
MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

Jiarong Pan 1 2 Stefan Falkner 1 Felix Berkenkamp 1 Joaquin Vanschoren 2

Abstract
Bayesian optimization (BO) is a popular method
to optimize costly black-box functions, and meta-
learning has emerged as a way to leverage knowl-
edge from related tasks to optimize new tasks
faster. However, existing meta-learning methods
for BO rely on surrogate models that are not scal-
able or are sensitive to varying input scales and
noise types across tasks. Moreover, they often
overlook the uncertainty associated with task sim-
ilarity, leading to unreliable task adaptation when
a new task differs significantly or has not been suf-
ficiently explored yet. We propose a novel meta-
learning BO approach that bypasses the surrogate
model and directly learns the utility of queries
across tasks. It explicitly models task uncertainty
and includes an auxiliary model to enable ro-
bust adaptation to new tasks. Extensive exper-
iments show that our method achieves strong per-
formance and outperforms multiple meta-learning
BO methods across various benchmarks.

1. Introduction
Bayesian optimization (BO) (Shahriari et al., 2016) is a
widely used framework to optimize expensive black-box
functions for a wide range of applications, from material
design (Frazier & Wang, 2015) to automated machine learn-
ing (Hutter et al., 2019). Traditionally, it uses a probabilistic
surrogate model, often a Gaussian process (GP), to model
the black-box function and provide uncertainty estimates
that can be used by an acquisition function to propose the
next query point.

While BO typically focuses on each new target task individ-
ually, recent approaches leverage information from previous
runs on related tasks through transfer learning (Weiss et al.,
2016) and meta-learning (Vanschoren, 2018) to warm-start

1Bosch Center for Artificial Intelligence, Germany 2Eindhoven
University of Technology, Netherlands. Correspondence to:
Jiarong Pan <fixed-term.jiarong.pan@de.bosch.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

BO. In this context, each task denotes the optimization of a
specific black-box function and we assume that related tasks
share similarities with the target task. For instance, one can
warm-start the tuning of a neural network when the same
network was previously tuned on related datasets. Previous
runs on related tasks can be used to build informed surrogate
models (Perrone et al., 2018; Wistuba & Grabocka, 2021;
Feurer et al., 2022), restrict the search space (Perrone et al.,
2019), or initialize the optimization with configurations that
generally score well (Feurer et al., 2014; Volpp et al., 2020).

However, the use of surrogate models also engenders several
issues in many of these approaches: (i) GP-based methods
scale poorly with the number of observations as well as
number of tasks, due to their cubic computational complex-
ity (Rasmussen, 2004). (ii) In practice, observations across
tasks can have different scales, e.g., the validation error of
an algorithm can be high on one dataset and low on an-
other. Although normalization can be applied to the data
from related tasks, normalizing the unseen (target) task data
is often challenging, especially when only a few observa-
tions are available to estimate its range. Regression-based
surrogate models therefore struggle to adequately transfer
knowledge from related tasks (Bardenet et al., 2013; Yo-
gatama & Mann, 2014). (iii) While GPs typically assume
the observation noise to be Gaussian and homoscedastic,
real-world observations often have different noise distri-
butions and can be heteroscedastic. This discrepancy can
lead to poor meta-learning and optimization performance
(Salinas et al., 2023). Moreover, when adapting to tasks
that have limited observations (e.g., early iterations during
optimization) or tasks that are significantly different from
those seen before, estimating the task similarity becomes
challenging due to the scarcity of relevant task information.
Hence, it is desirable to explicitly model the uncertainty in-
herent to such tasks (Finn et al., 2018). Nevertheless, many
existing methods warm-start BO by only modeling relations
between tasks deterministically (Wistuba et al., 2018; Volpp
et al., 2020), making the optimization unreliable.

To tackle these limitations, we propose a novel and scalable
meta-learning BO approach1 that is inspired by the idea

1Our code is available in the following repository: https:
//github.com/boschresearch/meta-learning-l
ikelihood-free-bayesian-optimization

1

https://github.com/boschresearch/meta-learning-likelihood-free-bayesian-optimization
https://github.com/boschresearch/meta-learning-likelihood-free-bayesian-optimization
https://github.com/boschresearch/meta-learning-likelihood-free-bayesian-optimization

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

of likelihood-free acquisition function (Tiao et al., 2021;
Song et al., 2022). The proposed method overcomes the
limitations of surrogate modeling by directly approximating
the acquisition function. It makes less stringent assump-
tions about the observed values, which establishes effective
learning across tasks with varying scales and noises. To
account for task uncertainty, we introduce a probabilistic
meta-learning model to capture the task uncertainty, as well
as a novel adaptation procedure based on gradient boosting
to robustly adapt to each new task.

This paper makes the following contributions: (i) We pro-
pose a scalable and robust meta-learning BO approach that
directly models the acquisition function of a given task
based on knowledge from related tasks, while being able to
cope with heterogeneous observation scales and noise types
across tasks. (ii) We use a probabilistic model to meta-learn
the task distribution, which enables us to account for the
uncertainty inherent in each target task. (iii) We add a novel
adaptation procedure to ensure robust adaptation to new
tasks that are not well captured by meta-learning.

2. Related Work
Meta-learning Bayesian optimization Various methods
have been proposed to improve the data-efficiency of BO
through meta-learning and have shown effectiveness in di-
verse applications (Andrychowicz et al., 2016).

One line of work focuses on the initialization of the op-
timization (initial design) by reducing the search space
(Perrone et al., 2019; Li et al., 2022) or reusing promis-
ing configurations from similar tasks, where task similarity
can be determined using hand-crafted meta-features (Feurer
et al., 2014) or learned through neural networks (NNs) (Kim
et al., 2017). One can also estimate the utility of a configura-
tion using heuristics (Wistuba et al., 2015) or learning-based
techniques (Volpp et al., 2020; Hsieh et al., 2021; Maraval
et al., 2023). Transfer learning is also employed to modify
the surrogate model using multi-task GPs (Swersky et al.,
2013; Tighineanu et al., 2022; 2024), additive GP models
(Golovin et al., 2017), weighted combinations of indepen-
dent GPs (Wistuba et al., 2018; Feurer et al., 2022), shared
feature representation learned across tasks (Perrone et al.,
2018; Wistuba & Grabocka, 2021; Khazi et al., 2023) or
pre-training surrogate models on large amount of diverse
data (Chen et al., 2022; Müller et al., 2023).

Several methods simultaneously learn the initial design and
modify the surrogate model. BOHAMIANN (Springenberg
et al., 2016) adopts a Bayesian NN as the surrogate model,
which is computationally expensive and hard to train. ABLR
(Perrone et al., 2018) and BANNER (Berkenkamp et al.,
2021) combine a NN to learn a shared feature representation
across tasks and task-specific Bayesian linear regression

(BLR) layers for scalable adaptation. While ABLR adapts to
new tasks by fine-tuning the whole network, BANNER meta-
learns a task-independent mean function and only fine-tunes
the BLR layer during optimization. However, both methods
are sensitive to changes in scale and noise across tasks. To
address this, GC3P (Salinas et al., 2020) transforms the
observed values via quantile transformation and fits a NN
across all related tasks. Although GC3P warm-starts the
optimization by using a NN to predict the mean for a GP on
the target task, its scalability is limited by its GP surrogate.

Likelihood-free acquisition functions Bayesian opti-
mization does not require an explicit model of the likelihood
of the observed values (Garnett, 2022) and can be done by
directly approximating the acquisition function. The tree-
structured Parzen estimator (TPE) (Bergstra et al., 2011)
phrases BO as a density ratio estimation problem (Sugiyama
et al., 2012) and uses the density ratio over ‘good’ and ‘bad’
configurations as an acquisition function. BORE (Tiao et al.,
2021) estimates the density ratio through class probability
estimation (Qin, 1998), which is equivalent to modeling
the acquisition function with a binary classifier and can be
parallellized (Oliveira et al., 2022). By transforming the ac-
quisition function into a variational problem, likelihood-free
Bayesian optimization (LFBO) (Song et al., 2022) uses the
probabilistic predictions of a classifier to directly approx-
imate the acquisition function. In this paper, we leverage
the flexibility of likelihood-free acquisition functions and
combine it with a meta-learning model to obtain a sample-
efficient, scalable, and robust BO method.

3. Background
Meta-learning Bayesian optimization BO aims to mini-
mize a target black-box function f : X → R over x ∈ X .
In the case of meta-learning, T related black-box functions
{f t(·)}Tt=1 are given in advance, each with the same do-
main X . The optimization is warm-started with previous
evaluations on the related functions, Dmeta = {Dt}Tt=1 with
Dt = {(xt

i, y
t
i)}N

t

i=1, where yti = f t(xt
i) + ϵt are evalua-

tions corrupted by noise ϵt and N t = |Dt| is the number
of observations collected from task f t. Given a new task
at step N + 1 , BO proposes xN+1 and obtains a noisy
observation from the target function yN+1 = f(xN+1) + ϵ,
with ϵ drawn i.i.d. from some distribution pϵ. To obtain
the proposal xN+1, a probabilistic surrogate model is first
fitted on N previous observations on the target function
DN = {(xi, yi)}Ni=1 and the related functions Dmeta. For
simplicity, we denote D := DN ∪ Dmeta. The resulting
model is used to compute an acquisition function, such as,
the expected utility of a given query x,

αU(x;D, τ) = Ey∼p(y|x,D)[U(y; τ)] , (1)

2

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

20

0

20

40

f(x
)

Objective function and meta-data

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

p(
y

|x
)

Acquisition function

0.5

0.0

feature 1

0.5

0.0
feature 2

0 1
x

0.4

0.2

0.0
feature 3

observations y
observations y >

related tasks
target task

mean prediction
Thompson samples

Figure 1. Meta-learning the acquisition function. Left: The top
panel shows observations from 10 related tasks and the target task.
The top performing observations (τ = Φ−1(γ), γ = 1/3) in each
task are shown in red, the rest in blue. The bottom panel shows
the maximum-a-posteriori estimate of the acquisition function
in solid blue while the Thompson samples are shown as dashed
curves. Right: Features learned by our model. MALIBO success-
fully identifies the promising areas in the input space, while the
Thompson samples show variability in the meta-learned acquisi-
tion function.

where U(y; τ) is a chosen utility function with a threshold
τ that decides the utility of observing y at x and controls
the exploration-exploitation trade-off. The predictive dis-
tribution p(y | x,D) is given by the probabilistic surrogate
model and the maximizer xN+1 = argmaxx∈X α(x;D, τ)
is the proposed candidate. Acquisition functions that take
the form of Equation (1) include Expected Improvement
(EI) (Močkus, 1975) and Probability of Improvement (PI)
(Kushner, 1964). Many others exist, such as UCB (Srini-
vas et al., 2010), Entropy Search (Hennig & Schuler, 2012;
Hernández-Lobato et al., 2014; Wang & Jegelka, 2017) and
Knowledge Gradient (Frazier et al., 2009).

Likelihood-free acquisition functions Likelihood-free
acquisition functions model the utility of a query with-
out explicitly modeling the predictive distribution. For ex-
ample, tree-structured Parzen estimators (TPE) (Bergstra
et al., 2011) dismiss the surrogate for the outcomes and
instead model two densities that split the observations w.r.t.
a threshold τ , namely ℓ(x) = p(x | y ≤ τ,DN) and
g(x) = p(x | y > τ,DN) for the promising and non-
promising data distributions, respectively. The threshold τ
relates to the γ-th quantile of the observed outcomes via
γ = Φ(τ) := p(y ≤ τ). In fact, the resulting density ra-
tio (DR) αDR(x;DN , τ) = ℓ(x)/g(x) is shown to have the
same maximum as PI (Song et al., 2022; Garnett, 2022).

BORE (Tiao et al., 2021) improves several aspects of TPE
by directly estimating the density ratio instead of solving
the more challenging problem of modeling two independent
densities as an intermediate step. It rephrases the density
ratio estimation as a binary classification problem where
all observations within the same class have the same impor-
tance. Specifically, they show αDR(x;DN , τ) ∝ Cθ(x) =
p(k = 1 | x, DN , τ), where k = 1(y ≤ τ) represents the
binary class labels for classification and the classifier Cθ

has learnable parameters θ.

Likelihood-free Bayesian optimization (LFBO) (Song et al.,
2022) directly learns an acquisition function in the form of
Equation (1) through a classifier. By rephrasing the integral
as a variational problem, LFBO involves solving a weighted
classification problem with noisy labels for the class k = 1,
where the weights correspond to utilities. It is shown that the
EI acquisition function, where U(y; τ) := max(τ − y, 0),
can be estimated by a classifier that optimizes the following
objective:

LLFBO(θ;DN , τ) =

− E(x,y)∼DN

[
max(τ − y, 0) lnCθ(x) + ln(1− Cθ(x))

]
.

(2)

The resulting classifier splits promising and non-promising
configurations with probabilistic predictions that can be in-
terpreted as the utility of queries, leading to scale-invariant
models without noise assumptions and allowing the applica-
tion of any classification methods (Song et al., 2022). Fur-
ther details of the algorithms are provided in Appendix A.

4. Methodology
In this section, we introduce our MetA-learning for
LIkelihood-free BO (MALIBO) method, which extends
LFBO with an effective meta-learning approach. An il-
lustration of our method on a one-dimensional problem is
shown in Figure 1. Our approach uses a neural network
to meta-learn both a task-agnostic model based on features
learned across tasks (right panel in Figure 1), and a task-
specific component that provides uncertainty estimation to
adapt to new tasks. Additionally, we use Thompson sam-
pling (dashed lines in Figure 1) as an exploratory strategy
to account for the task uncertainty. Finally, a residual pre-
diction model (see below) is added to adapt to tasks that are
not well captured by the meta-learned model.

Network structure MALIBO uses a structured neural
network that combines a meta-learned, task-agnostic model
with a task-specific layer. We show an overview in Figure 2
and provide details for the choices below. Following previ-
ous works (Perrone et al., 2018; Berkenkamp et al., 2021),
our meta-learning model uses a deterministic, task-agnostic
model to map the input into features Φ = ϕ(x), where

3

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

x

ResFFN ϕ(·)

Φ

Mean prediction layer m(·)Task prediction layer hzt(·)
zt ∼ p(Z)

+

Sigmoid σ(·)

Class prediction p(k = 1 | x)

Task-agnostic
meta-learning

gω

Task-specific
embedding zt

Figure 2. Schematic representation of our meta-learning classifier.
A residual feedfoward network (ResFFN) maps the input x via
a shared feature mapping function ϕ. From this, we construct a
task-agnostic mean prediction m(Φ) and a task embedding zt,
which is distributed according to a prior distribution p(Z). The
feature mapping function ϕ and mean prediction layer m are fixed
after meta-training, denoted by the task-agnostic component gω .
Finally, we add and convert them to a class prediction via the
sigmoid function.

ϕ : X → Rd is a learnable feature mapping shared across
all tasks and d is the predefined dimensionality of the feature
space. We use a residual feedforward network (ResFFN) for
learning ϕ, which has been shown to be robust to network
hyperparameters and generalizes well to different problems
(Huang et al., 2020). To enable our model to provide good
initial proposals, we introduce a task-agnostic mean predic-
tion layer m : Rd → R that learns the promising areas from
the related tasks. We refer to the combined task-agnostic
components m and ϕ as gω (shown in blue), which is param-
eterized by ω. To allow adaptation on each task t, we use a
task prediction layer hzt : Rd → R, which is parameterized
by layer weights zt ∈ Z ⊆ Rd. Since each zt embeds in a
low dimensional latent space Z and is a unique vector for
each task, we refer to zt as the task embedding. We will
train our model such that the {zt}Tt=1 follow a known dis-
tribution p(Z) and discuss below how to use this as a prior
for target task adaptation. Lastly, in order to obtain classifi-
cation outputs as in LFBO, we apply the sigmoid function
to produce probabilistic class predictions p(k = 1 | x).
The prediction for an observation in task t is then given by
C(xt) = σ(m(ϕ(x)) + hzt

(ϕ(x))) = σ(m(Φ) + zTt Φ).

Meta-learning Directly optimizing LLFBO to meta-learn
our model would lead to task embeddings that do not con-
form to any particular prior task distribution p(Z), and
thus render task adaptation difficult and unreliable (Finn
et al., 2018). Therefore, we regularize the task embeddings
{zt}Tt=1 during training to enable Bayesian inference. In
addition, such regularization can also avoid overfitting in
the task space Z and improves the generalization perfor-

mance of our model. Specifically, we assume the prior of
the task embeddings to be a multivariate normal (MVN),
p(Z) = N (0, I) and apply a regularization term to bring
the empirical distribution of the {zt}Tt=1 close to the prior
distribution. The loss used for training on the meta-data
reads:

Lmeta(ω, {zt}Tt=1) =
1

T

T∑
t=1

LLFBO(ω, zt;Dt, τ)

+ λR({zt}Tt=1; p(Z)) , (3)

where the first term is the loss function from LFBO as in
Equation (2), weighting the observations in the meta-data
with improvements and the second term R is the regular-
ization term weighted by λ. We regularize the empirical
distribution of {zt}Tt=1 to match the Gaussian prior in a
tractable way (Saseendran et al., 2021):

R({zt}Tt=1; p(Z)) = λKS

d∑
j=1

(F ([zt]j)− Φ([zt]j))
2

+ λCov∥I− Cov({zt}Tt=1)∥2F , (4)

where the first term matches the marginal cumulative distri-
bution functions (CDFs) similar to a Kolmogrov-Smirnov
(KS) test, and the second term matches the empirical co-
variance of the task embeddings to the covariance of the
prior. The hyperparameters λKS and λCov encode the trade-
off between these two terms. We denote F as the empirical
CDF and Cov as the empirical covariance matrix. For more
details we refer to Appendix C.

We only consider a uni-modal Gaussian prior in this work,
as we will show it already demonstrates strong performance
against other baselines. For more complex task distribu-
tions, one could extend it with multi-modal Gaussian prior
(Saseendran et al., 2021).

Task adaptation After meta-training, the model can adapt
to new tasks by estimating an embedding z based on the
learned feature mapping function ϕ. In principle, one could
use a maximum likelihood classifier obtained by directly
optimizing Equation (2) w.r.t. z. However, such a classi-
fier does not consider the task uncertainty and would suffer
from unreliable adaptation (Finn et al., 2018) and over-
exploitation (Oliveira et al., 2022). Furthermore, when a
potential disparity between the distribution of the meta-data
and the non-i.i.d. data collected during optimization arises, a
probabilistic model would be informed via uncertainty esti-
mation and thereby can exploit the meta-learned knowledge
less. Therefore, we propose to use a Bayesian approach
for task adaptation, which makes our classifier uncertainty-
aware and more exploratory.

Consider the task embedding z for the target task follows
a distribution p(z | DN) after N observations, then the

4

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

predictive distribution of our model can be written as

C(x;ω,DN) =

∫
p(k = 1 | ω, z)p(z | DN) dz , (5)

which accounts for the epistemic uncertainty in the task
embedding. Since the parameters ω of task-agnostic model
gω are fixed after meta-training, we denote our classifier as
C(x) for simplicity.

As there is no analytical way to evaluate the integration
in Equation (5), we have to resort to approximation meth-
ods, such as Laplace approximation (Bishop & Nasrabadi,
2006), variational inference (Graves, 2011), and Markov
chain Monte Carlo (Homan & Gelman, 2014). We consider
Laplace approximation for p(z | DN) as a fast and scalable
method, and show its competitive performance against other,
more expensive alternatives in Appendix D.4.

Laplace’s method fits a Gaussian distribution around the
maximum-a-posteriori (MAP) estimate of the distribution
and matches the second order derivative at the optimum. In
the first step, we obtain the MAP estimate by maximizing
the posterior of our classifier C parameterized by z. To be
consistent with the regularization used during meta-training,
we use a standard, isotropic Gaussian prior for the weights:
p(z) = N (z | 0, I). Given observations DN , the negative
log posterior p(z | DN) is proportional to

LMALIBO(z) =
1

2
zTz−

N∑
n=1

(
kn(τ − y) ln k̂n + ln(1− k̂n)

)
, (6)

where k̂ = σ(m(Φ) + zTΦ) is the class probability pre-
diction and the MAP estimate of the weights given by
zMAP = argminz∈ZLMALIBO. As a second step, we com-
pute the negative Hessian of the log posterior

Σ−1
N = Σ−1

0 +

N∑
n=1

(kn(τ−y)+1)k̂n(1− k̂n)ΦnΦ
T
n , (7)

which serves as the precision matrix for the approximated
posterior q(z) = N (z | zMAP,ΣN). Therefore Equation (5)
can be approximated as

C(x) ≃
∫

p(k = 1 | ω, z)q(z) dz . (8)

Having developed a meta-learning model, we now focus
on how to utilize this model to encourage exploration and
ensure reliable task adaptation.

Uncertainty-based exploration In the early phase of op-
timization, every meta-learning model has to reason about
the target task properties based only on the limited data

available, which can lead to highly biased results and over-
exploitation (Finn et al., 2018). Moreover, LFBO also
suffers from similar issue even without meta-learning (Song
et al., 2022). Therefore, we propose to use Thompson sam-
pling based on task uncertainty for constructing a more
exploratory acquisition function, and the resulting sampled
predictions is generated by

Ĉ(x) = σ (m(ϕ(x)) + hẑ(ϕ(x))) , ẑ ∼ q(z) . (9)

Besides stronger exploration in the early phases of opti-
mization, Thompson sampling also enables us to extend
MALIBO to parallel BO by using multiple Thompson sam-
ples of the acquisition function in parallel. It is shown that
this bypasses the sequential scheme of traditional BO, with-
out introducing the common computational burden of more
sophisticated methods (Kandasamy et al., 2018). We briefly
explore this strategy in Appendix F.

Gradient boosting as a residual prediction model Op-
erating in a meta-learned feature space enables fast task
adaptation for our Bayesian classifier. However, it relies
on the assumption that the meta-data is sufficient and rep-
resentative for the task distribution, which does not always
hold in practice. Moreover, a distribution mismatch between
observationsDN and meta-dataDmeta can arise whenDN is
generated by an optimization process while Dmeta consists
of, e.g., i.i.d. samples.

We employ a residual model independent of the meta-
learning model, such that, even given non-informative fea-
tures, our classifier is able to regress to an optimizer that
operates in the input space X . We propose to use gradient
boosting (GB) (Friedman, 2001) as a residual prediction
model for classification, which consists of an ensemble of
weak learners that are sequentially trained to correct the
errors from the previous ones. Specifically, we replace the
first weak learner by a strong learner, i.e., our meta-learned
classifier. With Thompson sampling, our classifier can be
written as

CGB(x) = σ

(
m(ϕ(x)) + hẑ(ϕ(x)) +

M∑
i=1

ri(x)

)
,

(10)
where each ri represents the i-th trained base-learner for
the error correction from gradient boosting. In addition
to robust task adaptation, this approach offers two advan-
tages: First, gradient boosting does not require an additional
weighting scheme for combining different classifiers and
automatically determines the weight of the meta-learned
model; Second, gradient boosting demonstrates strong per-
formance for LFBO on various benchmarks (Song et al.,
2022), which makes our classifier achieve competitive per-
formance even when meta-learning fails, as shown in Ap-
pendix D.3. The resulting residual model is trained solely

5

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

Algorithm 1 MALIBO: Meta-learning for likelihood-free
Bayesian optimization

Meta-learning:
Input: Dmeta = {Dt}Tt=1 , proportion γ ∈ (0, 1)

1: k = 1(y ≤ τ), where τ = Φ−1(γ)
/* generate binary labels */

2: gω ← argminω Lmeta; // Equation (3)

Bayesian optimization with meta-learning:
Input: Fixed gω after meta-leaning

1: x0 ← argmaxx gω(x)
2: D ← {(x0, f(x0) + ϵ)}
3: while has budget do
4: zMAP ← argminz LMALIBO; // Equation (6)

5: Update precision matrix Σ−1
N ; // Equation (7)

6: ẑ ∼ MVN(zMAP,ΣN)
7: x∗ ← argmaxx CGB(x; ẑ); // Equation (10)

8: D ← D ∪ {(x∗, f(x∗) + ϵ)}
9: end while

on the target task data and thus might overfit in the early
iterations with limited data. To avoid this, we apply gradient
boosting only after a few iterations of Thompson sampling
exploration and train it with early stopping. Note that this
does not diminish the usefulness of the residual model, be-
cause our goal is to encourage exploration in early iterations
as outlined in Section 4, and gradually rely more on the
knowledge from the target task. We refer to Appendix G for
more implementation details.

5. Experiments
In this section, we first show the effects of using Thompson
sampling and gradient boosting through a preliminary abla-
tion study. Subsequently, we describe the experiments con-
ducted to empirically evaluate our method. For the choice
of problems, we focus on automated machine learning (Au-
toML), i.e., hyperparameter optimization (HPO) and neural
architecture search (NAS). To highlight the time efficiency
of our proposed method, we include a runtime analysis. Ad-
ditionally, a quantitative ablation study is presented to assess
the impact of various components within our framework.
Lastly, we evaluate our method on synthetic functions with
multiplicative noise to study robustness towards data with
heterogeneous scale and noise,

Baselines We compare our method against multiple base-
lines across all problems. As methods without meta-
learning, we pick random search (Bergstra & Bengio, 2012),
LFBO (Song et al., 2022) and Gaussian process (GP)
(Snoek et al., 2012)) for our experiments. For meta-learning
BO methods, we choose ABLR (Perrone et al., 2018), BaN-
NER (Berkenkamp et al., 2021), RGPE (Feurer et al., 2022),

5

0

5

10

f(x
)

MALIBO w/o TS and GB MALIBO

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

p(
y

|x
)

0.0 0.2 0.4 0.6 0.8 1.0
x

Figure 3. Effects of exploration and residual predictions. Color
circles denote the optimization queries (from bright to dark), the
dashed curve denotes a Thompson sample (TS) of the acquisition
function and the orange curve shows the sample combined with
gradient boosting (GB).

GC3P (Salinas et al., 2020), FSBO (Wistuba & Grabocka,
2021), MetaBO (Volpp et al., 2020), PFN (Müller et al.,
2023) and DRE (Khazi et al., 2023) as representative al-
gorithms. Additionally, we consider a simple baseline for
extending LFBO with meta-learning, called LFBO+BB,
which combines LFBO with bounding-box search space
pruning (Perrone et al., 2019) as a meta-learning approach.
For all LFBO-based methods, including MALIBO, we set
the required threshold γ = 1/3 following Song et al. (2022).

Evaluation metrics In order to aggregate performances
across tasks, we use normalized regret as the quantitative
performance measure for AutoML problems (Wistuba et al.,
2018). This is defined as minx∈XN

(f t(x)− f t
min)/(f

t
max −

f t
min), where XN denotes the set of inputs that have been

selected by an optimizer up to iteration N , f t
min and f t

max
respectively represent the minimum and the maximum ob-
jective computed across all offline evaluations available for
task t. We report the mean normalized regret across all
tasks within a benchmark as the aggregated result. For all
benchmarks, we report the results by mean and standard
error across 100 random runs.

Effects of exploration and residual prediction We first
investigate the effect of Thompson sampling and the resid-
ual prediction model when optimizing a Forrester function
(Sobester et al., 2008) as a toy example. By using the meta-
learned model as shown in Figure 1, MALIBO performs
task adaptation on a new Forrester function for 10 iterations.
We compare the results of MALIBO against a variant with-
out the proposed Thompson sampling and gradient boosting,
which only uses the approximated posterior predictive dis-
tribution in Equation (8) by probit approximation (Bishop
& Nasrabadi, 2006) for the acquisition function. As shown
in Figure 3, MALIBO without Thompson sampling fails
to adapt the new task with little exploration and optimizes

6

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

Figure 4. Runtime of different BO algorithms over optimization
steps. We show the typical results for two benchmarks and plot the
medial inter-quantiles to remove outliers.

greedily around the local optimum. This greedy optimiza-
tion occurs due to the strong dependence of LFBO on a
good initialization to not over-exploit. In contrast, the pro-
posed MALIBO allows the queries to cover both possible
optima by encouraging explorations. In addition, gradi-
ent boosting performs the refinement beyond the smooth
meta-learned acquisition function, which can be seen in
the discontinuity in the predictions. By suppressing the
predicted utility in the less promising areas, gradient boost-
ing refines the acquisition function to focus on the lower
value region. We provide an extensive ablation study on the
effects of different components in MALIBO and refer to
Appendix D for more details.

Runtime analysis To confirm the scalability of MAL-
IBO, we compare the runtime between methods, specifi-
cally the time required for the algorithm to propose a new
candidate. As shown in Figure 4, the introduction of latent
features and the Laplace approximation only adds negligible
overhead compared to LFBO, while MALIBO’s runtime in-
creases slowly with the number of observations. In contrast,
all other meta-learning methods, except for LFBO+BB,
are considerably slower than MALIBO. We include more
detailed experimental results in Appendix E.2.

Real-world benchmarks We empirically evaluate our
method on various real-world optimization tasks, focusing
on AutoML problems, including neural architecture search
(NASBench201) (Dong & Yang, 2020), hyperparameter
optimization for neural networks (HPOBench) (Klein &
Hutter, 2019) and machine learning algorithms (HPO-B)
(Pineda-Arango et al., 2021). In NASBench201, we con-
sider designing a neural cell with 6 discrete parameters,
totaling 15, 625 unique architectures, evaluated on CIFAR-
10, CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-16
(Chrabaszcz et al., 2017). The goal is to find the optimal
architecture for a neural network that yields the highest
validation accuracy. For HPOBench, the aim is to find

the optimal hyperparameters for a two-layer feed-forward
regression network on four popular UCI datasets (Dua &
Graff, 2017). The search space is 9-dimensional and the
optimization objective is the validation mean squared error
after training with the corresponding network configuration.
In HPO-B, the focus is on optimizing the hyperparameters
for different machine learning models to maximize accuracy
across various tasks. This benchmark comprises about 6
million evaluations of hyperparameters, across 16 search
spaces that correspond to different machine learning models.
Each search space varies in dimensionality ranging from 2
to 18 and includes several tasks, which are divided into train-
ing, validation and test tasks. Compared to the extensive
evaluations in HPO-B, both HPOBench and NASBench201
have significantly fewer related tasks and serve as examples
of performance with limited meta-data. We provide details
for benchmarks in Appendix H.

To train and evaluate the meta-learning BO methods in
HPOBench and NASBench201, we conduct our experi-
ments in a leave-one-task-out way: all meta-learning meth-
ods use one task as the target task and all others as related
tasks. In this way, every task in a benchmark is picked as
the target task once. To construct the meta-datasets, we
randomly select 512 configuration-objective pairs from the
related tasks, considering the limitations of RGPE in han-
dling large meta-datasets. All meta-learning methods, ex-
cept MetaBO, are trained from scratch for each independent
run, to account for variations due to the randomly sampled
meta-data. Because of its long training time, MetaBO is
trained once for each target problem on more meta-data
than other methods to avoid limiting its performance with a
bad subsample and we show its results only for HPOBench
and NASBench201. As for HPO-B, we utilize the provided
meta-train and meta-validation dataset to train the meta-
learning methods and evaluate all methods on the meta-test
data. While all methods optimize the target tasks from
scratch in the other two benchmarks, the first five initial ob-
servations in HPO-B is fixed as random seed and therefore
we only show the performances starting after the initial-
ization. We refer to Appendix G for more experimental
details.

The aggregated results for all three benchmarks are sum-
marized in Figure 5. It is evident that MALIBO con-
sistently achieves strong anytime performance, surpassing
other methods that either exhibit poor warm-starting or expe-
rience early saturation of performance. Notably, MALIBO
outperforms other methods by a large margin in HPOBench,
possibly because we focus on minimizing the validation er-
ror of a regression model in this benchmark. This task poses
a significant challenge for GP-based regression models, as
the observation values undergo abrupt changes and have
varying scales across tasks, thereby violating the smoothness
and noise assumptions inherent in these models. In most

7

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

0 100 200 300 400 500
Steps

10 9

10 8

10 7

10 6

10 5

10 4

10 3

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

HPOBench

0 100 200 300 400 500
Steps

10 3

10 2

10 1

NASBench201

0 20 40 60 80 100
Steps

10 2

10 1

HPO-B

Random GP LFBO LFBO+BB MetaBO RGPE ABLR GC3P FSBO PFN BaNNER MALIBO DRE

Figure 5. Aggregated normalized regrets for BO algorithms on real-world AutoML problems.

benchmarks, PFN and BaNNER exhibit comparable per-
formance to GP, except in NASBench201. GC3P performs
competitively only after the Copula process is fitted and
LFBO matches its final performance. LFBO+BB exhibits
similar performance as MALIBO in warm-starting and
converges quickly, but the search space pruning technique
forbids the method to explore regions beyond the promising
areas in the meta-data, making its final performance even
worse than its non-meta-learning counterpart. ABLR, RGPE
and FSBO perform poorly on most of the benchmarks, ex-
cept for HPO-B, because their meta-learning techniques
require more meta-data for effective warm-starting, mak-
ing them less data-efficient than MALIBO. MetaBO shows
strong warm-starting performance in HPOBench while it
fails in NASBench201. This is possibly due to the higher
diversity in NASBench201 compared to HPOBench, and
MetaBO fails to transfer knowledge from tasks that are
significantly different from the target task. The poor task
adaptation ability of MetaBO is also found by other studies
(Wistuba & Grabocka, 2021; Wang et al., 2022). For more
experimental results, we refer to Appendix E.3.

Ablation study To understand the impact of each compo-
nent within MALIBO, we conduct a quantitative ablation
study and introduce the following variants:

• MALIBO (Probit): Employs a probit approximation
(detailed in Appendix B) for the marginalized form
of the acquisition function. This variant does not use
gradient boosting.

• MALIBO (TS): Utilizes only Thompson sampling,
omitting the gradient boosting component.

• MALIBO (RES): Excludes the mean prediction layer
m(·).

• MALIBO (MEAN): Removes the task prediction layer
hzt(·) and utilizes only the task-agnostic component
gω .

• MALIBO (RF): Substitutes gradient boosting with a
random forest (RF) classifier.

• MALIBO (MLP): Replaces gradient boosting with a
multi-layer perceptron (MLP) classifier.

The results illustrated in Figure 6 reveal several key insights.
Due to the lack of a mean prediction layer, MALIBO (RES)
exhibits the poorest warm-starting performance across all
benchmarks, potentially leading to worse final performance.
Although the mean prediction layer improves initial perfor-
mance, relying solely on it may result in over-fitting to the
meta-data due to insufficient exploration capabilities. As
demonstrated by the performance of MALIBO (MEAN),
while it achieves the best results among all variants in NAS-
Bench201, its performance on the other two benchmarks is
inferior to the proposed method. In contrast, variants that
include an uncertainty-aware task prediction layer, such as
MALIBO (RES) and MALIBO, perform task adaptation
more reliably. Although MALIBO (TS) also encourages
exploration, the absence of a residual prediction model re-
sults in a significant performance decrease when the amount
of meta-data is limited, as observed in HPOBench and NAS-
Bench201. The comparison of MALIBO (MLP) and MAL-
IBO (RF) highlights the superiority of gradient boosting
over other classifiers such as random forest and MLP for the
residual prediction model. For more detailed experimental
results, refer to Appendix D.6.

Robustness against heterogeneous noise We use syn-
thetic function ensembles (Berkenkamp et al., 2021) to test
the robustness against heterogeneous noise in the data. We
focus on the Hartmann3D function ensemble (Dixon, 1978),
which is a three-dimensional problem with four local min-
ima. Their locations and the global minimum vary across
different functions. See Appendix H for more details.

To avoid biasing this experiment towards a single method,
we use a heteroscedastic noise incompatible with any as-
sumptions about the noise of any method. In particular,

8

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

0 100 200 300 400 500
Steps

10 8

10 7

10 6

10 5

10 4
N

or
m

al
iz

ed
 re

gr
et

 (l
og

)

HPOBench

0 100 200 300 400 500
Steps

10 3

10 2

10 1

NASBench201

0 20 40 60 80 100
Steps

10 2

10 1

HPO-B

MALIBO (Probit) MALIBO (TS) MALIBO (MEAN) MALIBO (RES) MALIBO (MLP) MALIBO (RF) MALIBO

Figure 6. Aggregated normalized regrets of MALIBO variants on real-world AutoML problems.

8 16 24 32 40 48 56 64
Steps

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

Hartmann3D (= 0.0)

8 16 24 32 40 48 56 64
Steps

10 3

10 2

10 1

100 Hartmann3D (= 0.1)

8 16 24 32 40 48 56 64
Steps

10 2

10 1

100 Hartmann3D (= 1.0)

Random GP LFBO LFBO+BB RGPE ABLR GC3P FSBO PFN BaNNER MALIBO

Figure 7. Normalized regret for BO algorithms on Hartmann3D with various levels of multiplicative noise.

this violates the GP methods’ and ABLR’s assumption of
homoscedastic, Gaussian noise. GC3P makes a similar
assumption after the nonlinear transformation of the obser-
vation values, which does not translate to any well-known
noise model. LFBO, LFBO+BB and MALIBO make no
explicit noise assumptions, but optimize for the best mean.
We choose a multiplicative noise, i.e., y = f(x) · (1+ ϵ ·n),
where n ∼ N (0,1). The noise corrupts observations with
larger values more, while having a smaller effect on those
with lower values. To see the robustness with different noise
levels, we evaluate ϵ ∈ {0, 0.1, 1.0}. For meta-training, we
randomly sample 512 noisy observations from 256 functions
in the ensemble. We show our results in Figure 7, where we
can see across all noise levels, our method learns a mean-
ingful prior for the optimization. The GP-based methods,
despite their strong performance in the noise-free case, es-
pecially RGPE, degrade significantly with increasing noise
levels.

6. Conclusion
We introduced MetA-learning for LIkelihood-free BO
(MALIBO), a method that directly models the acquisi-
tion function from observations coupled with meta-learning.
This method is computationally efficient and robust to het-
erogeneous scale and noise across tasks, which poses chal-

lenges for other methods. Furthermore, MALIBO enhances
data efficiency and incorporates a Bayesian classifier with
Thompson sampling to account for task uncertainty, ensur-
ing reliable task adaptation. For robust adaptation to tasks
that are not captured by meta-learning, we integrate gradient
boosting as a residual prediction model into our framework.
Empirical results demonstrate the superior performance of
the proposed method across various benchmarks.

Despite promising experimental results, some limitations of
the method should be noted. (i) The exploitation and explo-
ration parameter τ in likelihood-free BO algorithms could
be treated more carefully, e.g., via a probabilistic treatment
(Tiao et al., 2021). (ii) The regularization hyperparameter λ,
while robust across our experiments, may lead to suboptimal
outcomes in other scenarios. (iii) Using a uni-modal prior
could be restrictive for more complex task distributions.
Although a generalization to a Gaussian mixture model ex-
ists (Saseendran et al., 2021), its efficacy within MALIBO
remains unverified.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

References
Andrychowicz, M., Denil, M., Colmenarejo, S. G., Hoff-

man, M. W., Pfau, D., Schaul, T., Shillingford, B., and
de Freitas, N. Learning to learn by gradient descent by
gradient descent. In Neural Information Processing Sys-
tems, pp. 3988–3996, 2016.

Bardenet, R., Brendel, M., Kégl, B., and Sebag, M. Collabo-
rative hyperparameter tuning. In Proceedings of the 30th
International Conference on International Conference on
Machine Learning - Volume 28, pp. II–199–II–207, 2013.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. J. Mach. Learn. Res., 13:
281–305, 2012.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algo-
rithms for hyper-parameter optimization. In Advances
in Neural Information Processing Systems, volume 24,
2011.

Berkenkamp, F., Eivazi, A., Grossberger, L., Skubch, K.,
Spitz, J., Daniel, C., and Falkner, S. Probabilistic meta-
learning for bayesian optimization, 2021. URL https:
//openreview.net/forum?id=fdZvTFn8Yq.

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition
and machine learning. Springer, 2006.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. A limited
memory algorithm for bound constrained optimization.
SIAM Journal on Scientific Computing, 16(5):1190–1208,
1995.

Chen, Y., Song, X., Lee, C., Wang, Z., Zhang, R., Dohan, D.,
Kawakami, K., Kochanski, G., Doucet, A., Ranzato, M.,
et al. Towards learning universal hyperparameter optimiz-
ers with transformers. Advances in Neural Information
Processing Systems, 35:32053–32068, 2022.

Chrabaszcz, P., Loshchilov, I., and Hutter, F. A downsam-
pled variant of imagenet as an alternative to the cifar
datasets. arXiv preprint arXiv:1707.08819, 2017.

Clevert, D., Unterthiner, T., and Hochreiter, S. Fast and ac-
curate deep network learning by exponential linear units
(elus). In International Conference on Learning Repre-
sentations, 2016.

Demšar, J. Statistical comparisons of classifiers over multi-
ple data sets. Journal of Machine Learning Research, 7
(1):1–30, 2006.

Dixon, L. C. W. The global optimization problem. an intro-
duction. Toward global optimization, 2:1–15, 1978.

Dong, X. and Yang, Y. Nas-bench-201: Extending the
scope of reproducible neural architecture search. In Inter-
national Conference on Learning Representations, 2020.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Feurer, M., Springenberg, J. T., and Hutter, F. Using meta-
learning to initialize bayesian optimization of hyperpa-
rameters. In Proceedings of the 2014 International Con-
ference on Meta-Learning and Algorithm Selection - Vol-
ume 1201, pp. 3–10, 2014.

Feurer, M., Letham, B., Hutter, F., and Bakshy, E. Prac-
tical transfer learning for bayesian optimization. arXiv
preprint arXiv:1802.02219, 2022.

Finn, C., Xu, K., and Levine, S. Probabilistic model-
agnostic meta-learning. In Advances in Neural Infor-
mation Processing Systems, volume 31, 2018.

Frazier, P., Powell, W., and Dayanik, S. The knowledge-
gradient policy for correlated normal beliefs. INFORMS
journal on Computing, 21(4):599–613, 2009.

Frazier, P. I. and Wang, J. Bayesian optimization for materi-
als design. In Information science for materials discovery
and design, pp. 45–75. Springer, 2015.

Friedman, J. H. Greedy function approximation: A gradient
boosting machine. The Annals of Statistics, 29(5):1189 –
1232, 2001.

Garnett, R. Bayesian Optimization. Cambridge University
Press, 2022.

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro,
J., and Sculley, D. Google vizier: A service for black-box
optimization. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 1487–1495. Association for Computing
Machinery, 2017.

Graves, A. Practical variational inference for neural net-
works. In Advances in Neural Information Processing
Systems, volume 24, 2011.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Hennig, P. and Schuler, C. J. Entropy search for information-
efficient global optimization. Journal of Machine Learn-
ing Research, 13(6), 2012.

Hernández-Lobato, J. M., Hoffman, M. W., and Ghahra-
mani, Z. Predictive entropy search for efficient global
optimization of black-box functions. Advances in neural
information processing systems, 27, 2014.

10

https://openreview.net/forum?id=fdZvTFn8Yq
https://openreview.net/forum?id=fdZvTFn8Yq
http://archive.ics.uci.edu/ml

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

Homan, M. D. and Gelman, A. The no-u-turn sampler:
Adaptively setting path lengths in hamiltonian monte
carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

Hsieh, B.-J., Hsieh, P.-C., and Liu, X. Reinforced few-shot
acquisition function learning for bayesian optimization.
In Advances in Neural Information Processing Systems,
2021.

Huang, K., Wang, Y., Tao, M., and Zhao, T. Why do deep
residual networks generalize better than deep feedfor-
ward networks? — a neural tangent kernel perspective.
In Advances in Neural Information Processing Systems,
volume 33, pp. 2698–2709, 2020.

Hutter, F., Kotthoff, L., and Vanschoren, J. (eds.). Auto-
mated Machine Learning - Methods, Systems, Challenges.
Springer, 2019.

Kandasamy, K., Krishnamurthy, A., Schneider, J., and Poc-
zos, B. Parallelised bayesian optimisation via thompson
sampling. In Proceedings of the Twenty-First Interna-
tional Conference on Artificial Intelligence and Statistics,
volume 84, pp. 133–142, 2018.

Khazi, A. S., Arango, S. P., and Grabocka, J. Deep rank-
ing ensembles for hyperparameter optimization. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Kim, J., Kim, S., and Choi, S. Learning to warm-start
bayesian hyperparameter optimization. arXiv preprint
arXiv:1710.06219, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Klein, A. and Hutter, F. Tabular benchmarks for joint archi-
tecture and hyperparameter optimization. arXiv preprint
arXiv:1905.04970, 2019.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. online, 2009.

Kushner, H. J. A New Method of Locating the Maximum
Point of an Arbitrary Multipeak Curve in the Presence of
Noise. Journal of Basic Engineering, 86(1):97–106, 03
1964.

Li, Y., Shen, Y., Jiang, H., Bai, T., Zhang, W., Zhang, C.,
and Cui, B. Transfer learning based search space design
for hyperparameter tuning. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 967–977, 2022.

Maraval, A., Zimmer, M., Grosnit, A., and Bou Ammar,
H. End-to-end meta-bayesian optimisation with trans-
former neural processes. Advances in Neural Information
Processing Systems, 36, 2023.

Močkus, J. On bayesian methods for seeking the extremum.
In Optimization Techniques IFIP Technical Conference
Novosibirsk, July 1–7, 1974, pp. 400–404, 1975.

Müller, S., Feure, M., Hollmann, N., and Hutter, F. Pfns4bo:
in-context learning for bayesian optimization. In Proceed-
ings of the 40th International Conference on Machine
Learning, pp. 25444–25470, 2023.

Murphy, K. P. Machine Learning: A Probabilistic Perspec-
tive. The MIT Press, 2012.

Nguyen, X., Wainwright, M. J., and Jordan, M. I. Estimating
divergence functionals and the likelihood ratio by convex
risk minimization. IEEE Transactions on Information
Theory, 56(11):5847–5861, nov 2010.

Oliveira, R., Tiao, L. C., and Ramos, F. Batch bayesian
optimisation via density-ratio estimation with guarantees.
In Advances in Neural Information Processing Systems,
2022.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Perrone, V., Jenatton, R., Seeger, M. W., and Archambeau,
C. Scalable hyperparameter transfer learning. In Ad-
vances in Neural Information Processing Systems, vol-
ume 31, 2018.

Perrone, V., Shen, H., Seeger, M., Archambeau, C., and Je-
natton, R. Learning search spaces for bayesian optimiza-
tion: Another view of hyperparameter transfer learning.
In Proceedings of the 33rd International Conference on
Neural Information Processing Systems, 2019.

Pineda-Arango, S., Jomaa, H. S., Wistuba, M., and
Grabocka, J. HPO-B: A large-scale reproducible bench-
mark for black-box HPO based on openml. Neural Infor-
mation Processing Systems (NeurIPS) Track on Datasets
and Benchmarks, 2021.

Qin, J. Inferences for case-control and semiparametric two-
sample density ratio models. Biometrika, 85(3):619–630,
1998.

Rasmussen, C. E. Gaussian Processes in Machine Learning.
The MIT Press, 2004.

Salinas, D., Shen, H., and Perrone, V. A quantile-based ap-
proach for hyperparameter transfer learning. In Proceed-
ings of the 37th International Conference on Machine
Learning, volume 119, pp. 8438–8448. PMLR, 2020.

11

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

Salinas, D., Golebiowsk, J., Klein, A., Seeger, M., and
Archambeau, C. Optimizing hyperparameters with con-
formal quantile regression. In Proceedings of the 40th
International Conference on Machine Learning, 2023.

Saseendran, A., Skubch, K., Falkner, S., and Keuper, M.
Shape your space: A gaussian mixture regularization
approach to deterministic autoencoders. In Advances in
Neural Information Processing Systems, volume 34, pp.
7319–7332, 2021.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
de Freitas, N. Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE, 104
(1):148–175, 2016.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
In Advances in Neural Information Processing Systems,
volume 25, 2012.

Sobester, A., Forrester, A., and Keane, A. Engineering
design via surrogate modelling: a practical guide. John
Wiley & Sons, 2008.

Song, J., Yu, L., Neiswanger, W., and Ermon, S. A gen-
eral recipe for likelihood-free Bayesian optimization. In
Proceedings of the 39th International Conference on Ma-
chine Learning, volume 162, pp. 20384–20404, 2022.

Springenberg, J. T., Klein, A., Falkner, S., and Hutter, F.
Bayesian optimization with robust bayesian neural net-
works. In Advances in Neural Information Processing
Systems, volume 29, 2016.

Srinivas, N., Krause, A., Kakade, S., and Seeger, M. Gaus-
sian process optimization in the bandit setting: No regret
and experimental design. In Proceedings of the 27th In-
ternational Conference on International Conference on
Machine Learning, pp. 1015–1022, 2010.

Sugiyama, M., Suzuki, T., and Kanamori, T. Density Ratio
Estimation in Machine Learning. Cambridge University
Press, 2012.

Swersky, K., Snoek, J., and Adams, R. P. Multi-task
bayesian optimization. In Burges, C., Bottou, L., Welling,
M., Ghahramani, Z., and Weinberger, K. (eds.), Advances
in Neural Information Processing Systems, volume 26,
2013.

Tiao, L. C., Klein, A., Seeger, M. W., Bonilla, E. V., Archam-
beau, C., and Ramos, F. Bore: Bayesian optimization
by density-ratio estimation. In Proceedings of the 38th
International Conference on Machine Learning, volume
139, pp. 10289–10300, 2021.

Tighineanu, P., Skubch, K., Baireuther, P., Reiss, A.,
Berkenkamp, F., and Vinogradska, J. Transfer learning
with gaussian processes for bayesian optimization. In
Proceedings of The 25th International Conference on Ar-
tificial Intelligence and Statistics, volume 151, pp. 6152–
6181, 2022.

Tighineanu, P., Grossberger, L., Baireuther, P., Skubch, K.,
Falkner, S., Vinogradska, J., and Berkenkamp, F. Scalable
meta-learning with gaussian processes. In International
Conference on Artificial Intelligence and Statistics, pp.
1981–1989, 2024.

Vanschoren, J. Meta-learning: A survey. arXiv preprint
arXiv:1810.03548, 2018.

Volpp, M., Fröhlich, L. P., Fischer, K., Doerr, A., Falkner,
S., Hutter, F., and Daniel, C. Meta-learning acquisition
functions for transfer learning in bayesian optimization.
In International Conference on Learning Representations,
2020.

Wang, Z. and Jegelka, S. Max-value entropy search for effi-
cient bayesian optimization. In International Conference
on Machine Learning, pp. 3627–3635, 2017.

Wang, Z., Dahl, G. E., Swersky, K., Lee, C., Mariet, Z.,
Nado, Z., Gilmer, J., Snoek, J., and Ghahramani, Z. Pre-
training helps bayesian optimization too. arXiv preprint
arXiv:2207.03084, 2022.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. A survey of
transfer learning. Journal of Big data, 3(1):1–40, 2016.

Wistuba, M. and Grabocka, J. Few-shot bayesian opti-
mization with deep kernel surrogates. In International
Conference on Learning Representations, 2021.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. Learn-
ing hyperparameter optimization initializations. In 2015
IEEE International Conference on Data Science and Ad-
vanced Analytics (DSAA), pp. 1–10, 2015.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. Scal-
able gaussian process-based transfer surrogates for hy-
perparameter optimization. Mach. Learn., 107(1):43–78,
2018.

Yogatama, D. and Mann, G. Efficient Transfer Learning
Method for Automatic Hyperparameter Tuning. In Pro-
ceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, volume 33, pp. 1077–
1085, 2014.

12

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

A. Likelihood-free acquisition functions
For completeness, we provide the proofs and derivations for TPE (Bergstra et al., 2011), BORE (Tiao et al., 2021), and
LFBO (Song et al., 2022). Recall from Equation (1) that the expected utility function is defined as the expectation of
the improvement of the utility function U(y; τ) over the posterior predictive distribution. Given N observations on the
target task in a non-meta-learning setting, for the specific expected improvement (EI) acquisition function, where the utility
function is U(y; τ) := max(τ − y, 0), the function reads:

αU (x;DN , τ) = Ep(y|x,DN)[U(y; τ)]

=

∫ ∞

−∞
U(y; τ)p(y | x,DN) dy

=

∫ τ

−∞
(τ − y)p(y | x,DN) dy

=

∫ τ

−∞(τ − y)p(x | y,DN)p(y | DN) dy

p(x | DN)
.

(11)

We follow the prove from Tiao et al. (2021) and consider ℓ(x) = p(x | y ≤ τ,DN) and g(x) = p(x | y > τ,DN). The
denominator of the above equation can then be written as:

p(x | DN) =

∫ ∞

−∞
p(x | y,DN)p(y | DN) dy

= ℓ(x)

∫ τ

−∞
p(y | DN) dy

+ g(x)

∫ ∞

τ

p(y | DN) dy

= γℓ(x) + (1− γ)g(x) ,

(12)

where γ = Φ(τ) := p(y ≤ τ | DN). The numerator can be evaluated as:∫ τ

−∞
(τ − y)p(x | y,DN)p(y | DN) dy = ℓ(x)

∫ τ

−∞
(τ − y)p(y | DN) dy (13)

= ℓ(x)τ

∫ τ

−∞
p(y | DN) dy − ℓ(x)

∫ τ

−∞
yp(y | DN) dy (14)

= γτℓ(x)− ℓ(x)

∫ τ

−∞
yp(y | DN) dy (15)

= K · ℓ(x) , (16)

where K = γτ −
∫ τ

−∞ yp(y | DN) dy. Therefore the EI acquisition function is equivalent to the γ-relative density ratio up
to a constant K,

α(x;DN , τ)︸ ︷︷ ︸
expected improvement

∝ ℓ(x)

γℓ(x) + (1− γ)g(x)︸ ︷︷ ︸
γ−relative density ratio

(17)

Intuitively, one can think of the configurations x with y ≤ τ as good configurations, and the those with y > τ as
bad configurations. Then the density ratio can be interpreted as the ratio between the model’s prediction whether the
configurations belong to the good or bad class.

The tree-structured Parzen estimator (TPE) (Bergstra et al., 2011) estimates this density ratio by explicitly modeling ℓ(x)
and g(x) using kernel density estimation for a fixed value of the hyperparameter γ. Within BORE (Tiao et al., 2021), the
density ratio is modeled by class probabilities, where ℓ(x) = p(x | y ≤ τ,DN) and g = p(x | y > 0,DN).

Song et al. (2022) proof that the density ratio acquisition functions are not always equivalent to EI. Bergstra et al. (2011)
and Tiao et al. (2021) claim that Equation (13) holds true by assuming ℓ(x) is independent of y once y ≤ τ and therefore
can be treated as a constant inside the integral. In fact, p(x | y ≤ τ,DN) still depends on y even if y ≤ τ , because it is a

13

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

conditional probability conditioned on y not y ≤ τ . Therefore, satisfying the condition y ≤ τ does not imply independence
of y. From the definition of conditional probability

p(x | y ≤ τ,DN) =

∫ τ

−∞ p(x, y | DN) dy∫ τ

−∞ p(y | DN) dy
̸= p(x | y,DN) , (18)

we can see that they are not equivalent. Intuitively, the probability of the configuration x for a given y value should still
depend on y even if y < τ holds. By making this independence assumption, the resulting density ratio acquisition function
treats all (x, y) pairs below the threshold with equal probability (importance), when, in fact, EI weights the importance of
(x, y) pairs by the utility max(τ − y, 0)

To tackle this issue, Song et al. (2022) propose to directly approximate EI inspired by the idea of variational f-divergence
estimation (Nguyen et al., 2010). They provide a variational representation for the expected utility function at any point x,
provided samples from p(y | x). Thereby, their approach replaces the potentially intractable integration with the variational
objective function that can be solved based on samples:

Ep(y|x)[U(y; τ)] = argmax
s∈[0,∞)

Ep(y|x)[U(y; τ)f ′(s)]− f⋆(f ′(s)) , (19)

where the utility function U : R× T → [0,∞) is non-negative, τ ∈ T , f : [0,∞)→ R is a strictly convex function with
third order derivatives, and f⋆ is the convex conjugate of f . The maximization is performed over s ∈ [0,∞) and it does not
model distributions with probability but only samples from the observations DN .

They consider the approximated expected utility acquisition function as αLFBO = ŜDN,τ
(x), which can be written as:

ŜDN,τ
(x) = argmax

S:X→R
EDN

[U(y; τ)f ′(S(x))− f⋆(f ′(S(x))]. (20)

By optimizing a variational objective in the search space X , the expected utility acquisition function over x can be recovered.
For practical purpose, they choose a specific convex function f : f(r) = r log r

r+1 + log 1
r+1 for all r > 0, and a specific

form of S = C/(1− C), where C : X → (0, 1) and can be considered as a probabilistic classifier. By applying these into
Equation (20), the resulting acquisition function reads:

αLFBO(x;DN , τ) = ŜDN ,τ (x) = ĈDN ,τ (x)/(1− ĈDN ,τ (x)), (21)

where ĈDN ,τ is the maximizer of an objective over C:

E(x,y)∼DN
[U(y; τ) lnC(x) + ln(1− C(x))] . (22)

This is can be reinterpreted as a classification loss with training examples weighted by the utility function.

B. Probit approximation
While one can sample the predictive posterior to make class prediction as in Equation (9), an alternative way is to
approximate the integral in Equation (8) via probit approximation. Let a = m(Φ) + zTΦ and q(z) = N (z | zMAP,ΣN) be
the approximated posterior obtained through the Laplace approximation. The distribution of a then follows the Gaussian
N (a | µa, σ

2
a) with the following parameters:

µa = E[a] =
∫

p(a)a da

=

∫
q(z)(m(Φ) + zTΦ) dz

= m(Φ) + zTMAPΦ ,

(23)

σ2
a =

∫
p(a)[a2 − E[a]2] da

=

∫
q(z)

(
(m(Φ) + zTΦ)2 − (m(Φ) + zTMAPΦ)2

)
dz

= ΦTΣNΦ .

(24)

14

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

Thus our approximation to the predictive distribution in Equation (8) becomes

C(x) ≃
∫

p(k = 1 | ω, z)q(z) dz =

∫
σ(a)N (a | µa, σ

2
a) da . (25)

Since the integral in Equation (25) cannot be evaluated analytically due to the sigmoid function, we need to approximate it
to obtain the marginal class prediction. One can approximate the integral by exploiting the similarity between the logistic
sigmoid function σ(a) and the inverse probit function Bishop & Nasrabadi (2006); Murphy (2012), which is given by the
cumulative distribution of the standard Gaussian Φ(a). In order to obtain good approximation results, we need to rescale the
horizontal axis so that σ(a) has the same slope as Φ(λa), where λ2 = π/8. By replacing σ(a) with Φ(λa) in Equation (25),
we obtain the approximated predictive distribution:

p(k = 1 | ω,DN) ≈
∫

Φ(λa)N (a | µa, σ
2
a) da

= Φ

(
µa

(λ−2 + σ2
a)

1/2

)
= σ

(
(1 + πσ2

a/8)
−1/2µa

)
.

(26)

C. Regularizing the latent task space
To make sure our task distribution conforms to the prior distribution p(Z), we followed the approach in Saseendran et al.
(2021), where they regularize the learned latent representation towards a given prior distribution in a tractable way. Their
approach builds on the non-parametric Kolmogorov-Smirnov (KS) test for one-dimension probability distributions and
extend it to a multivariate setting, which allows for gradient-based optimization and can be easily applied to expressive
multi-modal prior distributions.

Directly extending the KS test to high-dimensional distributions is challenging, since it requires matching joint CDFs,
which is especially infeasible in this case. Therefore, they propose to match the marginal CDFs of the prior, making
the regularization tractable. Given d-dimensional task embedding z1, . . . , zT for T related tasks, the empirical CDF in
dimension j is defined as:

F (z) =
1

T

T∑
t=1

1([zt]j ≤ z) , (27)

where 1([zt]j ≤ z) is a indicator function if j-th component of zt is smaller or equal than a certain value z. In addition to
the marginals, they also regularize the empirical covariance matrix Cov(z1, . . . , zT) to be close to the covariance of the
prior. In our case, the prior task distribution is a isotropic Gaussian p(Z) = N (0, I), and the resulting regularizer can be
written as:

R({zt}Tt=1; p(Z)) = λKS

d∑
j=1

(F ([zt]j)− Φ([zt]j))
2

︸ ︷︷ ︸
match marginal CDF of p(Z)

+ λCov∥I− Cov({zt}Tt=1)∥2F︸ ︷︷ ︸
match covariance of p(Z)

, (28)

where the marginal CDFs and correlations are compared through squared errors, the λKS and λCV are weighting factors
controls the trade-off between matching the empirical marginal CDFs and the covariance.

Regularization coefficients estimation The two regularization coefficients λKS and λCov are important hyperparameters
and needed to be carefully treated. Notice that, the more tasks we have, the closer the match between the empirical CDFs
and the prior marginal CDF based on the assumption that the related tasks are i.i.d. samples from the task distribution. To
avoid the regularization being dominated by one term, we aim to scale them in a way that all terms converge to similar
magnitudes with more tasks. Therefore, we choose the two factors such that

λ−1
KS = 2

d∑
j=1

(F ([zt]j)− Φ([zt]j))
2 , with zt ∼ p(Z) ,

λ−1
Cov = 2∥I− Cov({z}Tt=1)∥2F , with zt ∼ p(Z) ,

(29)

where zt is i.i.d. sample from the prior distribution for the coefficient estimation. This normalizes the regularizer to be
approximately of order 1 for samples follows the prior distribution.

15

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

20

0

20

40

f(x
)

Objective function and meta-data

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

p(
y

|x
)

Acquisition function

0.5

0.0

feature 1

0.5

0.0
feature 2

0.4

0.2

0.0
feature 3

0.5

0.0

feature 4

0 1
0.6

0.4

0.2

feature 5

0 1
x

0.25

0.00

feature 6

observations y
observations y >

related tasks
target task

mean prediction
Thompson samples

(a) Forrester function features

0

2

4

6

f(x
)

Objective function and meta-data

1.0 0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

p(
y

|x
)

Acquisition function

0.0

0.5
feature 1

0.0

0.5

1.0
feature 2

1

0

feature 3

0

1

feature 4

1 0 1

0.5

0.0

0.5

feature 5

1 0 1
x

0.5

0.0

0.5
feature 6

observations y
observations y >

related tasks
target task

mean prediction
Thompson samples

(b) Quadratic function features

Figure 8. Left: Forrester functions with two likely optima as target function and related tasks. The learned acquisition function is shown
below. The meta-learned latent features show that the model successfully infers the location of two optima, resulting in a acquisition with
two modes around the optima. Right: Quadratic functions with varying optima as target function and related tasks. The meta-learned
latent features show that the model is able to capture the global function shape shared across all tasks, even though there is no clear
location for optima.

D. Ablation studies
In this section, we conduct ablation studies to illustrate the impact of different components of MALIBO on its performance.
We introduce the following variants of MALIBO as in Section 5:

• MALIBO (Probit): Utilizes the marginalized form of the acquisition function (see Appendix B) without gradient
boosting.

• MALIBO (TS): Employs only Thompson sampling without gradient boosting.

• MALIBO (RES): Removes the mean prediction layer m(·) while keeping other components unchanged.

• MALIBO (MEAN): Excludes the task prediction layer hzt
(·) and uses only the task-agnostic meta-learning component

gω with gradient boosting. This variant focuses on meta-learning the initial design for optimization. Note that, due to
the absence of task embedding, the model is trained without the task space regularization in Equation (4), making the
Thompson sampling strategy inapplicable.

• MALIBO (RF): Replaces gradient boosting with a random forest (RF) classifier, using the implementation from
scikit-learn (Pedregosa et al., 2011). Following Song et al. (2022), the hyperparameters are set as: n estimator = 1000,
min samples split = 2, max depth = None, min samples leaf = 1. Unlike in gradient boosting, this variant requires
explicit balancing of the results from the meta-learning and residual models, which we achieve by averaging their
predictions without applying a sophisticated weighting scheme.

• MALIBO (MLP): Substitutes gradient boosting with a two-layer multi-layer perceptron (MLP) classifier, with 32
hidden units per layer and ReLU activation. The MLP is optimized using ADAM (Kingma & Ba, 2015) with learning
rate lr = 10−3 and batch size B = 64. Predictions from the meta-learning and residual models are averaged similarly
to the RF variant.

D.1. Latent feature analysis

To provide an intuition of the meta-learning in our method, we visualize the feature representation extracted from the
meta-data by our meta-learning model. The latent features Φ represent basis functions for the Bayesian logistic regression
and should represent the structure of the meta-data distribution. With successfully learned features Φ and the mean layer,

16

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

5

0

5

10

f(x
)

MALIBO (Probit) MALIBO (TS) MALIBO

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

p(
y

|x
)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0
x

target function mean prediction gradient boosting Thompson samples

(a) Forrester function features

1.0

1.5

2.0

2.5

f(x
)

MALIBO (Probit) MALIBO (TS) MALIBO

1.0 0.5 0.0 0.5 1.0
x

0

1

p(
y

|x
)

1.0 0.5 0.0 0.5 1.0
x

1.0 0.5 0.0 0.5 1.0
x

target function mean prediction gradient boosting Thompson samples

(b) Quadratic function features

Figure 9. Task adaptation of different MALIBO variants on Forrester and quadratic functions after meta-learning. Each method optimizes
for 10 iterations.

our model performs the task adaptation by reasoning about the latent task embedding vector z. It produces predictions with
similar structure to the meta-data that match the class labels on the target function. In order to learn a effective feature
representation, one should capture both the local and global structure of the function. Therefore, we select two types of
function to study the effectiveness of feature learning for MALIBO: i) Forrester functions (Sobester et al., 2008) with
two very likely positions for the global optimum, which allows for effective warm-starting and requires local adaptation.
ii) quadratic functions, where the functions share a certain global shape, but the optima could be located anywhere in the
search space. For more details on the synthetic functions and the generation of meta-data, we refer to Appendix H.

The results for these two synthetic functions are shown in Figure 8a and Figure 8b respectively. In Figure 8a, we observe
that the features learned by MALIBO exhibit either a maximum or a minimum around the two likely optima, indicating that
the model successfully infers the location of the most promising values from the meta-data. In Figure 8b, even without a
clear location of optima, the features still follow the shape of quadratic functions with different minima.

D.2. Effects of Thompson Sampling

To understand how the exploration help with the optimization, we compare the task adaptation performance among MALIBO
(Probit), MALIBO (TS) and MALIBO on synthetic benchmarks. As illustrated in Figure 9, MALIBO (Probit) tends to
exhibit conservative behavior in both the Forrester and quadratic function scenarios, leading to sub-optimal performance.
This is primarily due to its limited exploration capabilities. In contrast, MALIBO (TS), which incorporates Thompson
sampling, demonstrates more robust exploration in both cases. Interestingly, even though MALIBO is enhanced with
gradient boosting, its exploration performance appears similar to the Thompson sampling-only variant. The influence
of gradient boosting is evident in the change of acquisition function values. It suppresses the values in regions where
the sampled function might predict high values, but existing observations suggest otherwise. Conversely, it amplifies the
acquisition function values near the current best observations, thereby fostering stronger convergence. In the initial stages of
optimization, both task adaptation and gradient boosting face a challenge due to the scarcity of observations, which limits
confident prediction. Unlike other methods that rely on random search as an exploration strategy, Thompson sampling
incorporates task uncertainty. It efficiently explores potential optima by leveraging meta-learned information from related
tasks, making it a more effective approach in the context of exploration and optimization.

D.3. Effects of gradient boosting

To illustrate the effectiveness of gradient boosting in MALIBO, we conduct an experiment that focus on this aspect by
excluding meta-learning. This approach mimics scenarios where meta-learning fails to aid task adaptation. As shown in
Figure 10, our experiments compare various MALIBO variants on a Forrester function, and contrast these results with
LFBO to assess their performances without meta-learning. The findings, depicted in Figure Figure 10, reveal that MALIBO
(Probit) and MALIBO (TS) are inefficient in optimizing the function due to their exclusive reliance on meta-learned features
for task adaptation. This reliance results in poor performance when the meta-learned priors are uninformative. In contrast,
the proposed MALIBO efficiently locates the optima and performs similarly to LFBO. This efficiency is attributed to
the ability of gradient boosting to counteract ineffective predictions from the meta-learning process. Specifically, gradient

17

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

0

20

40

f(x
)

LFBO MALIBO (Probit) MALIBO (TS) MALIBO

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

p(
y

|x
)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0
x

target function mean prediction gradient boosting Thompson samples

Figure 10. Task adaptation of LFBO and different MALIBO variants on a Forrester function without meta-learning. Each method optimize
for 16 iterations

0 100 200 300 400 500
Steps

10 1

100

101

102

O
pt

im
iz

at
io

n
us

ed
 ti

m
e

(s
)

CIFAR10

0 100 200 300 400 500
Steps

10 1

100

101

102
CIFAR100

0 100 200 300 400 500
Steps

10 1

100

101

102
ImageNet-16

MALIBO MALIBO (SVI) MALIBO (HMC)

Figure 11. Runtime of MALIBO using different inference methods over optimization steps on NASBench201. We plot the medial
inter-quantiles to remove outliers.

boosting enables subsequent learners to correct initial errors from the meta-learned model, thereby aligning the performance
of MALIBO with that of LFBO.

D.4. Effects of different inference methods

In this section, we investigate the performance of different approximation methods for the posterior task embedding
p(z | DN). Specifically, we consider three different inference methods, namely Hamiltonian Monte Carlo (HMC), stochastic
variational inference (SVI) and the Laplace approximation. Compared to the Laplace approximation, SVI and HMC normally
take longer time for the approximation, especially for HMC, as it needs multiple samples to estimate the expectation. To
show their speed and scalability, we compare their runtime for optimization on NASBench201 in Figure 11 and show
that the MALIBO with Laplace approximation takes around 0.1 second for every iteration, while MALIBO (SVI) takes
around 10 seconds and MALIBO (HMC) 100 seconds. Although the SVI and HMC variants take longer time for inference,
we show that the performance among these methods are close in Figure 12. Similar behaviors are also observed in other
benchmarks, including the HPOBench and HPO-B. Due to the fast inference time and competitive performance, we use
Laplace approximation as our proposed inference method for MALIBO.

D.5. Effects of task embedding dimension

Given that the task embedding dimension d = 50 is fixed across all experiments, its impact on the performance of MALIBO
remains uncertain. To address this, we conduct an ablation study using the HPO-B benchmark, which encompasses tasks
with input dimensions ranging from 2 to 18. We test various task embedding dimensions d = 4, 8, 16, 32, 50, 64, 128. As

18

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

0 50 100 150 200 250 300 350 400 450 500
Steps

10 5

10 4

10 3

10 2

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

CIFAR10

0 50 100 150 200 250 300 350 400 450 500
Steps

10 6

10 5

10 4

10 3

10 2

CIFAR100

0 50 100 150 200 250 300 350 400 450 500
Steps

10 2

10 1 ImageNet-16

MALIBO MALIBO (HMC) MALIBO (SVI)

Figure 12. Normalized regrets of MALIBO using different inference methods on NASBench201.

0 10 20 30 40 50 60 70 80 90 100
Steps

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

Av
er

ag
e

R
an

k

0 10 20 30 40 50 60 70 80 90 100
Steps

10 2

10 1

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

MALIBO (d = 4)
MALIBO (d = 8)

MALIBO (d = 16)
MALIBO (d = 32)

MALIBO (d = 50)
MALIBO (d = 64)

MALIBO (d = 128)

Figure 13. Aggregated comparisons across all search spaces for MALIBO with different task embedding dimensions on HPO-B.

illustrated in Figure 13, lower dimensional embeddings tend to yield better initial performance. However, this performance
often plateaus, possibly due to the embeddings’ limited expressiveness. Conversely, while increasing the dimensionality
generally enhances performance, this improvement persists only up to a certain point, specifically d = 32 in our study,
beyond which the influence of task embedding dimensionality on performance diminishes.

D.6. Quantitative comparison

In this section, we demonstrate the detailed experimental results for the quantitative ablation study that is introduced in
Section 5. This study, illustrated in Figures 14 to 16, compares seven variants of MALIBO across all real-world benchmarks.
These variants include MALIBO (Probit), MALIBO (TS), MALIBO (MEAN), MALIBO (RES), MALIBO (RF),
MALIBO (MLP) and the proposed MALIBO. We evaluated the performance using immediate regrets, which is the absolute
error between the global minimum and the best evaluated results so far. This metric was applied to both HPOBench and
NASBench201. For HPO-B, we followed the plotting protocol established by Pineda-Arango et al. (2021)., where the plots
include the normalized regrets and average rank across benchmarks, alongside with the critical difference diagram (Demšar,
2006) for the ranks of all runs @25, @50, and @100 steps to assess the statistical significance of methods.

E. Additional results
In this section, we present results related to the benchmarks discussed in Section 5. To further examine the robustness
against heteroscedastic noise, we demonstrate additional experiments on two more synthetic functions. For the real-world
benchmark, we include comprehensive results for all target tasks within the benchmarks, offering a more detailed analysis.
Additionally, we provide a runtime analysis to demonstrate the the scalability of our proposed method.

19

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

0 100 200 300 400 500
Steps

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Im
m

ed
ia

te
 re

gr
et

 (l
og

)

Protein

0 100 200 300 400 500
Steps

10 4

10 3

10 2

10 1

100 Parkinsons

0 100 200 300 400 500
Steps

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Im
m

ed
ia

te
 re

gr
et

 (l
og

)

Slice

0 100 200 300 400 500
Steps

10 9

10 7

10 5

10 3

10 1

Naval

MALIBO (Probit)
MALIBO (TS)

MALIBO (MEAN)
MALIBO (RES)

MALIBO (MLP)
MALIBO (RF)

MALIBO

Figure 14. Immediate regrets of MALIBO variants on all tasks in HPOBench.

0 100 200 300 400 500
Steps

10 5

10 4

10 3

10 2

10 1

Im
m

ed
ia

te
 re

gr
et

 (l
og

)

CIFAR10

0 100 200 300 400 500
Steps

10 7

10 6

10 5

10 4

10 3

10 2

10 1
CIFAR100

0 100 200 300 400 500
Steps

10 3

10 2

10 1

ImageNet-16

MALIBO (Probit) MALIBO (TS) MALIBO (MEAN) MALIBO (RES) MALIBO (MLP) MALIBO (RF) MALIBO

Figure 15. Immediate regrets of MALIBO variants on all tasks in NASBench201.

0 10 20 30 40 50 60 70 80 90 100
Steps

3.4

3.6

3.8

4.0

4.2

4.4

Av
er

ag
e

R
an

k

0 10 20 30 40 50 60 70 80 90 100
Steps

10 2

10 1

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

MALIBO (Probit)
MALIBO (TS)

MALIBO (MEAN)
MALIBO (RES)

MALIBO (MLP)
MALIBO (RF)

MALIBO

1234567

MALIBO (Probit)
MALIBO (RES)

MALIBO (TS)
MALIBO (RF)

MALIBO (MEAN)
MALIBO (MLP)
MALIBO

Rank@25

1234567

MALIBO (Probit)
MALIBO (TS)
MALIBO (RF)

MALIBO (RES)
MALIBO (MEAN)
MALIBO (MLP)
MALIBO

Rank@50

1234567

MALIBO (Probit)
MALIBO (RF)

MALIBO (MEAN)
MALIBO (RES)

MALIBO (TS)
MALIBO (MLP)
MALIBO

Rank@100

Figure 16. Aggregated comparisons of normalized regret and average ranks across all search spaces for MALIBO variants on HPO-B.

20

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

2 4 6 8 10 12 14 16
Steps

10 5

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

Forrester (= 0.0)

2 4 6 8 10 12 14 16
Steps

10 4

10 3

10 2

10 1

Forrester (= 0.1)

2 4 6 8 10 12 14 16
Steps

10 2

10 1

Forrester (= 1.0)

Random GP LFBO LFBO+BB RGPE ABLR GC3P FSBO PFN BaNNER MALIBO

Figure 17. Normalized regret for BO algorithms on Forrester function ensembles (D = 1) with different levels of multiplicative noise.

4 8 12 16 20 24 28 32
Steps

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

Branin (= 0.0)

4 8 12 16 20 24 28 32
Steps

10 4

10 3

10 2

10 1

Branin (= 0.1)

4 8 12 16 20 24 28 32
Steps

10 3

10 2

10 1

100
Branin (= 1.0)

Random GP LFBO LFBO+BB RGPE ABLR GC3P FSBO PFN BaNNER MALIBO

Figure 18. Normalized regret for BO algorithms on Branin function ensembles (D = 2) with different levels of multiplicative noise.

E.1. Noise experiment

In this experiments, we use the Forrester(Sobester et al., 2008) and Branin (Dixon, 1978) function ensembles as additional
benchmarks, with detailed descriptions available in Appendix F. For meta-learning, we randomly sampled N noisy
observations in T related tasks, setting N = 128, T = 128 for Forrester and N = 128, T = 256 for Branin. As illustrated in
Figures 17 and 18, MALIBO consistently demonstrate strong warm-starting performance and stay robust to noise compared
to most of the baselines. Similarly, the performances of LFBO and LFBO+BB are relatively stable across different noise
levels but are only comparable to random search. Notably, while RGPE and ABLR both outperform the other likelihood-free
based methods in the noise-free setting, their performances degrade significantly with increased noise levels except for
RGPE in Branin (ϵ = 1.0).

E.2. Runtime analysis

The runtime efficiency of MALIBO is investigated in Section 5, where we illustrate the runtime of the optimization
algorithms for each step in Figure 4. The runtime for MALIBO is the second fastest among all the meta-learning methods,
while only slightly slower than LFBO and LFBO+BB. Due to the increasing amount of observations, the runtime of almost
all the methods grows over with the number of iterations, especially for RGPE and PFN. The most time-consuming methods
are FSBO, BaNNER and PFN, which take almost 100 seconds for each steps. For PFN and BaNNER, this is mostly from
optimizing the acquisition function, which requires multiple initializations to guarantee better convergence to the global
optimum. In terms of FSBO, the time overhead also comes from the additional training in task-adaptation phase besides the
acquisition function optimization. Although ABLR and GC3P are around one order of magnitude slower than MALIBO
at the beginning, but their runtime remain stable throughout the optimization. ABLR always retrain on all data, which
constitutes the largest computational burden at each step, and the complexity of the Bayesian linear regression is more
scalable than GPs. For GC3P, we attribute the almost constant runtime to aggressive settings for the GPs hyperparameter
optimization, which is usually the most expensive step. The growth in runtime for LFBO and LFBO+BB can be attributed

21

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

Figure 19. Immediate regrets of different BO algorithms on the HPOBench neural network tuning problem. Each algorithm runs for 500
iterations and we show the corresponding estimated wall-clock time on the x axis in log scale.

exclusively to the fitting of the gradient boosted trees. Similarly, MALIBO uses gradient boosting as residual prediction
model, which retrains on the dataset for every iteration, therefore the runtime grows with the number of iterations as well.

In addition to the runtime, we also report results for HPOBench and NASBench201 focusing on immediate regrets as a
function of the estimated wall-clock time2. To obtain the realistic wall-clock time, we accumulate the time to optimize for
corresponding BO methods and the recorded runtime for the configurations in the benchmarks. Notice that all the methods
run for the same number of steps in an experiment. The results in Figures 19 and 20 show that MALIBO attains the best
warm-starting performance across almost all benchmarks and constantly achieves one of the lowest final regrets in the same
amount of time.

E.3. Real-world benchmarks

In Figures 21 to 23, we demonstrate the complementary results for the real-world benchmarks that is introduced in Section 5.
Additionally, we report the results for two more recent baselines, namely OptFormer (Chen et al., 2022) and NAP (Maraval
et al., 2023) in Figures 26 to 28. However, due to the excessive training time of these two methods, we only compare our
baselines in 6 representative search spaces in HPO-B benchmark as in (Maraval et al., 2023).

2We have limited the runtime analysis to only HPOBench and NASBench201 because HPO-B lacks the necessary runtime information
for such an evaluation.

22

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

Figure 20. Immediate regrets of different BO algorithms on the NASBench201 neural network architecture search problem. Each
algorithm runs for 500 iterations and we show the corresponding estimated wall-clock time on the x axis in log scale.

0 100 200 300 400 500
Steps

10 6

10 4

10 2

100

Im
m

ed
ia

te
 re

gr
et

 (l
og

)

Protein

0 100 200 300 400 500
Steps

10 4

10 3

10 2

10 1

100 Parkinsons

0 100 200 300 400 500
Steps

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Im
m

ed
ia

te
 re

gr
et

 (l
og

)

Slice

0 100 200 300 400 500
Steps

10 9

10 7

10 5

10 3

10 1

Naval

Random
GP

LFBO
LFBO+BB

MetaBO
RGPE

ABLR
GC3P

FSBO
PFN

BaNNER
MALIBO

Figure 21. Immediate regrets for BO algorithms on HPOBench for 4 datasets.

0 100 200 300 400 500
Steps

10 5

10 4

10 3

10 2

10 1

Im
m

ed
ia

te
 re

gr
et

 (l
og

)

CIFAR10

0 100 200 300 400 500
Steps

10 7

10 6

10 5

10 4

10 3

10 2

10 1

CIFAR100

0 100 200 300 400 500
Steps

10 3

10 2

10 1

ImageNet-16

Random GP LFBO LFBO+BB MetaBO RGPE ABLR GC3P FSBO PFN BaNNER MALIBO

Figure 22. Immediate regrets for different BO algorithms on NASBench201 for 3 datasets.

23

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

0 10 20 30 40 50 60 70 80 90 100
Steps

5

6

7

8

9

Av
er

ag
e

R
an

k

0 10 20 30 40 50 60 70 80 90 100
Steps

10 2

10 1

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

Random
GP

LFBO
LFBO+BB

RGPE
ABLR

GC3P
FSBO

DRE
PFN

BaNNER
MALIBO

123456789101112

Random
ABLR

GP
LFBO+BB

PFN
BaNNER LFBO

RGPE
FSBO
GC3P
MALIBO
DRE

Rank@25

123456789101112

Random
ABLR

GP
BaNNER

PFN
LFBO+BB RGPE

LFBO
GC3P
FSBO
MALIBO
DRE

Rank@50

123456789101112

Random
ABLR
LFBO

GP
PFN

BaNNER LFBO+BB
RGPE
GC3P
FSBO
DRE
MALIBO

Rank@100

Figure 23. Aggregated comparisons of normalized regret and average ranks across all search spaces for BO methods on HPO-B.

0 10 20 30 40 50 60 70 80 90 100

10 3

10 2

10 1

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

Search space No. 4796

0 10 20 30 40 50 60 70 80 90 100

10 2

10 1

Search space No. 5527

0 10 20 30 40 50 60 70 80 90 100
10 2

10 1

Search space No. 5636

0 10 20 30 40 50 60 70 80 90 100

10 5

10 4

10 3

10 2

10 1

100 Search space No. 5859

0 10 20 30 40 50 60 70 80 90 100

10 5

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

Search space No. 5860

0 10 20 30 40 50 60 70 80 90 100

10 1

Search space No. 5891

0 10 20 30 40 50 60 70 80 90 100

10 3

10 2

10 1

Search space No. 5906

0 10 20 30 40 50 60 70 80 90 100
10 2

10 1

Search space No. 5965

0 10 20 30 40 50 60 70 80 90 100

10 3

10 2

10 1

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

Search space No. 5970

0 10 20 30 40 50 60 70 80 90 100
10 6

10 5

10 4

10 3

10 2

10 1
Search space No. 5971

0 10 20 30 40 50 60 70 80 90 100

10 1

Search space No. 6766

0 10 20 30 40 50 60 70 80 90 100

10 2

10 1

Search space No. 6767

0 10 20 30 40 50 60 70 80 90 100
Steps

10 1

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

Search space No. 6794

0 10 20 30 40 50 60 70 80 90 100
10 4

10 3

10 2

10 1
Search space No. 7607

0 10 20 30 40 50 60 70 80 90 100
Steps

10 5

10 4

10 3

10 2

10 1 Search space No. 7609

0 10 20 30 40 50 60 70 80 90 100
Steps

10 3

10 2

10 1

Search space No. 5889

Random GP LFBO LFBO+BB RGPE ABLR GC3P FSBO DRE PFN BaNNER MALIBO

Figure 24. Normalized regret comparison of BO methods on HPO-B.

24

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

0 10 20 30 40 50 60 70 80 90 100
4

5

6

7

8

9

10

Av
er

ag
e

R
an

k

Search space No. 4796

0 10 20 30 40 50 60 70 80 90 100

5

6

7

8

9
Search space No. 5527

0 10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

Search space No. 5636

0 10 20 30 40 50 60 70 80 90 100
3

4

5

6

7

8

9

10

11

Search space No. 5859

0 10 20 30 40 50 60 70 80 90 100
3

4

5

6

7

8

9

10

11

Av
er

ag
e

R
an

k

Search space No. 5860

0 10 20 30 40 50 60 70 80 90 100
4

5

6

7

8

9

Search space No. 5891

0 10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

7

8

9

10
Search space No. 5906

0 10 20 30 40 50 60 70 80 90 100

4

5

6

7

8

9

10

11
Search space No. 5965

0 10 20 30 40 50 60 70 80 90 100
4

5

6

7

8

9

Av
er

ag
e

R
an

k

Search space No. 5970

0 10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

Search space No. 5971

0 10 20 30 40 50 60 70 80 90 100
4

5

6

7

8

Search space No. 6766

0 10 20 30 40 50 60 70 80 90 100

3

4

5

6

7

8

9

10
Search space No. 6767

0 10 20 30 40 50 60 70 80 90 100
Steps

3

4

5

6

7

8

9

10

Av
er

ag
e

R
an

k

Search space No. 6794

0 10 20 30 40 50 60 70 80 90 100

4

5

6

7

8

9

Search space No. 7607

0 10 20 30 40 50 60 70 80 90 100
Steps

4

5

6

7

8

9

10

11
Search space No. 7609

0 10 20 30 40 50 60 70 80 90 100
Steps

4

5

6

7

8

9

10

Search space No. 5889

Random GP LFBO LFBO+BB RGPE ABLR GC3P FSBO DRE PFN BaNNER MALIBO

Figure 25. Average rank comparison of BO methods on HPO-B.

25

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

0 10 20 30 40 50 60 70 80 90 100
Steps

6

7

8

9

10

11

Av
er

ag
e

R
an

k

0 10 20 30 40 50 60 70 80 90 100
Steps

10 2

10 1

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

Random
GP
LFBO

LFBO+BB
RGPE
ABLR

GC3P
FSBO
DRE

PFN
BaNNER
NAP

OptFormer
MALIBO

1234567891011121314

Random
OptFormer

LFBO
LFBO+BB

PFN
ABLR

NAP GP
RGPE
FSBO
BaNNER
DRE
GC3P
MALIBO

Rank@25

1234567891011121314

Random
OptFormer
LFBO+BB

LFBO
PFN

ABLR
RGPE FSBO

NAP
GP
GC3P
BaNNER
DRE
MALIBO

Rank@50

1234567891011121314

Random
LFBO

LFBO+BB
PFN

ABLR
RGPE

OptFormer FSBO
BaNNER
NAP
GC3P
GP
DRE
MALIBO

Rank@100

Figure 26. Aggregated comparisons of normalized regret and average ranks across 6 representative search spaces for BO methods on
HPO-B.

0 10 20 30 40 50 60 70 80 90 100

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

Search space No. 4796

0 10 20 30 40 50 60 70 80 90 100

10 2

10 1

Search space No. 5527

0 10 20 30 40 50 60 70 80 90 100

10 5

10 4

10 3

10 2

10 1

100 Search space No. 5859

0 10 20 30 40 50 60 70 80 90 100
Steps

10 5

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 re
gr

et
 (l

og
)

Search space No. 5860

0 10 20 30 40 50 60 70 80 90 100
Steps

10 3

10 2

10 1

Search space No. 5906

0 10 20 30 40 50 60 70 80 90 100
Steps

10 3

10 2

10 1

Search space No. 5889

Random
GP

LFBO
LFBO+BB

RGPE
ABLR

GC3P
FSBO

DRE
PFN

BaNNER
NAP

OptFormer
MALIBO

Figure 27. Normalized regret comparison of BO methods in 6 representative search space on HPO-B.

0 10 20 30 40 50 60 70 80 90 100

6

8

10

12

Av
er

ag
e

R
an

k

Search space No. 4796

0 10 20 30 40 50 60 70 80 90 100
5

6

7

8

9

10

Search space No. 5527

0 10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

Search space No. 5859

0 10 20 30 40 50 60 70 80 90 100
Steps

4

6

8

10

12

Av
er

ag
e

R
an

k

Search space No. 5860

0 10 20 30 40 50 60 70 80 90 100
Steps

4

6

8

10

12
Search space No. 5906

0 10 20 30 40 50 60 70 80 90 100
Steps

4

6

8

10

12

Search space No. 5889

Random
GP

LFBO
LFBO+BB

RGPE
ABLR

GC3P
FSBO

DRE
PFN

BaNNER
NAP

OptFormer
MALIBO

Figure 28. Average rank comparison of BO methods in 6 representative search space on HPO-B.

26

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

F. Step-through visualization
For illustration purposes, we provide step-through visualizations on a Forrester function. For details of the synthetic functions,
we refer to Appendix H. We use the same meta-trained model for the visualizations as the one used in Appendix D.1 for the
corresponding problem.

Sequential BO For the step-through visualization, the initial design is provided by the highest utility value of the mean
predictions. After the first proposed query, we collect our the observations for the following 4 iterations using only the
Thompson samples of the acquisition function. This is because we need to provide enough data to train and apply early
stopping for our gradient boosting classifier. We provide the step-through visualization in Figure 29.

0.0 0.2 0.4 0.6 0.8 1.0

5

0

5

10

f(x
)

Iteration 1

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

p(
y

|x
)

0.0 0.2 0.4 0.6 0.8 1.0

Iteration 6

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0

Iteration 7

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0

5

0

5

10

f(x
)

Iteration 8

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

p(
y

|x
)

0.0 0.2 0.4 0.6 0.8 1.0

Iteration 9

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0

Iteration 10

x

target function
observations

current query
mean prediction

gradient boosting
Thompson samples

Figure 29. MALIBO optimizing a Forrester function. We show the mean prediction, the Thompson samples of the acquisition function
and the gradient boosting prediction in the lower part of each sub-figure. At the first iteration, MALIBO picks the point with highest mean
prediction of the acquisition function, which is often already close to the global optimum. Thereafter, we collect 4 more observations via
the maximum prediction of a Thompson sample, in order to have sufficient data to train and apply early stopping for the gradient boosting
model. Observations picked by Thompson samples show that MALIBO explores another location of interest on the left-hand side and
also area close to the true optimum. With gradient boosting, the model is still able to explore the function and the predictions on non
promising area are suppressed in later iterations.

Parallel BO with Thompson sampling After showing the step-through visualization for MALIBO, we try to showcase a
preliminary experiments about extending MALIBO to parallel BO. We show a toy examples of synchronous parallel BO
(Kandasamy et al., 2018) using MALIBO (TS) on the same function. To be specific, we use three Thompson samples as
acquisition functions in each iteration, and evaluates the three proposed points for the next optimization step. We demonstrate
that, MALIBO can be easily extended to parallel BO with the help of Thompson sampling.

27

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

0.0 0.2 0.4 0.6 0.8 1.0

5

0

5

10
f(x

)

Iteration 1

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

p(
y

|x
)

0.0 0.2 0.4 0.6 0.8 1.0

Iteration 2

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0

Iteration 3

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0

5

0

5

10

f(x
)

Iteration 4

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

p(
y

|x
)

0.0 0.2 0.4 0.6 0.8 1.0

Iteration 5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0

Iteration 6

x

target function observations current query mean prediction Thompson samples

Figure 30. Synchronous parallel Thompson sampling using MALIBO (TS) to optimize a Forrester function. At every iteration, three
samples are drawn as acquisition functions and utilized to the determine the next query points. In the first iteration, MALIBO (TS)
already acquires three observations which cover both likely positions for the optimum. Subsequently, MALIBO (TS) exploits more often
around the area where the true optimum is located. At the last iteration, all of the three Thompson samples have already been skew toward
the left-hand side, which shows MALIBO (TS) converges to the correct region.

G. Experimental details
In this section, we explain the setups for all baselines we used in the experiments. We ran all baselines on 4 CPUs (Intel(R)
Xeon(R) Gold 6150 CPU @ 2.70GHz) except for MetaBO, which requires more computation and we explain the details
down below. Since most baselines are tested on similar AutoML tasks, we keep their hyperparameters as in their official
implementations (if available) with minor modifications. The hyperparameters of MALIBO is selected by validating on the
synthetic functions. We then fixed the selected hyperparameters for all experiments to ensure it is not overfit on a specific
task. We will elaborate the experimental details in the following.

GP We use the SingleTaskGP implementation from BoTorch3 with Matérn 5/2 kernel and Expected Improvement (EI) as
acquisition function.

LFBO Our implementation of LFBO is based on the official repository4 from Song et al. (2022) and we use gradient
boosting from scikit-learn (Pedregosa et al., 2011) as the classifier with the following settings: n estimator = 100,
learning rate = 0.1, min samples split = 2, min samples leaf = 1. For each problem, LFBO first randomly samples 10
observations to gather information and thereafter perform optimization using the classifier. For the threshold γ, which

3https://github.com/pytorch/botorch/
4https://github.com/lfbo-ml/lfbo

28

https://github.com/pytorch/botorch/
https://github.com/lfbo-ml/lfbo

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

trade-off the exploration and exploitation, we set γ = 1/3 following Song et al. (2022) for all experiments. To maximize the
resulting acquisition function, we use random search with 5, 120 samples following Tiao et al. (2021), where they show that,
the acquisition function is usually non-smooth and discontinuous for decision trees based method and using random search
is on par or even outperforms the more expensive alternative evolutionary algorithm.

LFBO+BB We extend LFBO to a meta-learning method with bounding box search space pruning (Perrone et al., 2019),
which reduces the search space based on the promising configurations in the related tasks. Our implementation of the search
space pruning technique is based on the open-source implementation in Syne Tune5. To construct the bounding box, we
select the top-1 performing configurations from each related task, and truncate the search space according to the these
configurations. We then apply LFBO to optimize the target task in the pruned search space.

RGPE Our implementation of Ranking-weighted GP Ensemble (RGPE) is based on Feurer et al. (2022). The key idea
behind the algorithm is that, for optimization, the important information predicted by the surrogate model is not so much the
function value f(x) at a given input x, but rather if the value f(x) is larger or smaller relative to the function evaluated at
other inputs. In other words, whether f(x) > f(x′) or vice versa. The algorithms propose to fit separate GPs on different
tasks and use a ranking strategy to combine the model that fit the most on the target task with prior knowledge. Our
implementation uses radidal basis function (RBF) kernel for each GP and Upper Confidence Bound (UCB) (Srinivas et al.,
2010) with β = 9.0 as the acquisition function.

ABLR BO with multi-task adaptive Bayesian linear regression. Our implementation of ABLR is equivalent to a GP with
0 mean and a dot-product kernel with learned basis functions. We use a neural net (NN) with two hidden layers, each
having 50 units, and Tanh activation as the basis functions. We train ABLR by optimizing the negative log likelihood (NLL)
over NN weights and covariance matrix that define the dot-product kernel. In each iteration, ABLR is trained on all data
including the meta-data as well as the observations from the target task using L-BFGS (Byrd et al., 1995).

GC3P We use the open-source implementation6 for GC3P from Salinas et al. (2020). For each target function, GC3P first
samples five candidates from a meta-learned NN model before building a task-specific Copula process.

BaNNER Similar to MALIBO, BaNNER uses a task-agnostic component to learn a feature transformation across tasks
for the mean prediction and a task-specific component to predict the residual. The difference is that it uses Bayesian linear
regression in the final layer, akin to the approach described in ABLR. We implemented the BaNNER-BLR-GP variant
as detailed by Berkenkamp et al. (2021), which integrates an additive non-parametric GP model to account for residual
errors. In our implementation, BaNNER utilizes a a three-layer ResFNN, each layer comprising 32 units, to learn the feature
mapping function. We set the task embedding dimension to 16 and employed EI as the acquisition function.

FSBO We use the open-source implementation7 for FSBO from Wistuba & Grabocka (2021). Its idea is similar to
ABLR, which aims to learn a task-independent deep kernel surrogate and allow a task-dependent head for adaptation. The
difference is that it frames meta-learning BO as a few-shot learning problem, which means during training, each batch from
stochastic gradient ascent contains only data from one task. For the experiments, we use the default setting from the official
implementation.

DRE We use the open-source implementation8 for DRE from Khazi et al. (2023). As this implementation only provides
pipelines and hyperparameter settings for the HPO-B benchmark, we confined our reporting to this benchmark to ensure a
fair comparison.

PFN We use the open-source implementation9 for PFN from Müller et al. (2023).

5https://github.com/awslabs/syne-tune/
6https://github.com/geoalgo/A-Quantile-based-Approach-for-Hyperparameter-Transfer-Learn

ing
7https://github.com/releaunifreiburg/FSBO
8https://github.com/releaunifreiburg/DeepRankingEnsembles
9https://github.com/automl/PFNs4BO

29

https://github.com/awslabs/syne-tune/
https://github.com/geoalgo/A-Quantile-based-Approach-for-Hyperparameter-Transfer-Learning
https://github.com/geoalgo/A-Quantile-based-Approach-for-Hyperparameter-Transfer-Learning
https://github.com/releaunifreiburg/FSBO
https://github.com/releaunifreiburg/DeepRankingEnsembles
https://github.com/automl/PFNs4BO

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

NAP and OptFormer Due to the excessive training time, we use their results of HPO-B from the official repository10.

MetaBO The training and evaluation of MetaBO was done based on the official implementation of Volpp et al. (2020). We
followed the recommended hyperparameters and model architecture from the implementation with the following changes:

1. We extended the training horizon to 60 steps, which is longer than the ones used by Volpp et al. (2020). We chose the
longer episode length to adapt to the higher dimensional space and the evaluation horizon we chose for the benchmarks.
The value 60 was chosen as a compromise between the full evaluation length of 500 iterations and the resulting increase
in training time due to the scaling of the GP used in the method.

2. We did not include the current time-step and total budget as features to the neural network policy due to poor
performance on our benchmarks when including them.

3. Due to the small number of data sets, we estimated the GP hyperparameters with independent sub-samples of the
meta-data sets, but otherwise following the procedure of Volpp et al. (2020). This effectively gives MetaBO access to
more meta-data, but is consistent with the evaluation scheme described below.

Besides these changes to the method, we also employed a different evaluation scheme for MetaBO due to its high training
cost. In contrast to the other meta-learning models that train in minutes on the meta-data using a single CPU, MetaBO
required almost 2 hours, using one NVIDIA Titan X GPU and 10 Intel(R) Xeon(R) CPU E5-2697 v3 CPUs. This made the
independent meta-training across the individual runs infeasible. To still include MetaBO into some of our benchmarks, we
decided to train MetaBO once and reuse this model throughout the individual runs during the evaluation.

During the meta-training, MetaBO received the same number of samples per meta-task as the other methods, but the
subsample was resampled for each training episode. While this gave MetaBO access to more meta-data compared to the
other methods, we eliminated the risk of evaluating the method on a bad subsample of the data by chance. The advantage of
effectively seeing more points of each meta-tasks should be considered when evaluating the early performance of MetaBO
compared to the other methods. The evidently weak adaptation of MetaBO to new tasks dissimilar to the meta-data.

Based on the high meta-training cost of MetaBO and the relatively poor performance on NASBench201 and the HPOBench
benchmarks, we decided to not include the method for the other evaluations, as scheme of leave-one-task-out validation
would be too expensive and any other comparison would either benefit MetaBO or put it at a disadvantage rendering the
results difficult to interpret.

MALIBO We use a Residual Feed Forward Network (ResFFN) (He et al., 2016) for learning the latent feature
representation, with 4 hidden layers, each with 64 units. For the mean prediction layer m(·) and task-specific layer hzt(·),
we use a fully connected layer with 50 units for each. The resulting meta-leaning model has 22, 359 learnable parameters.
We use ELU (Clevert et al., 2016) as the activation function in the network following Tiao et al. (2021). Similar to LFBO,
we set the threshold γ = 1/3 and maximize the acquisition function using random search with 5, 120 samples..

During meta-training, we optimize the parameters in the network with the ADAM optimizer (Kingma & Ba, 2015), with
learning rate lr = 10−3 and batch size of B = 256. In addition, we apply exponential decay to the learning rate in each
epoch with factor of 0.999. The model is trained for 2, 048 epochs with early stopping. For the regularization loss, we set
the regularization factor λ = 0.1 in Equation (3) and follow the approach in Appendix C to estimate the coefficients λKS and
λCov. The resulting meta-training is fast and efficient and we show the training time as well as the amount of meta-data for
each benchmark in Table 1.

In task adaptation, we optimize the task embedding for the target task using L-BFGS (Byrd et al., 1995), with learning
rate lr = 1, maximal number of iterations per optimization step max iter = 20, termination tolerance on first order
optimality tolerance grad = 10−7, termination tolerance on function value/parameter changes tolerance change = 10−9,
history size = 100 and using strong-wolfe as line search method. After obtaining the model adapted on target task, we
combine it with a gradient boosting classifier, which serves as a residual prediction model. We use the same setting for the
gradient boosting as in LFBO, except that we use the meta-learned MALIBO classifier as the initial estimator. However,
the gradient boosting classifier is trained only on the observations generated by the optimization process, which might lead
to overfitting on limited amount of data during early iterations. Therefore, we apply early stopping to avoid such behavior.

10https://github.com/huawei-noah/HEBO/tree/master/NAP

30

https://github.com/huawei-noah/HEBO/tree/master/NAP

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

Table 1. Meta-data and training time

Benchmark # meta-data Training time (ap-
proximate)

HPOBench 1, 536 15 seconds
NASBench201 1, 024 15 seconds
Branin 32, 768 480 seconds
Hartmann3D 131, 072 1,800 seconds

Specifically, we first estimate the number of trees that we need for training without overfitting. This is done by fitting a
gradient boosting classifier with randomly chosen training data and validation data, which account for 70% and 30% of the
whole data respectively. The resulting classifier estimates the number of trees that are needed to fit the partially observed
data while offering good generalization ability. We then use it as our hyperparameter for the gradient boosting and train it on
all observations.

H. Details of benchmarks
HPOBench

The hyperparameters for HPOBench and their ranges are demonstrated in Table 2. All hyperparameters are discrete and
there are in total 66,208 possible combinations. More details can be found in Klein & Hutter (2019).

Table 2. Configuration spaces for HPOBench

Hyperparameter Range

Initial LR { 5× 10−4, 1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 1× 10−1 }
LR Schedule { cosine, fixed }
Batch size { 23, 24, 25, 26 }
Layer 1 Width { 24, 25, 26, 27, 28, 29 }

Activation { relu, tanh }
Dropout rate { 0.0, 0.3, 0.6 }

Layer 2 Width { 24, 25, 26, 27, 28, 29 }
Activation { relu, tanh }
Dropout rate { 0.0, 0.3, 0.6 }

NASBench201

The hyperparameters for NASBench201 and their ranges are summarized in Table 3. All hyperparameters are discrete and
there are in total 15,625 possible combinations. More details can be found in Dong & Yang (2020).

Table 3. Configuration spaces for NASBench201

Hyperparameter Range

ARC 0 { none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3 }
ARC 1 { none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3 }
ARC 2 { none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3 }
ARC 3 { none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3 }
ARC 4 { none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3 }
ARC 5 { none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3 }

31

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

HPO-B

We use the HPO-B-v3 in our experiments and provide its description of search spaces in Table 4. More details can be found
in Pineda-Arango et al. (2021).

Table 4. Description of the search spaces in HPO-B-v3. #HPs stands for the number of hyperparameters, #Evals. for the number of
evaluations in a search space, while #DS for the number of datasets across which the evaluations are collected. The search spaces are
named with the respective OpenML version number (in parenthesis).

Search Space ID #HPs Meta-Train Meta-Validation Meta-Test
#Evals. #DS #Evals. #DS #Evals. #DS

rpart.preproc (16) 4796 3 10694 36 1198 4 1200 4
svm (6) 5527 8 385115 51 196213 6 354316 6
rpart (29) 5636 6 503439 54 184204 7 339301 6
rpart (31) 5859 6 58809 56 17248 7 21060 6
glmnet (4) 5860 2 3100 27 598 3 857 3
svm (7) 5891 8 44091 51 13008 6 17293 6
xgboost (4) 5906 16 2289 24 584 3 513 2
ranger (9) 5965 10 414678 60 73006 7 83597 7
ranger (5) 5970 2 68300 55 18511 7 19023 6
xgboost (6) 5971 16 44401 52 11492 6 19637 6
glmnet (11) 6766 2 599056 51 210298 6 310114 6
xgboost (9) 6767 18 491497 52 211498 7 299709 6
ranger (13) 6794 10 591831 52 230100 6 406145 6
ranger (15) 7607 9 18686 58 4203 7 5028 7
ranger (16) 7609 9 41631 59 8215 7 9689 7
ranger (7) 5889 6 1433 20 410 2 598 2

The Quadratic Ensemble

The function for the quadratic ensemble is defined as:

f(x, a, b, c) = (a · (x− b))2 − c x ∈ [0, 1] (30)

To form the ensemble, we choose the distribution for the parameters as:

a ∼ U(0.5, 1.5) b ∼ U(−0.9, 0.9) c ∼ U(−1, 1) (31)

This distribution of parameters ensures that the search space contains the minimum of the quadratic function at x∗ = b with
f(x∗) = c. The location of the optimum has a broad distribution over the function space, which is intended to highlight
algorithms that learn the global structure of the ensemble rather than restricting on some small regions of interest.

The Forrester Ensemble

The original Forrester function (Sobester et al., 2008) is defined following:

f(x, a, b, c) = a · (6x− 2)2 ˙sin(12x− 4) + b(x− 0.5)− c ,

x ∈ [0, 1] (32)

The function has one local and one global minimum, and a zero-gradient inflection point in the domain x ∈ [0, 1]. To form
the ensemble, we choose the distribution for the parameters as:

a ∼ U(0.2, 3) b ∼ U(−5, 15) c ∼ U(−5, 5) (33)

Let τ = {a, b, c} and p(τ) is a three dimensional uniform distribution. The ranges are chosen around the usually used fixed
values for the parameters, namely a = 0.5, b = 10, c = −5.

32

MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

The Branin Ensemble

The function for the Branin ensemble is the following:

f(x, a, b, c) = a(x2 − bx2
1 + cx1 − r) + s(1− t) cos(x1) + s ,

x1 ∈ [−5, 10], x2 ∈ [0, 15] (34)

The distribution for the parameters are chosen as:

a ∼ U(0.5, 1.5) b ∼ U(0.1, 0.15) c ∼ U(1.0, 2.0)
r ∼ U(5.0, 7, 0) s ∼ U(8.0, 12.0) t ∼ U(0.03, 0.05) (35)

Let τ = {a, b, c, r, s, t} and p(τ) is a six dimensional uniform distribution. The ranges are chosen around the usually used
fixed values for the parameters, namely a = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10 and t = 1/(8π).

The Hartmann3D Ensemble

The function for Hartmann3D (Dixon, 1978) ensemble reads:

f(x, α1, α2, α3, α4) =

−
4∑

i=1

αi exp

− 3∑
j=1

Ai,j(xj − Pi,j)
2

 x ∈ [0, 1]

A =

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 P = 10−4 ·

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

(36)

To form the ensemble, we choose the distribution for the parameters as:

α1 ∼ U(0.0, 2.0) α2 ∼ U(0.0, 2.0)
α3 ∼ U(2.0, 4.0) α4 ∼ U(2.0, 4.0)

(37)

Let τ = {α1, α2, α3, α4} and p(τ) is a four dimensional uniform distribution.

33

	Introduction
	Related Work
	Background
	Methodology
	Experiments
	Conclusion
	Likelihood-free acquisition functions
	Probit approximation
	Regularizing the latent task space
	Ablation studies
	Latent feature analysis
	Effects of Thompson Sampling
	Effects of gradient boosting
	Effects of different inference methods
	Effects of task embedding dimension
	Quantitative comparison

	Additional results
	Noise experiment
	Runtime analysis
	Real-world benchmarks

	Step-through visualization
	Experimental details
	Details of benchmarks

