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Abstract
DREAMCODER is an inductive program synthesis
system that, whilst solving problems, learns to
simplify search in an iterative wake-sleep proce-
dure. The cost of search is amortized by training
a neural search policy, reducing search breadth
and effectively “compiling” useful information to
compose program solutions across tasks. Addi-
tionally, a library of program components is learnt
to compress and express discovered solutions in
fewer components, reducing search depth. We
present a novel approach for library learning that
directly leverages the neural search policy, effec-
tively “decompiling” its amortized knowledge to
extract relevant program components. This pro-
vides stronger amortized inference: the amortized
knowledge learnt to reduce search breadth is now
also used to reduce search depth. We integrate our
approach with DREAMCODER and demonstrate
faster domain proficiency with improved general-
ization on a range of domains, particularly when
fewer example solutions are available.

1. Introduction
The goal in inductive program synthesis is to generate a pro-
gram whose functionality matches example behaviour (Gul-
wani et al., 2017). If behaviour is specified as input/output
examples, then the problem could be solved trivially by
defining a program that embeds (hard codes) the example
transformations directly. This solution, however, does not
provide an account relating, or explaining, how inputs map
to outputs, nor does it facilitate generalization to inputs be-
yond what it has observed. Discovering a program that can
do this cannot be derived from examples, just as our scien-
tific theories cannot be derived from observations (Deutsch,
2011)—some form of hypothesising is required (i.e. search).
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Figure 1: (A) Program search space for a simple library
containing two primitives: a function f : N → N and a
variable n : N. Red path highlights the program f(f(n)).
(B) Restructured search space after f ◦ f is chunked into a
new primitive g, illustrating the breadth-depth trade off.

Any program must be built from some set of primitive com-
ponents: base operations and elements. While a set of such
components (library) is finite, they can be combined in an in-
finite number of ways to form different programs. Moreover,
this number grows exponentially with the number of compo-
nents used, rendering blind search intractable in all but the
simplest of cases. Improving upon blind search requires re-
ducing the number of combinations searched. There are two
broad routes to achieving this: we can (i) reduce the breadth
searched as we move down the search tree to program solu-
tions or we can (ii) reduce the depth searched by pushing
program solutions higher up the search tree. Accomplishing
either requires additional knowledge.

To reduce the breadth searched requires knowledge for
avoiding search paths that do not contain program solutions,
while focusing on those that do—i.e. a search policy. To
reduce the depth searched requires knowledge about which
functionality is used by program solutions: if any functional-
ity, expressed as a combination of library components, was
itself made part of the library, then any program using this
functionality could be expressed with fewer components. In
effect, a copy of every program containing the functional-
ity is pasted higher up the search tree, reducing the depth
required to reach the program’s corresponding computa-
tion, as illustrated in Fig. 1. We refer to turning composed
functionality into a library operation as “chunking”.

Chunking to reduce the search depth comes at the cost of
increasing the search breadth—there are now more library
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components to consider (Fig. 1). Hence, the knowledge
for successfully reducing the depth searched in a program
induction task is highly reliant on the knowledge used to
reduce the breadth, and vice versa. This interplay is key to
the main problem addressed in this paper.

Practical and successful program synthesis approaches, such
as FlashFill (Gulwani, 2011), involve the careful selection
of its library components, i.e., the domain-specific language
(DSL) used. Human experts define a search space where
programs capable of solving specific tasks can be found
tractably, but these systems are typically unable to solve
tasks not anticipated by the designers—failing to generalize.
A general-purpose inductive program synthesis system, then,
cannot rely on handcrafted DSLs; instead, it must learn how
to structure its search space, via the components contained
in its library (Dechter et al., 2013; Dumancic et al., 2021;
Shin et al., 2019; Iyer et al., 2019), and learn how to navigate
that search space for program solutions (Balog et al., 2016;
Devlin et al., 2017; Kalyan et al., 2018; Chen et al., 2018).

DREAMCODER (Ellis et al., 2021; 2023) is an inductive pro-
gram synthesis system that jointly learns a library and a prob-
abilistic search policy, but without explicitly considering
the interplay between search depth and breadth described
above. That is, the knowledge learnt to guide the search
space has no direct effect on how it is restructured (i.e., how
the library is learnt). We contribute a novel approach for
library learning that directly leverages the existing knowl-
edge learnt to guide search, enabling the extraction of more
useful, and complementary, components from the same ex-
perience. We integrate our approach with DREAMCODER
and demonstrate faster domain proficiency with improved
generalization on a range of program synthesis domains.

2. Background
We begin with an overview of DREAMCODER’s approach:
viewing program induction as probabilistic inference (Lake
et al., 2015). Consider a set of program induction tasks
X . We assume each task x ∈ X was produced by an unob-
served (latent) program ρ and each ρ was generated by some
prior distribution pθ∗

D
(ρ). We assume the prior is defined

by model parameters θD that specify the probability that
components part of a library D are used when generating
programs (Liang et al., 2010; Menon et al., 2013). The true
library and component parameters θ∗

D are unknown.

The marginal likelihood of the observed tasks is then given
by pθD (X ) =

∏
x∈X

∑
ρ p(x | ρ)pθD (ρ), where p(x | ρ)

is the likelihood of x being produced, and hence solved,
by ρ. To learn a good generative model that maximises
the likelihood, we need to know which programs score
highly under p(x | ρ)—i.e. solve our tasks. We have seen
previously why this is challenging: discovering programs

that can account for the observed tasks requires search.

To help with search, a recognition (inference) model qϕD (ρ |
x) is learnt to infer the programs that are most likely to solve
a given task. The recognition model parameters ϕD map
tasks to distributions over programs that, as with the gen-
erative model, specifies the probability that components
part of the library D are used. Estimating ϕD is done us-
ing both (ρ, x) pairs sampled from the generative model
(fantasies) and programs found to solve the observed tasks
x ∈ X (replays). The recognition model is used to search
for programs that solve a task x by enumerating programs
in decreasing order of their probability under qϕD (ρ | x).
Programs that solve x are stored in a task-specific set Bx.

Discovering programs that may have produced the observed
tasks (those in {Bx}x∈X ) now provides more data to in-
fer the parameters θD generating them. Inferring θD en-
tails choosing the library D whose components they con-
trol. Rather than maximise the likelihood directly, DREAM-
CODER performs maximum a posteriori (MAP) inference
using a prior over libraries D and parameters θD. Maximis-
ing the MAP objective (which can only be approximated)
w.r.t. D corresponds to updating D to include functions that
best compress the discovered solutions. After updating D,
parameters θD are updated to their MAP estimates.

This completes a single learning cycle with DREAM-
CODER—a variant of the wake-sleep algorithm (Hinton
et al., 1995; Bornschein & Bengio, 2014; Le et al., 2020).
An iterative procedure is used to jointly learn a generative
and inference model (Dayan et al., 1995), while addition-
ally searching for program solutions. After updating the
generative model, it can then be used to sample (ρ, x) pairs
more indicative of those coming from the true generating
process. These can be used to learn a more accurate recog-
nition model with improved inference (dream sleep), which
results in more programs capable of solving tasks discov-
ered during search (wake). More program solutions lead to
better estimates of the generative model (abstraction sleep).
Each stage bootstraps off that learnt in the previous stage.

3. Dream Decompiling
Learning a library D and recognition model parameters ϕD
during DREAMCODER’s two sleep phases corresponds to
learning the two types of knowledge (discussed in Section
1) to simplify program search (Fig. 2 black arrows). Adding
functions to D reduces the search depth to reach programs
utilizing those functions. Searching for programs under
qϕD (ρ | x) directs the search down preferred branches.
Chunking (to reduce search depth) restructures the search
space that the recognition model guides (to reduce search
breadth). How the search space is restructured (here by
adding to D) should complement the search policy (here
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Figure 2: Positive feedback loop between searching for pro-
gram solutions and learning to simplify search in DREAM-
CODER (black arrows). In dream decompiling (orange ar-
row) the knowledge learnt to reduce search breath directly
influences the knowledge learnt to reduce search depth.

qϕD (ρ | x)) guiding that space. For example, consider a task
with multiple solutions: reducing the depth to reach some
of those solutions does not simplify search if the guide is fo-
cused on others. In DREAMCODER, the recognition model
has only an indirect effect on what is chunked through the
program solutions it helps discover (as they then determine
which functions are most compressive). This raises the ques-
tion: can we improve inference by directly leveraging the
knowledge learnt by the recognition model to decide what
is chunked, and hence have the recognition model shape the
search space that it will subsequently learn to guide?

The recognition model uses one set of parameters (ϕD)
to model the relation between observed tasks and latent
programs that may have produced those tasks. A single
function (parameterised by ϕD) is used to specify an infer-
ence distribution q(ρ | x) for any x, rather than learning
each individually. This is called amortized inference (Gersh-
man & Goodman, 2014; Stuhlmüller et al., 2013): search on
new tasks becomes tractable by reusing knowledge learnt
from past inferences. By leveraging the recognition model
to decide what to chunk, we now amortize the cost of search
(inference) in two ways: recognition model parameters ϕD
are reused to reduce both search breadth and depth.

The amortized model learnt by the recognition model offers
the potential to chunk valuable functions for unsolved tasks,
due to its ability to generalize. Unsolved tasks have no
example solutions to infer compressive functionality. More-
over, the functionality crucial for solving new tasks may
not be present or sufficiently abundant in existing solutions
to other tasks. Such functionality is thus overlooked by
compression-focused approaches to library learning: deal-
ing with future uncertainty is often antagonistic to optimal
compression of what has worked in the past (Chollet, 2019).

Training the recognition model on (ρ, x) pairs “compiles”
useful information into model parameters ϕD for generating
program solutions across tasks (Le et al., 2017). The fantasy

(ρ, x) pairs sampled from the generative model are com-
monly referred to as “dreams” (Murphy, 2023). Chunking
with the recognition model (Fig. 2 orange arrow) involves
utilizing the compiled information to identify the most use-
ful functions to incorporate into the library, essentially de-
compiling the knowledge acquired through amortized infer-
ence. This is analogous to a decompiler translating compiled
machine code into high-level source code. Hence, we refer
to this concept as “dream decompiling”.

4. Approach
In this section we present two variants of dream decompil-
ing, addressing the problem of choosing effective library
components. For simplicity, we consider the case where
the recognition model defines a probability distribution over
library components and that the probability of generating a
program is equal to the product of independently generating
each component of the program. Appendix A describes
how this extends to bigram distributions over well-typed
programs (as is the case with DREAMCODER).

A simple approach to chunking with the recognition model
is to consider which functions it wants to use most often,
irrespective of the particular task being solved:

qϕD (f) = Ex∼X [qϕD (f | x)] (1)

We refer to this variant as DREAMDECOMPILER-AVG.
While this provides a means to rank each f in a set of
candidates F , there are two problems with this approach:

i. A ranking can determine if chunking one function is
better than another, but it provides no insight into how
many functions (if any) should be chunked.

ii. Larger functions are naturally harder to generate than
smaller functions and hence disfavoured in the ranking.
To see why this can be problematic, consider a strict
subfunction s of a function f . On all tasks, the recogni-
tion model is less likely to generate f than s as it would
need to generate all components in s plus more. But if
the recognition model is only ever intending to gener-
ate s as part of f , then chunking f is better: future use
would require generating a single component instead
of multiple and s has no use elsewhere.

If we want to leverage the recognition model for chunk-
ing, we need a criterion that (i) determines which functions
should actually be chunked and (ii) considers the overall im-
pact of chunking a function, not only generation preference.

It is unknown whether chunking a function will enhance,
diminish, or have no impact on the recognition model’s
ability to guide the search for program solutions. A for-
mal way to handle uncertain knowledge is with probability
distributions (Cox, 1946). In this section we introduce a
probabilistic model to systematically express the uncertainty
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in whether or not chunking a given function will have an
overall beneficial effect on the recognition model’s future
ability to guide search for program solutions. The model,
written p(c | f ;ϕD), is a Bernoulli distribution over the
binary random variable c that, w.r.t. some function f , has
the value 1 if the net effect of chunking f is positive and 0
otherwise. The distribution used depends on the recognition
model qϕD (ρ | x) and is hence parameterised by ϕD.

With the model p(c | f ;ϕD) we can solve both of the above
problems. The first can be solved using decision theory
(DeGroot, 2005). For example, if the utility gained from
a favorable chunk was equal to the cost incurred from an
unfavorable chunk, then opting to chunk a function f only
when p(c | f ;ϕD) ≥ 0.5 would maximise the expected
payoff.1 The extent to which the second problem is solved
depends on how well the true distribution is modeled by
p(c | f ;ϕD), which we now explain how to do effectively.2

A model of p(c | f ;ϕD) would require balancing the effect
of chunking on the recognition model’s future ability to
generate all desired programs, across all tasks. The problem
can be simplified by introducing and then marginalising out
the programs and tasks instead:

p(c | f ;ϕD) =
∑
x

∑
ρ

p(c | f, ρ, x;ϕD)p(ρ, x | f ;ϕD) (2)

We will return to the double summation and joint p(ρ, x |
f ;ϕD) later. The problem is now reduced to needing a
model, p(c | f, ρ, x;ϕD), expressing uncertainty in whether
or not chunking f will have a positive effect on the recogni-
tion model’s ability to generate ρ for solving x.

Note that knowing f is part of ρ (which can solve x) does
not guarantee a positive effect from chunking f . After f is
added to the library, the recognition model parameters ϕD
(dependent on D) are updated, defining a new distribution
over programs in terms of the new library. The effect of
chunking f is a balance between the improvement gained
in generating f and any costs incurred in generating the rest
of ρ. We can not know the exact effect of chunking as we
do not know how ϕD will be updated.

A related effect that (i) does not depend on how ϕD will be
updated, (ii) can be captured precisely and (iii) calculated
efficiently is how beneficial is it for the recognition model to
generate ρ if it does not need to generate f at all—which we
refer to as “caching” f . In terms of the balance mentioned
above, this is equivalent to the optimistic view that chunking
f will result in maximal improvement for generating f (it
can be generated for “free”), while also not incurring any

1This is only true for symmetric payoffs. Exploring payoffs and
their assignment is left for future work. Here, the simplest quantity
selection suffices to showcase the strengths of the approach.

2Note that calculating the exact value of c with respect to all
future tasks is not possible, and hence one can only have a heuristic.

cost for generating the rest of ρ.

Desiderata for a measure of caching benefit Let us
consider a program ρ generated by a distribution q(ρ) via
the composition of smaller library components. We are
interested in a mathematical way to quantify the benefit
gained, from 0 (not useful at all) to 1 (as useful as can be),
in generating ρ if instead the function f was cached (no
longer required to be sampled), which we denote C(q, ρ, f).
Any such measure should satisfy the following properties:

D1: (min) If f is not utilized by ρ, then caching f provides
no benefit and C(q, ρ, f) should be 0.

D2: (max) The largest benefit is gained from caching the
entire program (no matter how q is defined). If f = ρ,
then C(q, ρ, f) should be 1.

D3: (monotonic—changing programs) Consider a fixed
function f used in different ρ. The less likely q is to
generate the parts of ρ that are not part of f , the smaller
C(q, ρ, f) should be because caching f has a smaller
impact on helping ρ to be subsequently generated. As
an extreme example, if the probability of generating
the rest of our program became 0, then caching f does
not help with then generating the full program at all.

D4: (monotonic—changing functions) Consider different
functions f used within the same initial program. The
smaller q(f) is, the better it is to cache (not needing to
generate) f and hence the larger C(q, ρ, f) should be.

The first two properties are straightforward to understand.
The last two properties are illustrated further in Fig. 3.

Figure 3: Program trees with functions (red subtrees) con-
sidered for caching. The probability of being generated
by q decreases with an increase in nodes. Arrows indicate
changes where caching becomes more beneficial. Caching
the function in the first program is unhelpful, as the program
remains difficult to generate. Caching the same function in
the second program is more helpful, transitioning the pro-
gram from relatively unlikely to likely. Caching the function
in the third program is even more helpful: although post-
cache sample probability is equal to the second, generating
the third program was initially much more unlikely.

A direct consequence of the last two properties is that the
more components of a program cached as part of the func-
tion, the more beneficial the caching is. The last two prop-
erties are two sides of the same coin: both suggest that
the benefit from caching f is related to the relative propor-
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tion of sample difficulty removed when generating ρ. In
information-theoretic terms, “difficulty” can be used inter-
changeably with the “self-information” or “surprise” inher-
ent in a random outcome (such as a function being gener-
ated) (MacKay, 2003). Capturing the self-information of a
random outcome formally can be done with its negative log
probability (Shannon, 1948), leading to the following ratio:

C(q, ρ, f) =
nf
ρ log q(f)

log q(ρ)
(3)

where nf
ρ counts the number of times f appears in ρ.

It is easy to verify that this definition satisfies each of our
desired properties.

D1: If f is not utilized by ρ, then nf
ρ = 0. Thus,

C(q, ρ, f) = 0·log q(f)
log q(ρ) = 0.

D2: If the entire program is cached, then f = ρ and nf
ρ = 1.

Thus, C(q, ρ, f) = 1·log q(ρ)
log q(ρ) = 1.

D3: Consider the case where ρ contains one instance of
f . Splitting ρ into the components constituting f and
those without (denoted ρ\f ), we have that q(ρ) =
q(f)q(ρ\f ) and

C(q, ρ, f) = log q(f)

log q(f) + log q(ρ\f )
(4)

As q(ρ\f ) decreases, the magnitude of the denominator
increases and hence C(q, ρ, f) decreases.

D4: From Eq. (4): as q(f) decreases, log q(ρ\f ) con-
tributes less, and hence C(q, ρ, f) increases.

The measure of the benefit in caching can be used as a
tractable estimate of the benefit in chunking and hence to
define our probabilistic model of p(c | f, ρ, x;ϕD). Ad-
ditionally, recall that p(c | f, ρ, x;ϕD) should express the
uncertainty in whether or not chunking f will have a posi-
tive effect on the recognition model’s ability to generate ρ
for solving x. If ρ does not solve x, then any benefit gained
from chunking f to generate ρ does not matter:

p(c = 1 | f, ρ, x;ϕD) = 1[ρ ⇒ x]C(qϕD , ρ, f) (5)

where 1[ρ ⇒ x] equals 1 if ρ solves x and 0 otherwise. As
c is a binary random variable and 0 ≤ C(qϕD , ρ, f) ≤ 1,
the model expresses a valid probability distribution.

The expression for p(c | f ;ϕD) in Eq. (2) involves two
impossible summations over the infinite sets of tasks and
programs. We use a different approach to deal with each.

Marginal over tasks Expressing the joint p(ρ, x | f ;ϕD)
as p(ρ | f, x;ϕD)p(x | f ;ϕD) and then substituting
p(x | f ;ϕD) with its expression from Bayes’ rule (which is
proportional to p(f | x;ϕD)p(x;ϕD) = qϕD (f | x)p(x))
allows us to incorporate the recognition model’s probability

of generating f and, when substituted into Eq. (2), ex-
press the marginal over tasks as an expectation. The model
p(c | f ;ϕD) thus becomes proportional to:

Ep(x)[qϕD (f | x)
∑
ρ

p(c | f, ρ, x;ϕD)p(ρ | f, x;ϕD)] (6)

We can now form Monte Carlo estimates of the expecta-
tion using the observed tasks X . The normaliser (equal to
Ep(x)[qϕD (f | x)]) can be estimated in the same manner.

Marginal over programs We follow the approach taken
by Ellis et al. (2021) and marginalise over the finite beam of
programs Bx maintained for each task instead. This creates
a lower bound particle-based approximation. Given that
only the programs that solve x contribute probability mass
to the summation, excluding any programs that do not solve
x has no effect on the approximation. The same is true for
programs that do not utilize f . While all ρ ∈ Bx solve
x, they do not necessarily contain f . We can improve the
approximation by attempting to refactor each ρ ∈ Bx to
a behaviourally equivalent program that instead contains
f . To deal with p(ρ | f, x;ϕD) in Eq. (6), we assume
independence from f , replacing it with qϕD (ρ | x).

Final model We can understand p(c | f ;ϕD), our model
expressing the uncertainty of whether chunking a function
will benefit the recognition model’s inference capabilities,
as an interaction between three key sub-expressions:

Ep(x)[qϕD (f | x)︸ ︷︷ ︸
(1)

∑
ρ∈Bx

1[ρ ⇒ x]
nf
ρ log qϕD (f | x)
log qϕD (ρ | x)︸ ︷︷ ︸

(2)

qϕD (ρ | x)︸ ︷︷ ︸
(3)

]

(7)

The functions with a high probability of being worthwhile
to chunk are those that (1) first and foremost the recogni-
tion model wants to generate as part of programs solving
some task. When it does, (2) chunking the function greatly
reduces the uncertainty (or we could say “difficulty”) in
(3) generating the recognition model’s preferred programs
to solve that task. We refer to this probabilistic chunking
variant of dream decompiling as DREAMDECOMPILER-PC.

5. Case Analysis: Chunking With a Uniform q
In this section we examine the use of p(c | f ;ϕD) as
a chunking criterion when the recognition model distri-
bution, parameterised by ϕD, is uniform. Here, the
probability of generating a function f is 1/|D|size(f).
The beneficial caching measure of Eq. (3) simplifies to
nf
ρ size(f)/ size(ρ), representing the intuitive notion that

the benefit gained in generating ρ when f is cached is sim-
ply proportionate to the number of components no longer
needing to be generated. Substituting this simplification and
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other uniform probabilities into Eq. (7) (with normalizer),
and rearranging, we obtain:

p(c | f ;ϕD) ∝ size(f)
∑

ρ∈
⋃

x∈X Bx

nf
ρ · w(ρ) (8)

where w(ρ) = 1/ size(ρ)|D|size(ρ). The benefit of chunk-
ing a function for a uniform inference distribution is propor-
tionate to a product of the function’s size and a weighted
count of where the function can be used. This product
matches the high-level compression objectives used by other
library learning approaches (Bowers et al., 2023; Ellis et al.,
2021; Cao et al., 2023; Lázaro-Gredilla et al., 2019), bal-
ancing the two properties of a highly compressive function:
one that is general enough to be used frequently, yet specific
enough to capture lots of functionality when used. In our
case this balance arises organically when there is no knowl-
edge to extract from the recognition model (it is uniform).

The weight associated with each function occurrence is
inversely proportional to the size of the encompassing pro-
gram: all else being equal, preference is given to functions
within smaller programs over those in larger ones. This
property is desirable for compression in this context: larger
programs offer more functions (flexibility) for later com-
pression of it and future examples.

6. Evaluation
The aim of this paper is to introduce the alternative ap-
proach for library learning and demonstrate that the knowl-
edge learnt by the recognition model for guiding program
search space can be leveraged to directly influence how to re-
structure the search space, via chunking, for more effective
inference. We evaluate the two dream decompiler variants
outlined in Section 4 to DREAMCODER across 6 program
synthesis domains. Each domain was used as part of the
evaluation of Ellis et al. (2021), where DREAMCODER was
found to solve at least as many tasks as the best alterna-
tive tested for that domain and did so (mostly) in the least
amount of time. Below, we provide a summary of each do-
main. For example tasks, see Fig. 4, and for further details,
refer to Ellis et al. (2018; 2021).

1. List processing: synthesising programs to manipulate
lists. The system is trained on 109 observed tasks and
tested on 78 tasks. Each task contains 15 input/output
examples. The initial library contains common func-
tional programming operations and elements.

2. Text editing: synthesising programs to edit strings of
text. The system is trained on 128 randomly generated
text editing tasks (each with 4 input/output examples)
and tested on 108 tasks from the SyGuS competition
(Alur et al., 2017). The initial library contains most pro-
gramming operations from list processing, along with
a component to represent all unknown string constants.

3. Block towers: synthesising programs to build block
towers. The system is trained on 54 observed tasks and
tested on 53 held-out tasks. Tasks require constructing
a target tower using an induced program that controls
a simulated ‘hand’ to move and drop blocks.

4. Symbolic regression: synthesising polynomial and ra-
tional functions. The system is trained and tested with
100 functions each. All polynomials have a maximum
degree of 4. Tasks include 50 input/output pairs pro-
duced by the underlying function. The initial library
consists of the +, *, and ÷ operators, along with a
component for unknown real numbers.

5. LOGO graphics: synthesising programs to draw im-
ages. The system is trained and tested on 80 tasks,
where each is specified by a single image. The ini-
tial library contains primitives for constructing LOGO
Turtle (Thornburg, 1983) graphic programs.

6. Regexes: synthesising probabilistic generative models.
The system is trained and tested on 128 tasks each,
originally sourced from Hewitt et al. (2020). Each
task includes 5 strings, assumed to be generated by an
unknown distribution that the system aims to infer as a
regex probabilistic program.

Figure 4: Example tasks from each domain tested as part of
the evaluation. Figures taken from (Ellis et al., 2021).

We use the same implementation3, architecture and settings
for the main DREAMCODER model presented in (Ellis et al.,
2021), unless explicitly stated. The two dream decompiling
variants are evaluated within the same DREAMCODER sys-
tem, with the only difference being the code called to update
the library. This allows us to isolate the effect of chunking
choice: we leave broader system changes, which may en-

3https://github.com/ellisk42/ec
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Figure 5: (A) Performance in deterministic program domains using the learnt library and recognition model of each
wake-sleep cycle. Row 1 displays test set accuracy. Row 2 shows the average search time for test set solutions: solid
lines represent the time averaged across all tasks, while dotted lines display the time averaged over solved tasks only. (B)
Performance with probabilistic programs. The left graph shows the marginal likelihood of strings in each task, given the
learnt library. The right graph shows the posterior predictive probability of held-out strings, given the programs inferred
from the task’s observed strings. (C) Percentage of test tasks solved using the top 1 or top 2 functions chunked during the
first 3 or 5 cycles (C) respectively. All results are based on three random seeds with ±1 standard deviation.

hance performance in conjunction with dream decompiling,
for future work (see Section 9).

The systems are evaluated on each domain for 10 of the
wake-sleep cycles described in Section 2. In each cycle the
system observes a random batch of training tasks during the
wake-phase. The size of the batch and the time provided
to search for solutions varies across domains, with smaller
batch sizes and time limits used in most domains compared
to Ellis et al. (2021) (see Appendix B). Harder domains
place greater emphasis on chunking choice and require less
computational resources. Evaluation time varies across do-
main, with most taking roughly half a day using 1 NVIDIA
A40 and 20 CPUs (40 for LOGO graphics). For regexes and
LOGO graphics, evaluations extend to over a day.

Each cycle the system is additionally tested on the domain’s

held-out tasks. Testing time is consistent across all domains:
the system is provided 10 minutes per task to search for a
solution using its current library and recognition model. Fig.
5A (Row 1) shows the percentage of test tasks solved in
each cycle by all systems. Except for text editing, where per-
formance remains comparable across all systems, utilizing
the recognition model for chunking (dream decompiling) en-
ables faster domain proficiency and enhanced generalization
through the learnt library. This distinction is most evident
during the intermediate cycles of learning, following similar
performance in the initial iterations and before proceeding
to converge again in the later iterations. Notably, this oc-
curs despite all systems having solved a similar number
of training tasks throughout (Fig. 6, Appendix C). At the
respective peak differences (excluding text editing), DDC-
PC outperforms DREAMCODER by 13.25% on average test
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task performance in list processing and by over 17% in the
remaining domains. This is achieved despite having only
solved 3.7% more training tasks at the time in list processing
(cycle 5) and 10.1%, 3.1%, and 2.1% more training tasks
at the time in block towers (cycle 7), symbolic regression
(cycle 4), and LOGO graphics (cycle 5), respectively.

The larger generalization gaps suggest that more useful com-
ponents, complementing the knowledge that is learnt by the
recognition model to guide search, are being extracted from
the same experience. The diminishing difference indicates
that dream decompiling is particularly advantageous in sce-
narios where fewer domain solutions (data) are available to
inform chunking decisions. This advantage arises by lever-
aging the compiled knowledge acquired by the recognition
model—knowledge obtained not only from real data but
also from fantasy data. A Welch’s t-test can be performed
for each cycle of learning to test the null hypothesis that
DDC-PC and DREAMCODER have equal average perfor-
mance. We examine general performance across all domains
by combining model samples from all domains and ensuring
appropriate shifting to account for inter-domain differences
in difficulty. This is achieved by subtracting the domain’s
average end performance with both models. The results
show statistical significance in cycle 3 (t : 2.57, p : 0.016),
cycle 4 (t : 2.1, p : 0.045), and the last few cycles, support-
ing claims of improved bootstrapping early on with better
chunking decisions being made from the same experience.

To further test this claim, we examine the usefulness of
functions chunked by each system in the earlier wake-sleep
cycles. We quantify the usefulness of a function f as the
percentage of test tasks eventually solved with a program
containing f by the end of training. Fig. 5C (left group-
ing for each domain) shows the highest percentage of test
tasks solved with a single function chunked by each system
during the first 3 wake-sleep cycles. The right grouping
shows the average percentage of test tasks solved with the
top 2 functions chunked during the first 5 wake-sleep cy-
cles. Across all domains, functions chunked early by the
dream decompiling approaches are eventually utilized to
solve more test tasks. This includes the text editing and
symbolic regression domains, where each system solves an
equal number of test tasks. Here, dream decompiling is still
advantageous in making more beneficial single chunking
decisions when example solutions are limited.

Fig. 5A (Row 2) shows average search time on held-out
tasks, which decreases as learning progresses. By the end of
learning, each system induces their program solutions (dot-
ted lines) in near-identical average times across all domains.
Notably, this holds true even in the list processing, block
tower and LOGO graphic domains, where DDC-PC solves
more end tasks; the combined knowledge learnt to simplify
search enables access to larger relevant parts of program

space without compromising on time—which is reflected in
the lower average search times on all tasks (solid lines).

As discussed in Section 4, DDC-AVG lacks the ability to de-
termine how many functions should be chunked; it can only
rank them. Although DDC-PC addressed this limitation,
determining a precise threshold for chunking a specific func-
tion still relies on unknown cost/benefit payoffs, while also
accounting for the lower bound approximation. To evaluate
both variants, we adopt a simple strategy of chunking the
top k candidates each cycle, with k set to 2 for list process-
ing, text editing and block towers, and 1 in the remaining
domains. This provides an initial investigation, highlighting
the potential of the approach to enhance learning.

Size of chunked functions Across all deterministic do-
mains, the library learnt by DDC-PC consistently outper-
forms DDC-AVG, validating the use of its extra complexity.
Additionally, in almost all domains the functions chunked
by DDC-AVG are smaller in size than those chunked by
DDC-PC (Table 1), reflecting the second issue identified
with DDC-AVG in Section 4.

Table 1: Average size of chunked functions in each domain.

LP TE BT SR LG R

DDC-PC 5.9 7.8 8.2 4.6 5.5 3.9
DDC-AVG 5.5 8.2 6.5 3.0 4.3 3.1
DREAMCODER 5.8 6.4 8.2 4.9 5.8 3.5

7. Related Work
In this section we consider recent progress in library learn-
ing, focusing specifically on improvements proposed within,
and in comparison to, the DREAMCODER system.

Library learning requires addressing two subproblems: how
to (i) generate candidate functions for chunking, and (ii)
select amongst the candidates for useful additions to the
library. Recent advancements in candidate generation (sub-
problem i) are seen in BABBLE (Cao et al., 2023) and
STITCH (Bowers et al., 2023): BABBLE with improved
expressiveness—proposing common functionality despite
syntactic differences (using domain-specific equational
theories)—and STITCH with significantly improved effi-
ciency—both time and memory use. For candidate selection
(subproblem ii), both approaches adopt the compression ob-
jective from DREAMCODER—which is where we do some-
thing different, departing from compression in favour of
chunking functions to complement the knowledge learnt
to compose them. Our focus here was solely on selection,
assuming a readily available set of candidate functions. En-
hanced candidate generation from either of these approaches
could thus synergize well with dream decompiling.
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Wong et al. (2021) likewise introduce an alternative ap-
proach to candidate selection (subproblem ii) in library
learning: an extension of DREAMCODER’s compression
objective that incorporates natural language annotations,
modelling the hypothesis that humans often learn domain
concepts with natural language descriptions.

8. Conclusion
Becoming an expert in a program synthesis domain re-
quires learning knowledge to alleviate the search prob-
lem. DREAMCODER amortizes the cost of search by train-
ing a neural recognition model to reduce search breadth—
effectively compiling useful information for composing pro-
gram solutions across tasks. It reduces the depth of search
by building a library capable of expressing discovered so-
lutions in fewer components. As the library grows, a new
recognition model is trained to exploit it and solve new tasks,
thus bootstrapping the learning process.

Chunking program components should complement the
knowledge that will be used to compose them. For this
we introduced a novel approach to chunking that leverages
the neural recognition model—effectively decompiling the
knowledge learnt to generate program solutions across tasks
and select high-level functions for the library. Consequently,
the amortized knowledge learnt to reduce search breadth is
now also used to reduce search depth. We show that this
can lead to a stronger bootstrapping effect: better chunking
decisions can be made from the same experience, leading to
faster domain proficiency and improved generalization.

9. Future Work and Limitations
The experiments aimed to quantify the impact of dream de-
compiling by exclusively altering the selection of candidates
generated by DREAMCODER. The results provide support
to pursue enhanced implementations of the theory presented,
including promising system-wide changes. As mentioned
in Section 7, candidate generation is one. Functionality
absent from existing program solutions are not generated
by compression-focused approaches, yet may still score
highly under dream decompiling (see Section 3). Additional
approaches to candidate generation, like incorporating can-
didates sampled from the recognition model, are needed.

In the current system cycle (Fig. 2), the library is updated
after the wake-phase, where extra information, not utilized
by the recognition model for chunking, may be available.
Introducing a secondary training phase, occurring after wak-
ing but before updating the library, to “compile in” this
newfound information could offer further improvements.

Both variants of dream decompiling investigated can rank
functions for chunking, but lack a clear means to determine

an optimal number to chunk. While our experiments em-
ployed simple strategies to highlight the potential of their
chunking choice, other strategies are likely more effective.

More sophisticated neural models remain an open direction
for improving performance in DREAMCODER’s framework.
The enhanced amortization, achieved by reusing the neural
model for chunking, implies that more sophisticated models
could now have a cumulative impact on learning.

With dream decompiling, we are chunking functions that
are useful for the current recognition model to generate
program solutions. However, in DREAMCODER, once the
library components used to specify the recognition model’s
distribution change, a new model is trained from scratch—
with nothing learnt by the previous model passed on to the
next. Exploring ways to continue learning (Kirkpatrick et al.,
2017) when re-configuring its sample space could allow for
improved, or at least more efficient, learning.
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A. Handling more flexible recognition models
Chunking with either DREAMDECOMPILER variant requires calculating the probability of the recognition model generating
a function as part of a program. In the main text we assumed, for simplicity, that the recognition model creates a distribution
over programs by defining a distribution over library components and that the probability of the recognition model generating
a program is equal to the product of independently generating each component of the program. In this case, calculating
the probability of the recognition model generating a function (which is built from the same library of components) is
straightforward. In this section we discuss how the probability of the recognition model generating a function can be
calculated with the recognition model used by the DREAMCODER (Ellis et al., 2021) system: a bigram distribution over
well-typed programs.

A.1. Well-Typed programs

All library components have an associated type specifying the entities that their computations operate on and produce. This
restricts the ways in which they can be combined to form valid programs.

DREAMCODER’s recognition model is constrained to be a distribution over standalone, well-typed programs of a requested
type only. Consequently, calculating the probability of a program being generated by the recognition model involves using a
type inference algorithm. After supplying a program’s type, the algorithm will track which components can be used at each
point in the program’s construction by determining which have a return type that unifies with what is required. To get the
probability of seeing a program component, the recognition model’s original distribution over all library components is
renormalised to one over valid components (for this part of the program) only.

If a program contains a component whose return type does not unify with the required type, or if a component of a required
type is expected but missing, then the program’s probability is undefined. Therefore, to use DREAMCODER’s type inference
algorithm to calculate the probability of the recognition model generating a function requires that it is both a well-typed
and a complete program. This is not the case for all the candidate functions in F which are sub-expressions extracted from
(refactored) programs. DREAMCODER represents programs as polymorphic typed λ-calculus expressions. We can turn
each candidate into a well-typed and complete program by performing η-conversion in reverse: wrapping each candidate
function in an explicit function type (lambda abstraction) with as many variables as there are missing parts. By using a
modified version of DREAMCODER’s type inference algorithm that ignores the newly added variables, the probability of the
recognition model generating the candidate function as part of a program can then be calculated.

A.2. Bigram model

In DREAMCODER, the generative model’s distribution over library components depends only on the requested type
discussed in Section A.1: it is a unigram distribution where the probability of generating a component is independent of any
surrounding program context. On the other hand, the recognition model used by DREAMCODER is a bigram distribution over
library components, conditioning on the function that the component will be passed to, and as which argument. Therefore,
the probability of a (well-typed and complete) program ρ with K components being generated by the recognition model can
be seen as a product of conditional probabilities

∏K
k=1 qϕD (ρk | x, (pak, ik, τk)), where pak is component k’s parent, ik the

argument index and τk the requested type.

We are interested in calculating the probability of the recognition model generating a candidate function explicitly as part
of a program to solve a given task. With a unigram distribution, the recognition model could be used to score a candidate
function (that has been turned into a well-typed program) directly. However, doing this with a bigram distribution would
result in the probability of the recognition model generating the function as the outermost top-level function of a solution
only—i.e. when it has no parent.

To see why this is not desirable, consider a set of tasks requiring you to manipulate lists of integers. As the only programs
solving these tasks are those returning lists of integers, the only top-level functions that the recognition model is learning to
infer are those returning lists of integers. The probability of the recognition model generating a function that returns, say, a
Boolean (such as indicating if an element of a list is positive) would be extremely low as the initial top-level function, even
if its probability of being generated elsewhere is high.

To find the likelihood qϕD (f | x) of the recognition model generating a function as part of a program to solve a task we
must average over all the places and ways in which the function could be generated—i.e. over all possible (pa, i, τ) triplets.
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With a unigram distribution, there is no difference in where a function is generated (other than the type constraints)—and
thus nothing to average over. For a bigram distribution, the same is true for all function components other than the root:
once the root has been generated, the probability of the rest are conditionally independent to where in a program they are
being generated. Therefore, by splitting our function into its root component fr and remaining components f\r, our desired
probability qϕD (f | x) equals:

Ep((par,ir,τr)|x)[qϕD (f\r | x, fr)qϕD (fr | x, (par, ir, τr))] (9)

Calculating the expectations requires specifying the probability distribution p((par, ir, τr) | x) over the context in which a
function could be generated. One option is to place a uniform distribution over each option that could conceivably arise:
every argument of every component in the library currently being used to generate programs (along with their respective
types), has equal probability. Though simple, this option has two downsides. First, one aspect motivating the use of the
recognition model for chunking was to remove the human defined priors used by DREAMCODER. This option we would
be doing the exact same. The second disadvantage has to do with the distribution itself: a library that contains only a few
components that expect a certain type implies that all functions returning that type would be disfavoured. However, even if
we expect the library to reflect some information about the tasks it is used to solve, a few library components requesting
a certain type should not imply that the likelihood of generating functions returning that type should be low: those few
components could be used in multiple ways.

One might be tempted, then, to use the recognition model’s distribution over parent components, but this would itself require
a prior over (pa, i, τ) triplets, leading to an infinite regress. Instead, we can achieve a similar effect by using a distribution
over (pa, i, τ) triplets proportionate to their frequency in the program solutions that the recognition model helped discover
during search. Note that the distribution in Eq. (9) is conditioned on a specific task. Therefore, it may be more appropriate
to only use the programs found to solve that specific task (i.e. those in Bx). However, a small beam size or even just low (or
empty) program beams early on in learning would not provide a meaningful distribution.

B. Hyperparameters
The same base DREAMCODER system and hyperparameter values are used to compare the different approaches to chunking.
The final systems differ only in the method used to update the library. In our experiments, almost all hyperparameters
are set to the same value as those used by the main DREAMCODER model presented in Ellis et al. (2021). Table 2 shows
the hyperparameter values (relevant to all systems) that differ in at least one domain compared to those used in Ellis et al.
(2021). Additionally, DREAMCODER employs a hyperparameter, denoted as λ in Ellis et al. (2021), which controls the prior
distribution over libraries. In their work, λ was consistently set to 1.5 for all domains, except for symbolic regression where
it was set to 1. In our experiments, we maintain uniformity by using the same DREAMCODER model, setting λ to 1.5 for all
domains.

Domain Wake timeout (m) Batch size CPUs

List Processing 12 10 20
Text Editing 12 10 20
Block Towers 5 15 20
Symbolic Regression 2 10 20
LOGO Graphics 12 20 40
Regexes 6 10 20

Table 2: Hyperparameters used for experiments that differ in at least one domain from those used by the main DREAMCODER
model presented in (Ellis et al., 2021), where all other hyperparameters can be found.

C. Evaluation Training Performance
Fig. 6 shows the percentage of train training tasks solved by each system for the same wake-sleep cycles shown in Fig. 5
in Section 6. Recall that as part of the DREAMCODER system (which all tested library learning approaches inherit and
share), only a small batch of training tasks is provided for solving within the wake timeout during each cycle (see Table 2 for
specific values). This feature imposes a limit on the improvement that can be made from one cycle to the next, in contrast
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to test performance where the system attempts to solve as many held-out tasks as possible. The key takeaway from these
graphs is the following: although all systems solve a similar number of training examples throughout and thus have access
to the same number of training solutions for learning, the dream decompiling approaches consistently demonstrate greater
generalization on the held-out tasks using the library learnt from these examples, as seen in Fig. 5 in Section 6.

Figure 6: Performance on training tasks in deterministic program domains using the learnt library and recognition model of
each wake-sleep cycle. All results are based on three random seeds with ±1 standard deviation.
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