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Figure 1. Visualization of our method. We use low-cost trials
(small ε) to estimate hyperparameters (HPs) and scale these up
to the privacy budget for the final run. We combine multiple HPs
together, and have a prior that the scaling is linear.

Abstract

An open problem in differentially private deep
learning is hyperparameter optimization (HPO).
DP-SGD introduces new hyperparameters and
complicates existing ones, forcing researchers
to painstakingly tune hyperparameters with hun-
dreds of trials, which in turn makes it impossible
to account for the privacy cost of HPO without de-
stroying the utility. We propose an adaptive HPO
method that uses cheap trials (in terms of privacy
cost and runtime) to estimate optimal hyperparam-
eters and scales them up. We obtain state-of-the-
art performance on 22 benchmark tasks, across
computer vision and natural language processing,
across pretraining and finetuning, across architec-
tures and a wide range of ε ∈ [0.01, 8.0], all while
accounting for the privacy cost of HPO.
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Figure 2. Evaluation on ImageNet-1k finetuning. Our HPO only
requires paying the privacy cost once, and can then be used to
find good HPs for all values of ε > 0.5. We outperform prior
work (Mehta et al., 2023b; Berrada et al., 2023) because our HPO
finds better HPs, even though prior work has better non-private
performance and does not report the privacy cost of their HPO.

1. Introduction
A crucial component of interfacing machine learning models
closely with user data is ensuring that the process remains
private (Apple, 2017), and Differential Privacy (DP) is the
gold standard for quantifying privacy risks and providing
provable guarantees against attacks (Dwork et al., 2006).
DP implies that the output of an algorithm e.g., the final
weights trained by stochastic gradient descent (SGD) do not
change much if a single datapoint in the dataset changes.

Definition 1.1 (Differential Privacy). A randomized mech-
anism M with domain D and range R preserves (ε, δ)-
differential privacy iff for any two neighboring datasets
D,D′ ∈ D and for any subset S ⊆ Rwe have Pr[M(D) ∈
S] ≤ eε Pr[M(D′) ∈ S] + δ

where D and D′ are neighboring datasets if they differ in
a single entry, ε is the privacy budget and δ is the failure
probability.

Differentially Private Stochastic Gradient Descent (DP-
SGD) (Song et al., 2013; Abadi et al., 2016) is the stan-
dard privacy-preserving training algorithm for training neu-
ral networks on private data. For a batch size B and
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learning rate η, DP-SGD has an update rule given by
w(t+1) = w(t) − ηt

(∑
i∈Bt

1
C clipC(∇ℓ(xi, w

(t))) + σξ
)

where the changes to SGD are the per-sample gradient
clipping clipC(∇ℓ(xi, w

(t))) = C×∇ℓ(xi,w
(t))

max(C,||∇ℓ(xi,w(t))||2)
, and

addition of noise sampled from a d-dimensional Gaussian
distribution ξ ∼ N (0, 1) with standard deviation σ. These
steps alter the bias-variance tradeoff of SGD and degrade
utility, creating a challenging privacy-utility tradeoff.

Because private training introduces additional hyperparame-
ters, biases optimization by clipping the gradient, and im-
poses privacy-utility tradeoffs for existing hyperparameters,
hyperparameter optimization (HPO) in DP is challenging.
Many prior works report doing hundreds of hyperparameter
trials and do not report the privacy cost of HPO in their final
privacy guarantee (De et al., 2022; Bu et al., 2022a;b; Mehta
et al., 2023a;b; Berrada et al., 2023). These works either
assume that HPO does not leak privacy, that the best HPs
are known beforehand, or that they can be transferred from
a public dataset that is similar to the private dataset.

More recently, researchers have proposed methods that do
private HPO (Papernot & Steinke, 2021; Koskela & Kulka-
rni, 2023; Wang et al., 2023) with Rényi DP. These pri-
vate HPO methods have been evaluated on MNIST and
CIFAR10, but have not been validated on more challenging
tasks in CV, or on LLMs.

We propose a new private adaptive HPO method (Figure 1),
which we call the new linear scaling rule. We first estimate
the optimal HPs for small privacy budgets. We then scale
the searched HPs linearly up to larger privacy budgets. Our
full method is described in Algorithm 2. We summarize our
contributions:

• We demonstrate that our new linear scaling rule reduces
the computation and privacy cost of HPO by an order of
magnitude without sacrificing performance.

• We compare our private HPO method to random search,
grid search, and 3 prior methods for private HPO.

• We evaluate our private HPO on 22 tasks spanning com-
puter vision and natural language processing, fine-tuning
and training from scratch, training models spanning
from ResNets to multi-billion-parameter Transformers.

• We find that models trained with our method can pro-
vide good performance even when there is a large shift
between public and private data.

2. Design
We provide a set of design goals for our adaptive private
HPO method and explain their importance. We use simple
axioms for optimization and privacy as building blocks to

motivate the high-level design of our method. We conduct
preliminary experiments to quantitatively determine the re-
lationships between key hyperparameters. Ultimately we
compose the many hyperparameters of interest in DP into
a single scalar variable r, and present a simple adaptive
approach for privately optimizing this parameter.

2.1. Design Goals

We draw our goals from the two simple baselines for HPO,
random search and grid search. We define random search as
drawing hyperparameters from the search space randomly
and doing a single run with the entire privacy budget. We
discuss variations on random search, such as doing multiple
runs with smaller privacy budgets, in Section 5. Random
search has low runtime, is parallelizable, and has low privacy
cost, but typically does not provide good performance when
the hyperparameter search space is large and the set of viable
solutions is sparse. Grid search typically has high runtime
and privacy cost, and is also parallelizable. Given sufficient
trials, grid search should approach the performance of the
oracle, the run with perfectly chosen hyperparameters.

Our method should provide:

• Better performance than random search and almost as
good as the oracle; if we define the error rate of any
HPO method as the difference in performance between
that method and the oracle, our method should reduce
the error rate relative to random search significantly.

• Better privacy cost than grid search and almost the
same privacy cost as random search; the difference in
privacy-utility tradeoff between our method and the or-
acle should not be the difference between a run with
ε = 0.1 and ε = 1.0, it should be the relatively smaller
gap between ex. ε = 0.9 and ε = 1.0.

2.2. Building Blocks of Linear Scaling

The design of our adaptive private HPO method is based
on simple building blocks derived from known theorems in
optimization and privacy. First we inspect the definition of
DP-SGD and the nature of adaptive composition. Suppose
we are taking T steps with noise σ to produce some ε guar-
antee. If we relax our privacy guarantee, so now we want to
achieve some ε∗ > ε, we can either a) fix T and reduce σ, b)
increase T and fix σ, or c) some combination of (a) and (b).
Second we turn to a rule of thumb that is popularly known
as the original linear scaling rule; the optimal learning rate
is inversely proportional to the noise scale in GD (Malladi
et al., 2022). In the case of DP-GD, that is in the full batch
setting where there is no noise due to SGD, the learning rate
should be inversely proportional to σ. If we combine these
two axioms, we get the following heuristic:
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Proposition 2.1. If we are taking T steps with noise σ and
learning rate η to achieve a target ε∗, we can achieve a
target ε̂ > ε∗ by either: a) Fix T, reduce σ, increase η)
b) Increase T, fix σ, fix η c) Increase T slightly, reduce σ
slightly, increase η slightly.

We now formalize this intuition.

3. Analysis of Private Gradient Descent
We analyze the excess empirical risk of private GD as the
sum of two terms. The first term is the risk of non-private
GD with the same hyperparameters. The second term is the
divergence of private GD from non-private GD due to the
added noise term.

We consider optimizing a function using Differentially Pri-
vate Gradient Descent (DP-GD). The presence of noise in
GD introduces a deviation between the iterates of GD with
noise, denoted as wT , and without noise, denoted as wTb

,
at iteration T . We first upper bound this deviation in expec-
tation, which we refer to as the radius r. We then use this
to upper bound the excess empirical risk of noisy GD. We
finally use this bound to motivate the design of our private
adaptive HPO method.

3.1. Assumptions

We present four assumptions that simplify the conver-
gence analysis. We acknowledge that these assumptions
do not hold true in all settings, but nevertheless provide
an important foundation for illustrating the intuition of our
method. We empirically validate the success of our algo-
rithm in complex neural network settings, such as training a
13B-parameter OPT Transformer model on the benchmark
SQuAD task, in Section 3.

• A function is α-strongly convex if for any two points
x, y and any subgradient g at x, it holds that f(y) ≥
f(x) + g⊤(y − x) + α

2 ∥y − x∥2.

• A function is β-smooth if its gradient is β-
Lipschitz continuous, meaning for any two points x, y,
∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥.

• A function is L-Lipschitz if there exists a positive L
such that |f(x)− f(y)| ≤ L∥x− y∥

• A function satisfies the bounded gradient assumption
if there exists a constant C such that E[∥∇f(w)∥ ≤
C ∀w ∈ Rd

The bounded gradient assumption is implied by convexity
and Lipschitzness. This allows us to ignore the impact of
clipping in DP-SGD, which reduces the analysis to that of
noisy GD.

The noise added at each iteration for privacy has an expected
norm ρ =

√
d · σ, where d is the dimension of the model,

and σ is the scale of the noise. The learning rate η satisfies
0 < η < 2

β , ensuring convergence.

Let c = max(|1− ηα|, |1− ηβ|), which characterizes the
contraction factor in the optimization process. Given that η
is chosen appropriately, we have 0 < c < 1.

3.2. Definitions

The empirical loss L(wT ) for a model parameterized by wT

(ex. iterate T of GD) over a dataset D = {(xi, yi)}Ni=1 is
defined as the average loss over all training samples:

L(wT ) =
1

N

N∑
i=1

ℓ(f(xi;wT ), yi)

The goal of our private Hyperparameter Optimization (HPO)
is to find the hyperparameter set Λ∗ that minimizes the loss:

Λ∗ = argmin
Λ

Lval(Λ)

where Lval(Λ) denotes the loss on a validation dataset for a
given hyperparameter configuration Λ. Because Noisy GD
typically does not overfit due to the heavy regularization
effect of the noise, and to make the convergence analysis
straightforward, we use the empirical loss as a proxy for
the validation loss throughout. We will analyze the excess
empirical risk to motivate the design of our private HPO
method.

Let wT be the T th iterate of noisy GD that optimizes a
function satisfying the assumptions, and wTb

be the T th

iterate of non-noisy GD that optimizes that same function.
We define the excess empirical risk of noisy GD as:

Rnoisy = E[L(wT )]− L(w∗),

≤ E[L(wT )− L(wTb
)] + L(wTb

)− L(w∗)

≤ E[L · ∥wT − wTb
∥] +Rnon-noisy

Where L(w∗) denotes the empirical loss at the optimal pa-
rameter set (without noise). Rnon-noisy = L(wTb

) − L(w∗

is the excess empirical risk of non-noisy GD. In the last
line, we upper bounded the excess risk induced by noise
L(wTb

)− L(w∗) by applying Lipschitzness of the loss.

We now bound ∥wT − wTb
∥.

Theorem 3.1. Let wT be the T th iterate of noisy GD that
optimizes an α-strongly convex and β-smooth function, and
let wTb

be the T th iterate of non-noisy GD that optimizes
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that same function. The ”noisy radius” distance, the ℓ2-
norm between wT and wTb

at iteration T , can be bounded
in expectation as follows:

E[∥wT − wTb
∥] ≤ ρη ×

(
T−1∑
i=0

ci

)
= r

Proof sketch. The full proof is in Appendix A.7. At each
iteration the distance between the noisy iterate and the non-
noisy iterate contracts by a factor of c = max(|1−ηα|, |1−
ηβ|) and then increases additively by ρη. The overall dis-
tance then can be represented by scaling the additive noise
term ρη by a geometric series that converges. Future work
might incorporate additional factors such as momentum ac-
celeration, bias introduced by clipping, or extend our analy-
sis to the setting of more general neural networks. However,
our objective here is to provide some theoretical intuition
for our algorithm.

Substituting Theorem 3.1 into the excess empirical risk we
get

Rnoisy ≤ Lr +Rnon-noisy

where L is the Lipschitz constant, we can see that our pri-
vate HPO needs to find HPs that are good for non-noisy
optimization but do not create a large divergence between
the noisy and non-noisy iterates.

4. Our Private HPO
We have established a relationship between the excess em-
pirical risk and the noisy radius. We can now connect this
back to our goal of doing private HPO, which is to find the
HPs that minimize the excess empirical risk. We want to
find r∗ = r(ε), the optimal value of r for a given value
of ε. We will first reduce the dimensionality of the search
problem and then introduce a principled approximation.

4.1. Reducing the Dimensionality of HPO

We want to reduce the dimensionality of HPO so that we
can reduce the cost of HPO.

For fixed ε, if we increase or decrease T then we will cor-
respondingly increase or decrease σ by the Composition
Theorem of DP. The actual statements of DP composition
are somewhat complicated, but we can simplify them as say-
ing σ grows slower than αT for some constant α. Because
E[ρ] =

√
dσ, we have that ρ grows slower than T .

The geometric series converges to
1

1− c
as T increases,

giving us E[∥wT − wTb
∥] ≤ (Tη) · (

√
d

1

1− c
). Because

we are interested in writing the radius in terms of hyperpa-
rameters that we can optimize, we drop the second term for

simplicity. Now we can write our hyperparameter of interest
as r = η × T , reducing the 2D HPO to 1D. If we wanted to
search for additional terms such as the batch size or clipping
threshold, we could incorporate them into our theory, but
we empirically find that it’s best to fix all other HPs to the
values we provide and just search for η, T .

4.2. Our Private HPO

In order to find the optimal r∗ = r(ε) without exhaustively
searching, we need to approximate r(ε). A natural choice
is Taylor approximation. We can sample points from r(ε)
at different values of ε via random search, use this to ap-
proximate a Taylor polynomial, and then use that Taylor
polynomial to estimate r for any desired target ε. After
we have our estimated r, we can decompose it into η, T
by randomly sampling η, T until their product is close to
r. This is the procedure we use in Figure 2, paying for the
privacy cost of building the approximation and then using it
to estimate the optimal HPs for many values of ε ∈ [0.5, 8].

We now elaborate on the implementation of the method.

The first-order Taylor approximation of a function r(ε)
around a point ε0 is given by r(ε) ≈ r(ε0) +

dr
dε

∣∣
ε=ε0

·
(ε − ε0), which linearly approximates r near ε0. Because
we cannot analytically determine dr

dε , we will have to ap-
proximate this.

To approximate the first-order Taylor polynomial we fit a
line. We first use random search to find two empirical points
(ε1, r(ε1)) and (ε2, r(ε2)). We then fit a line to these points
to obtain the parameters of the line m, b (slope and intercept).
We finally estimate the optimal r(εf ) = mεf + b such that
the composition of privacy guarantees for the entire private
HPO satisfies a target privacy budget according to Theorem
2.3. In practice we choose smaller values of ε for these
points such as ε1 = 0.1, ε2 = 0.2, that we find provide a
good privacy-utility tradeoff.

More generally, we can approximate the Taylor polyno-
mial by fitting a degree N polynomial with N + 1 points
(ε1, r(ε1)) · · · (εN+1, r(εN+1)). We provide results com-
paring the linear approximation to quadratic approximation
in Table 15, but use the linear approximation throughout our
work because we find that it provides a good privacy-utility
tradeoff.

The full method is detailed in Algorithm 2. The final pri-
vacy guarantee including the cost of HPO is given by Theo-
rem 4.1.

Theorem 4.1. The privacy guarantee of Algorithm 2 in
terms of µ in f -DP is µt =

√
nµ2

1 + nµ2
2 + µ2

f .

The proof and conversion to (ε, δ)-DP follow directly
from Dong et al. (2022), so we defer it to Appendix A.7.
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Table 1. Our method fixes six design choices: the architecture and initialization (for CV tasks only), the batch size (full batch), the
optimizer (SGD with momentum=0.9), the accounting method (PLV where all prior HPO methods use RDP), and the clipping norm (unit
clipping). We report the improvement derived from following each of these techniques with respect to a competitive baseline from prior
work on CIFAR100 at ε = 0.1.

Method Baseline Baseline Accuracy Improvement

Classifier (no bias) (Mehta et al., 2023b) 71.3 0.36
Zero Initialization Random Initialization (De et al., 2022) 64.85 6.81
Gradient Descent SGD(Batch=4096) (De et al., 2022) 70.2 1.46

Momentum (ρ = 0.9) ρ = 0 (Bu et al., 2022a) 69.02 2.09
PLV Accounting RDP (De et al., 2022) 68.43 3.23

Unit Clipping (C = 1) C ≪ 1 (Mehta et al., 2023a) 71.2 0.46

Implementing our method requires decomposing a target
ε, δ-DP guarantee into a set of µs; we provide code for this.

4.3. Limitations

Although this theory does not hold in general for training
neural networks, we quantitatively evaluate the heuristic we
develop in Section 3.4 and find that our method holds even
for the complex setting of training Transformers on NLP
benchmarks. Our HPO also requires more runtime than
random search because it is adaptive.

Algorithm 1 Model Training Subroutine
Initialize model weights w at 0
Decompose r into η, T without exceeding Tmax or ηmax

Use the PLD accountant to calibrate σ given µ, T
for i = 1, 2, . . . , T do

Compute gradient with unit clipping and add noise
∇(i) =

(∑
i∈D clip1(∇ℓ(xi, w

(i))) + σξ
)

Take a step with momentum: v(i) ← ρ · v(i−1) +∇(i),
w(i) ← w(i−1) − ηv(i)

end for
return trained model w

Algorithm 2 Adaptive HPO Routine
Inputs: Privacy parameters for hyperparameter sweeps
and final run µ1, µ2, µf , number of runs per sweep n,
maximum learning rate ηmax, maximum number of itera-
tions Tmax, dataset D, model M
Perform n runs with µ1 using Hyperparameter Sweep
Subroutine (Algorithm 3); obtain the best-performing r1
Perform n runs with µ2 using Hyperparameter Sweep
Subroutine (Algorithm 3), obtain the best-performing r2
Perform linear interpolation to estimate the slope α and
bias b of the line r = αε+ b given (µ1, r1), (µ2, r2)
Set r∗ = αµf + b given the estimated linear interpolation
Launch the Model Training Subroutine (Algorithm 1)
with r∗, µf , obtaining the final performance Af

Output: Final performance Af , trained model M

Algorithm 3 Hyperparameter Sweep Subroutine
Inputs: Privacy parameter µ, number of runs per sweep
n, search space for r
for i = 1, 2, . . . , n do

Uniformly sample r from the search space
Launch Model Training Subroutine (Algorithm 1) with
configuration r, µ, returning performance Pi

if Pi is the best performance so far on the training set
then set best-performing ri = r

end for
return best-performing ri

5. Evaluation
We provide results on a range of image classification, distri-
bution shift, and natural language processing tasks, for both
finetuning of models pretrained on public data and training
from scratch without any additional data. Due to the large
scope of our evaluation, we defer all experimental details
and full results for all datasets and models to Appendix A.
We provide ablations on all steps of our method (A.3). We
provide hyperparameter grid search results (A.6). We also
provide the code to reproduce our results at this link.

Datasets. Image classification: ImageNet (Deng et al.,
2009), CIFAR10 (training from scratch and finetuning), CI-
FAR100 (Krizhevsky et al., 2009), FashionMNIST (Xiao
et al., 2017), STL10 (Coates et al., 2011), EMNIST (Co-
hen et al., 2017). Because these image classification
datasets are generally considered in-distribution of the
pretraining data, we also provide results on a number
of distribution shift datasets (Koh et al., 2020) . CI-
FAR10 → STL, CIFAR10p1, CIFAR10C, CIFAR100
→ CIFAR100C (Hendrycks & Dietterich, 2019), Water-
birds (Sagawa et al., 2019), FMoW (Christie et al., 2017),
and Camelyon17 (Bándi et al., 2019). For NLP tasks
we consider SQuAD (Rajpurkar et al., 2016) for ques-
tions answering, text classification tasks from the GLUE
benchmark (Wang et al., 2019a): SST-2, QNLI, QQP,
MNLI(m/mm) and for next word generation we use Per-
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sonaChat (Zhang et al., 2018a) and WikiText-2 (Merity
et al., 2017), and Enron Emails (Klimt & Yang, 2004).

5.1. Effectiveness of the Linear Scaling Rule

ImageNet (with Public Data) In Figure 2 we compare the
performance of our method on ImageNet against the com-
petitive prior works of Mehta et al. (2023b); Berrada et al.
(2023). Note that these works do not report the privacy
cost of HPO and pretrain their models with JFT, Google’s
proprietary internal dataset; as a result the non-private per-
formance of their models exceeds ours (rightmost points).
Despite this, given sufficient budget (ε > 0.5) we match
or exceed their performance while accounting for the pri-
vacy cost of HPO. The downside of our method is that for
sufficiently small ε on sufficiently difficult datasets such
as ImageNet, there is no way to keep the privacy cost of
HPO small enough to retain enough budget to do a final run,
because HP trials with too small a budget do not provide
any information. We provide a deep dive into these points
of comparison in Appendix B.

CIFAR-10 (without Public Data) In Table 2 we compare
our method to random search and the grid search baseline,
which does not consider the privacy cost of HPO. We sig-
nificantly outperform random search, and approach the per-
formance of grid search. To the best of our knowledge, we
are the first to provide competitive performance when train-
ing on CIFAR10 without public data under a strict privacy
budget while accounting for the privacy cost of HPO.

Table 2. Performance comparison of different methods on CI-
FAR10. Our method outperforms prior work in linear probing
settings when using a feature extractor pretrained on CIFAR100.
In the setting where we do not have public data, we compare to
random search and grid search and our method greatly outperforms
random search.

CIFAR10 Acc with Public Data (ε = 1)

Koskela & Kulkarni (2023) 67%
Papernot & Steinke (2021) 66%
Ours 70.5%

CIFAR10 Acc without Public Data (ε = 1)

Random Search 44%
Grid Search (cost of HPO not incl.) 68%
Ours 62.63%

5.2. Comparison to other Private HPO

We provide a detailed comparison to 5 prior works in pri-
vate HPO as well as the baselines of random search and
grid search, and explain the design choices that enable our
method to dominate all prior work.

5.2.1. COMPARISON TO RENYI HPO

We compare to three prior works that use Renyi DP to ana-
lyze HPO (Papernot & Steinke, 2021; Koskela & Kulkarni,
2023; Wang et al., 2023).

In Table 2 we report that our linear scaling is 3.5% better on
CIFAR10 at ε = 1 in the experimental setting of Koskela
& Kulkarni (2023): linear probing on a ResNet20 check-
point pretrained on CIFAR100. Koskela & Kulkarni (2023)
achieve 67% on CIFAR10 at ε = 1. In the same setting,
the method of Papernot & Steinke (2021) obtains 66%. We
apply the linear scaling rule in the same setting, so that
only the hyperparameters our method selects are different,
and obtain 70.5% at ε = 1. All methods use the same
hyperparameter search space. The reason our method out-
performs Koskela & Kulkarni (2023); Papernot & Steinke
(2021) is because our prior is better than their random search,
which is required by their method, enabling us to simulta-
neously allocate a smaller portion of the privacy budget to
HPO while still finding better hyperparameters. We also use
PLD accounting which is tighter than the RDP accounting
their method requires. Neither of these can be fixed; that is,
we cannot modify their method to integrate the linear scaling
prior or to use PLD accounting. Even with PLD accounting,
we would not be able to make up for the gap in accuracy that
comes from our adaptive method. An interesting question
for future work is whether we can do RDP analysis of our
adaptive method. More details in Appendix A.1.

5.2.2. COMPARISON TO PARAMETER-FREE METHODS.

A related area is parameter-free HPO, that builds optimizers
that do not require specifying the learning rate as a hyper-
parameter. In general it can be challenging to apply these
parameter-free methods to DP, because the update rule for
the scale of the gradient may not maintain its guarantees in
the presence of noise (Li et al., 2023).

Comparison to DPAdamWosm. One parameter-free opti-
mizer specifically designed for DP is DPAdamWOSM (Mo-
hapatra et al., 2021). On ImageNet DPAdamWOSM
achieves 79% at ε = 1), which is 8% lower than our method
(87% at ε = 1). We do not find that the data-independent
learning rate selection works well for ImageNet, and still
requires tuning the number of iterations (see Appendix A.1).

Comparison to Mehta et al. (2023b) Mehta et al. (2023b)
propose an approach where they fix the batch size to full
batch, the number of steps to 1, and take a single step of
DP-Adam with a very small learning rate. Their approach
obtains just 81% at ε ≥ 1 on ImageNet for a model whose
non-private accuracy is 88.7%, because they take only a
single step. Our method smoothly interpolates between the
low-r setting for small ε and the large-r setting for large ε,
and outperforms their method across all privacy budgets.
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Table 3. Comparing various HPO methods on CIFAR10 (without
public data), CIFAR100, ImageNet, and SQuAD (with public data).
Reported numbers are mean over 5 trials.

Dataset Random Search Oracle Ours RERR

CIFAR10 44 68 62.63 77.63
CIFAR100 84.44 89.62 89.10 84.85
ImageNet 83.2 88.6 87.7 83.33
SQuAD 49.33 82.43 78.08 86.85

5.2.3. COMPARISON TO BASELINES: RANDOM SEARCH
AND GRID SEARCH.

Linear scaling significantly outperforms random search.
In Table 3 we report the performance for random search,
our method, the oracle, and the relative error rate reduction
(RERR). Across all datasets, our method significantly out-
performs random search. We use the same logarithmic grid
for both our method and random search that can be found
in Appendix A. We vary this grid and find that the larger
the search space, the more our method outperforms random
search.
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Figure 3. Training the beit architecture on CIFAR100, the linear
scaling rule produces values for r = η × T close to that of grid
search, and the performance drop is only apparent at ε > 0.2
because of the cost of HPO, and vanishingly small for larger ε.

Linear Scaling approaches grid search. We validate the
effectiveness of linear scaling against the grid search base-
line. In Fig. 3 (right) we compare Alg. 2 to the best run
across 100 trials from the search space. The privacy cost of
grid search is many times higher than that of our method
at each value of ε, because we do not account for the pri-
vacy cost of grid search to illustrate that even when our
method has to account for the privacy cost of HPO and the
oracle (grid search) does not, our method is competitive.
Our method finds near-optimal hyperparameters with just a
fraction of the runtime and privacy cost of grid search.

5.3. Empirical Analysis of Linear Scaling

We now consider different architectures and validate our
HPO method in the presence of distribution shifts. Full
results can be found in Appendix A.2.

Architecture Search. In Table 4 we apply our method to

Table 4. We compare the best private and best non-private perfor-
mances of all models on all datasets. We use the linear scaling rule
to scale hyperparameters from ε = 0.1 to ε = 1, so our privacy
analysis includes the cost of hyperparameter tuning.

Model Dataset ε = 1 ε = ∞ Gap

beitv2 CIFAR10 98.90 99.00 0.10
CIFAR100 89.10 91.57 2.47
FMNIST 91.02 91.53 0.51
STL10 99.69 99.81 0.12

EMNIST 81.77 82.00 0.23
convnext CIFAR10 96.75 97.22 0.47

CIFAR100 83.47 86.59 3.12
FMNIST 90.23 91.13 0.9
STL10 99.61 99.71 0.10

EMNIST 78.38 79.05 0.67
beit CIFAR10 98.19 98.51 0.32

CIFAR100 87.1 90.08 2.98
FMNIST 90.55 91.6 1.05
STL10 99.62 99.78 0.16

EMNIST 81.48 83.25 1.77
vit-L CIFAR10 98.29 98.44 0.40

CIFAR100 86.18 89.72 3.54
FMNIST 90.58 91.37 0.79
STL10 99.62 99.76 0.14

different architectures that can serve as good backbones
for high-accuracy DP classification across CIFAR10, CI-
FAR100, FMNIST, STL10, and EMNIST. The private-non
private utility gap diminishes with model accuracy. One
architecture, beitv2, performs the best on all benchmarks
and also has the highest non-private zero-shot ImageNet
accuracy (Wightman, 2019). We conclude that architecture
search can be done without any privacy cost by selecting
the model with the best zero-shot performance on a repre-
sentative benchmark such as ImageNet.

Distribution Shift. A concern in DP fine-tuning is that the
pretraining datasets are too similar to the downstream tasks,
which can violate privacy (Tramèr et al., 2022). In Table 5
we evaluate the robustness to distribution shift of models
trained with our private HPO to non-private models, in the
absence of any explicit regularization methods or any infor-
mation about the distribution shift. These datasets are con-
sidered benchmark tasks for distribution shifts (Kumar et al.,
2022b;c; Mehta et al., 2022) and include data that is not in-
distribution of the training data, making for a more realistic
evaluation of the capabilities of our method to solve chal-
lenging tasks. We show that DP-SGD provides robustness
to covariate, subpopulation and label distribution shifts for
synthetic and natural datasets. Full details in Appendix A.2.

On Waterbirds, DP degrades the ID performance but actu-
ally improves the OOD performance. On fMoW and Came-
lyon17 that are datasets with a significant distribution shift
from ImageNet and very different subgroups, DP does not
significantly degrade performance and does not exacerbate
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Table 5. Evaluating our DP-HPO method on datasets with distribution shifts at ε = 1.

Waterbirds fMoW Camelyon C10→ STL C10→ C10p1 C10→ C10C C100→ C100C

ID 92.31 45.44 93.91 98.90 98.90 98.90 89.65
OOD 91.59 35.31 93.55 98.82 97.85 89.98 68.69

Table 6. Linear scaling holds for GLUE tasks when training the
full RoBERTa-base model

Task ε Acc r = η × T

SST-2
0.1 90.60 0.975
0.2 90.83 1.95
0.7 91.06 5.07

QNLI
0.1 82.54 3.9
0.2 84.00 4.68
1.3 86.25 26.52

QQP
0.1 81.07 11.7
0.2 82.21 17.55
1.2 84.69 64.35

MNLI(m/mm)
0.1 77.52(78.24) 11.7
0.2 79.40(79.98) 17.55
1.2 81.86(82.76) 64.35

disparities among subgroups. We also show that we can
train models on CIFAR10 with DP and do zero-shot transfer
to STL and CIFAR10p1. Finally, we evaluate the robustness
of CIFAR-DP-trained models to the common corruptions of
CIFAR10C/CIFAR100C, and note that DP training achieves
some measure of intrinsic robustness to image corruptions.

5.4. Linear Scaling for language modeling

Prior work has generally focused on either CV or NLP
because the methods used in DP fine-tuning differ greatly
across data modalities (Li et al., 2022b; Mehta et al., 2023a);
here we show that our method extends to NLP by validat-
ing on text classification and language modeling tasks with
LoRA (Hu et al., 2021) and full fine-tuning. We fine-tune
GPT-2 (Radford et al., 2019) with our method for three lan-
guage modeling tasks that have been benchmarked in prior
works (Li et al., 2022b; Shi et al., 2022; Gupta et al., 2022)
on private fine-tuning: Persona-Chat (Zhang et al., 2018b),
WikiText-2 (Merity et al., 2017) and Enron Emails (Klimt
& Yang, 2004). We also fine-tune RoBERTa-base on four
tasks in the GLUE benchmark: SST-2, QNLI, QQP and
MNLI(m/mm) in Table 6. While prior works mainly fo-
cus on ε in {3, 8}, in this work we are also interested in
smaller εs like 0.1. Appendix C.2 includes the details for
the experimental set-up.

Linear scaling succeeds when random search fails. We
consider the challenging setting from Malladi et al. (2024)
of fine-tuning an OPT-13B model on just 1000 samples

from SQuAD with DP-SGD-LoRA. Random search runs
sometimes do not improve much over zero shot performance,
because the search space is so large and the viable set so
small. In the initial phases of our method, the trials do not
always succeed. Regardless, our method achieves 78%±3%
close to the oracle 82%, a RERR of 87.5%. Random search
performs poorly for NLP tasks because HPO is generally
more challenging (Li et al., 2022b). In the rest of the NLP
datasets we consider, we compare our performance to prior
work that doesn’t consider the privacy cost of HPO.

Linear scaling holds for NLP tasks We analyze the per-
formance gap between estimated total step size and optimal
total step size by grid search to understand how well linear
scaling performs on language modeling tasks. Fig. 4 plots
the optimal perplexity and perplexity by estimated total step
size at different values of ε on Enron emails. We can see that
the linear scaling rule generalizes well for reported values
of ε and the perplexity by the estimated total step size is
close to the optimal perplexity. From Table 6 we can see
that our method also works for the GLUE benchmark.
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Figure 4. The linear scaling rule (accounting for the privacy cost
of hyperparameter tuning) is competitive with grid search (non-
private, doing N trials each with the given ε) on the Enron Emails
dataset. Left: y-axis is Perplexity (lower is better).

The linear scaling rule outperforms prior results on dif-
ferentially private language modeling tasks. We first run a
qualitative evaluation on the previous benchmark SOTA (Li
et al., 2022b) on PersonaChat trained with DP-SGD by fol-
lowing the linear scaling rule to increase the number of
epochs. We can see in Table 7 that we can push the per-
plexity under 18 for ε = 3 and ε = 8; this performance
is competitive with the non-private baseline. Furthermore,
even when pushing for a stricter privacy guarantee ε = 0.5,
we can still get perplexity of 21.25, that is better than the
result of ε = 8 in (Li et al., 2022b). We also report the
results of ablating these hyper-parameters and varying the
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Table 7. Linear scaling holds when fine-tuning all layers of GPT2
on PersonaChat and outperforms Li et al. (2022b)

ε (δ = 1
2|Dtrain|

) 0.7 3 ∞

Li et al. (2022b) - 24.59 18.52
Our Work 21.25 - 17.69

Table 8. Finetuning GPT-2 on WikiText-2 (δ = 10−6) and Enron
(δ = 1

2|Dtrain|
) with DP-SGD. Ppl is perplexity and TSS is Total

Step Size. (∗ means estimated). Previously reported best perplexity
of GPT-2 on WikiText-2 at ε = 3 is 28.84 in (Shi et al., 2022).

ε 0.1 0.2 0.5 1.4 2.2 3.0

WikiText-2 Ppl - 28.81 28.37 28.15 27.98 27.69
TSS - 0.008 0.02 0.04∗ 0.08∗ 0.12∗

ε 0.1 0.2 0.7 1.1 1.9 2.7

Enron Ppl 14.35 12.50 11.56 10.91 10.45 10.14
TSS 0.10 0.58 2.02∗ 4.41∗ 9.19∗ 13.98∗

number of layers trained in Appendix C.3. We quantitatively
validate the linear scaling rule on WikiText-2 and report the
result in Table 8. For WikiText-2, a key observation is that
when we compare our results to the best prior reported re-
sults in (Shi et al., 2022), for the same number of passes
over the training data (20), we obtain lower perplexity for
ε = 0.2 than they report for ε = 3. That is, by just increas-
ing the effective step size from ∼ 8× 10−6 to ∼ 8× 10−3

we can strengthen the privacy guarantee without degrading
performance.

6. Related Work and Discussion
Related Work. We have performed detailed quantitative
and qualitative comparisons to prior private HPO meth-
ods (Papernot & Steinke, 2021; Koskela & Kulkarni, 2023;
Wang et al., 2023). These build on earlier work by Liu &
Talwar (2018) that can do HPO by increasing the privacy
cost roughly threefold. We improve over these works by
significantly reducing the privacy budget required by HPO
and adopting a robust prior on our hyperparameter search.
Many non-private HPO methods have been used by prior
DP papers that do not report the privacy cost of HPO, and a
valuable future task would be to consider privatizing these.
Multiple prior works (De et al., 2022; Cattan et al., 2022; Bu
et al., 2022a;b; Mehta et al., 2023a;b; Berrada et al., 2023;
Li et al., 2022b;a; Hu et al., 2021) consider the task of max-
imizing the privacy utility tradeoff of finetuning pretrained
models. Although the main focus of our paper is private
HPO, we also critically evaluate the efficacy of a range of
techniques that have been proposed by these works such
as data augmentation, fine-tuning the embedding layer, and
weight averaging. A detailed discussion of these techniques
is deferred to Appendix A.3 and Appendix C. Golatkar et al.

(2022); Nasr et al. (2023); Amid et al. (2022) treat < 10% of
the private training dataset and public and use it to improve
DP-SGD. Although we do not use any private data during
pretraining, future work can tackle applying our method to
this alternate threat model. Sander et al. (2022) suggest
doing HPO with smaller batch sizes and then scaling up the
HPs to the full batch update. This idea is similar in spirit to
the adaptive scaling that we propose, because the HP trials
are cheaper from a runtime perspective than the final run.
However, our approach is not only compute-efficient but
also accounts for the privacy cost of HPO. Kuo et al. (2023)
find that noisy HPO in the federated setting suffers, and
suggest doing HPO on public proxy data (whose existence
we don’t assume) and transferring it to the private dataset.

Wang et al. (2023) propose a method for private adaptive
HPO that provides an RDP guarantee for Bayesian HPO.
They compare their method to random search under a total
privacy budget of ε = 15, where at each iteration they
sample a new set of HPs from their prior, and update their
prior, and at each iteration random search samples a new
set of HPs uniformly from the search space; each run has a
base privacy cost, and it takes many runs for the distribution
to converge. Their method can be seen as a version of ours
that lacks the linear scaling prior and does not use cheap
trials to find the parameters for the prior. As a result, they
use much more budget in order to find a good distribution
for the HPs. This more flexible approach can be superior to
ours in settings where the HPs are not linear.

Discussion. DP researchers commonly confront the
compute-intensive, privacy-expensive task of doing grid
search with hundreds of trials to optimize the privacy-utility
tradeoff of DP methods. Our work provides an alternative
HPO method that reduces the compute and privacy costs of
grid search by an order of magnitude without compromising
accuracy across 20 tasks. Researchers using our method
can accelerate the pace of research by reducing the compute
needed to produce good results, and address the open ques-
tion of accounting for the privacy cost of hyperparameter
tuning, whether they are doing transfer learning in the pres-
ence of domain shifts, training from scratch, or applying
PEFT methods to LLMs.

Impact Statement This paper presents work whose goal
is to improve the quality of models trained with differential
privacy. Privacy is at the heart of many ongoing debates
about AI. We submit that any work that makes it easier for
organizations to train and release models with DP guaran-
tees will positively benefit society. Additionally, this paper
presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences
of our work, none which we feel must be specifically high-
lighted here.
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A. Further Results for Computer Vision Tasks
Our code is available at the following URL: https://github.com/kiddyboots216/dp-custom.

A.1. Experimental Set-up

Hyperparameter Search Space. We use a logarithmic grid for the learning rate η ∈ [10−7, 10−4]. We use the same grid
for the CIFAR training from scratch experiments, and the NLP experiments. We scale the learning rate by the batch size (the
original linear scaling rule). The number of epochs depends on the maximum number of iterations that we can do in the
provided time.

ImageNet details. The architecture is a modernized ViT (Fang et al., 2023b) pretrained on IN-21k Deng et al. (2009)
with CLIP. We use a resource-efficient finetuning approach where we create a linear layer aggregating the intermediate
representations from each Transformer block, following Tang et al. (2023). We apply the method from Sun et al. (2024)
to preprocess the features, allocating a budget of ε = 0.05 for the private mean estimation. For the HPO, we do 3 runs at
ε = 0.1, followed by 3 runs at ε = 0.2 and a final run at ε = 0.88, which produces a cumulative privacy cost including
HPO of ε = 1.0. Here we express the privacy values in terms of ε for brevity, but the actual expressions are in terms of
µ, the parameter for f-DP. Because of the nature of composition, the hyperparameter search only costs us the difference
in performance between ε = 0.88 and ε = 1.0, which is minimal. We search across values of T ranging from 1 (a single
epoch) to 20 (the most we can do in the maximum amount of time a job will run on our cluster). Berrada et al. (2023)
report that fine-tuning the full architecture produces better results than linear probing. However, we lack the computational
resources to do full fine-tuning of large transformers, but we can do linear probing of the extracted features in under an hour
on a single A100.

CIFAR training from scratch. We use the model from Tang et al. (2023), a WideResNet-16-4, and train only the last
layer on the extracted features from previous layers. The model is pretrained on synthetic data that does not resemble
real-world data. We choose this model because it is the SOTA model for CIFAR training from scratch, and we want to
validate that our private HPO can produce competitive results in a setting where the zero-shot performance is poor (indeed,
the zero-shot performance of this model is just random chance, because it has never seen any real images before) but the
ceiling for performance is quite high.

Comparison to DPAdamWOSM details. We implement DPAdamWOSM (Mohapatra et al., 2021) to the best of our
ability in wosm impl.py since there is no code available, and tune the necessary hyperparameter T (# of epochs) between 1
and 200 and report the performance for the best value of T without accounting for the privacy cost of this tuning. The rest
of the hyperparameter choices and model architecture mirror our own. At a high level, our linear scaling rule attempts to
do a data-dependent learning rate selection, while DPAdamWOSM does a data-independent learning rate selection. It is
natural that for hard tasks (ImageNet) the data-independent choice may not work well. We note that while DPAdamWOSM
does not require tuning the learning rate, we still need to tune the number of epochs. Therefore, even if further tuning for
DPAdamWOSM could match the utility of the linear scaling rule, it would not match the privacy guarantee. Ultimately we
think these works are compatible, because we can use our HPO to tune the number of epochs in DPAdamWOSM.

Comparison to Koskela & Kulkarni (2023) details. . We implement the ability to train on a subset of ImageNet in
our codebase by passing the flags start idx, end idx. As an initial test, we tried doing HPO on half the dataset by passing
start idx=0, end idx=625. Our code will produce a random permutation of the chunks of ImageNet (1251 total) and then
load the first half. We compare η = 0.01, η = 1.0 on this half-dataset. On the full dataset, these produce very different
performance; η = 0.01 achieves 81% at ε = 1.0, while η = 1.0 achieves 87%. However, on the half dataset, the first
learning rate achieves 43.2% performance, while the second achieves 41.4%. Inspecting the loss curves, we find that both
learning rates overfit the training dataset and do not generalize to the validation set, but the second learning rate overfits
more. We then try training two models on disjoint sets of the dataset and combining them via parallel composition. This
achieves 83%, which is worse than training on the entire dataset. This may be an interesting direction for future work. We
tried a number of other strategies to try and scale the idea of Koskela & Kulkarni (2023) to ImageNet scale, such as weight
decay, smaller learning rate, single-epoch training, etc. but were unable to produce a recipe where performance on the
half-dataset was consistently positively correlated with performance on the full dataset. We suspect that there is a factor of
the number of classes that is needed to properly calibrate the subsampling.
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Models. We evaluate five models: two masked-image modeling transformers, beit (Bao et al., 2021) and beitv2 (Peng
et al., 2022), their backbone architecture ViT (Dosovitskiy et al., 2020) at both the base and large scales, and the pure
convolutional architecture convnext (Liu et al., 2022). All models are pretrained on ImageNet-21k (Deng et al., 2009). These
models span a range of input resolutions: beitv2 (224x224), convnext, vit-base, vit-large (384x384), and beit (512x512) and
we upsample images to the necessary input size. For text generation we use GPT-2 (Radford et al., 2019) at the smallest
scale, and RoBERTa-base.

Availability. Our results tune open source models from the PyTorch timm package (Wightman, 2019) using existing
privacy accounting from (Gopi et al., 2021) and per-sample clipping code in (Yousefpour et al., 2021), and can be reproduced
in minutes.

A.2. Linear Scaling enables empirical analysis

Many interesting questions in DP fine-tuning remain unanswered because of the immense computational overhead of
evaluating hundreds of hyperparameter trials for each privacy budget, model architecture and dataset (Mehta et al., 2023a).
We now employ the linear scaling rule to efficiently answer key questions in DP fine-tuning for vision tasks.

Table 9. We compare the best private and best non-private performances of all models on all datasets. We use the linear scaling rule to
scale hyperparameters from ε = 0.1 to ε = 1, so our privacy analysis includes the cost of hyperparameter tuning.

Model Dataset ε = 1 ε = ∞ Gap

beitv2 CIFAR10 98.90 99.00 0.10
CIFAR100 89.10 91.57 2.47
FMNIST 91.02 91.53 0.51
STL10 99.69 99.81 0.12

EMNIST 81.77 82.00 0.23
convnext CIFAR10 96.75 97.22 0.47

CIFAR100 83.47 86.59 3.12
FMNIST 90.23 91.13 0.9
STL10 99.61 99.71 0.10

EMNIST 78.38 79.05 0.67
beit CIFAR10 98.19 98.51 0.32

CIFAR100 87.1 90.08 2.98
FMNIST 90.55 91.6 1.05
STL10 99.62 99.78 0.16

EMNIST 81.48 83.25 1.77
vit-L CIFAR10 98.29 98.44 0.40

CIFAR100 86.18 89.72 3.54
FMNIST 90.58 91.37 0.79
STL10 99.62 99.76 0.14

Impact of model architectures on differential privacy Many pretrained model architectures are available (Wolf et al.,
2019) but prior work has generally engaged with a single architecture, e.g. beit (Bu et al., 2022a) or ViT (Mehta et al.,
2023b). We leverage our method to answer three questions:

• What model architectures can provide good DP classifiers?

• Is the best model task-specific, e.g., is an architecture search required?

• Does the private-non private utility gap depend on the model architecture?

We report our findings in Table 9. We evaluate multiple transformer architectures in ViT (Dosovitskiy et al., 2020),
beitv1 (Bao et al., 2021) and beitv2 (Peng et al., 2022), as well as the purely convolutional architecture Convnext (Liu et al.,
2022). We find that all architectures can serve as good backbones for high-accuracy DP classification. This is somewhat
surprising because the different inductive biases of transformers and purely convolutional architectures tend to produce
differently structured features, but we reason that the noise added by DP will ‘smooth out’ these decision boundaries
regardless of architecture. We note that one architecture, beitv2, performs the best on all benchmarks and also has the
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highest non-private ImageNet accuracy (Wightman, 2019). We therefore recommend that practitioners do not worry about
architecture search when fine-tuning as this can incur further privacy costs, and instead pick the best model available. We
are encouraged to report that the private-non private utility gap diminishes with model accuracy, enabling us to report for
the first time lossless privacy of 99.0% on CIFAR10 at ε = 1 (without considering the cost of HPO) and the gap is only
< 0.10% if we consider the cost of HPO. We expect that as pretrained models become even better, future works may even
be able to attain lossless privacy on CIFAR100, that we note remains somewhat challenging for private fine-tuning. We
harness these insights for our next analyses.

DP models are robust to distribution shifts. If we assume the existence of some publicly available data for pretraining
and then do DP fine-tuning on the private data, it’s crucial that there is no privacy leakage between the public data and
private data. There is only 0 distribution shift when public = private, and this violates the key assumption (no privacy
leakage because public and private data are sufficiently different) in DP fine-tuning. If the public data is so different from the
private data that it can be used for pretraining without privacy leakage, there must be some distribution shift. Benchmarking
performance on datasets with distribution shifts is increasingly important because real-world problems almost always contain
distribution shift between model training and inference (Rahimian & Mehrotra, 2022).

Table 10. In-distribution (ID) and out-of-distribution (OOD) performance on benchmark distribution shift datasets. We use the linear
scaling rule to scale hyperparameters from ε = 0.1 to ε = 1, so our privacy analysis includes the cost of hyperparameter tuning.

Dataset ε = 1.0 ID(OOD) Prior (ε =∞)

Waterbirds 92.31 (91.59) 98.3(80.4)
fMoW 45.44 (35.31) 49.1 (36.6)

Camelyon 93.91 (93.55) 99.5 (96.5)
C10→ STL 99.0 (98.82) 97.5 (90.7)

C10→ C10p1 99.0 (97.85) 97.5 (93.5)
C10→ C10C 99.0 (89.98) 96.56 (92.78)

C100→ C100C 89.65 (68.69) 81.16 (72.06)

We show that DP-SGD provides robustness to covariate, subpopulation and label distribution shifts for synthetic and natural
datasets. We compare to other methods that consider this question.

Details on OOD Experiments We specify exact details for all OOD experiments. Our training details are drawn from
prior work (Kumar et al., 2022c;b; Diffenderfer et al., 2021). Waterbirds: the ID→OOD contains a well-studied spurious
correlation in the binary classification problem. (Mehta et al., 2022) evaluate vision transformers without using group
knowledge and obtain ≈ 80 % ID accuracy, but much worse (≈ 60%) OOD accuracy, and (Kumar et al., 2022c) tailor
their method to this task and get the reported results. Surprisingly, just fine-tuning a linear model on the extracted features
outperforms both works for OOD accuracy for ε = 0.1. This trend (sacrificing ID accuracy for increased OOD robustness)
is seen in other OOD results, and we hypothesize that this is due to the inherent regularization present in DP-SGD.

Fmow: we train on region 3 (ID) and evaluate on regions 1,2 (OOD), following (Kumar et al., 2022b).

Camelyon17: we again follow (Kumar et al., 2022b).

CIFAR10→ STL10, CIFAR10p1: We train privately on CIFAR10 using our best hyperparameters returned from the linear
scaling rule and then transfer this to STL10/CIFAR10p1, with the label reassignment following (Kumar et al., 2022c).

Common Corruptions: We evaluate on the average severity of the ’gaussian blur’ corruption.

We leverage our method to answer three questions:

• Can DP help when there is a domain shift from private fine-tuning to test?

• Can DP help when there is a domain shift from public data to private fine-tuning?

• Can DP fine-tuned models perform well in the zero-shot setting?

In Table 10 we compare the performance of our method across 8 benchmarks and find that the answer to all three of these
questions is yes.

17



A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization

The Waterbirds dataset is a well-known benchmark for evaluating the robustness of models to spurious correlations. There is
a domain shift between the private training data and the private test data created by class imbalance. We are surprised to find
that in the absence of any other regularization methods, DP fine-tuning actually improves performance on the OOD split. We
hypothesize that the lackluster OOD non-private performance is caused by the model overfitting to the spurious correlation
in the training data, and that the inherent regularization of DP prevents the model from memorizing this spurious correlation.
By comparing our results to Mehta et al. (2022) we determine that this robustness is unique to DP rather than an artifact of
the pretrained model. Although DP does significantly degrade the ID performance, in situations where minimizing OOD
error is more important, we believe that DP by itself can mitigate the domain shift from private fine-tuning to test.

Because our central assumption in DP fine-tuning is that there is no privacy leakage from the pretraining data to the private
training data, it is important to understand how DP fine-tuning performs when there is a distribution shift between public
data and private data. fMoW (Christie et al., 2017) and Camelyon17 (Bándi et al., 2019) are two datasets that represent
a signficant distribution from the pretraining data (ImageNet). We observe a similar relationship between ID and OOD
degradation as above, where the OOD degradation is somewhat mitigated by DP. If we compare our results on Camelyon to
the best results in Ghalebikesabi et al. (2023) we find that we can improve their best performance from 91.1% at ε = 10 to
93.91% at ε = 1. Although performance on fMoW remains quite poor, we note that it is not significantly worse than in the
non-private setting. We believe that DP fine-tuning from pretrained models remains a viable strategy even when the publicly
available pretraining data has a very large distribution shift from the private target data.

We finally consider the zero-shot setting, where we fine-tune a model on CIFAR and then transfer it without updating any
parameters to private test datasets that once again represent a distribution shift from CIFAR. We report the performance in
the OOD column. For the more minute distribution shifts of STL and CIFAR10p1 we find that the fine-tuned classifier can
achieve remarkable performance without ever updating parameters on these datasets; that is, we just remap the labels as
per (Kumar et al., 2022b). CIFAR10C and CIFAR100C represent larger distribution shifts and are used to benchmark the
robustness of models to commonly reported image corruptions (Hendrycks & Dietterich, 2019). Our OOD performance on
these larger distribution shifts is much worse, particularly for CIFAR100 where there is a > 20% degradation. Although this
is lower than the top result on the RobustBench leaderboard (Croce et al., 2021) obtains 85% accuracy, we note that once
again we used no additional methods beyond DP to ensure robustness but managed to achieve reasonable performance to
distribution shifts in zero-shot classification.

Comparison to other works on distribution shift under DP. Prior work in distributionally robust optimization (DRO)
has addressed this problem by using knowledge of the relative imbalances between groups, but recent work with vision
transformers has shown that linear probing can perform well on datasets with distribution shifts (Mehta et al., 2022; Kumar
et al., 2022a;c). Kulynych et al. (2022) proposes DP-IS-SGD that improves the robustness of DP-SGD by removing
per-sample gradient clipping (therefore removing the introduced bias but also losing the privacy guarantee; see 4.2) and
uses knowledge of the groups to sample subpopulations at different rates to improve robustness. Because our method uses
DP-GD to maximize the signal-to-noise ratio of updates and requires clipping (because our primary goal is the privacy
guarantee, unlike Kulynych et al. (2022) which focuses on DRO) and we do not assume knowledge of groups, we cannot
make use of DP-IS-SGD. Hulkund et al. (2023) concludes that ”[DP-SGD] is not a good candidate for improving robustness
under covariate or subpopulation shift, as it comes at a major cost to accuracy.” This conclusion runs counter to our findings,
and we believe the reason is because their numerical findings are not conclusive. Our interpretation of their results is that
because their DP-SGD degrades accuracy, it should also increase robustness; however we find that even when DP-SGD does
not degrade accuracy it still improves robustness.

A.3. Detailed Ablations

The marginal cost of linear scaling is low. Table 11 shows that the marginal cost of our HPO method is low. In the case
of CIFAR10, this is because the oracle at ε = 0.1 achieves > 98% accuracy.

Linear Scaling produces robust results. In Fig. 3 we report that following Algorithm 2 produces new state-of-the-art
results for all values of ε, shown in Table 9. In Appendix A.1 we provide detailed computations of the linear interpolation
for multiple datasets and in Appendix A.6 we provide full results across the entire hyperparameter search space.

Decomposing r into η, T One of the advantages of our search method is that we combine the parameters that we
need to search into one meta-parameter, the radius r, which allows us to perform linear interpolation and also allows
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Table 11. The marginal cost of our HPO method is low. The first row represents the oracle. The dataset is CIFAR10.

ε1 ε2 εf Acc Std

- - 1.0 99.00 0.01
0.01 0.05 0.99 98.88 0.01
0.05 0.1 0.96 98.85 0.03
0.05 0.2 0.9 98.81 0.01
0.1 0.2 0.88 98.81 0.01
0.2 0.3 0.7 98.79 0.03
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Figure 5. Heatmaps for beit on CIFAR100. ε increases from 0.05 → 1.0 left to right on the grid-axis, iterations T increases from 5 → 100
left to right on the individual plot axis, and the learning rate η increases from 0.05 ↓ 1 top to bottom on the individual plot axis. As ε
increases, left to right, the optimal value of η × T increases in accordance with the new linear scaling rule. Prior work has generally
operated in the top-left regime, that is often suboptimal.

us to improve the runtime of the intermediate HP trials. We uniformly sample r from the search space defined by
rmin = ηmin×Tmin, (rmax = ηmax×Tmax. We evaluate 3 methods for decomposing r. 1) We decompose r by sampling
η, T from their search spaces until their product is close to the target r. 2) We sample T uniformly, then get η = r/T . 3) We
sample η, T uniformly from their search spaces. We don’t observe any significant difference between these methods. Note
that the product of uniform distributions is not uniform. The robustness of the rule that “combinations of η, T that evaluate
to the same product perform similarly” is crucial to the success of our method, because it enables us to fit a line rather than a
more complex function that might require more evaluations. In Figure 6 and Figure 5 our results validate that this rule is
robust: we can move from one set of hyperparameters to another similarly performing set of hyperparameters by increasing
the number of iterations T by a constant factor and decreasing the learning rate η by the same factor (or vice versa). We
find that any inaccuracy incurred by estimating the best value of r with the linear scaling rule will not reduce accuracy by
much compared to doing grid search for the optimal value of r, but does reduce the privacy cost of hyperparameter tuning
immensely.
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Figure 6. A scatter plot of r = η × T the total step size vs the relative gap in test accuracy on CIFAR100 Beitv2; this gap is measured
as the difference between the test accuracy at the plotted value of r and the optimal value of r. Optimizing r for any value of ε and
transferring this, e.g. via the linear scaling rule, will not reduce accuracy by much compared to the optimal hyperparameters.

In this subsection we deal with detailed ablations of each step in the method that we use. We ablate each step and show
their individual benefits in Table 13. At a high level, we want to maximize the signal-to-noise ratio of updates, accelerate
training to minimize the impact of noise on the optimization trajectory, and apply the linear scaling rule to select the best
hyperparameters while maintaining a given overall privacy budget.

1) Extract features from a private dataset using an open source feature extractor pretrained on a public dataset. A
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Table 12. Comparing methods to reduce privacy cost (ε) on ImageNet. Increasing noise is more effective than subsampling for reducing ε
with minimal performance degradation.

Method to Reduce ε ε = 0.7 Degradation from ε = 1.0

Subsampling 41.34% 45.66%
Increasing Noise 84.07% 2.93%

Table 13. Our method fixes six design choices: the architecture and initialization (for CV tasks only), the batch size (full batch), the
optimizer (SGD with momentum=0.9), the accounting method (PLV where all prior HPO methods use RDP), and the clipping norm (unit
clipping). We report the improvement derived from following each of these techniques with respect to a competitive baseline from prior
work on CIFAR100 at ε = 0.1.

Method Baseline Baseline Accuracy Improvement

Classifier (no bias) (Mehta et al., 2023b) 71.3 0.36
Zero Initialization Random Initialization (De et al., 2022) 64.85 6.81
Gradient Descent SGD(Batch=4096) (De et al., 2022) 70.2 1.46

Momentum (ρ = 0.9) ρ = 0 (Bu et al., 2022a) 69.02 2.09
PLV Accounting RDP (De et al., 2022) 68.43 3.23

Unit Clipping (C = 1) C ≪ 1 (Mehta et al., 2023a) 71.2 0.46

valid criticism of this approach in private fine-tuning is that the fine-tuning dataset can be in-distribution with the training
dataset, and this may violate privacy. To address this we evaluate our method on eight datasets that have been used as
distribution shift benchmarks in Sec. 5.

2) Zero-initialize a linear classifier that maps features to classes. Prior work has studied full network fine-tuning (Cattan
et al., 2022; Bu et al., 2022a; De et al., 2022) but we find that by doing logistic regression on a linear classifier we minimize
the number of parameters, and mitigate the curse of dimensionality. We further simplify the choice of initialization by
initializing all parameters to zero.

3) Apply linear scaling to privately select the step size and number of steps. We propose a new linear scaling rule:
increase either the step size η or number of steps T so that the total step size r = η × T is linear in ε. This reduces the
hyperparameter search to a binary search in r. Furthermore we can do a hyperparameter search for r using a small privacy
budget, and then linearly scale up this value to minimize the cost of hyperparameter search(Alg. 2). Using privacy loss
accounting enables us to get competitive accuracy for privacy budgets as small as ε = 0.01, so these low-cost trials can
inform better hyperparameters. our method already minimizes the private-nonprivate performance gap at ε = 1.0 as we show
in Table 9, so spending ε = 0.1 for hyperparameter tuning does not significantly degrade accuracy. Unless stated explicitly
otherwise, all privacy-utility tradeoffs reported for our method in the main body include the privacy cost of hyperparameter
tuning via the linear scaling rule.

4) Compute the full batch gradient. This optimizes the signal-to-noise ratio of the update and enables use of large step
sizes (Goyal et al., 2017). We achieve 91.52% accuracy on CIFAR10 (|D| = 5e4) for ε = 0.01 when training for 100 epochs
with noise multiplier σ = 2561. When the noise is divided by the batch size, the effective noise multiplier is σ

|B|=5e4 ≈ 0.05

and the SNR is 1
0.05 = 20. When we use subsampling with sampling probability p = 0.2 and train for the same number of

epochs under the same privacy budget, our effective noise multiplier is σ
|B| =

1145
1e4 = 0.114, and the corresponding SNR of

1
0.114 = 8.7 is much worse than in the full batch setting.

5) Clip per-sample gradients to unit norm. As per Eq. 1 reducing the per-sample gradient below 1 is equivalent to
reducing η (and thus reducing the step size) while simultaneously biasing optimization. By setting c = 1 we can simplify
r = η × T × c to r = η × T .

6) Use privacy loss variable accounting. Gopi et al. (2021) provides a tool to calibrate Gaussian noise for the given
privacy budget and add noise to the gradient: this enables budgeting for small values of ε without underestimating privacy
expenditure.

7) Use momentum. Acceleration has a host of well-known benefits for optimization and is ubiquitous in non-private
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optimization (Qian, 1999; Kingma & Ba, 2014), but prior work has not always used momentum because it can lead DP-SGD
astray when the SNR of updates is low (De et al., 2022). Because we optimize the SNR of individual updates in (4), we can
make use of momentum.
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Figure 7. Ablation of momentum parameter during training (left) and post processing of the parameter exponential moving average stored
in the momentum buffer to take an extra step ’for free’ (right). Use of both methods increases performance slightly.

Momentum Accelerates Convergence. Despite the exhaustive study of the acceleration of gradient descent with momen-
tum done by prior work (Sutskever et al., 2013; Qian, 1999) work on DP-SGD generally eschews the use of a momentum
term. A notable exception (Mehta et al., 2023a) use AdamW rather than SGD with momentum; in a later section we discuss
the reason to prefer SGD with momentum. The reason to use momentum to accelerated the convergence of DP-SGD
is straightforward: the exponentially moving average of noisy gradients will have higher SNR than individual gradients.
Furthermore, momentum is shown to provably benefit normalized SGD (Cutkosky & Mehta, 2020). In Fig. 7 we observe that
momentum complements our new linear scaling rule and accelerates convergence. Separately, we report the improvement
of taking a step ’for free’ in the direction of the exponential moving average stored during training in the momentum
buffer. Note that this exponential moving average is in no way tied to momentum, and it is equivalent to perform DP-SGD
without acceleration, store an exponential moving average of gradients with decay parameter γ = 0.9, and then take an
additional step in the direction of the stored gradient average after training has finished; we only use the momentum buffer
for ease of implementation. As we discuss above when introducing the new linear scaling rule, we maximize performance
by maximizing SNR and terminating training while the model is still improving. Intuitively we therefore expect that the
momentum buffer will contain a good estimate of the direction of the next step that we would have taken had we continued
training, and taking a step in this direction with our usual learning rate should only improve performance without any privacy
loss. We use momentum with ρ = 0.9 in all other experiments and also take a ’free step’ at the end of private training.

Full Batches Optimize Signal-to-Noise Ratio. Since its inception, the use of privacy amplification via Poisson subsam-
pling and RDP has been a mainstay in the DP community (Zhu & Wang, 2019; Wang et al., 2019b; Erlingsson et al., 2018).
Prior work almost universally uses privacy amplification via subsampling, but as early as (McMahan et al., 2017), and more
recently in (De et al., 2022) it has become apparent that DP-SGD can actually benefit from large batch sizes because the
signal-to-noise ratio (SNR) improves. Note that the noise term in 1 is divided by the batch size, so if we are willing to
give up amplification via subsampling entirely, we can reduce the noise by a factor of 5e4 for the benchmark computer
vision tasks. In Fig. 8 we report the improvement of full-batch DP-GD over Poisson subsampled DP-SGD. We attribute the
success of DP-GD to the improvement in SNR. For example, we achieve 91.52% accuracy on CIFAR10 for ε = 0.01 when
training for 100 epochs with learning rate η = 0.01 and noise multiplier σ = 2561. When the noise is divided by the batch
size, the effective noise multiplier is σ

|B|=5e4 = 0.05 and the SNR is 1
0.051 = 20. When we use subsampling with sampling

probability p = 0.2 and train for the same number of epochs under the same privacy budget, our effective noise multiplier is
σ
|B| =

1145
1e4 = 0.114, and the corresponding SNR of 1

0.114 = 8.7 is much worse than in the full batch setting. Although at
first glance our analysis merely supports the typical conclusion that large batches are better in DP-SGD, (De et al., 2022)
observe that DP-SGD is still preferrable to DP-GD because minibatching produces the optimal choice of noise multiplier.
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Figure 8. Ablation of batch size. Left: We vary the batch size using the learning rate and number of iterations tuned for full batch; all
other batch sizes perform much worse. Right: We compare SGD and GD. For SGD we tune the batch size jointly with learning rate and
number of iterations, arriving at a batch size of 4096 and plot the best performing run against full batch.

Our findings run counter to this: as discussed above, we contend that performance depends not only on the optimal noise
multiplier but on our new linear scaling rule, and DP-GD unlocks the use of larger step sizes (Goyal et al., 2017). We use
DP-GD instead of DP-SGD in all other experiments, removing the batch size from the hyperparameter tuning process and
improving the overall privacy cost of deploying our baselines (Papernot & Steinke, 2021).

A.4. Additional Ablations

We can apply our method to methods other than DP-SGD. Tang et al. (2024) recently proposed DP-ZO, a method for DP
zeroth-order optimization, that privatizes the zeroth-order update to the model weights in the form of a scalar rather than the
first-order gradient update. In Table 14 we find that our method can also optimize HPs for DP-ZO.

Table 14. Our method works beyond DP-SGD.

Method Mean Accuracy (Std)

Random Search 82.53 (1.01)
Our Private HPO 83.02 (0.86)
Grid Search 83.87 (0.50)

Although our method fits a 1-d polynomial with 2 points, we can in principle fit any degree-d polynomial with d+ 1 points.
to approximate the relationship between r and ε. However, because using more points to fit the polynomial imposes more
privacy cost for HPO, we use the same number of points and degree throughout all experiments. It is likely that for some
datasets, it’s important to tune the privacy budget allocated to the smaller trials, the number of points, etc. However, we are
not interested in tuning the hyperparameters of our hyperparameter optimization method.

In Table 15 we evaluate the linear fit with 2 and 3 points for evaluation, and the quadratic fit with 3 points for evaluation, on
ImageNet.

Table 15. Using more points or a higher order approximation can improve performance.

Method Mean Accuracy (Std)

Linear (2) 86.69 (0.86)
Linear (3) 87.81 (0.86)
Quadratic (3) 86.64 (1.08)

Throughout the paper we search for the two main HPs of interest η, T and fix other HPs such as batch size B and clipping
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threshold C. However, we can search for these as well. We can incorporate new HPs by updating the decomposition of r so
that we optimize for the joint product of the HPs being optimized. We change it from r = η × T to r = η × T ×B × C.
We evaluate on CIFAR100. The performance of our method when optimizing η, T,B,C is 87.9± 1.9, which is worse than
the 89.10 where we optimized η, T and fixed B,C.

One limitation of our method is the runtime, shown in Table 16.. We have worse runtime than random search and worse
parallelization than grid search, which is embarrassingly parallel while our method requires serial runs.

Table 16. Our method trades off runtime for performance with random search and grid search.

Method GPU Hours Wall-clock time (hours)

Random 1 1
Grid 100 1
Ours 7 3

Here the base time for a single HP trial is just 1 hour; this can change based on the task, but these proportions should remain
similar. Random search just does 1 run so it has both the lowest GPU hours and wall-clock time. The oracle does a number
of runs equal to the granularity of the search space, which here we approximate as 100. In the setting where 100 GPUs are
available for the oracle, which may be realistic for large companies but is not realistic for our academic compute setting,
these can all be done in parallel, so it uses 100 GPU hours but just 1 hour in wall-clock time. Our method typically does 7
runs: 3 for ε1, 3 for ε2, and 1 for εf , so the total number of GPU hours is 7. The serial dependency of our method requires
that εf runs after ε1 and ε2, but the 3 runs for ε1, ε2 can be parallelized so the wall-clock time is just 3 hours.

A.5. A Critical Evaluation of Proposed Techniques for Fine-Tuning

Prior work has proposed a number of ad-hoc techniques that improve performance in DP fine-tuning. Here we critically
evaluate these techniques in the our method regime, and analyze why they reduce performance in our setting.

Small Clipping Norms Bias Optimization. The standard deviation of the noise added in DP-SGD scales with the
sensitivity of the update, defined by the clipping norm parameter. To decrease the amount of noise added, prior work has
used very strict clipping (Mehta et al., 2023a; Bu et al., 2022a). Intuitively, if the clipping norm parameter is already chosen
to be some value smaller than the norm of the unclipped gradient, the gradient estimator is no longer unbiased and this may
have a negative impact on optimization. In Fig. 10 we observe that decreasing the clipping norm below 1 only degrades
performance. As we can see in equation 1, further decreasing the clipping norm is equivalent to training with a smaller
learning rate, and this is suboptimal because Fig. 15 indicates that we can prefer to use larger learning rates. We use a
clipping norm of 1 in all other experiments.

Initializing Weights to Zero Mitigates Variance in DP-GD. (Qiao et al., 2019) propose initializing the model parameters
to very small values to improve the stability of micro-batch training, and (De et al., 2022) find that applying this technique
to DP-SGD improves performance. In Fig. 9 we ablate the effectiveness of zero initialization with standard He initialization
and find that the best performance comes from initializing the weights uniformly to zero. We initialize the classifier weights
to zero in all other experiments.

Weight Averaging Cannot Catch Up To Accelerated Fine-Tuning. (Shejwalkar et al., 2022) perform an in-depth
empirical analysis and find that averaging the intermediate model checkpoints reduces the variance of DP-SGD and improves
model performance. (De et al., 2022) first proposed the use of an Exponential Moving Average (EMA) to mitigate the
noise introduced by DP-SGD. Previously, methods that use stochastic weight averaging (SWA) during SGD have been
proposed and are even available by default in PyTorch (Izmailov et al., 2018). The idea of averaging weights to increase
acceleration was first proposed by (Polyak & Juditsky, 1992), and is theoretically well-founded. In Fig. 11 we compare
EMA and SWA with no averaging and find that no averaging performs the best. This is because weight averaging methods
work well when optimization has converged and the model is plotting a trajectory that orbits around a local minima in
the loss landscape (Izmailov et al., 2018). That is to say, the model’s distance from the initialization does not continually
increase and at some point stabilizes so that the weight averaging method can ’catch up’. However, as discussed in Fig. 3 the
optimal number of iterations for our method is to train for longer epochs without decaying the learning rate for convergence,
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Figure 9. Ablation of two previously proposed methods: zero initialization of parameters and weight decay. Zero initialization increases
accuracy in all experiments, but weight decay only degrades performance.
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Figure 10. Because reducing the clipping norm is equivalent to reducing the learning rate, reducing the clipping norm below 1 only
degrades performance on CIFAR100 for the beit architecture at ε = 0.1.
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Figure 11. Left:Ablation of Weight Averaging. Right: Plot of distance from initialization. Weight Averaging does not improve performance
because the model is monotonically moving away from the initialization and weight averaging cannot ’catch up’.
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because when the model converges the SNR decays. This is corroborated by Fig. 11, where we see that the distance from
initialization is monotonically increasing. Our findings run counter to those of (Shejwalkar et al., 2022) for hyperparameters
in line with our proposed linear scaling rule because we find that the best optimization regime for our method is precisely
one where weight averaging can never catch up to the optimization trajectory. Therefore, the averaging methods only serve
to lag one step behind no averaging.

Data Augmentation Does Not Work When Freezing Embeddings. Data augmentation is used during training to bias
the model towards selecting features that are invariant to the rotations we use in the augmentations. (Geirhos et al., 2018)
find that feature extractors pretrained on ImageNet are naturally biased towards texture features. (De et al., 2022) eschew
traditional data augmentation and instead propose the use of multiple dataset augmentations or ”batch augmentation”,
first introduced by (Hoffer et al., 2019), to mitigate the variance of DP-SGD. In Fig. 12 we ablate the effectiveness of
batch augmentation and find that it does not noticeably improve accuracy during transfer learning. This is because dataset
augmentation changes the prior of the model when training the entire network (Shorten & Khoshgoftaar, 2019), but when
we freeze all layers but the classifier, the model does not have the capacity to change to optimize for the prior introduced by
data augmentation, because the embedding layer is frozen.
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Figure 12. Ablation of Data Augmultation on two datasets. On both datasets, Data Augmultation lags behind the baseline because there is
much more training data, and even at the end, Data Augmultation does not have a noticeable improvement.

Weight Decay Is Not Needed When Freezing Embeddings. Regularization methods such as weight decay are commonly
used during pretraining to prevent overfitting, and the feature extractors we use are pretrained with AdamW (Dosovitskiy
et al., 2020). One of the benefits of weight decay during fine-tuning is limiting the change of the embedding layer to not
overfit and thus retain the features learned during pretraining (Kumar et al., 2022b). In the ongoing debate on whether
to use weight decay during fine-tuning (Touvron et al., 2021), we submit that weight decay should not be used in private
fine-tuning. In Fig. 9 we ablate a range of values of the weight decay parameter and observe that increasing the weight
decay beyond a negligible amount (the gradient norm is ≈ 1e − 2) only decreases accuracy, and no value of the weight
decay increases accuracy. There are two reasons for this. The first is that we initialize the weights of the model to zero, so
we do not expect the gradients to be large. The second is that we only train the last layer, and therefore there is no need
to regularize the training of the embedding layer. This supports the conclusion of (Kumar et al., 2022c) that SGD with
momentum is outperforms AdamW as long as the embedding layer is not updated.

A.6. Hyperparameter Ablations

We provide full heatmaps and pareto frontiers for all datasets and the 3 best performing models (we do not perform a full
evaluation on the ViT in order to minimize any knowledge leak for the evaluation of the linear scaling rule with the strategy
in (Mehta et al., 2023a)). We note that while all of these datasets are arguably in-distribution, our focus is on comparing
the regime of optimization preferred by our method to those of other works, and this is achieved by producing results on
benchmark tasks. We further note that STL10 is explicitly in-distribution for the pretraining dataset (ImageNet); we only
use this dataset as a temporary stand-in for evaluation on ImageNet-1k, a common benchmark in prior work (Mehta et al.,
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Table 17. We compare the best private and best non-private test accuracy performances of our method to prior work using models
pretrained on ImageNet-21k and fine-tuned on CIFAR10 and CIFAR100. Full results are in Section 5.

Model Dataset ε = 0.1 ε = 1 ε =∞ Gap (1−∞)

our method CIFAR10 98.65 99.00 99.00 0.00
CIFAR100 81.9 89.81 91.57 1.76

(Mehta et al., 2023a) CIFAR10 95.8 96.3 96.6 0.3
CIFAR100 78.5 82.7 85.29 2.59

(Bu et al., 2022a) CIFAR10 - 96.7 97.4 0.7
CIFAR100 - 83.0 88.4 5.4

(Cattan et al., 2022) CIFAR10 - 95.0 96.4 1.4
CIFAR100 - 73.7 82.1 8.4

(De et al., 2022) CIFAR10 - 94.8 96.6 1.8
CIFAR100 - 67.4 81.8 14.4

2023a) to minimize the computational burden.

Hyperparameter Tuning and Selecting Epsilon. Prior work often uses unrealistic values of ε that provide no real privacy
guarantee. While some prior work makes the case that hyperparameters need to be tuned even for non-private learning
and can be chosen beforehand, we show that this is not the case. Not only are the optimal choices of key hyperparameters
different between training from scratch and transfer learning (Li et al., 2020), they are also different for non-private and
private transfer learning (Li et al., 2022b; De et al., 2022). We now provide guidelines for selecting ε and broad intuition
behind our choice to design a system that minimizes dependence on hyperparameters.

For a decade the standard values of ε proposed for privacy preserving statistics queries have fallen in the range of 0.1 in
line with eε ≈ 1 + ε for ε≪ 1 (Dwork et al., 2006), and recently surveyed DP deployments generally abide by the rule of
selecting ε ≈ 0.1 (Dwork et al., 2019). We know that while all small values of ε generally behave the same, every large
value of ε is fundamentally different in a unique way (Dwork et al., 2019). In line with these guidelines, we only evaluate
ε ∈ [0.01, 1.0] and perform most of our ablations on the most challenging task where we can see a range of performance:
CIFAR100 for ε = 0.1.

A.7. Theory

Proposition A.1. The model training subroutine in 2 is (
√
T/σ)-GDP.

Corollary A.2. Algorithm 2 is (ϵ,Φ(−ϵ ·σ/
√
T +
√
T/2σ))−eϵ ·Φ(−ϵ ·σ/

√
T −
√
T/2σ))-DP. Also, for n-fold repetition,

the algorithm is (ϵ,Φ(−ϵ · σ/
√
n · T +

√
n · T/2σ))− eϵ · Φ(−ϵ · σ/

√
n · T −

√
n · T/2σ))-DP

Proof of Proposition 4.1:

Proof. Since we are using the full batch, each iteration of the algorithm is an instantiation of the Gaussian mechanism with
sensitivity of 1 and Gaussian noise with standard deviation of σ. Hence, each iteration of the mechanism is (1/σ)-GDP by
Theorem 3.7 in (Dong et al., 2019). Then, since we have the adaptive composition of T of these mechanisms, the algorithm
is (
√
T/σ)-GDP overall, using the composition theorem for GDP, as stated in Corollary 3.3 in (Dong et al., 2019).

Proof of Corollary A.2:

Proof. This directly follows from the GDP to DP conversion as stated in Corollary 2.13 in (Dong et al., 2019). Why does our
HPO have low privacy cost? Our HPO has low privacy cost because of the nature of composition under GDP. Consider one
sweep of our method with n = 3 that evaluates some (T1, η1, σ1), (T2, η2, σ2)) and we extrapolate (Tf , ηf , σf ), that works

out to ε1 = 0.1, ε2 = 0.2, εf = 0.88. The composition for this according to (Dong et al., 2022) is µf =
√

nµ2
1 + nµ2

2 + µ2
f

for µ1 =
√

T1/σ2
1 . If we convert µf to εf , δ = 1e− 5-DP, we arrive at a final guarantee of (1, 1e− 5)-DP. The cost of HPO

here in terms of the privacy utility tradeoff is actually just the marginal utility between εf = 0.88 and εt = 1.0. As we will
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show in Section 5, in many cases this marginal utility is negligible, and the value of cheap one-time measures that improve
the performance of the rest of training such as HPO is very much worth it due to the nature of composition under GDP.

Proof of Thm. 3.1 The main idea of the proof is similar to the main result in Fang et al. (2023a) but is simpler because we
only prove the result for linear models.

Proof. We first apply (Ryu & Boyd, 2015) to see that gradient descent with step size 2
β > η > 2

α+β on a α-strongly convex,
β-smooth function is a max(1− ηβ, 1− ηα)-contraction. Call this latter quantity c.
Now consider a sequence of benign updates from gradient descent wt

b and a sequence of noisy updates for the same dataset
wt. Given the contractive property of GD , we have the following:

∣∣∣(wt
b − η∇f(wt

b))− (wt − η∇f(w(t)))
∣∣∣ ≤ c

∣∣∣wt
b − wt−1

b

∣∣∣ (1)

We apply the update rule in 1 and use Eq.1

w(t+1) = w(t) − η(∇f(w(t)) + σξ) (2)∣∣∣wt+1
b − wt+1

∣∣∣ = (3)

=
∣∣∣wt

b − η∇f(wt
b)− w(t) + η∇f(w(t))− σξ

∣∣∣ (4)

≤ c
∣∣∣wt

b − w(t)
∣∣∣+ ηρ (5)

Now we have the following ∣∣∣wt − wt
b

∣∣∣ ≤ c
∣∣∣wt−1 − wt−1

b

∣∣∣+ ρη (6)

We now proceed via induction. Assume for T − 1 the statement of Thm. 3.1 holds. By Eq.6 and the induction hypothesis
we have ∣∣∣wT−1 − wT−1

b

∣∣∣ ≤ ρη × (

T−2∑
i

ci) (7)

∣∣∣wT − wT
b

∣∣∣ ≤ c(ρη × (

T−2∑
i

ci)) + ρη (8)

∣∣∣wT − wT
b

∣∣∣ ≤ ρη × (
T−1∑
i

ci). (9)

ρη × (

T−1∑
i

ci) =
ρη(1− cT )

1− c

ρη
1− cT

1− c
=

ρη(1− cT )

η ·min(α, β)
=

ρ(1− cT )

min(α, β)

The intuition is clear: at iteration 0 there is no divergence. At iteration 1 there is ηρ divergence. At iteration 2 the
previous divergence contracts by c and increases by ηρ, so the divergence is c1ηρ + ηρ. At iteration 3 the divergence is
c2ηρ+ c1ηρ+ ηρ = ηρ(c2 + c+ 1).

It remains to show that the conditions for convexity and smoothness are satisfied for the problem at hand. For the case of, ex,
training a single linear layer on top of extracted features with GD, this is easy to prove. We defer to the analysis from Panda
et al. (2021), which we reproduce here for the reader’s convenience.
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Example A.3 (Computing the Lipschitz constant for single-layer SGD training ( Panda et al. (2021))). We compute the
coordinatewise Lipschitz constant of the SGD protocol for a single layer neural network defined as σ(θx), where σ is the
softmax function and θ ∈ Rd are the network parameters. For cross-entropy loss-based training using dataset D, we show
that the constant c = 1

4 . Formally,

sup
D∈Z,θ1,θ2∈M

|G(θ1, D)[i]− G(θ2, D)[i]|1 ≤
1

4
|θ1 − θ2|1 for any coordinate index i ∈ [d]

Without loss of generality, we assume that dataset D is comprised of samples of the form (x, y), where x ∈ [0, 1]m, and
y ∈ {0, 1}C is the one-hot encoded representation of any of the C classes. For the single layer neural network, the model
parameters are denoted by θ ∈ RC×m, and the softmax layer by the function σ(·). The neural network can thus be
represented as Φ(x, θ) = σ(θx).

We define g(θ, x) = ∂L(Φ(x,θ),y)
∂θ where L is the softmax cross entropy loss function. For the SGD protocol, A(u) = u, and

G(θ,D) = g(θ, x). Our goal is to find a Lipschitz constant L such that, for all indices i ∈ [C] and j ∈ [m],

sup
x∈D,θ1,θ2

|g(θ1, x)ij − g(θ2, x)ij |1
|θ1 − θ2|1

≤ L (10)

We define intermediate variable z = θx and the neural network output distribution p = σ(z), such that both p, z ∈ RC .
Note, for a given target class t, the cross entropy loss function L(p, y) = − log pt where pt =

ezt∑
j ezj

. Thus,

g(θ, x)ij =
∂L
∂θij

=

C∑
c=1

∂L
∂zc

∂zc
∂θij

. (11)

Computing the terms of (11), we have ∂L
∂zc

= pt − 1 for c = t; and ∂L
∂zc

= pc otherwise; and ∂zc
∂θij

= xj . Thus,

g(x, θ)ij = xj(pt − 1) for i = t

= xjpi for i ̸= t (12)

We compute the Hessian of g(x, θ)ij as:

∂g(x, θ)ij
∂θkl

= xjpt(1− pt)xl for k = t

= xjpk(1− pk)xl for k ̸= t (13)

where k ∈ [C], l ∈ [m]. The maximum value of the Hessian in (13), occurs at xj = xl = 1, and pt = pk = 1
2 . Thus,

max
i,j,k,l

∂g(x, θ)ij
∂θkl

≤ 1

4
for k = t

≤ 1

4
for k ̸= t (14)

To obtain the Lipschitz constant, we first define the function

h(t) = g((1− t)θ1 + tθ2, x)ij where t ∈ [0, 1]

Thus, h(0) = g(θ1, x)ij and h(1) = g(θ2, x)ij . Since, the function h(t) is differentiable everywhere in (0, 1), using Mean
Value Theorem, we know that there exists a point t∗ ∈ (0, 1) such that:

h(1)− h(0) ≤ h′(t∗) where h′(t) = (θ2 − θ1)g
′((1− t)θ1 + tθ2, x)ijkl. (15)

Rewriting (10), we get

sup
x∈D,θ1,θ2

|g(θ1, x)− g(θ2, x)|1

≤ sup
x∈D,θ1,θ2

|max
i,j
{g(θ1, x)ij − g(θ2, x)ij}|1
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Let i∗, j∗ correspond to the indices where the maximum in the above equation occurs. Combining (14) and (15), we get:

sup
x∈D,θ1,θ2

|g(θ1, x)i∗j∗ − g(θ2, x)i∗j∗ |1 ≤
1

4
|θ1 − θ2|1 (16)

Comparing (16) with (10) we get c = 1
4 .

B. Further ImageNet Results.
We perform additional experiments on ImageNet with the same architecture as prior work to better understand the tradeoffs
of our method. We use a ViT-g that was pretrained on laion-2b, to compare to the ViT-g models in prior work that were
pretrained on JFT-4b. It is trivial that linear scaling outperforms a naive grid search, but we also compare the effectiveness
of linear scaling against the hyperparameter selection strategies used in prior work (Mehta et al., 2023a). We find that use
of our new rule can unlock significant improvements for a range of ε when we hold both approaches accountable for the
privacy cost of hyperparameter tuning. We apply linear scaling to the ViT model used in (Mehta et al., 2023a) on CIFAR100.
Although (Mehta et al., 2023a) do not directly state the hyperparameters for their best results, they specify that they use
200 hyperparameter trials with Bayesian optimization. While they obtain RDP guarantees, these guarantees do not include
the privacy cost of non-privately tuning hyperparameters. We apply the linear scaling rule to extrapolate a value of r from
ε = 0.1 to ε = 1, obtaining r = 20 = η(0.2)× T (100). We recover performance of 82.7% for ε = 1, a 2% improvement
over the best result for DP-Adam in (Mehta et al., 2023a) while accounting for the privacy cost of hyperparameter tuning.
They obtain their best result for DP-Adam at T = 10, but we cannot compute the corresponding value of r because they do
not provide η. However, because they use a clipping norm of 0.005 we can reasonably infer that their value of r is ≈ 1000×
smaller than ours. This is farther from the optimal non-private training, as evidenced by the performance gap.

Table 18. Linear Scaling on ImageNet is competitive with (Mehta et al., 2023b) and (Mehta et al., 2023a)

ε (Mehta et al., 2023b) (Mehta et al., 2023a) Ours r = η × T

0.25 75.6 - 79.0 250
0.50 79.4 86.1 81.6 750
1.00 81.1 86.8 83.2 1100
2.00 81.5 87.4 84.2 2000
10.0 81.7 - 85.4 2000
∞ 86.9 88.9 85.7 2000

Linear Scaling scales to ImageNet In Table 18 we do a granular comparison between our method and (Mehta et al.,
2023b;a). We observe that our method is competitive with (Mehta et al., 2023a) even when accounting for the privacy
cost of hyperparameter search, and that the linear scaling rule holds up at the scale of ImageNet for very large values of
r = η × T . The non-private accuracy of their closed-source model is 3.2% higher than our open-source model, and so the
private accuracy at ε = 2 is also 3.2% higher.

However, ultimately our method and the method of Mehta et al. (2023a) are complementary, because their method introduces
new hyperparameters that we intuit our linear scaling rule can optimize. We attempted to validate this intuition empirically
but were unable to reproduce the results of Mehta et al. (2023a) because they and Mehta et al. (2023b) pretrain on the closed-
source JFT dataset with billions of images. We note that all numbers we report for models pretrained on ImageNet-21k
using first-order methods surpass those in (Mehta et al., 2023a), but for sufficiently small values of ε on harder datasets the
second-order methods they propose provide better performance. We note that the method in Mehta et al. (2023a) only works
for vision tasks, whereas our approach works for both vision and language tasks.

C. Furthur Results for Language Modeling Tasks
In general it is not feasible to do full-batch experiments for the NLP tasks because the memory requirements of LLMs are very
large. We therefore do the composition with the PoissonSubsampledGaussianMechanism class in the PLD accountant (Gopi
et al., 2021), ensuring that our method still accounts for the privacy cost of HPO.
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C.1. Related Works

Li et al. (2022b) provide methods for fine-tuning large language models under DP-SGD by proposing new clipping methods
to mitigate the memory burden of per-sample gradient clipping. However, they do not achieve performance comparable
to non-private models when fine-tuning a pretrained model on the PersonaChat dataset. We adapt their techniques to the
hyperparameter settings that we show are optimal for DP fine-tuning, and produce similar performance to non-private
fine-tuning on the PersonaChat dataset. Yu et al. (2021) report compelling results by only updating a sparse subset of the
LLMs with LoRA (Hu et al., 2021). We fine-tune GPT2 and RoBerta; Basu et al. (2022) also fine-tune BERT models.

C.2. Experimental Set-up for Finetuning Language Models

Persona-Chat: We write code based on winners of ConvAI2 competition1 and private-transformers library.2 We first do
clipping norm [0.1, 0.2, 0.5, 1.0], learning rate in [2, 5, 10, 20, 50]× 10−5, batch size 64 and epochs [3, 10, 20] at ε = 3 and
ε = 8 and find that the clipping norm in this range achieves almost same perplexity with other hyperparams fixed. We then
do hyperparameter tuning as reported in Table 19 to finetune GPT-2.

Table 19. Set of hyper-parameters used in the finetuning GPT-2.

Parameter Values

Clipping Norm 0.1
Learning Rate [2, 5, 10, 20, 50, 100]× 10−5

Batch Size [64, 128, 256, 512, 1024, 2048]
Epochs [3, 10, 20]

WikiText-2: We write code based on the HuggingFace transformers library GPT-2 example,3 source code by (Shi et al.,
2022)4 and private-transformers library. The hyperparameter range for grid search is reported in Table 20.

Table 20. Set of hyper-parameters for grid search to finetune GPT-2 on WikiText-2. δ = 10−6.

Parameter Values

Clipping Norm 1
Batch Size 2048 (Full Batch)

Epochs 20
Learning Rate for ε = 0.2 [2, 4, 6, 8, 10]× 10−4

Learning Rate for ε = 0.5 [0.8, 1, 2]× 10−3

Enron Email: For Enron email dataset, we use the preprocessed dataset in (Gupta et al., 2022), where the non-private
baseline of finetuned GPT-2 on this dataset is 7.09. The hyperparameter range for grid search is reported in Table 21.

C.3. Additional Results on Persona-Chat

We report the perplexity of GPT-2 on the Persona-Chat dataset at different epochs and batch size in Figure 13 (with tuned
learning rate in Table 19) and we can see that larger batch size and longer epochs can achieve better perplexity, which is
consistent with our linear scale rule. Besides, we also investigate fine-tuning multiple layers. With letting the embedding
layer and last LayerNorm layer in transformer trainable, we consider fine-tuning only last block in transformer, first and last
block in transformer and report the result in Table 22 and we can see that the best perplexity is achieved by fine-tuning the
whole model.

1https://github.com/huggingface/transfer-learning-conv-ai.
2https://github.com/lxuechen/private-transformers.
3HuggingFace transformers GPT-2 example code.
4https://github.com/wyshi/sdp transformers
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Table 21. Set of hyper-parameters for grid search to finetune GPT-2 on Enron Email dataset. δ = 1
2|Dtrain|

.

Parameter Values

Clipping Norm 1
Batch Size 1024

Epochs 5
Learning Rate for ε = 0.1 [2, 3, 4, 5, 6, 7, 8, 9, 10]× 10−4

Learning Rate for ε = 0.2 [0.6, 0.8, 1, 2, 3, 4, 6, 7]× 10−3

Learning Rate for ε = 0.5 [0.4, 0.6, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2]× 10−2

Learning Rate for ε = 1.0 [1, 2, 3, 4, 5, 6, 7, 8]× 10−2

Learning Rate for ε = 2.0 [2, 3, 4, 5, 6, 7, 8, 9, 10]× 10−2

Learning Rate for ε = 3.0 [0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2.0]× 10−1

64 12
8

25
6

51
2

10
24

Batch Size

20

10

3

Ep
oc

hs

19.56 18.98 18.39 17.94 17.91

20.34 19.69 19.07 18.68 18.33

22.53 21.68 21.34 20.28 20.25

Ppl of finetuned GPT2 on Persona-Chat ( =3)

18

19

20

21

22

(a) ε = 3

64 12
8

25
6

51
2

10
24

Batch Size

20

10

3

Ep
oc

hs

18.95 18.40 17.83 17.34 17.27

19.61 19.01 18.43 18.03 17.65

21.36 20.60 20.38 19.41 19.33

Ppl of finetuned GPT2 on Persona-Chat ( =8)

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

(b) ε = 8

Figure 13. Comparison of perplexity at different batch size and epochs of GPT-2 on Persona-Chat dataset.

Table 22. Finetuning GPT-2 on Persona-Chat dataset including full model and different layers of model. We also include non-private
baseline.

ε 3 8

Full 17.91 17.27
Last Block 19.80 19.20

First-Last-Block 18.93 18.26

31



A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization

C.4. Additional Results on WikiText-2

We run the grid-search experiment for ε ∈ {0.2, 0.5, 1, 2, 3} to evaluate the performance gap between the optimal total step
size and the estimated total step size.5) and present the result in Figure 14. The linear rule scales well from ε ∈ {0.2, 0.5}
to ε = 1. Though for ε ∈ {2, 3} the perplexity of total step size by linear scale rule is slightly higher than the optimal
perplexity of total step size by grid search, the result by linear scale is better than previous SOTA (Shi et al., 2022), which is
28.84 at (ε = 3, δ = 10−6) by training 20 iterations.
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Figure 14. The linear scaling rule (accounting for the privacy cost of hyperparameter tuning) is competitive with grid search (non-private,
doing N trials each with the given ε) in range [0.2, 1.0] on the WikiText-2 dataset. Left: y-axis is Perplexity (lower is better).

5Due to the limit of computation resources, all experiments are done by training for 20 iterations. Further increasing the number of
iterations will help improve the utility as shown by previous study (Li et al., 2022b; Shi et al., 2022), we leave longer iterations for further
study.
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(c) CIFAR10 Convnext
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(d) CIFAR100 Beitv2

1 5 10 20 30 40 50 60 70 80 90 10
0

epochs

0.01
0.05
0.1

0.15
0.2

0.25
0.5
1.0

lr

 = 0.01

1 5 10 20 30 40 50 60 70 80 90 10
0

epochs

 = 0.05

1 5 10 20 30 40 50 60 70 80 90 10
0

epochs

 = 0.10

1 5 10 20 30 40 50 60 70 80 90 10
0

epochs

 = 0.20

1 5 10 20 30 40 50 60 70 80 90 10
0

epochs

 = 0.30

1 5 10 20 30 40 50 60 70 80 90 10
0

epochs

 = 0.40

1 5 10 20 30 40 50 60 70 80 90 10
0

epochs

 = 0.50

1 5 10 20 30 40 50 60 70 80 90 10
0

epochs

 = 0.60

1 5 10 20 30 40 50 60 70 80 90 10
0

epochs

 = 0.70
1 5 10 20 30 40 50 60 70 80 90 10
0

epochs

 = 0.80

1 5 10 20 30 40 50 60 70 80 90 10
0

epochs

 = 0.90

1 5 10 20 30 40 50 60 70 80 90 10
0

epochs

 = 1.00

(e) CIFAR100 Beit
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(f) CIFAR100 Convnext

Figure 15. Heatmaps for the reported datasets and architectures; lighter is better. Note that the scale of the axes differs from the heatmaps
in the main body; this will be fixed in a future update. ε increases left to right with a different value for each heatmap according to:
[0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], epochs increase from left to right on the x-axis of each heatmap according to:
[1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], and the learning increases from top to bottom on the y-axis of each heatmap according to:
[0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 1.0]. As ε increases, left to right, the optimal hyperparameters trend towards longer training with
lower learning rates (bottom right).
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(a) STL10 Beitv2
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(c) STL10 Convnext
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(d) FashionMNIST Beitv2
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(e) FashionMNIST Beit
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(f) FashionMNIST Convnext

Figure 16. Heatmaps for the reported datasets and architectures; lighter is better. Note that the scale of the axes differs from the heatmaps
in the main body; this will be fixed in a future update. ε increases left to right with a different value for each heatmap according to:
[0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], epochs increase from left to right on the x-axis of each heatmap according to:
[1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], and the learning increases from top to bottom on the y-axis of each heatmap according to:
[0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 1.0]. As ε increases, left to right, the optimal hyperparameters trend towards longer training with
lower learning rates (bottom right).
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(a) CIFAR100 Test Accuracy
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(b) CIFAR100 Total Step Size
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(c) CIFAR10 Test Accuracy
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(d) CIFAR10 Total Step Size

Figure 17. Pareto frontier for ε vs test accuracy and total step size for CIFAR10, and CIFAR100. Beitv2 excels for larger values of ε but
beit and convnext are better for smaller values of ε. The inflection point varies across datasets.
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(a) FashionMNIST Test Accuracy
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(c) STL10 Test Accuracy
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Figure 18. Pareto frontier for ε vs test accuracy and total step size for STL10 and FashionMNIST. Beitv2 excels for larger values of ε but
beit and convnext are better for smaller values of ε. The inflection point varies across datasets.
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