 0.009 0.193 0.874
LLA Diag 86.2 0.397 0.043 0.201 0.914
LLA KFAC 86.5 0.377 0.014 0.194 0.932
LLA∗ 86.6 0.373 0.008 0.193 0.882
LLA∗ KFAC 86.6 0.373 0.008 0.193 0.880
ELLA 86.6 0.373 0.008 0.193 0.874
VaLLA 100 87.4 0.335 0.011 0.182 0.923
VaLLA 200 87.6 0.332 0.013 0.181 0.933

0 60 120 180
Rotation degrees

0.0

0.2

0.4

0.6

0.8

EC
E

0 60 120 180
Rotation degrees

0

2

4

6

8

N
LL

MAP LLA* KFAC LLA* ELLA VaLLA 100 VaLLA 200

Figure 4. (left) Results on FMNIST. Results are averaged over 5 different random seeds (standard deviations are lower than 10−4 and
omitted). Best value is highlighted in purple and second to best in teal. ∗ for Last Layer LLA. (right) ECE and NLL for rotated FMNIST.

The table on the l.h.s. of Figure 2 presents the averaged
results over 5 random seeds. LLA is not considered here due
to intractability. Negative log likelihood (NLL), continuous
ranked probability score (CRPS) (Gneiting & Raftery, 2007)
and a centered quantile metric (CQM), described below, are
reported. We observe that VaLLA performs best according
to NLL and CQM, while it gives worse results in terms of
CRPS compared to the other methods.

Centered Quantile Metric (CQM). In regression, CQM
assesses the calibration of the predictions, extending the
Expected Calibration Error (ECE) to regression problems
with Gaussian predictions with the same mean but dif-
ferent variance. CQM calculates the centered interval
around the mean with probability mass α ∈ (0, 1). For
Gaussian predictions N (µ(x), σ2(x)), the open interval
is defined as I(x, α) = (λ(−α), λ(α)), where λ(α) =
Φ−1

µ(x),σ2(x)(
1+α
2 ) with Φµ(x),σ2(x) the CDF of a Gaussian

with mean µ(x) and variance σ2(x). The fraction γ of test
points falling inside the interval is then computed. If the
predictive distribution is well calibrated, γ ≈ α. Formally,

CQM =

∫ 1

0

∣∣∣P(x⋆,y⋆) [y
⋆ ∈ I(x⋆, α)]− α

∣∣∣ dα . (24)

All methods utilize the pre-trained DNN solution as pre-
dictive mean. Thus, the differences in I(x, α) stem from
the predictive variance. Evaluating the integrand in (24)
on a grid of α values allows us to visually interpret the
uncertainty estimation of each method. The r.h.s. of Fig-
ure 2 shows P(x,y) [y ∈ I(x, α)] for several models on the

Taxi dataset. In general, all methods tend to overestimate
the actual predictive variance, as evidenced by the values
above the diagonal. The l.h.s. of Figure 2 shows CQM
estimated using trapezoid integration with 11 points. We
refer to Appendix G for more details on the CQM metric.

5.3. Image Classification Problems

MNIST and FMNIST. We employ a 2-layer fully con-
nected DNN with 200 units in each layer and tanh acti-
vations. In VaLLA we considered 100 and 200 inducing
points, while in ELLA, 2000 random points are used. The
Out-of-distribution (OOD) detection ability of each method
is evaluated using the entropy of the predictive distribution
as a score. We compute the area under the ROC curve
(AUC) of the binary problem that distinguishes between
instances from pairs of datasets MNIST/FMNIST and FM-
NIST/MNIST (Immer et al., 2021). Moreover, in FMNIST
we also assess the robustness of the predictive distribution
by rotating the test images up to 180 degrees and computing
the ECE and NLL on rotated images (Ovadia et al., 2019).

The left table in Figure 3 shows the results on MNIST.
VaLLA gives better uncertainty estimates in terms of NLL
and the Brier score but performs less effectively in terms
of ECE. Remarkably, VaLLA improves prediction accuracy
(ACC) due to the approximation of Daxberger et al. (2021b)
to compute class probabilities in multi-class problems. In
terms of OOD-AUC VaLLA outperforms the MAP solution
but lags behind other methods s.a. Sampled-LLA or LLA

8



Variational Linearized Laplace Approximation for Bayesian Deep Learning

ResNet-20 ResNet-32 ResNet-44 ResNet-56 Mean Rank
Method ACC NLL ECE ACC NLL ECE ACC NLL ECE ACC NLL ECE

MAP 92.6 0.282 0.039 93.5 0.292 0.041 94.0 0.275 0.039 94.4 0.252 0.037 −
MF-VI 92.7 0.231 0.016 93.5 0.222 0.020 93.9 0.206 0.018 94.4 0.188 0.016 −
SNGP 92.4 0.266 0.024 93.2 0.256 0.025 93.8 0.242 0.028 93.8 0.229 0.022 −
GP - Subset 92.6 0.555 0.299 93.4 0.462 0.247 93.6 0.424 0.225 94.4 0.403 0.221 −
LLA Diag 92.2 0.728 0.404 92.7 0.755 0.430 92.8 0.778 0.445 92.9 0.843 0.480 −
LLA KFAC 92.0 0.852 0.467 91.8 1.027 0.547 91.4 1.091 0.566 89.8 1.174 0.579 −
LLA∗ 92.6 0.269 0.034 93.5 0.259 0.033 94.0 0.237 0.028 94.4 0.213 0.022 −
LLA∗ KFAC 92.6 0.271 0.035 93.5 0.260 0.033 94.0 0.232 0.028 94.4 0.202 0.024 −
ELLA 92.5 0.233 0.009 93.5 0.215 0.008 93.9 0.204 0.007 94.4 0.187 0.007 2.375
Sampled LLA 92.5 0.231 0.006 93.5 0.217 0.008 94.0 0.200 0.007 94.4 0.185 0.015 2.000
VaLLA 92.6 0.228 0.007 93.5 0.211 0.007 94.0 0.198 0.008 94.4 0.183 0.009 1.375

Table 1. Results on CIFAR10. ACC, NLL and ECE are computed using Monte-Carlo estimation. Best value highlighted in purple and
second to best in teal. Sampled LLA uses 64 samples. ELLA uses M = 2000 points and K = 20. Average results over 5 different
random seeds (standard deviations < 10−3 in all cases and omitted). ∗ for Last Layer LLA. Mean rank only considers both NLL and ECE.

with Kronecker approximations. Figure 3 (right) illustrates
the training times for each method, with VaLLA being faster
than ELLA, Sampled-LLA or Last-Layer LLA.

Finally, the left table in Figure 4 displays the results on FM-
NIST. Here, VaLLA excels in prediction accuracy and pro-
vides the best uncertainty estimates in terms of NLL and the
Brier score. Although it does not perform as well in terms
of ECE, the differences are small. VaLLA also achieves the
best results in OOD-AUC. Figure 4 (right) shows VaLLA
holds better performance in terms of ECE and NLL as the
test images’ corruption increases (rotation level), indicating
the greater robustness of VaLLA’s predictive distribution.

CIFAR10 and ResNet. Various ResNets architectures are
used, and the corresponding pre-trained models are those of
Deng et al. (2022) (accessible here). Table 1 shows ACC,
NLL and ECE for each method, including LLA variants,
a mean-field VI approach (Deng & Zhu, 2023), fine-tuned
SNGP (Liu et al., 2023) and Immer et al. (2021)’s approach
of using the GP interpretation of LLA and a random subset
of 500 instances from the training set (GP-Subset). For the
latter, we used as the prior parameter the weight decay value
used when training the MAP solution, σ2

0 = 0.04, which
is the one suggested by Immer et al. (2021). Finally, we
did not scale the prior by the subset size, as it resulted in
worse results. For this experiment, VaLLA is trained for
40.000 iterations or until Early-Stopping raises. Since we
use the same pre-trained models, the results of all other
methods are consistent with those reported by Deng et al.
(2022). VaLLA with Mβ = 100 outperforms other methods
in most cases, always being either the best or second-best
method. Figure 5 shows the NLL on the perturbed test set
with 5 increasing levels of 19 image corruptions (Deng et al.,
2022). Each box-plot summarizes the test NLL for each
intensity level across all 19 corruptions. The results again
highlight VaLLA’s robust predictive distribution, achieving
also lower NLL compared to the other methods.

Sampled

Figure 5. Results on corrupted CIFAR10 with ResNet56. Sampled
LLA uses 64 samples and ELLA uses M = 2000 and K = 20.

6. Conclusions
We introduced VaLLA, a method derived from the formula-
tion of a generalized sparse GP that offers the flexibility to
fix the predictive mean to any desired function in the RKHS.
VaLLA excels in computing error bars for pre-trained DNNs
with a vast number of parameters on extensive datasets, han-
dling even millions of training instances. VaLLA’s appli-
cability spans both regression and classification problems,
showcasing costs independent of the number of training
points N . In comparison, the Nyström approximation by
Deng et al. (2022) incurs a linear cost in N , unless early-
stopping is employed. Furthermore, VaLLA surpasses the
sample-then-optimize method of Antorán et al. (2023) in
terms of speed, while also providing predictive distributions
robust to input corruptions. In essence, VaLLA stands out
by delivering robust predictive distributions akin to LLA,
all while maintaining noteworthy computational efficiency.

VALLA may also offer valuable advantages for Bayesian
optimization (BO). With more accurate uncertainty assess-
ments, VaLLA is expected to guide the optimization process
more efficiently, potentially reducing the number of evalua-
tions needed to find optimal solutions. VaLLA may also be
useful for scaling BO to problems where cheap evaluations
are available, since in that setting it is required the fast fitting
of probabilistic models to thousands of training instances.

9

https://github.com/chenyaofo/pytorch-cifar-models


Variational Linearized Laplace Approximation for Bayesian Deep Learning

Acknowledgements
Authors gratefully acknowledge the use of the facili-
ties of Centro de Computacion Cientifica (CCC) at Uni-
versidad Autónoma de Madrid. The authors acknowl-
edge financial support from project PID2022-139856NB-
I00 funded by MCIN/ AEI / 10.13039/501100011033
/ FEDER, UE and project PID2019-106827GB-I00
/ AEI / 10.13039/501100011033 and from the Au-
tonomous Community of Madrid (ELLIS Unit Madrid).
The authors also acknowledge financial support from
project TED2021-131530B-I00, funded by MCIN/AEI
/10.13039/501100011033 and by the European Union
NextGenerationEU PRTR.

Impact Statement
As machine learning models play an ever-growing role in
influencing decisions with substantial consequences for so-
ciety, industry, and individuals —such as ensuring the safety
of autonomous vehicles (McAllister et al., 2017) and im-
proving disease detection (Sajda, 2006; Singh, 2021)— it be-
comes imperative to possess a comprehensive understanding
of the employed methodologies and be capable of offering
robust performance assurances. Our diligent examination of
VaLLA’s performance across diverse datasets and tasks as
part of our empirical assessment showcases its adaptability
to various domain-specific datasets.

References
Antorán, J., Padhy, S., Barbano, R., Nalisnick, E. T., Janz,

D., and Hernández-Lobato, J. M. Sampling-based infer-
ence for large linear models, with application to linearised
Laplace. In International Conference on Learning Repre-
sentations, 2023.

Bergamin, F., Moreno-Muñoz, P., Hauberg, S., and Ar-
vanitidis, G. Riemannian Laplace approximations for
Bayesian neural networks. Advances in Neural Informa-
tion Processing Systems, 2023.

Bishop, C. M. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, 2006.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural network. In International
Conference on Machine Learning, pp. 1613–1622, 2015.

Botev, A., Ritter, H., and Barber, D. Practical Gauss-Newton
optimisation for deep learning. In International Confer-
ence on Machine Learning, pp. 557–565, 2017.

Bui, T. D., Yan, J., and Turner, R. E. A unifying framework
for Gaussian process pseudo-point approximations us-
ing power expectation propagation. Journal of Machine
Learning Research, 18:1–72, 2017.

Chen, T., Fox, E., and Guestrin, C. Stochastic gradient
hamiltonian monte carlo. In International Conference on
Machine Learning, pp. 1683–1691, 2014.

Cheng, C.-A. and Boots, B. Incremental variational sparse
Gaussian process regression. Advances in Neural Infor-
mation Processing Systems, 29:4403–4411, 2016.

Cheng, C.-A. and Boots, B. Variational inference for Gaus-
sian process models with linear complexity. Advances in
Neural Information Processing Systems, 30:5184–5194,
2017.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R.,
Bauer, M., and Hennig, P. Laplace Redux - Effortless
Bayesian deep learning. Advances in Neural Information
Processing Systems, 34:20089–20103, 2021a.

Daxberger, E., Nalisnick, E., Allingham, J. U., Antoran, J.,
and Hernandez-Lobato, J. M. Bayesian deep learning via
subnetwork inference. In International Conference on
Machine Learning, pp. 2510–2521, 2021b.

Deng, Z. and Zhu, J. Bayesadapter: Being Bayesian, inex-
pensively and reliably, via Bayesian fine-tuning. In Asian
Conference on Machine Learning, pp. 280–295, 2023.

Deng, Z., Zhou, F., and Zhu, J. Accelerated linearized
Laplace approximation for Bayesian deep learning. Ad-
vances in Neural Information Processing Systems, 35:
2695–2708, 2022.

Dutordoir, V., Durrande, N., and Hensman, J. Sparse Gaus-
sian processes with spherical harmonic features. In In-
ternational Conference on Machine Learning, pp. 2793–
2802, 2020.

Foong, A. Y., Li, Y., Hernández-Lobato, J. M., and Turner,
R. E. ‘In-Between’ Uncertainty in Bayesian neural net-
works. ICML Workshop on Uncertainty and Robustness
in Deep Learning, 2019.

Gneiting, T. and Raftery, A. E. Strictly proper scoring
rules, prediction, and estimation. Journal of the American
statistical Association, 102:359–378, 2007.

Graves, A. Practical variational inference for neural net-
works. Advances in Neural Information Processing Sys-
tems, 24:2348–2356, 2011.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In International
conference on machine learning, pp. 1321–1330, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

10



Variational Linearized Laplace Approximation for Bayesian Deep Learning

Immer, A., Korzepa, M., and Bauer, M. Improving predic-
tions of Bayesian neural nets via local linearization. In
International Conference on Artificial Intelligence and
Statistics, pp. 703–711, 2021.

Izmailov, P., Maddox, W. J., Kirichenko, P., Garipov, T.,
Vetrov, D., and Wilson, A. G. Subspace inference for
Bayesian deep learning. In Uncertainty in Artificial Intel-
ligence, pp. 1169–1179, 2020.

Kendall, A. and Gal, Y. What uncertainties do we need in
Bayesian deep learning for computer vision? Advances in
Neural Information Processing Systems, 30:5574–5584,
2017.

Khan, M. E. E., Immer, A., Abedi, E., and Korzepa, M.
Approximate inference turns deep networks into Gaussian
processes. Advances in Neural Information Processing
Systems, 32, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. International Conference for Learning
Representations, 2015.

Lawrence, N. D. Variational inference in probabilistic mod-
els. PhD thesis, Citeseer, 2001.

Lee, J., Feng, J., Humt, M., Müller, M. G., and Triebel,
R. Trust your robots! predictive uncertainty estimation
of neural networks with sparse Gaussian processes. In
Conference on Robot Learning, pp. 1168–1179, 2022.

Leibig, C., Allken, V., Ayhan, M. S., Berens, P., and Wahl,
S. Leveraging uncertainty information from deep neural
networks for disease detection. Scientific reports, 7:1–14,
2017.

Li, Y. and Gal, Y. Dropout inference in Bayesian neural
networks with alpha-divergences. In International Con-
ference on Machine Learning, pp. 2052–2061, 2017.

Lin, J. A., Antorán, J., Padhy, S., Janz, D., Hernández-
Lobato, J. M., and Terenin, A. Sampling from Gaussian
process posteriors using stochastic gradient descent. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Liu, J. Z., Padhy, S., Ren, J., Lin, Z., Wen, Y., Jerfel, G.,
Nado, Z., Snoek, J., Tran, D., and Lakshminarayanan,
B. A simple approach to improve single-model deep
uncertainty via distance-awareness. Journal of Machine
Learning Research, 24:1–63, 2023.

MacKay, D. J. The evidence framework applied to classifi-
cation networks. Neural computation, 4:720–736, 1992a.

MacKay, D. J. A practical Bayesian framework for back-
propagation networks. Neural computation, 4:448–472,
1992b.

Mackay, D. J. C. Bayesian methods for adaptive models.
California Institute of Technology, 1992.

Martens, J. New insights and perspectives on the natural
gradient method. The Journal of Machine Learning Re-
search, 21:5776–5851, 2020.

Martens, J. and Grosse, R. Optimizing neural networks with
kronecker-factored approximate curvature. In Interna-
tional Conference on Machine Learning, pp. 2408–2417,
2015.

McAllister, R., Gal, Y., Kendall, A., Van Der Wilk, M., Shah,
A., Cipolla, R., and Weller, A. Concrete problems for
autonomous vehicle safety: advantages of bayesian deep
learning. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pp. 4745–4753,
2017.

Neal, R. M. Bayesian learning for neural networks, volume
118. Springer Science & Business Media, 2012.

Novak, R., Sohl-Dickstein, J., and Schoenholz, S. S. Fast
finite width neural tangent kernel. In International Con-
ference on Machine Learning, pp. 17018–17044, 2022.

Ortega, L. A., Santana, S. R., and Hernández-Lobato, D.
Deep variational implicit processes. In International
Conference of Learning Representations, 2023.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D.,
Nowozin, S., Dillon, J., Lakshminarayanan, B., and
Snoek, J. Can you trust your model’s uncertainty? eval-
uating predictive uncertainty under dataset shift? Ad-
vances in Neural Information Processing Systems, pp.
13969–13980, 2019.

Ritter, H., Botev, A., and Barber, D. A scalable Laplace
approximation for neural networks. In International Con-
ference on Learning Representations, volume 6, 2018.

Sajda, P. Machine learning for detection and diagnosis of
disease. Annu. Rev. Biomed. Eng., 8:537–565, 2006.

Salimbeni, H. and Deisenroth, M. Doubly stochastic varia-
tional inference for deep Gaussian processes. Advances in
Neural Information Processing Systems, 30:4588–4599,
2017.

Santana, S. R. and Hernández-Lobato, D. Adversarial α-
divergence minimization for Bayesian approximate infer-
ence. Neurocomputing, 471:260–274, 2022.

Scannell, A., Mereu, R., Chang, P., Tamir, E., Pajarinen,
J., and Solin, A. Function-space parameterization of
neural networks for sequential learning. International
Conference on Learning Representations, 2024.

11



Variational Linearized Laplace Approximation for Bayesian Deep Learning

Singh, P. N. Better application of Bayesian deep learning
to diagnose disease. In 2021 5th International Confer-
ence on Computing Methodologies and Communication
(ICCMC), pp. 928–934. IEEE, 2021.

Titsias, M. Variational learning of inducing variables in
sparse Gaussian processes. In Artificial Intelligence and
Statistics, pp. 567–574, 2009.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is All you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Villacampa-Calvo, C. and Hernández-Lobato, D. Alpha
divergence minimization in multi-class Gaussian process
classification. Neurocomputing, 378:210–227, 2020.

Williams, C. K. and Rasmussen, C. E. Gaussian processes
for machine learning, volume 2. MIT press Cambridge,
MA, 2006.

12



Variational Linearized Laplace Approximation for Bayesian Deep Learning

A. Proofs
Theorem 1 Cheng & Boots (2016). Using a sparse GP approximation with q(f ,u) = p(f |u)q(u) is equivalent to restricting
the mean and covariance functions of the dual representation in the RKHS to

µ̃ = ΦZ(a) and Σ̃ = I +ΦZAΦT
Z , (25)

where the functional ΦZ : RM → H defines a linear combination of basis functions as ΦZ(a) =
∑M

m=1 amϕzm
, with

a = (a1, . . . , aM ) ∈ RM and the functional ΦZAΦT
Z =

∑M
i=1

∑M
j=1 ϕziAi,jϕ

T
zj

, defines a quadratic expression where
A ∈ RM×M such that Σ̃ ≥ 0.

Proof. First of all, notice that ΦZ =
(
ϕz1 , · · · , ϕzM

)
∈ HM , leading to

KZ := ΦZΦ
T
Z =

 ⟨ϕz1 , ϕz1⟩ ⟨ϕz1 , ϕz2⟩ · · · ⟨ϕz1 , ϕzM
⟩

...
...

...
⟨ϕzM

, ϕz1
⟩ ⟨ϕzM

, ϕz2
⟩ · · · ⟨ϕzM

, ϕzM
⟩

 ∈ RM×M . (26)

Furthermore, Kx,Z defined as v→ ⟨ϕx,ΦZ(v)⟩ can be seen as a vector of RM , considering the image of any orthonormal
basis of RM . In fact, let e1, . . . , eM be the usual basis of RM :

Kx,Z
∼=


⟨ϕx,ΦZ(e1)⟩
⟨ϕx,ΦZ(e2)⟩

...
⟨ϕx,ΦZ(eM )⟩

 =


⟨ϕx,

∑M
i=1 e1,iϕz1⟩

⟨ϕx,
∑M

i=1 e2,iϕz2
⟩

...
⟨ϕx,

∑M
i=1 eM,iϕzM

⟩

 =


⟨ϕx, ϕz1⟩
⟨ϕx, ϕz2

⟩
...

⟨ϕx, ϕzM
⟩

 ∈ RM . (27)

Assume a variational distribution q(u) = N (u|m̃, S̃) with m̃ ∈ RM and S̃ ∈ RM×M . Then, defining the correspondent
dual vectors as

a = K−1
Z m̃ ∈ RM , A = K−1

Z S̃K−1
Z −K−1

Z ∈ RM×M , (28)

the mean and covariance functions in the dual formulation of the sparse GP q(f) are

m⋆(x) = ⟨ϕx, µ̃⟩ = ⟨ϕx,ΦZ(K
−1
Z m̃)⟩ = Kx,ZK

−1
Z m̃ , (29)

and

K⋆(x,x′) = ⟨ϕx,Σ(ϕx′)⟩ = ⟨ϕx, ϕx′ +ΦZAΦT
Zϕx′⟩ = ⟨ϕx, ϕx′⟩+ ⟨ϕx,ΦZAΦT

Zϕx′⟩ (30)

= K(x,x′) +Kx,ZAKT
x′,Z = K(x,x′) +Kx,Z(K

−1
Z S̃K−1

Z −K−1
Z )KZ,x′ , (31)

which is the same approximate GP posterior p(f) =
∫
p(f |u)q(u) du found in Equation (6) of Titsias (2009).

Proposition 1. If g(·, θ̂) ∈ H, then ∀ϵ > 0 exists a set of Mα inducing points Zα and a collection of scalar values a ∈ RMα

such that the dual representation of the sparse Gaussian process defined by

µ̃ = ΦZα
(a) and Σ̃ = (I +ΦZβ

AΦT
Zβ

)−1 , (32)

corresponds to a GP posterior approximation with mean and covariance functions defined as

m⋆(x) = hϵ(x) , (33)

K⋆(x,x′) = K(x,x′)−Kx,Zβ
(A−1 +Kβ)

−1KZβ ,x′ ,

where Zβ is a set of Mβ inducing points, A ∈ RMβ×Mβ , Kx,Zβ
is a vector with the covariances between f(x) and f(Zβ),

and hϵ verifies dH(g(·, θ̂), hϵ) ≤ ϵ, with dH(·, ·) the distance in the RKHS.

13



Variational Linearized Laplace Approximation for Bayesian Deep Learning

Proof. First of all, if g(·, θ̂) ∈ H, the reproducing property of the RKHS verifies that ∀ϵ > 0 there exists Zα ⊂ X , with X
the input space, and {ai}i∈N such that hϵ :=

∑Mα

i=1 aiϕzi
= ΦZα

(a) verifies

dH(g(·, θ̂), hϵ) ≤ ϵ . (34)

As a result, the mean function of the approximate posterior is

m⋆(x) = ⟨ϕx, µ̃⟩ = µ̃(x) = hϵ(x) ≈ g(x, θ̂) . (35)

On the other hand, using that

(I +ΦZβ
AΦT

Zβ
)−1 = I − ΦZβ

(A−1 +ΦT
Zβ

ΦZβ
)−1ΦT

Zβ
, (36)

the covariance function is

K⋆(x,x′) = ⟨ϕx, Σ̃(ϕx′)⟩ = ⟨ϕx, ϕx′⟩ − ⟨ϕx,ΦZβ
(A−1 +ΦT

Zβ
ΦZβ

)−1ΦT
Zβ

ϕx′⟩ (37)

= K(x,x′)−Kx,Zβ
(A−1 −KZβ

)−1KZβ ,x′ . (38)

Where the characterization of KZβ
and Kx,Zβ

as elements of RMβ×Mβ and RMβ of (26) and (27) are used.

Proposition 2. The value of A in Proposition 1 that minimizes (14) is

A =
1

σ2
K−1

β KZβ ,XKX,Zβ
K−1

β , (39)

where σ2 is the noise variance and KX,Zβ
is a matrix with the prior covariances between f(X) and f(Zβ). If Zβ = X,

the covariance function of the predictive distribution in (17) is equal to that of the full GP.

Proof. For simplicity, assume a non-inverse reparameterization where

q(f) = N
(
f
∣∣ΦZα(a), I +ΦZβ

ÂΦZβ

)
. (40)

We will find the optimal value for Â and compute the corresponding value for A (using the inverse reparameterization).
First, we will show that the true GP posterior can be written in the dual formulation as the following

p(f |y) = N
(
f |(ΦXΦT

X + σ2I)−1ΦXy), σ2(ΦXΦT
X + σ2I)−1

)
, (41)

where it verifies that the GP posterior mean function is

m(x) = ⟨ϕx, (ΦXΦT
X + σ2I)−1ΦXy⟩ = (ΦXΦT

X + σ2I)−1ΦXϕxy (42)

= (KX,X + σ2I)−1KX,xy = Kx,X(KX,X + σ2I)−1y . (43)

Where the characterization of KX,X and KX,x as elements of RN×N and RN is used, similarly to Equations (26) and (27).
Furthermore, using Woodbury matrix identity,

σ2(ΦXΦT
X + σ2I)−1 = I − ΦX(KX,X + σ2I)−1ΦT

X , (44)

where again, correspondence between operators and matrices is used. This leads to the covariance function:

K(x,x′) = ⟨ϕx, σ
2(ΦXΦT

X + σ2I)−1(ϕx′)⟩ = ⟨ϕx, I − ΦX(KX,X + σ2I)−1ΦT
X(ϕx′)⟩ (45)

= Kx,x′ −Kx,X(KX,X + σ2I)−1KX,x′ . (46)

This mean and covariance function are exactly the ones obtained from the original GP formulation (Titsias, 2009). Using the
ELBO is equivalent to the KL divergence between the true posterior and the variational approximation, we got

KL(q(f) | p(f |y)) ∝ 1

2
tr
(
B−1(I +ΦZβ

ÂΦT
Zβ

)
)
− 1

2
ln
(∣∣∣I +ΦZβ

ÂΦT
Zβ

∣∣∣) , (47)

14



Variational Linearized Laplace Approximation for Bayesian Deep Learning

where
B = σ2(ΦXΦT

X + σ2I)−1 . (48)

Naming M = I+ΦZβ
ÂΦT

Zβ
, it is important to notice that given ΦZβ

ÂΦT
Zβ

=
∑M

i=1

∑M
j=1 ϕzi âi,jϕ

T
zj

, despite being an
operator, M can be seen as a matrix whose entries are the application of I+ΦZβ

(·)ΦT
Zβ

to the usual basis of matrices. In
short

M = I+

 ϕz1 â1,1ϕ
T
z1

· · · ϕz1 â1,MϕT
zM

...
...

ϕzM
âM,1ϕ

T
z1
· · · ϕzM

âM,MϕT
zM

 ∈ RMβ×Mβ . (49)

The partial derivative of M w.r.t. a single position in the matrix Â is ∂M
∂âij

= (ΦZβ
δi)(ΦZβ

δj)
T , where δj denotes a

zero-vector with a single 1 at position j. Then, using the chain rule for matrices,

∂g(U)

∂Xij
= tr

(
∂g(U)

∂U

T
∂U

∂Xij

)
, (50)

we can compute the optimum in the two terms in the KL. The optimum for the logarithm term can be computed as

∂ ln(|M |)
∂âij

= tr

(
∂ ln(|M |)

∂M

T
∂M

∂âij

)
(51)

= tr(M−1T (ΦZβ
δi)(ΦZβ

δj)
T ) (52)

= tr((ΦZβ
δj)

TM−1(ΦZβ
δi)) (53)

= (ΦT
Zβ

M−1ΦZβ
)δji , (54)

leading to
∂ ln(|M |)

∂Â
= ΦT

Zβ
M−1ΦZβ

= ΦT
Zβ

(I +ΦZβ
ÂΦT

Zβ
)−1ΦZβ

. (55)

On the other hand, the optimum for the trace term is

∂tr(B−1M)

∂âij
= tr

(
∂tr(B−1M)

∂M

T
∂M

∂âij

)
(56)

= tr
(
B−1(ΦZβ

δi)(ΦZβ
δj)

T
)

(57)

= tr((ΦZβ
δj)

TB−1T (ΦZβ
δi)) (58)

= (ΦT
Zβ

B−1ΦZβ
)δji , (59)

where we used that B = BT . As a result,

∂tr(B−1M)

∂Â
= ΦT

Zβ
B−1ΦZβ

(60)

= σ2ΦT
Zβ

(ΦXΦT
X + σ2I)−1 ΦZβ

. (61)

Using all the derivations

∂KL(q(f) | p(f |y))
∂Â

= 0 ⇐⇒ ΦT
Zβ

(B−1 − (I +ΦZβ
ÂΦT

Zβ
)−1)ΦZβ

= 0 . (62)

Using the Woodbury matrix identity

0 = ΦT
Zβ

(B−1 − (I +ΦZβ
ÂΦT

Zβ
)−1)ΦZβ

(63)

= ΦT
Zβ

(B−1 − I +ΦZβ
(Â−1 +Kβ)

−1ΦT
Zβ

)ΦZβ
(64)

= ΦT
Zβ

B−1ΦZβ
−Kβ +Kβ(Â

−1 +Kβ)
−1Kβ . (65)

15



Variational Linearized Laplace Approximation for Bayesian Deep Learning

Thus, the value of Â where ∂KL/∂Â = 0 verifies

Â = ((K−1
β −K−1

β ΦT
Zβ

B−1ΦZβ
K−1

β )−1 −Kβ)
−1 . (66)

Using that B−1 = σ−2(ΦXΦT
X + σ2I), we can take further derivations on the expression of Â as

Â = ((K−1
β −K−1

β ΦT
Zβ

B−1ΦZβ
K−1

β )−1 −Kβ)
−1 (67)

= ((K−1
β −K−1

β ΦT
Zβ

σ−2(ΦXΦT
X + σ2I)ΦZβ

K−1
β )−1 −Kβ)

−1 (68)

= ((K−1
β − σ−2K−1

β KZβ ,XKX,Zβ
K−1

β −K−1
β )−1 −Kβ)

−1 (69)

= ((−σ−2K−1
β KZβ ,XKX,Zβ

K−1
β )−1 −Kβ)

−1 (70)

= −((σ−2K−1
β KZβ ,XKX,Zβ

K−1
β )−1 +Kβ)

−1 . (71)

Applying again Woodbury matrix identity:

Â = −((σ−2K−1
β KZβ ,XKX,Zβ

K−1
β )−1 +Kβ)

−1 (72)

= −(K−1
β −K−1

β (σ−2K−1
β KZβ ,XKX,Zβ

K−1
β +K−1

β )−1K−1
β ) (73)

= −(K−1
β − (σ−2KZβ ,XKX,Zβ

+Kβ)
−1) (74)

= −K−1
β + (σ−2KZβ ,XKX,Zβ

+Kβ)
−1 . (75)

If we substitute this value on the predictive distribution

K⋆(x,x′) = ⟨ϕx,M(ϕx′)⟩ = K(x,x′) +Kx,Zβ
ÂKZβ ,x′ (76)

= K(x,x′) +Kx,Z(−K−1
β + (σ−2KZβ ,XKX,Zβ

+Kβ)
−1)KZβ ,x′ (77)

= K(x,x′)−Kx,Zβ
K−1

β KZβ ,x′ +Kx,Zβ
(σ−2KZβ ,XKX,Zβ

+Kβ)
−1)KZβ ,x′ (78)

= K(x,x′)−Kx,Zβ
K−1

β KZβ ,x′ (79)

+Kx,Zβ
K−1

β (Kβ(σ
−2KZβ ,XKX,Zβ

+Kβ)
−1Kβ)K

−1
β KZβ ,x′ . (80)

This expression coincides with the optimal sparse GP solution described by Titsias (2009), with optimal variational
covariance (Kβ(σ

−2KZβ ,XKX,Zβ
+Kβ)

−1Kβ). As a result, the optimal solution for VaLLA coincides with the optimal
solution for standard sparse GPs. Let us now compute the optimal value of A given the optimal value of Â. First, notice
that using Woodbury Matrix identity

(I +ΦZβ
AΦT

Zβ
)−1 = I − ΦZβ

(A+Kβ)
−1ΦT

Zβ
. (81)

Therefore, the relation between A and Â is Â = −(A+Kβ)
−1. Meaning that

Â = −K−1
β + (σ−2KZβ ,XKX,Zβ

+Kβ)
−1 =⇒ A =

1

σ2
K−1

β KZβ ,XKX,Zβ
K−1

β . (82)

Global optimum To complete the proof of the solution in Eq. (82) being not only optimal but also a maximum of the
ELBO, we must test the behavior of the second derivative w.r.t. A. Let us reuse the previous results, where we found that

∂KL(q(f) | p(f |y))
∂âi,j

=
1

2
δTj (Φ

T
Zβ

B−1ΦZβ
− ΦT

Zβ
M−1ΦZβ

)δi . (83)

Taking a second derivative w.r.t. another location âu,v yields

∂

∂âu,v

∂KL(q(f) | p(f |y))
∂âi,j

=
1

2

∂

∂âu,v
δTj (Φ

T
Zβ

B−1ΦZβ
− ΦT

Zβ
M−1ΦZβ

)δi . (84)

Considering that B does not depend on Â, the first term drops from the derivative. Thus

∂

∂âu,v

∂KL(q(f) | p(f |y))
∂âi,j

= −1

2

∂

∂âu,v
δTj (Φ

T
Zβ

M−1ΦZβ
)δi . (85)

16



Variational Linearized Laplace Approximation for Bayesian Deep Learning

Here we aim to use the chain rule for matrices,

∂g(U)

∂Xij
= tr

(
∂g(U)

∂U

T
∂U

∂Xij

)
, (86)

Then, consider that
∂ δTj (Φ

T
Zβ

M−1ΦZβ
)δi

∂M
= −M−1ΦZβ

δjδ
T
i Φ

T
Zβ

M−1 . (87)

Then,
∂

∂âu,v
δTj (Φ

T
Zβ

M−1ΦZβ
)δi = tr

((
−M−1ΦZβ

δjδ
T
i Φ

T
Zβ

M−1
)T

ΦZβ
δu(ΦZβ

δv)
T

)
. (88)

We can work on this trace to simplify the expression as

∂

∂âu,v
δTj (Φ

T
Zβ

M−1ΦZβ
)δi = tr

((
−M−1ΦZβ

δjδ
T
i Φ

T
Zβ

M−1
)T

ΦZβ
δu(ΦZβ

δv)
T

)
(89)

= −tr

(
δTv Φ

T
Zβ

(
M−1ΦZβ

δjδ
T
i Φ

T
Zβ

M−1
)T

ΦZβ
δu

)
(90)

= −δTv ΦT
Zβ

(
M−1ΦZβ

δjδ
T
i Φ

T
Zβ

M−1
)T

ΦZβ
δu (91)

= −δTv ΦT
Zβ

M−1ΦZβ
δjδ

T
i Φ

T
Zβ

M−1ΦZβ
δu . (92)

(93)

Naming Q = ΦT
Zβ

M−1ΦZβ
, we got

∂

∂âu,v

∂KL(q(f) | p(f |y))
∂âi,j

=
1

2
Qv,j ·Qi,u =

1

2
Qj,v ·Qi,u , (94)

where in the last equality we used that Q is symmetric. Using the definition of M we know that

M−1 = I − ΦZβ
(A+Kβ)

−1ΦT
Zβ

=⇒ Q = Kβ −Kβ(A+Kβ)
−1Kβ . (95)

This shows that Q is the posterior covariance of a GP with prior covariances Kβ and noise covariances A.

∂

∂Â

∂KL(q(f) | p(f |y))
∂Â

=
1

2
Q⊗Q , (96)

with ⊗ denoting the Kronecker product and Q a definite positive matrix. As the Kronecker product of two definite positive
matrices is definite positive, the optimal is a minimum of the KL. Given that this second derivative is positive-definite, the
value found is the global minimum of the ELBO objective.

B. Pseudocode
Algorithm 1 shows the structure of VaLLA’s training loop, where no Early-Stopping is considered. Using the kernels and A
it is easy to compute the KL in Eq. 15. As a result, the training loop is easy to implement, since q(f), given by Q_mean and
Q_var are easily computable as detailed in the algorithm.

C. MAP solution in Hilbert Space
Whether the map solution is in the Hilbert space might be difficult (if not impossible) to know. However, there are cases
where it can be theoretically shown; for example in a linear model. Let the map solution be a linear model as

g(x, (w, b)) = wTx+ b . (97)

17



Variational Linearized Laplace Approximation for Bayesian Deep Learning

Algorithm 1 VaLLA’s training loop with α = 1

Require: Pre-trained MAP solution f , input batch X,y, m number of inducing points and T iterations.
Z← kmeans(X,m) {Initialize inducing points}
L← I {Initialize Cholesky decomposition of A}
for i ∈ {0, . . . , T − 1} do
(Xb,yb)← get_batch() {Get mini-batch of data}

Jx ← compute_jacobian(Xb) {Compute Jacobians}
Jz ← compute_jacobian(Z)

Kx ← σ2
0JxJ

T
x {Compute Kernels}

Kxz ← σ2
0JxJ

T
z

Kz ← σ2
0JzJ

T
z

A← LLT {Compute Variational Matrix}

Q_mean← f(Xb) {Compute posterior mean}
Q_var ←Kx −Kxz(A

−1 +Kz)
−1KT

xz {Compute posterior covariance matrix}

KL← compute_KL(A,Kz) {Compute Kullback-Leibler divergence}
NLL← compute_NLL(yn, Q_mean,Q_var) {Compute Negative Log-likelihood}
loss← − len(X)

len(Xb)
NLL+KL

Optimize parameters by minimizing loss.
end for

Then, the features (Jacobians) are
ϕ(x) = (xT , 1)T . (98)

With a single inducing point z and scalar value a ∈ R, the mean function would be

m(x) = aϕ(x)Tϕ(z) = a(xT z+ 1) . (99)

This recovers the MAP solution if a = b and z = w/a.

However, if the model is not linear but has a linear last layer as

g(x, (w, b,θ)) = wThθ(x) + b , (100)

where hθ is a non-linear function that depends on parameters θ. Then, the features (Jacobians) are

ϕ(x) =
(
hθ(x)

T , 1, (∇θhθ(x))
Tw
)T

. (101)

Here it might be difficult to check if there exists a combination that yields the map solution as the mean function.

D. Over-fitting and Early Stopping
In Section 3.4 we discussed the fact that the standard maximization of the ELBO does not allow the optimization of the prior
variance. To summarize that section, the optimal value for the prior variance is infinite as a result of the mean being fixed to
the optimal MAP solution. As discussed, we circumvent this by applying α-divergences, which are not ill-defined in this
learning setup; allowing the optimization of the prior. However, the use of this optimization objective is not perfect and we
faced the fact that it tends to over-fit the prior variance to the training data. The middle column of Figure 6 (middle) shows
the obtained predictive distribution (two times standard deviation) learned from VaLLA using the black points as training
data. The MAP solution is obtained using a 2 hidden layer MLP with 50 hidden units and tanh activation, optimized to
minimize the RMSE of the training data for 10000 iterations with Adam and learning rate 10−3. VaLLA on the other hand
is trained for 20000 iterations. As one may see in the image, the prior variance is fitted to the data to the point where the
uncertainty does not increase in the middle gap of the data.

18



Variational Linearized Laplace Approximation for Bayesian Deep Learning

VaLLA Val M = 5 VaLLA No-Val M = 5 LLA

VaLLA Val M = 10 VaLLA No-Val M = 10 ELLA M = 10

Figure 6. Predictive distribution (mean and two times the standard deviation) on a toy 1D regression dataset with a 2 hidden layer MLP
with 50 units. Training points are shown in black and the validation set is shown in orange. The first column shows the obtained predictive
distribution using early-stopping and a validation set, with 5 and 10 inducing points, respectively. The second column shows the results
obtained without early-stopping. LLA and ELLA are shown in the last column.

In this experiment, VaLLA optimizes hyper-parameters along with the variational objective. LLA optimizes the prior
variance and likelihood variance by maximizing the marginal log likelihood and ELLA uses LLA’s optimal hyper-parameters.

In this situation there are two simple courses of action: we could return to the original ELBO and choose the prior variance
by cross-validation; or we could perform early-stopping with the α-divergences objective, using a validation set to stop
training before over-fitting the prior variance parameter. This last approach may not work as it assumes that there is a
point during training where the prior variance truly explains the underlying data without over-fitting. However, as the prior
variance is set to a relatively large value compared to the optimal one (which is small and leads to over-fitting), this method
resulted in great performance for VaLLA, while avoiding using a costly cross-validation approach. The left column of
Figure 6 shows the obtained predictive distribution (two times standard deviation) learned from VaLLA, in this case, using
the black points as training data and the orange points as the validation set. In the experiments, we computed the NLL of the
validation set every 100 training iterations and stopped training when it worsens. This also allowed us to save computational
time.

E. Increasing Inducing Points
Using the optimal covariance in Proposition 2, if the set of inducing points equals the training points Z = X, the posterior
distribution of VaLLA equals that of the exact LLA Gaussian Process. This suggest that increasing the number of inducing
points would lead to better uncertainty estimations. In this section, we aim to show how close is the predictive distribution
of VaLLA to that of LLA when we increase the number of inducing points in Z.

Figure 7 shows the obtained predictive distribution of VaLLA (first row) and ELLA (second row) for M = 5, M = 10 and
M = 20 inducing points/samples. The initial and final locations of the inducing points are also shown for VaLLA. The
posterior distribution obtained by LLA is shown in dotted orange. The MAP solution is obtained using a 2 hidden layer
MLP with 50 hidden units and tanh activation, optimized to minimize the RMSE of the training data for 12000 iterations
with Adam and learning rate 10−3. VaLLA on the other hand is trained for 30000 iterations. For this experiment, VaLLA
and ELLA use the optimal prior variance and likelihood variance obtained by optimizing LLA’s marginal log likelihood.
As one may see in the image, it is clear that one of the main differences between the two methods is that VaLLA tends to
over-estimate the variance whereas ELLA tends to infra-estimate it, compared to LLA. Furthermore, the value of M for
which the model is closer to the LLA posterior is lower for VaLLA than for ELLA. As we increase M , VaLLA’s predictive
distribution becomes closer and closer to that of LLA.

The initial and final position of the inducing locations is also shown in the figure. For this experiments, the initial values are
computed using K-Means. It can be seen how VaLLA is capable of tuning the inducing locations and move them from one
cluster of points to another as needed. This is one of the main advantages of this method compared to ELLA.

19



Variational Linearized Laplace Approximation for Bayesian Deep Learning

M = 5 M = 10 M = 20

Initial Inducing Points
Optimized Inducing Points

Initial Inducing Points
Optimized Inducing Points

Initial Inducing Points
Optimized Inducing Points

Figure 7. Predictive distribution (two times the standard deviation) on a toy 1D regression dataset with a 2 hidden layer MLP with 50
units. The obtained results for 5, 10 and 20 inducing points for VaLLA are shown in the first row. ELLA’s predictive distribution with the
same amount of samples from the training data is shown in the second row. LLA’s predictive distribution is shown in dotted orange.

F. Experimental Details
Source code for the conducted experiments can be accessed in the following repository: https://github.com/
Ludvins/Variational-LLA.

F.1. MAP solutions

For regression problems (Year, Airline and Taxi datasets), a 3-layer fully connected NN was used with 200 units in each
layer. The optimal weights are obtained by minimizing the RMSE using 20000 iterations of batch size 100 and Adam
optimizer (Kingma & Ba, 2015) with learning rate 10−2 and weight decay 10−2.

For MNIST and FMNIST experiments, a 2-layer fully connected NN was used with 200 units in each layer. The optimal
weights are obtained by minimizing the NLL using 20000 iterations of batch size 100 and Adam optimizer (Kingma & Ba,
2015) with learning rate 10−3 and weight decay 10−3.

F.2. Laplace Library

The Laplace library (Daxberger et al., 2021a) was used to perform last-layer, KFAC and diagonal approximations of the
LLA method and optimize the prior variance on each case. The latter is done by optimizing the log marginal likelihood of
the data using the library’s log_marginal_likelihood method for 40.000 iterations with the Adam optimizer and
learning rate 10−3.

F.3. Efficient Kernel Computation for MLP

In this section we discuss an efficient implementation for computing the Neural Tangent Kernel κ(x,x′). First of all, take
into account that the computation of the kernel can be reduced to a summation on the number of parameters of the model:

κ(x,x′) = σ2
0Jθ̂(x)

TJθ̂(x
′) = σ2

0

∑
θs∈θ̂

∂

∂θs
g(x, θ̂)

∂

∂θs
g(x′, θ̂). (102)

One of the limitations of computing the kernel is storing Jθ̂(x) in memory, which is a 3 dimensional tensor of (batch size,
number of classes, number of parameters). Computing the kernel as a sum allows to simplify the required computations
significantly (we no longer have to store in memory the Jacobians). Consider now a MLP as

g(x, θ̂) = hL ◦ a ◦HL−1 ◦ · · · ◦ a ◦ h1(x) , (103)

where each function a is a non-linear activation function and each function h is a linear function of the form

hl(x) = W T
l x+ bl . (104)

20

https://github.com/Ludvins/Variational-LLA
https://github.com/Ludvins/Variational-LLA


Variational Linearized Laplace Approximation for Bayesian Deep Learning

With this, g is supposed to be a fully-connected neural network of L layers. Each of the partial derivatives of the neural
network are

∂

∂Wl,j,i
g(x, θ̂) and

∂

∂bl,j
g(x, θ̂) ∀l = 1, . . . , L , (105)

and the kernel is computed simply by adding the product of these derivatives. Here, i is a sub-index denoting input i-th to
layer l. Similarly, j is a sub-index denoting each component of the bias vector parameter at layer l, or similarly, each output
of that layer.

In fact, using the structure of the model and the chain rule, the derivative of the oth output of the network w.r.t. the jth, ith

weight parameter of the lth layer is:

∂

∂Wl,j,i
go(x, θ̂) =

(
∂

∂hl
go(x, θ̂)

)T (
∂

∂Wl,j,i
hl

)
, (106)

where each of the two vectors in the r.h.s. has length equal to the number of units in the layer l. In fact

∂

∂Wl,j,i
hl = 1l · a(hl−1)i , (107)

where a(hl−1)i corresponds to the inputs of the lth layer. Moreover, ∂
∂hl

go(x, θ̂) can also be computed using the chain rule:

∂

∂hl
go(x, θ̂) =

∂

∂hl+1
go(x, θ̂)

∂

∂hl
hl+1 =

∂

∂hl+1
go(x, θ̂)Wl

T diag(a′(hl)) , (108)

which can be easily computed by back-propagating the derivatives. The same derivations can be easily done for the biases of
each layer bl,j . As a result, the derivatives only depend on a back-propagating term ∂

∂hl
go(x, θ̂) for each layer, the value of

the parameters Wl, bl and the propagated outputs at each layer h1, . . . , hL−1 evaluated at the non-linear activation a(·) and
its derivative a′(·). This means that, if we store the intermediate outputs of each layer (h1, . . . , hL−1) on the forward pass of
the model, by using a single backward pass, we can compute ∂

∂hl
go(x, θ̂) for each layer.

Critically, given each ∂
∂hl

go(x, θ̂), we can add the contribution of each layer to the kernel, using (106). In this process, we
can sped-up the computations by using structure in the derivatives. For example, in (107) we observe that the derivative has a
simple form which is a vector of ones times a scalar. Furthermore, there is no dependence on j, the output unit corresponding
to the weight Wl,j,i. Therefore, for two instances x and x′, the kernel contribution (ignoring the prior variance parameter)
corresponding to outputs o and o′ is:

∂

∂Wl,j,i
go(x, θ̂)

∂

∂Wl,j,i
g′o(x

′, θ̂) =

(
∂

∂hl
go(x, θ̂)

)T (
∂

∂Wl,j,i
hl

)(
∂

∂hl
go(x

′, θ̂)

)T (
∂

∂Wl,j,i
hl

)
(109)

=

(
∂

∂hl
go(x, θ̂)

)T (
∂

∂Wl,j,i
hl

)(
∂

∂Wl,j,i
hl

)T (
∂

∂hl
g′o(x

′, θ̂)

)
(110)

=

(
∂

∂hl
go(x, θ̂)

)T

1l · a(hl−1(x))i · a(hl−1(x
′))i1

T
l

(
∂

∂hl
g′o(x

′, θ̂)

)
(111)

= slo,xa(hl−1(x))i · a(hl−1(x
′))is

l
o′,x′ (112)

= slo,xs
l
o′,x′a(hl−1(x))ia(hl−1(x

′))i , (113)

with slo,x =
(

∂
∂hl

go(x, θ̂)
)T

1l a scalar. Similar simplifications occur in the case of, e.g., a convolutional layer.

Summing up, by using this method, all the required kernel matrices can be easily and efficiently computed, for a mini-batch
of data points and a set of inducing points, with a similar cost as that of letting the mini-batch or the inducing points go
through the DNN. A disadvantage is, however, that the described computations will have to be manually coded for each
different DNN architecture. This becomes tedious in the case of very big DNN with complicated layers, as described in
Section 3.5.

21



Variational Linearized Laplace Approximation for Bayesian Deep Learning

Year Airline Taxi

0.0 0.2 0.4 0.6 0.8 1.0

α

0.0

0.2

0.4

0.6

0.8

1.0

P (
x
,y

)[
y
∈
I

(x
,α

)]

ELLA

VaLLA

LLA KFAC

0.0 0.2 0.4 0.6 0.8 1.0

α

0.0

0.2

0.4

0.6

0.8

1.0

P (
x
,y

)[
y
∈
I

(x
,α

)]

ELLA

VaLLA

LLA KFAC

0.0 0.2 0.4 0.6 0.8 1.0

α

0.0

0.2

0.4

0.6

0.8

1.0

P (
x
,y

)[
y
∈
I

(x
,α

)]

ELLA

VaLLA

LLA KFAC

Figure 8. Illustration of CQM, for each method, on the regression datasets Year (left), Airline (middle) and Taxi (right). The MAP solution
is given by a fully connected network with 3 hidden layers of 200 units and tanh activations.

G. Further Analysis of the Quantile Metric
As stated in Section 5, we proposed a new metric for regression problems that, in a way, extends ECE to regression problems
with Gaussian predictive distributions with the same mean. This kind of metric is desirable for LLA methods as all of
them rely on keeping the optimal MAP solution as the predictive mean of the model. They only differ in the predictive
variance. Formally, CQM computes for each α ∈ (0, 1) the probability that points fall into the predictive centered interval
of probability α. The underlying reasoning is that, if the model explains the data well enough, α · 100% of the points will
fall inside the α · 100% centered quantile interval. Thus, the metric defined as

CQM =

∫ 1

0

∣∣∣P(x⋆,y⋆) [y
⋆ ∈ I(x⋆, α)]− α

∣∣∣ dα , (114)

should be roughly 0 when the model predictive distribution is similar to the actual one, given by the observed data.

Figure 8 shows the evolution of P(x⋆,y⋆) [y
⋆ ∈ I(x⋆, α)] w.r.t. α for the best performing models in the regression problems.

CQM corresponds to the area between the shown curve and y = x (black line). This figure allows to argue that (in
general) all methods are over-estimating the predictive variance as they are giving values above the diagonal. That is,
for a specific value of α ∈ (0, 1), the reported probabilities are higher than α, meaning that, on average, there are more
points in I(x, α) than they should. That is, the predicted interval is larger than it should, which can only mean that the
variance is over-estimated. From a geometrical perspective, it is clear that CQM is always greater than 0 and lower than 0.5;
independently of the model and dataset used.

In fact, this figure allow to visually study the level of over/infra-estimation of the prediction uncertainty, for each degree of
confidence α. For example, in the Year dataset (Figure 8) we see that VaLLA slightly over-estimates the uncertainty for
α ∈ (0, 0.7) while it infra-estimates it for larger values of α.

22


