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Abstract
Making neural networks remember over the long
term has been a longstanding issue. Although sev-
eral external memory techniques have been intro-
duced, most focus on retaining recent information
in the short term. Regardless of its importance,
information tends to be fatefully forgotten over
time. We present Memoria, a memory system
for artificial neural networks, drawing inspiration
from humans and applying various neuroscientific
and psychological theories. The experimental re-
sults prove the effectiveness of Memoria in the
diverse tasks of sorting, language modeling, and
classification, surpassing conventional techniques.
Engram analysis reveals that Memoria exhibits
the primacy, recency, and temporal contiguity ef-
fects which are characteristics of human memory.

1. Introduction
Humans possess an incredible ability to retain memories
for long periods. Humans extract the gist from the flood
of data, retrieve relevant information, and gradually forget
useless and unemployed memories. Efforts to endow neural
networks with human-like long-term memory have been on-
going. Although Transformers (Vaswani et al., 2017) have
shown excellent performance in a variety of tasks (Devlin
et al., 2019; Radford et al., 2018; Brown et al., 2020; Lewis
et al., 2020a), they also struggle with long sequences due to
the nature of processing entire input tokens simultaneously.
To mitigate this limitation, external memory methodologies
have been studied. Nevertheless, unlike humans, most exist-
ing methods prioritize the preservation of new information
over old memories and operate with fixed capacities. Con-
sequently, this inevitably leads to the removal or dilution of
old memories. We termed this problem Fateful Forgetting.

1Department of Computer Science and Engineering,
Sungkyunkwan University, Suwon, South Korea. Correspondence
to: JinYeong Bak <jy.bak@skku.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Introducing a dynamic memory capacity and employing
a policy that prioritizes crucial information for the future
can resolve the issue of fateful forgetting. However, real-
izing this requires addressing various derivative problems.
Firstly, it is necessary to distinguish which information is
considered important (Long-term Importance). Predicting
long-term importance at the initial acquisition is challeng-
ing, as the determination of whether it will be useful in the
future depends on future usage, making it difficult to fore-
see. Furthermore, since we cannot store infinite amounts of
information, forgetting is essential. This mechanism should
not merely erase old information, but rather selectively pre-
serve and forget based on the long-term importance of the
information (Selective Preservation). Furthermore, while
recent memories inherently preserve a certain degree of
relevance to the context, long-term memories are not the
case. Because long-term memories are temporally distant
from the current situation, the content of the retrieved long-
term memory should be relevant to the current situation.
Ultimately, it is crucial that old memories are selectively ac-
tivated based on the current context (Cue-based Activation).
This issue encompasses the challenge of how to search asso-
ciated memories in long-term storage (Memory Searching).

Fortunately, all these issues have been long-standing chal-
lenges faced by the memory system of living organisms.
Humans possess a highly sophisticated memory system that
not only retains recent information but also has the capa-
bility to remember important events throughout their lives
(Atkinson & Shiffrin, 1968; Craik & Lockhart, 1972; Nairne
& Pandeirada, 2008; Waugh & Norman, 1965; Brown, 1958;
Underwood & Postman, 1960). Recent advancements in
the fields of AI and neuroscience have brought attention to
the significance of interdisciplinary research between these
two domains (Hassabis et al., 2017; van de Ven et al., 2020).
Particularly, in the realm of memory systems, humans pro-
vide nearly ideal solutions, prompting endeavors to apply
the insights from human memory systems to artificial neural
networks (Banino et al., 2020; Kim et al., 2023). Following
this trend, we approach the issue of fateful forgetting by
integrating the neuroscientific evidence and the theoretical
models of human memory. Memoria provides an innova-
tive solution to fateful forgetting, opening the pathway to
selective and permanent memorization for neural networks.
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Figure 1: Working memory retains the most recent information. Short-term memory also holds a fixed number of recent
engrams. The number of engrams in long-term memory is not predetermined. The arrows in the diagram represent the
connections between each engram. Each connection is directed and weighted. Those weighted edges are used for retrieval.

Contributions

1. We designed Memoria as an external memory frame-
work for neural networks, incorporating various theories of
human memory1. We provide evidence that Memoria suc-
cessfully addresses fateful forgetting via extensive analysis.

2. We effectively integrated Memoria into GPT, BERT, and
RoBERTa representing its superior performance in compari-
son to the traditional external memory methodologies across
the sorting, language modeling, and text classification tasks.

3. We discovered the similarity of long-term memory be-
tween Memoria and humans by showing that Memoria
closely reproduces the three well-known effects of human
memory: primacy, recency, and temporal contiguity effects.

2. Background
Memory of Neural Networks Recurrent Neural Networks
(Rumelhart & McClelland, 1987; Hochreiter & Schmid-
huber, 1997; Chung et al., 2014) were introduced to pro-
cess sequential data. Memory Augmented Neural Networks
(MANNs) emerged to perform complex memory operations
beyond simple sequential processing. Neural Turing Ma-
chines (NTMs) (Graves et al., 2014) have a storage system
that can be accessed using an attention mechanism. NTMs
were further developed into DNC (Graves et al., 2016),
Sparse DNC (Rae et al., 2016), D-NTM (Gulcehre et al.,
2017b), TARDIS (Gulcehre et al., 2017a), and GCL (Meng
& Rumshisky, 2018). After the success of Transformer, re-
search has focused on Transformer’s limited context length.

1The implementation of Memoria and all experimen-
tal code are publicly available at https://github.com/
cosmoquester/memoria

Two major approaches have been proposed to address this
limitation. The first approach involves computational op-
timization of architectures such as Longformer (Beltagy
et al., 2020), BigBird (Zaheer et al., 2020), and Reformer
(Kitaev et al., 2020). However, the models still process
only a restricted size of inputs, even though they handle
longer lengths with the same amount of resources. The
second approach involves leveraging external memory stor-
age, exemplified by models such as Transformer-XL (Dai
et al., 2019), Compressive Transformer (Rae et al., 2020),
∞-Transformer (Martins et al., 2021), Memory Transformer
(Burtsev & Sapunov, 2020), Recurrent Memory Trans-
former (Bulatov et al., 2022), and Memorizing Transformers
(Wu et al., 2022). These models split inputs into multiple
segments and incorporate them to better maintain long-term
dependencies in sequential data. They have a simpler struc-
ture compared to traditional MANNs and utilize memory
focused on recent information. Therefore, in most cases
among them, they are not immune to the issue of fateful
forgetting. Memoria also follows the second approach, but
overcomes fateful forgetting by imitating the human mind.

Memoria categorizes memories into three levels according
to the Multi-Store model (Atkinson & Shiffrin, 1968), us-
ing the term working memory instead of sensory memory.
Memoria relies on two mechanisms of forgetting. Firstly,
for forgetting in short-term memory, we applied the dis-
placement mechanism (Waugh & Norman, 1965), which
replaces old information with new information. Secondly,
for forgetting in both short-term and long-term memory,
we incorporated the concept of trace decay theory (Brown,
1958; Peterson & Peterson, 1959), which suggests that mem-
ories gradually fade away if they are not actively recalled.
This strategy assists Memoria to preserve useful memories.

2

https://github.com/cosmoquester/memoria
https://github.com/cosmoquester/memoria


Memoria: Resolving Fateful Forgetting Problem through Human-Inspired Memory Architecture

Long-term Importance According to the Multi-Store
Model (Atkinson & Shiffrin, 1968), memories are better
preserved and consolidated through repetitive rehearsal. As
frequently accessed memories are easy to retain for longer
duration (Roediger & Butler, 2011; Antony et al., 2017),
Memoria prioritizes maintaining the repeatedly recalled
memories. Memoria updates this information at each time
step to maintain the long-term importance of each memory.

Selective Preservation The following problem is deter-
mining how to selectively preserve only those distinguished
memories. Humans make use of diverse forgetting strate-
gies (Brown, 1958; Peterson & Peterson, 1959; Underwood
& Postman, 1960; Waugh & Norman, 1965). Memoria
employs decay as a key forgetting mechanism, assigning
a predetermined lifespan to each memory and constantly
decreasing its lifespan. The only way memories acquire
lifespan is through retrieval and utilization. This design
ensures that lifespan is obtained proportionally to the degree
of contribution, allowing important memories to persist for a
long time. This reflects the brain’s characteristics of preserv-
ing memories associated with usefulness and high rewards
in the long-term (Morrissey et al., 2017; Braun et al., 2018).

Cue-based Activation The cue-based activation and mem-
ory searching problems are related to memory retrieval.
SAM (Raaijmakers & Shiffrin, 1981; 1980; Shiffrin & Raai-
jmakers, 1992) is a standard for subsequent memory models
(Kahana, 2020). The concept of global matching in SAM is
widely accepted, where the associative weights between the
current context and memory are employed in retrieval. Sim-
ilarly, in Memoria, a working memory always represents
the most recent memory, resolving the cue-based activation
problem by leveraging its distance from retrieval candidates.

Memory Searching In searching memory (Shiffrin &
Atkinson, 1969; Atkinson et al., 1974; Atkinson & Juola,
1974), we adopted the concept of global searching, which is
a key feature of SAM (Davis et al., 2014). SAM not only re-
flects the association between context and memory but also
considers the mutual association among memory pieces.
SAM initially retrieves memories from long-term mem-
ory using the association with short-term memory. Once
a new memory is recalled, the memory is used to itera-
tively recall further memories by leveraging the association
with previously retrieved memories. This iterative process
increases association among memories recalled together,
facilitating their easy recall in subsequent retrievals. Memo-
ria, similarly, resolves the memory searching problem by
interconnecting individual memory pieces and employs a
mechanism to search for next memory based on the recalled.

Hebbian Theory An engram serves as the fundamental
unit of memory in neuroscience, with long-term potentiation
(LTP) of synaptic strength operating as a central mechanism
in engram formation (Poo et al., 2016). Hebbian theory

(Hebb, 1949) is a prominent neural plasticity theory that
postulates how connections between two neurons change.
LTP is one of the key concepts of Hebbian theory, suggest-
ing that when two neurons are repeatedly activated together,
their interconnection is strengthened. This phenomenon is
commonly referred to as the “Fire together, wire together”
principle. In recent years, there has been growing interest in
applying Hebbian learning to deep learning (Kuriscak et al.,
2015; Journé et al., 2023). Some studies (Rae et al., 2018;
Limbacher & Legenstein, 2020; Le et al., 2020; Ramsauer
et al., 2021) modeled associative memory using neural net-
works. Hebbian learning rule (Caporale & Dan, 2008; Song
et al., 2000), a mathematical formulation of Hebbian learn-
ing, specifically articulates the process of Hebbian learning.
Memoria also treats engrams as the minimal unit of memory,
and the weight changes of engrams are designed to follow
Hebb’s rule. Further, Appendix A shows that Memoria sat-
isfies all six crucial mathematical properties (Gerstner &
Kistler, 2002) for Hebbian learning rule even though it does
not take the typical mathematical form of Hebbian learning.

3. Memoria
There are three stages of utilizing Memoria. The first stage
is retrieve stage, in which it uses working memory as a
cue to retrieve the engrams from short-term memory and
long-term memory. The second stage is exploit stage, where
a model uses the retrieved engrams to solve the task. The
last stage is memorize & forget. In this stage, all retrieved
engrams get more lifespan depending on the usefulness of
each engram, and all the engrams lose their lifespan by one.

3.1. Component

Memoria consists of three distinct types of memory: work-
ing memory, short-term memory, and long-term memory,
each composed of engrams. In Figure 1, we depict the over-
all structure of the three memory components in Memoria.

Engram An engram is the smallest unit of memory infor-
mation, and engrams constitute each memory. Each engram
possesses its own unique lifespan and connection weights.
Memoria continuously preserves engrams in sequences and
appropriately manages the lifespans and connection weights
of engrams. In this study, we treated the information part of
an engram as an embedding vector (engram e ∈ Rd, where
d is the model dimension) for all experiments. However,
engrams can theoretically take various forms. When using
engrams of different forms, a correlation function between
the two engrams should be defined. For instance, one could
define a single engram as a text sentence and utilize a corre-
lation function based on edit distance to employ Memoria.

Working Memory Working memory (WM) is the repository
of immediate memory and serves as a reference to access
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Figure 2: Retrieval process in Memoria. Memoria utilizes working memory to identify associated engrams in both short-term
and long-term memory. The calculated weights in steps 1 and 4 mean the strength of association between the engrams and
working memory, with larger values leading to the final selection of the engram. This mechanism deals with the cue-based
activation problem by reflecting the association with working memory. Engrams in the gray area represent retrieved engrams.

associated engrams from short-term and long-term memory.
Working memory adopts a queue structure whose size is
fixed by the number of newly created engrams in a single
time step. At every time step, working memory is updated.

Short-term Memory Short-term memory (STM), denoted
as Mstm, holds relatively recent information. The engrams
in working memory are transferred to short-term memory
when new information comes. Short-term memory employs
a queue data structure with a configurable and fixed capacity.

Long-term Memory Long-term memory (LTM), denoted
as Mltm, has the capacity to store an indefinite number of
engrams. The dequeued engrams from short-term memory
are transferred to long-term memory. Long-term memory
preserves a wide range of information, spanning from the
earliest recollections to recent ones. Therefore, the engrams
of long-term memory vary in their creation times and ages.

Memory Graph Engrams in any memory can be linked
together, forming a directed weighted graph data structure,
where each vertex corresponds to an engram. A directed
edge weight Ei→j indicates the empirical conditional prob-
ability of retrieving engram ej after engram ei has been
retrieved, with Mrem representing the set of all retrieved en-
grams. This probability is determined by dividing the num-
ber of times ei and ej were retrieved together (Counti,j)
by the number of times ei was retrieved (Counti,i). These
weighted edges facilitate finding engrams in long-term mem-
ory, with their weights adjusted according to the “Fire to-

gether, wire together” principle (Hebb, 1949). This graph
structure mirrors the association weights between items in
SAM (Raaijmakers & Shiffrin, 1981; Kahana, 2020), play-
ing a pivotal role in addressing the memory search problem.

Ei→j = P (ej ∈Mrem | ei ∈Mrem)

=
Counti,j
Counti,i

3.2. Retrieve

In this stage, retrieval of adequate engrams is conducted
by exploring short-term and long-term memory based on
working memory. Figure 2 shows entire retrieving process.

1. Replace working memory Mwm with new engrams.
All the engrams in working memory will have the same
initial lifespan. Nwm means the number of working
memory engrams.

Mwm = {ewm,1, ewm,2, . . . , ewm,Nwm}

2. By utilizing the correlation function fc, calculate the
correlation weight Cstm for each estm,i within short-
term memory Mstm by averaging all the correlation
weights for the engram. The distance function fd used
is L2 distance. Here, i represents the index of Mstm

and j represents the index of Mwm.
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Figure 3: The connections between working memory and retrieved engrams are strengthened across all pairs. The lifespan
of retrieved engrams extends proportionally to their individual contribution, enabling selective preservation through the
differential allocation of lifespans. Engrams having lost all their lifespan, exemplified by eltm,7, are eliminated permanently.

fc(ei, ej) = exp(−(fd(ei, ej))2)

Cstm,i =
1

Nwm

Nwm∑
j=1

fc(estm,i, ewm,j)

3. Select only the top Nrem
stm number of engrams with

Cstm values to retrieve. Denote the selected engrams
as Mrem

stm .

4. For each ei ∈ Mrem
stm , select an engram in Mltm hav-

ing highest edge weight from ei. Denote the selected
engrams as M init

ltm .

M init
ltm = argmax

ej∈Mltm

Ei→j , where ei ∈Mrem
stm

5. Using the engrams M init
ltm as a starting point, traverse

the Mltm graph using the depth-first search (DFS) algo-
rithm with a search depth of Ndepth. The exploration
direction should be based on the edge weight, toward
the highest edge weight. Gather all the unique engrams
that were encountered during the search, including
M init

ltm , and refer to them as Mfound
ltm .

M0
ltm = M init

ltm

Mk
ltm = argmax

ej∈Mltm

Ei→j ,

where ei ∈Mk−1
ltm , ej /∈Mfound,k−1

ltm

Mfound,k
ltm =

k⋃
l=0

M l
ltm

Mfound
ltm = M

found,Ndepth

ltm

6. Calculate correlation weight Cltm from Mwm for
Mfound

ltm and select top Nrem
ltm number of engrams like

STM. Denote the engrams as Mrem
ltm .

7. Use Mwm,Mrem
stm ,Mrem

ltm as activated memory.

Mrem = Mrem
stm ∪Mrem

ltm

Mact = Mwm ∪Mrem

Cue-based activation is accomplished through a mechanism
whereby only engrams with the highest correlation weight
with working memory are finally activated. This allows
for effective memory searching without the requirement
to access the entire long-term memory. Rather, Memoria
iteratively explores new engrams based on the engrams
already discovered and their respective connection weights.

3.3. Exploit

In this phase, all the retrieved engrams are exploited to
aid in task-solving and the contribution weight wi for each
engram ei is evaluated. In our experiments, we considered
the attention weight of each engram as the contribution, as
engrams are referenced via the cross-attention mechanism.

3.4. Memorize & Forget

Along with achieving selective preservation, Memoria also
strengthens the connections among associated engrams in
this step. Figure 3 shows the overall procedure of this stage.

1. Increase Counti,j by one for all engrams in Mact,
which is the number of times ei and ej retrieved to-
gether.

N = {1, 2, . . . , |Mact|}
Counti,j := Counti,j + 1,∀i, j ∈ N

2. Increase lifespan of retrieved engrams by the increment
Inci for the engram ei. Inci is calculated as follows
where α is hyperparameter meaning lifespan extend
scale. If α is 1.0, each engram e ∈Mrem gets lifespan
1.0 on average.
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Figure 4: Results of sorting task. Memoria Transformer exhibits greater robustness compared to other baselines as the input
sequence length increases. This task requires the retention of information about the occurrence of initial tokens until the end.
While the other methods all show significant performance decline, Memoria Transformer successfully handles the issue of
fateful forgetting, setting it apart from other competing techniques. The comprehensive raw scores are specified in Table 7.

Inci =
wi∑|Mrem|

k=1 wk

× |Mrem| × α

3. Decrease lifespan of all engrams by 1.0.

4. Remove engrams having a lifespan of 0 or less.

5. Move ewm into STM. Reset WM.

6. Move oldest engrams from STM by the number ex-
ceeding capacity into LTM.

The differentiation in the lifespan occurs at two levels. First,
engrams left unretrieved fail to attain lifespan and are prone
to elimination. Retrieved engrams receive varying lifespans
depending on their contribution, causing selective preser-
vation at two levels. In addition, the connections among
retrieved engrams are strengthened, facilitating co-retrieval
of more closely associated engrams in memory searching.

4. Memoria-Applied Transformers
Memoria functions independently as a module focused
on managing engrams rather than directly participating in
problem-solving process. Therefore, to effectively solve
tasks using Memoria, it is powerful to merge it with neural
network models. We integrated Memoria into two types
of Transformers: a decoder-based model termed Memo-
ria Transformer, and an encoder-based model referred to as
Memoria BERT. Moreover, we employed a memory encoder
module to generate engrams from the output of Transformer.

Both Memoria Transformer and Memoria BERT reference
engrams with the cross-attention mechanism. As illustrated
in Figure 5, the models first reference the working memory
engrams and then the retrieved short-term/long-term mem-
ory engrams. The difference between the two models arises

from how engrams are generated. Detailed architectures of
each model are presented with description in Appendix G.

Figure 5: A structural diagram of Memoria Transformers.

Memoria Transformer We used the attention-based ab-
stractor as memory encoder fe where queries are learnable
parameters. As utilizing the information of the current time
step leads to causal leakage, We used the last hidden state
ht−1 of the previous time step as Xt in Memoria Trans-
former. t represents the index of the segment in the whole
sequence. The three values of Q, Wk, and Wv are train-
able parameters. FFN is a feed-forward network as same in
Transformer (Vaswani et al., 2017). The number of work-
ing memory engrams Nwm is determined by the number of
queries Q, so the number of queries is a hyperparameter.

6



Memoria: Resolving Fateful Forgetting Problem through Human-Inspired Memory Architecture

Table 1: Language modeling performance. Perplexity (PPL) is provided for Wikitext-103 and PG-19 datasets, while bits-per-
character (BPC) is shown for Enwik8. In each case, the memory length matches the segment length, with Wikitext-103 and
PG-19 using a length of 150, and Enwik8 using 512. Memoria Transformer outperformed the other models on all datasets.

Model Wikitext-103 (PPL) PG-19 (PPL) Enwik8 (BPC)

Transformer 26.755 31.631 1.28
Transformer-XL 24.543 29.945 1.19
Compressive Transformer 24.794 29.603 1.16
∞-former 24.685 29.154 1.21
Memoria Transformer 23.471 29.149 1.16
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Figure 6: The average age of retrieved engrams in long-term memory. The age of retrieved engrams gradually increased as
steps passed by. This manifests that Memoria consistently retains and utilizes not only recent memories but also old ones.

Xt = ht−1

fe(Xt) = Abstract(Xt)

= FFN(Attention(Q,WkX,WvX))

= FFN(Attention(Q,Wkht−1,Wvht−1))

= FFN(softmax(QWkht−1)Wvht−1)

= Mwm

Memoria BERT/RoBERTa Memoria BERT also employs
the same memory encoder as Memoria Transformer. Un-
like decoder-based models, encoder-based models always
have access to the complete input of the current time step
without causing causal leakage. Thus, memory encoder fe
utilizes the hidden states hl

t as Xt, where l signifies the
memory layer index. New engrams are obtained from the
hidden state of lth BERT layer through the abstractor. Sub-
sequently, working memory engrams and retrieved engrams
are employed in the following layers using cross-attention.

5. Experiments
We applied Memoria to Transformer and evaluated its ability
to capture long-term dependencies in various tasks. The first
task is sorting. Martins et al. (2021) evaluated the model’s
ability to remember long-term information about the oc-
currence of numbers by generating a sorted sequence of
numbers based on their predefined frequency of occurrence.
Secondly, we performed language modeling for token-level

on WikiText-103 (Raw) (Merity et al., 2017) and PG-19
(Rae et al., 2020), and character-level on enwik8 (Mahoney,
2006). Similar to Martins et al. (2021), only the first 2,000
books of the training dataset were used for PG-19. We com-
pared Memoria with the other competitors of Transformer
(Vaswani et al., 2017), Transformer-XL (Dai et al., 2019),
Compressive Transformer (Rae et al., 2020), and∞-former
(Martins et al., 2021). Lastly, we conducted the classi-
fication task on the long document classification dataset,
Hyperpartisan (Kiesel et al., 2019). Appendix D provides
additional experiments and specifies the hyperparameters.

5.1. Sorting

The sorting task involves taking a sequence of symbols and
outputting the symbols in descending order of frequency of
occurrence (Martins et al., 2021). Decoder models includ-
ing Memoria Transformer were utilized for this task. We
experimented with sequences of various lengths, ranging
from 1K to 32K2, with segment lengths of 256, 512, and
1024, using the 20 unique tokens in the vocabulary. In this
task, it is essential to maintain the initial information until
the end in order to avoid fateful forgetting, as the occurrence
frequencies of a token vary from the beginning to the end.

Figure 4 indicates the performance across different segment
lengths in the sorting task as the sequence length expands.

2We used the script of ∞-former at https:
//github.com/deep-spin/infinite-former/blob/
main/sorting/generate data.py to generate dataset.
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Table 2: Text classification performance on Hyperpartisan. The evaluation metrics are average macro F1-score and accuracy,
calculated through five independent runs. We report validation and test set results because of data distribution discrepancies.

Model [Sequence Length]
Validation Test

F1±STD Acc±STD F1±STD Acc±STD

BERT [512] 76.61±0.04 78.75±0.03 91.67±0.01 93.05±0.01

RoBERTa [512] 82.96±0.02 84.06±0.02 95.24±0.02 95.38±0.02

Bigbird [4096] 81.22±0.02 82.81±0.02 93.24±0.01 93.54±0.01

Longformer [4096] 78.33±0.03 79.69±0.03 94.56±0.01 94.77±0.01

Memoria BERT [512] 78.24±0.04 80.00±0.04 94.59±0.02 94.77±0.02

Memoria RoBERTa [512] 86.39±0.01 87.19±0.01 96.51±0.02 96.62±0.02

The memory length was set to the same value as the seg-
ment length. Generally, with increasing sequence length,
accuracy tended to decline due to the necessity of retaining
longer contextual information. Notably, Memoria exhibited
the least degradation in performance compared to the other
three models as sequence length increased, showcasing its
ability to uphold long-term memory for extended context.
To understand the respective roles of each memory and Heb-
bian property, we conducted ablation studies in Appendix C.
This analysis verifies the complementary functions of each
memory module and the significance of Hebbian property.

5.2. Language Modeling

Table 3: Perplexity with a smaller segment length of 50.
Even in the shorter context and memory lengths, Memoria
still maintained its superiority over the other methodologies.

Model [Memory Length] Wikitext-103

Transformer 39.287
Transformer-XL [50] 31.459
Compressive Transformer [50] 31.644
∞-former [50] 31.790
Memoria Transformer [48] 30.007

In language modeling as well, Memoria Transformer was
applied. Since publicly available pre-trained models were
trained with a varying number of parameters on different
datasets, models were trained from scratch in our experi-
ments. Specifically, we employed GPT-2 architecture with
12 layers and 768 dimensions. The results of additional
experiments with pre-trained language models are detailed
in Appendix D.2. We set the segment length as 150 for
token-level experiments and 512 for character-level experi-
ments following the Bulatov et al. (2022). The pre-trained
GPT-2 tokenizer was used for all token-level experiments.

Table 1 shows the results. Compared to Transformer, all the
alternative models exhibited enhanced performance. Memo-
ria Transformer achieved the best performance on all three
datasets. Such outcomes underscore the efficacy of Memo-
ria in practical tasks given that language modeling involves
complexities beyond merely capturing long-term context.

Table 3 presents the performance of each model when the
segment length is reduced to 50, to observe the dynamics
as the number of segments increases. A comparison with
Table 1 highlights a more pronounced difference in perfor-
mance between Transformer and memory models. Even in
situations demanding deeper consideration of long-term de-
pendencies, Memoria steadily shows superior performance.

We validated whether Memoria effectively utilizes long-
term memory. Figure 6 shows the average age of the re-
trieved engrams in long-term memory at each step on the
test dataset. The age represents the number of steps that
have passed since the engram was created. A flat line on the
graph would suggest dependence only on recent engrams,
rendering it ineffective as long-term memory. Conversely,
continuous reference to past information causes engrams to
age gradually, reflected in the graph’s upward trend. This
trend signifies Memoria’s consistent retrieval and utiliza-
tion of important past information even after numerous time
steps. For further clarity, several snapshots of internal con-
nections are provided in Appendix H to aid comprehension.

5.3. Classification

Hyperpartisan is a widely used dataset for the long document
classification task. To validate the effectiveness of Memoria
within encoder-based architectures, we integrated Memoria
into BERT and RoBERTa and compared their performance
with the other models. Due to the high cost of pre-training
models with different structures, it was inevitable to use
pre-trained models for the classification task. The size of all
the models was 12-layer base-sized. Memoria-augmented
models referred to 192 engrams in addition to 512 context.

Table 2 presents the classification performance of the mod-
els. It is apparent that Memoria-augmented models show
striking performance gains compared to plain BERT and
RoBERTa, although it is challenging to compare the models
altogether because of the disparity in pre-training. Memoria
RoBERTa achieved the highest score in all cases. Conduct-
ing a one-tailed t-test, Memoria RoBERTa verified its sta-
tistically significantly higher performance than Longformer
and Bigbird, with p-values of 0.045 and 0.005, respectively.

8



Memoria: Resolving Fateful Forgetting Problem through Human-Inspired Memory Architecture

6. Psychological Memory Effects
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Figure 7: Psychological memory effects of Memoria en-
grams. Figure (a) depicts a kernel density estimate plot
illustrating the distribution of creation times for the remain-
ing engrams in long-term memory after passing all time
steps. This plot displays the patterns of the primacy effect
and recency effect, where initial and recent information is
more retained than intermediate information. Figure (b)
illustrates the average connection weight according to the
difference in age (time of creation) of the remaining en-
grams. This means that when the age difference is small,
the edge weight is high, indicating the temporal contiguity
effect. Appendix B provides further detailed explanations.

Memoria is designed based on the various memory models
of humans. Particularly, the long-term memory of Memoria
is deliberately engineered to maintain valuable old informa-
tion, akin to humans. Due to the complexity of biological
interpretations of human memory mechanisms, direct com-
parisons between Memoria and human memory are chal-
lenging. Nevertheless, research on the characteristics of
human memory in psychology is extensive. Therefore, by
identifying the known effects of human memory in Memoria,
we confirm its resemblance to the human memory system.

Figure 7 exhibits patterns analogous to the primacy effect,
recency effect, and temporal contiguity effect of engrams in
Memoria. We utilized Memoria Transformer to conduct in-

ference on the entire test set of Wikitext-103, subsequently
analyzing the age and internal weights of remaining en-
grams. The upper graph illustrates the density according to
the timing of engram creation. Conventional memory-based
models are inclined to keep recent information, inducing
an upward trend. In contrast, Memoria preserves early and
latest information more than intermediate information. This
behavior demonstrates both the primacy and recency effect.

The lower figure shows the relationship between the age dif-
ference among the remaining engrams and the edge weight.
Age represents the number of time steps that have passed
since creation, and the age difference corresponds to the dif-
ference in creation time. We observed that engrams created
closer in time exhibit higher internal connection weights,
illustrating a pattern akin to the temporal contiguity effect.

7. Conclusion and Future Work
We propose Memoria as a general memory module for neu-
ral networks, aiming to tackle the fundamental issue of fate-
ful forgetting in long-term memory, along with the derived
problems of long-term importance, selective preservation,
cue-based activation, and memory searching. The solutions
to these problems draw inspiration from the human mem-
ory system, actively incorporating various psychological
and neuroscientific theories related to memory, including
the Multi-Store Model (Atkinson & Shiffrin, 1968), SAM
(Raaijmakers & Shiffrin, 1981), and Hebbian theory (Hebb,
1949). This approach allows Memoria to reflect various hu-
man memory effects, including the recency effect, primacy
effect, and temporal contiguity effect. We demonstrate these
effects through diverse analyses. We validated Memoria’s
strong performance compared to the other methodologies in
the tasks of sorting, language modeling, and classification.

We endeavored to empower Memoria with the powerful
characteristics of human memory. However, discrepancies
still exist in many aspects. The levels of processing theory
(Craik & Lockhart, 1972) emphasizes a more continuous
structure of memory based on the depth of processing rather
than the discrete categories of the Multi-Store model. Also,
the interference theory (Underwood & Postman, 1960) un-
derscores the substantial impact of interference effects be-
tween established memories and incoming information as a
predominant forgetting mechanism in long-term memory.

Our future research will incorporate these mechanisms into
Memoria to align it more closely with the operational prin-
ciples of human memory, augmenting its capabilities ac-
cordingly. We anticipate this integration will unleash the
potential of Memoria in diverse sequential processing and
agent-based tasks, particularly in fields such as conversa-
tional chatbot and reinforcement learning simulation, ulti-
mately paving the way to realize human-level intelligence.
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Impact Statement
This paper seeks to create an external memory module de-
signed for artificial neural networks to enhance the pro-
cessing capabilities for general long-sequence data. The
development of Memoria draws upon theories concerning
human memory, which may have various societal implica-
tions. Notably, Memoria maintains information generated
during inference in long-term memory. Consequently, pro-
longed use of specific user data for model inference might
raise potential privacy concerns due to the accumulation of
information in Memoria. Users of Memoria should carefully
review regulations regarding the handling of personal data.
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Banino, A., Badia, A. P., Köster, R., Chadwick, M. J.,
Zambaldi, V., Hassabis, D., Barry, C., Botvinick, M.,
Kumaran, D., and Blundell, C. Memo: A deep net-
work for flexible combination of episodic memories.
In International Conference on Learning Representa-
tions, 2020. URL https://openreview.net/
forum?id=rJxlc0EtDr.

Baranchuk, D., Babenko, A., and Malkov, Y. Revisiting
the inverted indices for billion-scale approximate nearest
neighbors. In Ferrari, V., Hebert, M., Sminchisescu, C.,
and Weiss, Y. (eds.), Computer Vision – ECCV 2018, pp.
209–224, Cham, 2018. Springer International Publishing.
ISBN 978-3-030-01258-8.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. CoRR,
abs/2004.05150, 2020. URL https://arxiv.org/
abs/2004.05150.

Bjork, R. Retrieval as a memory modifier: An interpretation
of negative recency & related phenomena. Information
Processing and Cognition: The Loyola Symposium, 01
1975.

Bjork, R. A. Retrieval practice and the maintenance of
knowledge., pp. 396–401. Practical aspects of memory:
Current research and issues, Vol. 1: Memory in everyday
life. John Wiley & Sons, Oxford, England, 1988. ISBN
0-471-91234-4 (Hardcover).

Bjork, R. A. and Whitten, W. B. Recency-sensitive
retrieval processes in long-term free recall. Cogni-
tive Psychology, 6(2):173–189, 1974. ISSN 0010-
0285. doi: https://doi.org/10.1016/0010-0285(74)90009-
7. URL https://www.sciencedirect.com/
science/article/pii/0010028574900097.

Braun, E. K., Wimmer, G. E., and Shohamy, D. Retroactive
and graded prioritization of memory by reward. Nature
Communications, 9(1):4886, 2018. doi: 10.1038/s41467-

10

https://proceedings.neurips.cc/paper_files/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0079742108604223
https://www.sciencedirect.com/science/article/pii/S0079742108604223
https://doi.org/10.3758/BF03202726
https://openreview.net/forum?id=rJxlc0EtDr
https://openreview.net/forum?id=rJxlc0EtDr
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://www.sciencedirect.com/science/article/pii/0010028574900097
https://www.sciencedirect.com/science/article/pii/0010028574900097


Memoria: Resolving Fateful Forgetting Problem through Human-Inspired Memory Architecture

018-07280-0. URL https://doi.org/10.1038/
s41467-018-07280-0.

Brown, J. Some tests of the decay theory of im-
mediate memory. Quarterly Journal of Experimen-
tal Psychology, 10(1):12–21, 1958. doi: 10.1080/
17470215808416249. URL https://doi.org/
10.1080/17470215808416249.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.
URL https://proceedings.neurips.cc/
paper files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-
Paper.pdf.

Bulatov, A., Kuratov, Y., and Burtsev, M. Recurrent
memory transformer. In Koyejo, S., Mohamed, S.,
Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 11079–11091. Curran Associates, Inc., 2022.
URL https://proceedings.neurips.cc/
paper files/paper/2022/file/
47e288629a6996a17ce50b90a056a0e1-
Paper-Conference.pdf.

Burtsev, M. S. and Sapunov, G. V. Memory trans-
former. CoRR, abs/2006.11527, 2020. URL https:
//arxiv.org/abs/2006.11527.

Caporale, N. and Dan, Y. Spike timing-dependent plasticity:
a hebbian learning rule. Annu Rev Neurosci, 31:25–46,
2008.
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A. Hebbian Attributes for Memoria
Gerstner & Kistler (2002) suggested six attributes of a useful plasticity model for Hebbian learning as follows. Memoria
meets these attributes.

Locality The learning rule for the synapse Ei→j connecting neuron j to neuron i should depend only on the activity of j
and i and not on the state of other neurons k ̸= i, j.

Ei→j =
Counti,j
Counti,i

By definition, Memoria meets locality because it depends on only the count of i, j.

Cooperativity Hebb’s formulation ‘takes part in firing it’ implies that an increase in weight requires both the presynaptic
and the postsynaptic neuron to be active.

Ei→j ∝ Counti,j

Since Ei→j is proportional to Counti,j and Counti,i never decreases, it only increases when ei and ej fire (retrieved)
together.

Synaptic depression A mechanism for decreasing weights is a necessary requirement for any useful learning rule. There
are three engrams ei, ej , ek. Ei→j decreased when ei and ek fire together while ej does not. The superscript pre means the
value before firing of ei and ej and post means the value after firing.

Epre
i→j =

Countprei,j

Countprei,i

Countposti,k = Countprei,k + 1

Countposti,i = Countprei,i + 1

Epost
i→j =

Countposti,j

Countposti,i

=
Countprei,j

Countprei,i + 1

< Epre
i→j

Boundedness In realistic rules, weights should remain bounded in a specific range. Ei→j must be between 0 and 1
because it is probability.

Ei→j = P (ej ∈Mrem | ei ∈Mrem)

0 ≤ P (ej ∈Mrem | ei ∈Mrem) ≤ 1

Competition The growth of some weights comes at the cost of a decrease in others. The increase of Ei→j requires the
increase of Counti,j and Counti,i. The increase of Counti,i reduces all the weight Ei→k, for k ̸= j.

Long-term stability In adaptive systems, it is important to ensure that previously acquired knowledge is not forgotten. In
Memoria, Ei→j is always the result of learning from all past examples because Count is cumulative.
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B. Details on Psychological Memory Effects
B.1. Primacy and Recency Effects
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Figure 8: Creation time of the remaining engrams in long-term memory after passing all time steps. The x-axis shows
the time of creation as a percentage of the total time steps, and the y-axis is the count of engrams generated at that time.
The trend line is the kernel density estimate. The graph illustrates the presence of both the primacy and recency effects,
phenomena commonly observed in human memory, within Memoria as well.

Human memory, when processing sequentially arranged information, exhibits certain characteristics. Two of the most
significant are the primacy effect (Deese & Kaufman, 1957; Murdock Jr., 1962) and the recency effect (Bjork & Whitten,
1974; Baddeley & Hitch, 1993). The primacy effect is a cognitive bias that refers to the tendency of people to better
remember and give greater importance to the first pieces of information, compared to information presented later. This
phenomenon is particularly evident in situations where individuals are exposed to a series of items or stimuli, such as a list
of words, a sequence of events, or a set of arguments. The recency effect is a cognitive bias that refers to the tendency of
individuals to better remember and give more weight to the most recent items or information in a series. In other words,
when people are asked to recall a list of items, they are more likely to remember the items that appeared last in the list.
These effects can influence various aspects of memory and decision-making. Both the recency and primacy effects are
thought to be related to how information is processed and stored in memory. The recency effect is believed to be influenced
by short-term memory, where recently presented information is still readily available, while the primacy effect is associated
with the transfer of information into long-term memory.

To verify whether these characteristics inherent in humans are also evident in Memoria, we analyzed engrams that persisted
in long-term memory after passing all time steps, examining the point in time step when they were created. Figure 8
illustrates the number of remaining engrams at each creation time step. As anticipated, the analysis results demonstrate the
presence of both primacy and recency effects in Memoria. In the initial section, there is a clear indication of the primacy
effect, as it exhibits a higher count compared to the middle portion. In the later part, there is a substantial difference, with a
notably higher count compared to the middle, indicating the pronounced recency effect. In Memoria, early created memories
are likely to strengthen through subsequent retrieval. This resembles the primacy effect in humans, where early information
tends to be well-maintained due to frequent chances for rehearsal (Rundus & Atkinson, 1970). More recent memories have
a high probability of being preserved due to their remaining lifespan, causing the recency effect. Additionally, the observed
distribution of engrams across the overall time steps in Memoria indicates successful mitigation of the initial problem of
fateful forgetting, which was a key objective of our study.
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B.2. Temporal Contiguity Effect
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Figure 9: A bivariate histogram showing the average weight between all engrams according to the age difference.
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Figure 10: Scatterplot of the data in Figure 9 for age differences of 300 or less.

The temporal contiguity effect (Kahana, 1996; Ginns, 2006) is a cognitive phenomenon that enhances memory recall and
comprehension when information elements are presented in close temporal proximity. In other words, humans tend to
remember and understand information better when it is presented in a temporally aligned manner, as opposed to when there
are temporal gaps between different elements. This effect facilitates the understanding of relationships between events
occurring within a short time span.

To investigate the occurrence of the temporal contiguity effect in Memoria, we conducted an analysis of the connectivity
among the remaining engrams in the WikiText-103 test dataset, after passing all time steps. We present a depiction of
the changes in the average edge weight, which is based on the age difference (or the temporal gap at the time of creation)
between two engrams, in Figure 9. The results distinctly show that a minimal age difference leads to a significant increase
in the average weight. This suggests the existence of the temporal contiguity effect in Memoria, which strengthens the
connections between engrams that are close in time. Figure 10 provides a detailed representation of the point at which this
effect begins to fade, indicating its presence up to approximately 150 age differences. Theoretically, engrams of the same
age have a higher likelihood of firing together when they exist in working memory and short-term memory, resulting in an
increase in the association edge between them.
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B.3. Retrieval Practice Effect

Table 4: Autocorrelation coefficients of short-term memory and long-term memory engrams.

Lag Short-term Memory ACF Long-term Memory ACF

1 0.900 0.575
2 0.893 0.529
3 0.889 0.501
4 0.888 0.475
5 0.888 0.461
6 0.890 0.442
7 0.893 0.426
8 - 0.413
9 - 0.395
10 - 0.381
11 - 0.370
12 - 0.356
13 - 0.344
14 - 0.333
15 - 0.321

We conducted autocorrelation analysis to understand the association between the retrieval of each engram and subsequent
retrieval events using Wikitext-103 dataset. Table 4 presents the autocorrelation coefficients for short-term and long-term
memory. We encoded retrieval of an engram as 1 and non-retrieval as 0. Lag represents the time step difference for
correlation calculation. For instance, the lag of one signifies the autocorrelation between retrieval of engram ei at time t
and retrieval at time t+ 1. We obtained individual correlation coefficients from each engram, then aggregated them by lag
and computed the average. For short-lived engrams, with a tendency to be always retrieved or always not, most of those
engrams have variances of 0. We regarded the coefficient of these cases as one because its actual meaning is a very strong
autocorrelation. In addition, for long-term memory, we calculated the weighted average of the correlation coefficients in
proportion to the lifespan of each engram, as the total lifespan differs for each engram.

First, looking at short-term memory, the capacity of short-term memory is 400, so each memory stays in short-term memory
for 8 time steps. Therefore, the maximum observable lag is 7. Each engram in short-term memory has a significantly high
autocorrelation. This implies that once an engram is retrieved, it is easy for it to be retrieved again, indicating that a specific
memory is more frequently associated with others. Long-term memory also shows significant autocorrelation, displaying a
strong correlation in close time intervals that gradually diminishes over extended periods. Theoretically, once an engram
in long-term memory is retrieved, the association with more recent memories strengthens, making the old memory easier
to reach through the pathway of those recent memories. In human memory, a retrieval event itself makes the retrieved
information more retrievable in the future (Bjork, 1975; Roediger, 1978; Bjork, 1988), a phenomenon known as the testing
effect or retrieval practice effect. The high autocorrelation of retrieval events in Memoria partially implies the manifestation
of such phenomena. Figure 11 illustrates the changes in autocorrelation based on the lag in long-term memory.
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Figure 11: Autocorrelation coefficient plot of long-term memory.
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C. Ablation Study
C.1. Memory Type

Table 5: Performance and performance gain of each memory module according to the length of the dataset. Memoria
consistently exhibits excellent performance, even as the sequence length increases. This is attributed to the harmonious
interplay of each memory module. This observation indicates that while the effectiveness of the working memory diminishes
with extended sequence lengths, both short-term and long-term memory modules display an enhanced performance.

4K 8K 16K 32K 48K

Number of Segments 4 8 16 32 47

Accuracy
Transformer 36.19 33.79 31.69 29.94 19.04
+ Working Memory 79.69 70.85 62.21 52.01 34.32
+ Short-term Memory 82.66 76.20 66.37 58.75 54.87
+ Long-term Memory 82.27 74.08 66.58 63.42 63.26

Performance Gain
+ Working Memory +43.50 +37.06 +30.52 +22.07 +15.28
+ Short-term Memory +2.79 +5.35 +4.16 +6.74 +20.55
+ Long-term Memory -0.39 -2.12 +0.21 +4.67 +8.39

We executed an ablation study to scrutinize the influence of each memory type in Memoria on performance. This study,
conducted on a sorting task with a fixed segment length of 1024 for each dataset, enabled us to observe trends relative to
data length. To extend our investigation to longer datasets not discussed in the main text, we performed supplementary
experiments with a 48K dataset. Since the segment length remains constant at 1024, an expansion in the dataset length
consequently increases the number of segments.

The analysis results indicate that each type of memory module contributes to overall performance to some extent. An
noteworthy observation is that as the number of segments increases, the influence of each type of memory on performance
changes. A closer look at the 4K dataset results, with a mere segment length of 4, reveals that the bulk of performance
enhancement is primarily driven by the working memory. However, as the dataset length expands to 8K, 16K, and beyond,
the performance boost attributed to the working memory rapidly declines. In contrast, with the extension of sequence
lengths, the impact of both short-term and long-term memory on performance progressively intensifies. This trend mirrors
human memory, which varies in retention duration depending on the situation.

This trend suggests that the model does not employ all types of memory uniformly, but rather selectively uses memory
information based on the task or dataset characteristics. If the task can be sufficiently handled with a comprehension of short
contexts, the model predominantly utilizes working memory. However, when confronted with longer contexts that pose a
challenge for the working memory alone, the model appears to cultivate the capacity to harness short-term or long-term
memory. Notably, when observing the transition from 32K to 48K, it becomes clear that the final performance difference
between 32K and 48K is negligible when all memories are engaged, owing to the complementary roles of short-term
and long-term memory compensating for the further aggravated performance deficiencies in the Transformer or working
memory. These insights imply that future tasks and datasets should sufficiently demand dependency on long-term context to
effectively validate the model’s long-term memory capabilities. Memoria consistently exhibits robust performance across
datasets of diverse lengths, thanks to the complementary roles of the three types of memory.

C.2. Hebbian Property

We carried out further experiments to examine the efficiency and effectiveness of weight adjustments, guided by Hebbian
theory. This experiment was conducted using a 48K length dataset in a sorting task, for which the performance gain of
long-term memory is established from a prior ablation study. Table 6 presents the experimental results.

Firstly, the term ‘Random Wire’ refers to a condition modified by Memoria to randomly select target engrams. Memoria
strengthens connections between all working memory and retrieved engrams, denoted as Mact. Thus, it increases all
Counti,j satisfying ei ∈ Mact and ej ∈ Mact. In contrast, under the random wire condition, it increases Counti,j
satisfying ei ∈ Mact and ej ∈ Mltm. The total increase in count was controlled. The experimental findings indicate
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Table 6: Performance and performance gain when modifying Hebbian characteristics. This outcome underscores that
weight modification, grounded in Hebbian theory within Memoria, yields markedly superior performance enhancements as
opposed to arbitrary weight increments. Furthermore, Memoria showcases its efficiency in preserving a substantial portion
of performance achieved when conducting a full search of the entire long-term memory.

Accuracy Performance Gain

Memoria Transformer (Without LTM) 54.87 -

Memoria Transformer 63.26 +8.39
Memoria Transformer (Random Wire) 56.13 +1.26
Memoria Transformer (Full LTM Search) 65.84 +10.97

that substituting Hebbian process with random wiring results in a notable reduction in the performance gain of long-term
memory, reducing from 8.39 to 1.26, which is approximately one-sixth of the original value. These results highlight the
substantial effectiveness of weight adjustments following Hebbian process on performance.

The term ‘Full LTM Search’ refers to selecting the highest engrams by simply calculating Cltm across all long-term memory
without employing the internal weights in Memoria. In simpler terms, it treats Mltm as Mfound

ltm . In this case, there was a
performance enhancement of 2.58. These findings demonstrate that Memoria’s long-term memory searching preserves a
substantial portion of the performance while utilizing significantly fewer computing resources than the naive approach.

D. Training Details and Additional Results
For all experiments, the Adam optimizer and linear scheduler with warm-up were used, and the gradient clipping was set to
a norm of 1.0. One or more NVIDIA A100 or A6000 GPUs were used for training.

D.1. Sorting

For all sorting experiments, a batch size of 32, a warmup rate of 0.06, a learning rate of 2e-4, and an epoch of 5 were used
for 80,000 train examples. A memory length was configured to match the segment length. The experiments were conducted
on datasets with lengths ranging from 1000 to 32,000. Each example on the datasets was divided into segments of lengths
256, 512, and 1024. For each segment length, combinations of sequence lengths and segment lengths were constructed by
varying the number of segments, which were set to 4, 8, 16, and 32. The model configuration used was 5 layers, 4 heads,
embedding dimension of 512 Transformer. The compression rate is 4 and the ratio of normal memory and compressed
memory is one-to-one for Compressive Transformer.

Memoria parameters used in the experiment were as follows: an initial lifespan of 5, a lifespan extension scale α of 8, and
a long-term memory search depth Ndepth of 10 in all cases. Other parameters are adjusted proportionally to the segment
length. the number of working memories Nwm set to 1/8 of the segment length, the number of retrieved engrams in
short-term memory Nrem

stm set to 1/4 of the segment length, the number of retrieved engrams in long-term memory Nrem
ltm

set to 5/8 of the segment length, and a capacity of short-term memory set to half of the segment length. The sum of Nwm,
Nrem

stm , and Nrem
ltm is equal to the segment length.

Table 7 shows the all scores of models in the sorting task. The metric is accuracy. For the convenience of comparison, we
mark the number of segments instead of the total sequence length of each dataset. The sequence length can be obtained
by multiplying the number of segments by segment length. Memoria Transformer proves its robustness for long-term
dependency compared to the other models, especially as the number of segments increases.

D.2. Language Modeling

For all language modeling experiments, a batch size of 8 and a warmup rate of 0.06 were used. The model configuration
used the settings of GPT-2 small by default. The Wikitext-103 and PG-19 datasets were trained for 3 epochs, while the
Enwik8 dataset was trained for 20 epochs. GPT-2 tokenizer was used for all datasets except Enwik8, which was trained at
the character level using 204 characters. The default learning rate was 2e-4, but in cases where convergence was challenging,
1e-4 was used. However, for experiments fine-tuning pre-trained models, a learning rate of 5e-5 was used. In the experiments
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Table 7: Accuracy in the sorting task. When the segments increase, Memoria outperforms other baselines.

Model Segments
Segment Length

256 512 1024

Transformer-XL 4 74.66 60.46 68.86
Compressive Transformer 4 64.38 64.57 79.51
∞-former 4 84.49 83.75 84.28
Memoria Transformer 4 80.42 80.99 82.27

Transformer-XL 8 36.24 37.41 40.09
Compressive Transformer 8 56.88 49.58 71.84
∞-former 8 70.21 75.55 74.34
Memoria Transformer 8 70.84 74.47 74.08

Transformer-XL 16 32.75 34.59 35.06
Compressive Transformer 16 35.57 37.69 44.03
∞-former 16 53.61 53.61 47.31
Memoria Transformer 16 63.99 64.50 66.58

Transformer-XL 32 32.24 32.76 33.87
Compressive Transformer 32 32.68 33.15 35.07
∞-former 32 34.36 36.41 39.71
Memoria Transformer 32 50.08 56.48 63.42

conducted on the Wikitext-103 dataset using Transformer-XL and on the PG-19 dataset using∞-former, as well as the
experiment with reduced segment length to 50, both Memoria Transformer and Transformer-XL were trained with a learning
rate of 1e-4. The memory length was set to be the same or similar to the segment length. The compression rate is 4 and the
ratio of normal memory and compressed memory is one-to-one for Compressive Transformer.

Memoria parameters were set as follows: initial lifespan of 9, lifespan extend scale α of 8, and long-term memory search
depth Ndepth of 10. Furthermore, to prevent potential interference with the learning process, we periodically reset all
memory in Memoria every 500 steps during training (1500 steps for enwik8 dataset). This was done to avoid referencing
memory generated at stages where learning was insufficient, as it could impede the training progress. For the Wikitext-103
and PG-19 datasets, the number of working memories Nwm, the number of retrieved engrams in short-term memory Nrem

stm ,
and the number of retrieved engrams in long-term memory Nrem

ltm were all set to 50, and a capacity of short-term memory
was set to 400. For the Enwik8 dataset, Nwm, Nrem

stm and Nrem
ltm were set to 170, and a capacity of short-term memory was

set to 1360. When training on the Wikitext-103 dataset with a reduced segment length of 50, Nwm, Nrem
stm , and Nrem

ltm were
all set to 16, and the short-term memory capacity was set to 128.

Table 8: Finetuning performance on Wikitext-103.

Model Wikitext-103

GPT-2 20.498
Memoria GPT-2 18.986

GPT-2 Large 15.332
Memoria GPT-2 Large 13.227

GPT-2 XL 15.254
Memoria GPT-2 XL 13.241

To verify whether Memoria can consider long-term context even when finetuning a pre-trained model, we measured
performance on Wikitext-103 dataset by finetuning Memoria GPT-2. The architecture of Memoria GPT-2 is the same as
Memoria Transformer. The results are Table 8. Memoria GPT-2 showed significantly better performance than GPT-2.
This result suggests that Memoria can be combined with various pre-trained models to increase long-term dependencies.
Furthermore, as the use of pre-trained large language models (LLMs) has become prevalent, we conducted experiments to
verify whether Memoria can be applied in conjunction with LLMs. We performed experiments using large and xl sized
models, and successfully achieved performance improvements when applying Memoria to even larger pre-trained models.
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This demonstrates the potential for LLMs to benefit from considering longer contexts with the help of Memoria.

Table 9: Performance on Wikitext-103 under various parameter variations.

Initial lifespan Lifespan extend scale α LTM search depth Reset Period Nwm Nrem
stm Nrem

ltm Perplexity

9 8 10 500 50 50 50 23.471

5 23.485

4 23.518

5 23.491

100 23.407

100 25 25 23.376

25 100 25 23.831

25 25 100 23.670

We conducted additional experiments by modifying various hyperparameters to investigate the sensitivity of hyperparameters.
Table 9 shows that there is generally no significant difference in performance compared to what was initially reported in the
paper. There were even cases where the performance improved compared to the original scores.

D.3. Classification

All hyperpartisan text classification experiments were conducted with a batch size of 16, a learning rate of 5e-5, and a warmup
rate of 0.1. The models were trained for 20 epochs. For BERT, the experiment utilized the pre-trained bert-base-uncased
model. As for Longformer, the base model was used in the experiment.

Memoria parameters used in the experiment were as follows: an initial lifespan of 12, a lifespan extension scale α of 8, a
long-term memory search depth Ndepth of 10, the number of working memories Nwm set to 64, the number of retrieved
engrams in short-term memory Nrem

stm , and the number of retrieved engrams in long-term memory Nrem
ltm both set to 64, a

capacity of short-term memory of 128, and the memory layer index set to 9. This means that the output of the 10th layer is
used as memory, and it is referenced in the remaining 2 layers of the model.

E. Algorithm & Computational Complexity
E.1. Theoretical Analysis

Each stage of Memoria is represented by an algorithm. These are the algorithms of decoder models in our experiments,
so some details might be slightly different from the encoder model’s formula. Additionally, each algorithm provides time
complexity to help estimate how many resources are needed.

The complexity of the CalculateDistance function is equal to the product of the number of engrams in each memory, as it
involves the computation of all weights between them. The function is used twice, first in the STM with a time complexity
of O(Nwm×Cstm), where Nwm is the number of engrams in working memory and Cstm is the capacity of STM. Secondly,
when applied to the found LTM, the complexity is O(Nwm × Nfound

ltm ), where Nfound
ltm = Nrem

stm × (Ndepth + 1). The
part of the function that retrieves the conditional probability of retrieving the connected LTM engrams given retrieved
STM engrams has a complexity of O(Nrem

stm × d), where Nrem
stm is the number of retrieved engrams in STM and d is

the degree. The maximum value for degree d is the total number of edges from the engram, resulting in a maximum
complexity of O(Nrem

stm ×Nltm). Within the loop that executes Ndepth times, the complexity is O(Nrem
stm ×Nltm×Ndepth).

Generally, since the size of LTM is expected to be larger than Nwm, the overall time complexity of the retrieve stage is
O(Nrem

stm ×Nltm ×Ndepth).

Here, Nrem
stm and Ndepth are hyperparameters that can be set directly, but the total number of long-term memory units, Nltm,

is a dynamically changing value during execution. While it is not possible to precisely determine the size of LTM, the
maximum size of LTM over time can demonstrate convergence through lifespan, given a sufficient duration. The increase
in lifespan for all engrams during a single execution of the entire memory operations is α ∗ (Nrem

stm +Nrem
ltm ) when alpha

represents the lifespan extend scale parameter. Additionally, the decrease in lifespan is the number of all engrams of
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Algorithm 1 Retrieve Stage

Input: short-term memory STM , long-term memory LTM , memory encoder E, co-retrieved conditional probabilities
P , previous hidden states hp, long-term memory search depth Ndepth

Output: working memory WM , retrieved engrams retrieved
Result: Encode hp into working memory. Find relevant engrams in the short-term/long-term memories.
WM ← E(hp)
Wstm ← CalculateDistance(STM , WM ) {distance from stm to wm}
stmrem ← FindShortestK(Wstm) {select nearest stms}
p← GetCondProb(LTM , stmrem, P )
ltm1 ← SelectMostProbableEngrams(p)
ltmfound ← (ltm1, )
for i← 1 to Ndepth do
p← GetCondProb(LTM , ltmi, P )
ltmi+1 ← SelectMostProbableEngrams(p)
Append(ltmfound, ltmi+1)

end for
Wltm ← CalculateDistance(ltmfound, WM )
ltmrem ← FindShortestK(Wltm)
retrieved←Merge(stmrem, ltmrem)

Nltm +Nstm +Nwm. In a scenario where Nltm is maximized, lifespan is evenly distributed across all engrams, preventing
their removal. If the sum of lifespans for all engrams after the nth execution is denoted as l, then Nltm can be considered a
constant multiple, l × c. However, since the total number of engrams cannot exceed the total lifespan sum, c takes on values
between 0 and 1. When memory operations are executed n times, and the total lifespan sum of all engrams is ln, ln can be
expressed as follows.

ln+1 = ln + α ∗ (Nrem
stm +Nrem

ltm )−Nltm

= ln + α ∗ (Nrem
stm +Nrem

ltm )− ln × c

= (1− c)× ln +K

K = α ∗ (Nrem
stm +Nrem

ltm )

ln+1 −
K

c
= (1− c)× (ln −

K

c
)

bn+1 = (1− c)× bn

bn = b0 × (1− c)n

ln = b0 × (1− c)n +
K

c

= b0 × (1− c)n +
α ∗ (Nrem

stm +Nrem
ltm )

c

lim
n→∞

ln =
α ∗ (Nrem

stm +Nrem
ltm )

c

lim
n→∞

Nltm = α ∗ (Nrem
stm +Nrem

ltm )

Ultimately, when a sufficient amount of time elapses, the overall sum of the lifespan will be proportionate to α ∗ (Nrem
stm +

Nrem
ltm ). Therefore, in the worst-case scenario of retrieve stage, the time complexity is as follows.

O(Nrem
stm ×Nltm ×Ndepth) = O(Nrem

stm × (α ∗ (Nrem
stm +Nrem

ltm ))×Ndepth)

= O(αNrem
stm Ndepth(N

rem
stm +Nrem

ltm ))
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Algorithm 2 Exploit Stage

Input: model M , input segment s, retrieved
Output: segment result r, hidden states hp

Result: Conduct inference with retrieved memories. Return the segment result, hidden states, and attention weight for
each engram.
r, hp, a←M(s, retrieved) {”a” means memory attention weights}

The time complexity of the exploit stage depends upon the way of modeling utilization of retrieved engrams. In our
implementation, we employed the cross-attention mechanism, wherein input data is used as a query for engrams serving
as key and value. Consequently, the time complexity aligns with that of the cross-attention. The time complexity, given
an input length of L and the number of retrieved engrams Ne, is O(L×Ne). Ne is equal to Nrem

stm +Nrem
ltm , so the time

complexity is O(L× (Nrem
stm +Nrem

ltm )). We configured the total number of engrams used in our experiments to be equal to
the sequence length. In this scenario, the time complexity becomes O(L2), equivalent to that of the self-attention, thereby
not exerting an additional impact on the overall time complexity from a Big-O perspective.

Algorithm 3 Memorize & Forget Stage

Input: WM , STM , LTM , P .
Output: Updated memories and condition tables.
P ← AdjustConditionalProbs(P , retrieved) {update probs}
IncreaseLifespans(retrieved, a)
STM ←MoveWMtoSTM (WM , STM )
DecreaseLifespanAndRemove(STM , LTM )
LTM ←MoveSTMtoLTM (STM , LTM )

The logic governing conditional probability adjustment increases the value for each pair of the retrieved engrams, resulting
in a time complexity of O(N2

e ). The logic regulating lifespan, being an operation for each engram, entails a complexity of
O(Ne). Changing the type of memory requires operations proportional to the number of engrams, limiting the complexity
to O(Ne). Consequently, the overall time complexity at this stage is O(N2

e ) = O((Nrem
stm +Nrem

ltm )2).

In Memoria, space complexity is essentially the cost of maintaining a conditional probability table representing the
connectivity between each engram. The space complexity is dependent on the implementation of the graph. For the sake of
convenient implementation, we employed the adjacency matrix representation. When using an adjacency matrix, the spatial
complexity becomes quadratic in the number of nodes, specifically, the square of the total number of engrams in Memoria,
calculated as O((Nwm + Cstm +Nltm)2). Alternative implementations such as adjacency lists can further reduce spatial
complexity.

Table 10: Time and space complexities on each stage.

Stage Time Complexity Space Complexity

Retrieve O(Nrem
stm NltmNdepth) O((Nwm + Cstm +Nltm)2)

Exploit O(L(Nrem
stm +Nrem

ltm )) O((Nwm + Cstm +Nltm)2)
Memorize & Forget O((Nrem

stm +Nrem
ltm )2) O((Nwm + Cstm +Nltm)2)

Table 10 shows the time complexity and space complexity for each stage using Big-O notation.

E.2. Empirical Analysis

In addition to theoretical analysis, we measured the resources used during inference. Table 11 presents the time taken and
average memory usage while inferring the Wikitext-103 test set. Regarding execution time, Memoria was faster than the
relatively∞-former but slower than the others, while its memory usage was the second smallest. Memory measurements
were taken at each step using the functions torch.cuda.empty cache and torch.cuda.memory allocated
provided by PyTorch, and averages were calculated. In the case of Memoria, there is room for optimizing inference time
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Table 11: Inference time and GPU memory usage

Model Execution Time (s) Memory Usage (MB)

Transformer-XL 21.23 525.74
Compressive Transformer 25.57 740.00
∞-former 54.15 676.12
Memoria Transformer 44.21 612.94

and memory usage. This can be achieved by uploading information, such as engram type or lifespan, which requires
minimal GPU computation, to the CPU. Additionally, optimization of data structures using adjacency lists can be applied.
Furthermore, the graph maintained by Memoria does not necessarily need to be implemented using PyTorch or Python,
allowing for increased computational efficiency through the use of more efficient programming languages.

F. RAG Discussions
Recently, there has been considerable interest in Retrieval Augmented Generation (RAG) (Lewis et al., 2020b), which has
demonstrated remarkable performance in language modeling. Therefore, one might be inclined to compare Memoria with
RAG. Can RAG serve as a substitute for Memoria? The goal of our research is to address the problem of long-sequence
processing. Language modeling is one of the tasks we performed to assess the capabilities of Memoria. Given that
language modeling entails various intertwined challenges, there would be several ways to improve performance. While
RAG effectively enhances performance by providing external information as input to compensate for the limited internal
knowledge of a language model, it is not directly associated with addressing the problem of processing long sequences.
Moreover, RAG employs retrieved text as additional input tokens, potentially requiring more long sequence processing
capabilities. In such cases, we anticipate that Memoria could be utilized to effectively handle the increased sequence
length resulting from the long retrieved texts. Therefore, we compared Memoria with other conventional external memory
approaches to validate its long sequence processing performance and did not conduct a comparison with RAG. Typical RAG
and Memoria have different objectives aiming to address.

Could we then utilize the past input segments simply as a retrieval library for RAG, enabling its application in the context
of long sequence processing? Unfortunately, when we consider applying the typical RAG technique to long sequence
processing problems, there seem to be many difficulties. Primarily, from a practical implementation perspective, maintaining
the retrieval index poses a significant hurdle. When utilizing retrieval techniques without efficient indexing methods, a
full search across the entire retrieval library becomes necessary. Hence, optimization techniques using tools such as Faiss
(Douze et al., 2024) or ScaNN (Guo et al., 2020b) are commonly employed to construct retrieval indexes. While these
indexing methods substantially reduce the inference time during retrieval, the initial indexing itself requires extensive time
and computational resources. Efficient indexing techniques (Andoni et al., 2015; Baranchuk et al., 2018; Guo et al., 2020a;b)
require a training phase to optimize inference according to the specific data distribution, causing the challenges when adding
new items or removing outdated ones. Due to the nature of this task where new retrieval candidates are added with each
inference, it is anticipated that utilizing indexing techniques would be hard, and substantial computational costs would
be required to handle long sequences. Additionally, unlike memory-based methods, there is a problem of ever-increasing
computational costs due to the absence of forgetting mechanisms. Furthermore, considering the relatively short model input
length in the segmentation and recursive inference mechanism, RAG would require a longer model input length to include
enough text in the prompt to aid the model’s inference, as the retrieved text occupies the input length.

Apart from these issues, it seems essential to thoroughly explore aspects of performance such as how to compose the retrieval
pool at the sentence level, paragraph level, or even at the entire segment level, how to train the retriever model, and how
many retrievals should be conducted. Additionally, since RAG is designed for text generation rather than general sequence
processing, it cannot be simply applied to other tasks including sorting and classification and is limited to text generation
only. Certainly, if these constraints can be overcome, there is room for the emergence of a long-term memory technique
based on RAG. However, it is premature to discuss specific comparisons at this point. If it happens, one potential benefit
of RAGs, which are presently quite predictable, lies in the fact that their memory is stored in a text format that should be
human-interpretable.
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G. Structure of Memoria-Applied Transformers
G.1. Memoria Transformer

Figure 12: Architecture of Memoria Transformer. t represents the current time step, and x is the input embedding. The
residual network and layer normalization are omitted for clarity. Memoria Transformer creates engrams from the previous
time step output ht−1 and retrieves engrams from short-term and long-term memory. Memoria Transformer exploits the
engrams with the cross-attention. The memory attention blocks, depicted as two blocks in the diagram, are actually a single
layer that shares the same weights.
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G.2. Memoria BERT/RoBERTa

Figure 13: Architecture of Memoria BERT/RoBERTa. t represents the current time step, and x is the input embedding.
The residual network and layer normalization are omitted for clarity. In the encoder models, unlike in the decoder model,
engrams are created using information from the current time step. l represents the memory layer index, and from layer 1
to layer l, each layer is a regular BERT layer. Using the output hl

t from layer l, engrams are created and retrieved from
short-term and long-term memory. These engrams are then utilized in the subsequent layers (after layer l) through the
cross-attention mechanism. The two memory attention blocks share the same weights, as in Memoria Transformer.
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H. Visualization of Memoria

(a) t = 20

(b) t = 60

(c) t = 130

Figure 14: Changes in engrams of Memoria over time. The dots represent engrams, and the lines represent connections
between engrams. t is the time step. The farther to the right an engram is, the later it was created. Only the connections with
high weights are shown for clarity. The engrams gradually fade away, but some important engrams still remain for a longer
duration. This demonstrates Memoria’s ability to preserve information, even if it has been a long time, as long as it remains
useful. The strong nearby connections imply the humans’ pattern of the temporal contiguity effect (Kahana, 1996).
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(a) t = 87

(b) t = 105

(c) t = 122

Figure 15: Changes in engrams of Memoria over time when Memoria sees the same data twice. The lower half of each
image represents the engrams generated when observing at first, while the upper half represents the engrams generated when
observing at second. Thus, the dots in the same vertical column represent engrams created from the same data. Engrams
from the same data exhibit a generally stronger connectivity. This suggests that Memoria can consider content-based
similarities between information even if they are temporally distant.
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